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ABSTRACT

The field of neural network-based encoders is currently experiencing rapid growth.
However, in the pursuit of higher performance, models are becoming increasingly
complex and specialized for specific datasets and tasks, resulting in a loss of gen-
erality. In response to this trend, we explore the finite element method (FEM) as a
general solution for feature extraction and introduce LagrangeEmbedding, an un-
trainable encoder with a universal architecture across various types of raw data and
recognition tasks. Our experimental results demonstrate its successful application
and good performance in diverse domains, including data fitting, computer vision,
and natural language processing. LagrangeEmbedding is explainable and adher-
ing to the error-bound formula in FEM, which governs the relationship between
mean absolute error (MAE) and the number of model parameters. As the encoder
has no trainable parameters, neural networks utilizing it only need to train a lin-
ear layer. This reduces gradient computation and significantly accelerates training
convergence. Our research promises to advance machine learning by opening up
new avenues for unsupervised representation learning. Source code: https:
//anonymous.4open.science/r/LagrangeEmbedding-652D.

1 INTRODUCTION

In contrast to traditional unsupervised methods (Pearson, 1901; Sparck Jones, 1972), neural
network-based encoders have shown their ability to extract useful features more effectively from
raw data through deeper structures and a larger number of parameters. However, research in transfer
learning has revealed a thought-provoking phenomenon: despite being trained for specific recogni-
tion tasks, these encoders exhibit unsupervised learning characteristics. In other words, while they
are initially learned for a particular task, their feature extraction capabilities can be transferred to
different recognition tasks, independent of labeled information. This raises a bold question: can
unsupervised encoders potentially match the performance of neural network-based encoders?

Our research aims to construct an unsupervised encoder, which we named LagrangeEmbedding,
which is capable of achieving performance comparable to neural network-based encoders, but with
a universal architecture across different types of raw data and recognition tasks. Such an encoder
holds important significance in the field of representation learning. The encoder obviates the need
for training and fine-tuning when applied to various recognition tasks. Consequently, it offers lower
model-training consumption and higher generality than neural network-based encoders.

To address this challenge, we opted for the finite element method as our theoretical guidance and
employed the Lagrange basis from FEM as our encoder. This selection is grounded in two primary
reasons. 1) The Lagrange basis is a one-to-one mapping, ensuring no information loss in feature
extraction; 2) the Lagrange basis aims to depict the distribution of the raw data and is independent
of the objective function to be fitted, therefore it is unsupervised. Any LagrangeEmbedding-based
network can be written as a linear combination of Lagrange basis functions, which means these
models only contain one linear layer with no bias and activation functions. As a result, when the loss
function is convex, the empirical risk with respect to model parameters is also convex. Through a
series of experiments, we show the advantage of convex risk that models typically complete training
within 1 to 2 epochs. We also demonstrate that such an encoder can be successfully applied to
various recognition domains, such as regression, image and text classification, and image super-
resolution tasks.
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Our research holds significant importance in the domain of unsupervised representation learning.
Firstly, as a genuinely explainable and non-black box-like encoder, the structure of LagrangeEm-
bedding is deduced from a mature mathematical theory rather than determined through training
experiments. Secondly, as an unsupervised encoder, LagrangeEmbedding exhibits extensive appli-
cability across various recognition tasks. Lastly, the LagrangeEmbedding-based neural networks
exhibit rapid training speeds. In summary, our research introduces novel, interpretable methods
for unsupervised representation learning, simultaneously enhancing the generality and efficiency of
neural networks.

2 LAGRANGEEMBEDDING

In the context of FEM, elements often serve as the fundamental building blocks of the triangulation
mesh, taking the form of simplices created by connecting nodes. For instance, in 2D FEM, triangles
with three nodes are commonly used, while 3D FEM often employs tetrahedra with four nodes.
This concept is visually depicted in Figure 1 (left), where the mesh consists of eight nodes and
seven triangles. This type of mesh is established by specifying the coordinates of discrete nodes and
the vertex indices of simplices. Let d represent the dimensions, {p(i)}n−1

i=0 denote the grid nodes,
and introduce a matrix P to store the node coordinates:

Pi,j = p
(i)
j .

Additionally, utilize a matrix T to store the indices of nodes constituting the simplices within the
triangulation. Specifically, access the j-th sorted vertex of the i-th simplex in this mesh as PTi,j ,:.
Figure 1 (left) illustrate a matrix T takes the following form:

T =

[
6 0 3 2 7 3 4
7 6 7 3 4 4 3
5 5 1 1 5 7 2

]T

.

This matrix serves to describe all seven simplices within the mesh, such as the first simplex
△p(6)p(7)p(5) and the last simplex△p(4)p(3)p(2).

Figure 1: Left - Mesh with eight nodes and seven triangles. Right - Contours of eight Lagrange basis
functions, linear variation of Li associated with node p(i) across all triangles.

The first-order Lagrange basis studied in this article, denoted as {L0(x), · · · ,Ln−1(x)}, are piece-
wise linear polynomials associated with nodes {p(0), · · · ,p(n−1)}. These functions are defined
such that Li(p

(j)) = 1i=j. Figure 1 (right) illustrates this: Li(x) corresponds to node p(i), ex-
hibiting linear variation across all elements. Its support encompasses the union of all neighboring
elements of node p(i) (refer to the Appendix B for a 3-dimensional visualization). For example,
supp(L3) = △p(3)p(4)p(7) ∪△p(3)p(7)p(1) ∪△p(3)p(1)p(2) ∪△p(3)p(2)p(4).

In the realm of representation learning, Lagrange basis functions possess two highly valuable prop-
erties: the ability to simulate arbitrary neural networks and the capacity to calculate the similarity
between raw data.
Universal Approximation: Each Lagrange basis function is globally continuous and piecewise
linear, making the linear combination f(x;θ) =

∑n−1
i=0 θiLi(x) capable of approximating all con-

tinuous functions. In essence, this means that as long as a neural network can compute gradients
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through backpropagation, it can be approximated with arbitrary precision by f(x;θ). Given a func-
tion or pre-trained neural network F (x), we can bound the approximation error as follows:

|f(x;θ)− F (x)| ≤ max
ξ∈Ω
∥∇f(ξ)∥ · h. (1)

Here, h = maxi maxj 1dist(p(i),p(j))=1 · ∥p(i)−p(j)∥ represents the maximum length of mesh edges
and Ω is the domain over which the approximation occurs.
Similarity Calculation: Each Lagrange basis function is Lipschitz continuous due to its piecewise
linear nature. This property enables the use of these functions for similarity calculations. For any
given inputs x′ and x′′, we have:

|Li(x
′)− Li(x

′′)| ≤ 1

hi
∥x′ − x′′∥.

In this equation, hi = minp(j)∈{p|1
dist(p(i),p)=1

} ∥p(i) − p(j)∥ represents the minimum length of

edges that connecting to p(i).
These two fundamental properties of Lagrange basis functions underscore their significance in rep-
resentation learning. They enable the versatile approximation of complex functions and provide a
structured approach to quantifying data similarity, guiding us in constructing our Multiscale Domain
Decomposition method in the following subsection.

2.1 MULTISCALE DOMAIN DECOMPOSITION METHOD

In our earlier discussion, we introduced the Lagrange interpolation f(x;θ) and its associated error-
bound formula. However, this tool is not appropriate for machine learning modeling, since we face
a crucial challenge: the ”given function F (x) to be fitted” represents a ground truth that remains un-
known. Instead, in the scenario of machine learning, a typical dataset provides us with a collection of
input-target pairs. For any given simplex, select a subset {(x(k0), y(k0)), · · · , (x(km′−1), y(km′−1))}
from the training set {(x(0), y(0)), · · · , (x(m−1), y(m−1))} where m′ is the cardinality of subset, m
is the cardinality of subset, {ki}m

′−1
i=0 ⊆ {i}m−1

i=0 , and all subset elements reside within the given
simplex. Our goal now is to assess the error of f(x;θ) within this simplex.

Algorithm 1 Domain decomposition method of generating multiscale mesh.
Input: Maximum degrees of freedom N to perform. Depending on the size of the training set.
Input: Initial Simplex Indices Matrix T of shape (1, d+ 1) with T0,i = i.
Input: Initial Node Matrix P containing coordinates of d+1 points forming a simplex covering all
training raw data.
Output: The updated Node Matrix P and Simplex Indices Matrix T of the refined mesh.
• n← d+ 1
while n < N do
• Create the binary Longest Edge Matrix M where Mi,j = 1 indicates that the i-th edge is
the longest side of the j-th simplex.
• Formulate the binary Edge Membership Matrix E where Ei,j = 1 indicates that the i-th
edge is a side of the j-th simplex.
• Establish the binary Data-Simplex Membership Matrix B where Bi,j = 1 signifies that the
i-th raw data falls within the j-th simplex.
• Compute the index of the priority edge:

argmin
i

∑
j

∑
k Mi,jBk,j

max(
∑

j

∑
k Ei,jBk,j , 1)

.

The priority edge is the longest side among many simplices, and these relevant simplices cover
a substantial portion of the raw data.
• Insert a new node at the midpoint of the priority edge and update the Node Matrix P .
• Update the Simplex Indices Matrix T and utilize it to update mesh edges.
• n← n+ 1

end while
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Figure 2: The images above depict a mesh variety during the iterations of Algorithm 1. Each triangle
represents a 2-dimensional simplex, with increasing degrees of freedom indicating higher levels of
refinement. Discrete points denote the raw data.

Crucially, due to the linearity of basis functions {L0(x), · · · ,Ln−1(x)} within each simplex, their
linear combination f(x;θ) also remains linear within these simplices. As a result, in the given
simplex, there exists a set of coefficients β that we can express f(x(i);θ) as:

f(x(i);θ) = β0x
(i)
0 + · · ·+ βd−1x

(i)
d−1 + βd.

Therefore we can obtain the following error bound by solving a Ordinary Least Squares problem

m′−1∑
i=0

|y(i) − f(x(i);θ)|2 ≤
m′−1∑
i=0

|y(i) − (β̂0x
(i)
0 + · · ·+ β̂d−1x

(i)
d−1 + β̂d)|2, (2)

where β̂ = (XTX)−1XTy, Xi,:d = x(i), Xi,d = 1, and yi = y(i). This formula shows the error
bound reduced to 0 when m′ ≤ d + 1. By combining this conclusion with the global error-bound
formula Eqn. (1), we can summarize two critical goals for mesh generation in modeling:

1. Each simplex in the mesh should ideally contain as few original data points from the train-
ing set as possible. When each simplex covers no more than d+ 1 raw data examples, the
model perfectly fits the training set.

2. Decreasing the bound of mesh edge lengths results in a reduced bound of error.

Algorithm 1 is designed to achieve these two goals. It describes the process of generating a mul-
tiscale mesh and serves as the initial step of constructing the LagrangeEmbedding architecture. To
enhance readability, this brief pseudocode traverses all training raw data, simplices, and edges in
each iteration. For acceleration, we use divide-and-conquer techniques in the program.

In each iteration of Algorithm 1, a new fine node is added to the grid, and several coarse simplices
are subdivided into more fine simplices. Figure 2 illustrates the process of refining a mesh. As the
number (degrees of freedom) of nodes increases, each simplex (triangle) covers a reduced amount of
raw data. Additionally, the side objective is to split the longest side of each simplex, progressively
generating more acute triangles to minimize the value of h in Eqn. (1).

2.2 INFERENCE VIA LAGRANGEEMBEDDING

In the preceding section, we introduced the multiscale domain decomposition method, a tool for
initializing LagrangeEmbedding. Now, we formulate the Lagrange basis from its original definition
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to establish the foundational architecture of LagrangeEmbedding. It is important to highlight that
the traditional Lagrange basis involves unbalanced computing of barycentric coordinates, which may
not be well-suited for parallel deep learning platforms (Appendix C details traditional definition of
Lagrange basis). Consequently, in this subsection, we undertake a re-derivation of the Lagrange
basis to better parallel computing.

Let nt represent the number of simplices in the multiscale mesh. We introduce the Parameters
Tensor S defined as:

Sj,:,: =


p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1


−1

, j = 0, · · · , nt − 1.

Additionally, we introduce the Node Membership tensor M defined as:

Mi,j,k =

{
1, if the i-th node matches the k-th vertex of the j-th simplex,
0, other cases.

By defining:

Uj,k(x) =

d−1∑
τ=0

Sj,τ,k · xτ + Sj,d,k, j = 0, · · · , nt − 1, k = 0, · · · , d.

We will demonstrate in Appendix A that the following function qualifies the definition of Lagrange
basis:

Li(x) =

∑nt−1
j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k ·Uj,k(x)

max(
∑nt−1

j=0

∑d
k=0 1minτ Uj,τ (x)≥0 ·Mi,j,k, 1)

, i = 0, · · · , n− 1. (3)

So far we have successfully constructed LagrangeEmbedding:

Encoder :Rd → [0, 1]n,

x 7→ (L0(x), · · · ,Ln−1(x)).

Finally, LagrangeEmbedding is original; in Appendix F we discuss the underlying principles that
differ between it and kernel methods(Lee et al., 2017; Matthews et al., 2018; Kapoor et al., 2021).

3 EXPERIMENTS

In the upcoming sections, we present a comprehensive series of experiments to showcase the effec-
tiveness and universality of LagrangeEmbedding across various tasks. Our exploration begins with
an analysis of its performance in regression tasks, followed by examinations in image recognition
and text recognition. Additionally, Appendix D introduces more details and other applications.

3.1 REGRESSION TASKS

3.1.1 THE LIMITATIONS OF TRADITIONAL REGRESSORS AND NEURAL NETWORKS

Traditional regressors often struggle to overcome overfitting automatically, while neural networks
have excelled in solving this problem but encounter difficulties in fitting multi-frequency functions,
a challenge known as the frequency principle (Xu et al., 2019). Figure 3 vividly illustrates this con-
flict: on the left, SVR (Platt et al., 1999) successfully fits dataset B but overfits dataset A, while
the neural network fitting is the reverse, performing well on A but underfitting B. This discrep-
ancy shows the limitation of traditional regressors and neural networks in distinguishing whether a
given raw data is in a high-frequency region or a high-noise region. As introduced in the preced-
ing section, LagrangeEmbedding relies on a multiscale mesh, allowing it to adaptively fit data in
high-frequency regions by employing fine simplices. Figure 3 (right) serves as a testament to the
LagrangeEmbedding-based neural network’s capability to learn the challenging dataset C.
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Figure 3: Left - illustrates the performance of traditional regressors in fitting the high-noise
dataset A = {(x, y)|X ∼ u(0, π4 ), Y ∼ N(sin 8x, | cos 8x|)} and the multi-frequency dataset
B = {(x, y)| 1X ∼ u(0.02, 0.5), y = sin 1

x}. The dashed teal curve shows that the traditional re-
gressor (e.g., Support Vector Regression) succeeds in fitting dataset B. However, when applied to
the high-noise dataset A, shown by the solid teal curve, the traditional regressor exhibits overfitting,
struggling to generalize automatically. Conversely, we also showcase the performance of a neural
network (e.g., Multi-Layer Perceptron) in fitting dataset A, exemplified by the dashed orange curve.
However, as depicted by the solid orange curve, this neural network faces challenges in fitting multi-
frequency dataset B, indicative of underfitting. Right - We present the exceptional adaptability of
a LagrangeEmbedding-based network in fitting the dataset C = {(x, y)| 1X ∼ u(0.02, 0.5), Y ∼
N(sin 1

x , 0.5x
2)}, which is both high-noise and multi-frequency.

3.1.2 COMPARISON EXPERIMENTS

As mentioned earlier, neural networks often struggle to fit multi-frequency datasets effectively.
Therefore, our primary focus is comparing the LagrangeEmbedding-based network with traditional
regressors. To evaluate the effectiveness and generalization of the LagrangeEmbedding-based net-
work, we have devised four diverse datasets, each generated from distinct probability distributions:

1. A1: Generated from the distribution {(x, y)|X ∼ U(−π, π), Y ∼ N (sinx, 15 cos
2 x)},

with 1000 training examples and 200 test examples. The LagrangeEmbedding-based net-
work was trained with a learning rate of 0.1.

2. B1: Generated from the distribution {(x, y)| 1X ∼ U(0.02, 1.0), Y ∼ N (sin 1
x , 0.01)}, with

1000 training examples and 200 test examples. We trained the LagrangeEmbedding-based
network with a learning rate of 0.9.

3. A2: Generated from the distribution {(x, y)|Xi ∼ U(−π, π), Yi ∼ N (sinxi,
1
10 cos

2 xi)

, Y = 1
2 (Y1 + Y2)}, with 7,500 training examples and 1,500 test examples. The

LagrangeEmbedding-based network was trained with a learning rate of 0.1.

4. B2: Generated from the distribution {(x, y)| 1
Xi
∼ U(0.05, 0.5), Yi ∼ N (sin 1

xi
, 0.01), Y

= 1
2 (Y1+Y2)}, with 50,000 training examples and 10,000 test examples. Training utilized

a learning rate of 0.9.

Table 1 displays the coefficient of determination (R2) scores for the LagrangeEmbedding-based
network and traditional regressors (Thiel, 1950; Cantzler, 1981; Zhang, 2004; Hilt & Seegrist, 1977;
Stone, 1974; Jain et al., 2018; Murphy, 2012; Platt et al., 1999; Friedman, 2001; Breiman, 2001)
across fitting the four datasets. The LagrangeEmbedding-based network consistently achieves high
R2 scores across all test sets, demonstrating the effectiveness of the InterpolationNet on both high-
noise and multi-frequency datasets. Furthermore, the minimal gap between training and test set
evaluations underscores the robustness of the LagrangeEmbedding-based network, indicating its
capability of generalization.
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Table 1: A comprehensive comparison between the LagrangeEmbedding-based network and tradi-
tional regressors. The left half of each paired column displays the training R2 score, while the right
half showcases the corresponding test R2 score.

METHOD A1 B1 A2 B2

OLS Linear 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
Theil-Sen -44.7 -54.4 0.958 0.946 -0.41 -3.81 0.982 0.982
RANSAC -1.21 -1.43 0.963 0.951 -27.0 -27.1 0.983 0.983
Huber 0.036 0.041 0.962 0.949 0.085 0.092 0.984 0.984
Ridge 0.031 0.038 0.963 0.951 0.055 0.061 0.984 0.984
RidgeCV 0.037 0.042 0.963 0.951 0.085 0.092 0.984 0.984
SGD 0.009 0.01 0.962 0.95 0.005 0.004 0.983 0.983
KRR 0.0036 0.04 0.97 0.962 0.056 0.051 0.993 0.992
SVR 0.11 0.101 0.97 0.962 0.29 0.308 0.992 0.992
Gradient Boosting 0.964 0.962 0.98 0.96 0.989 0.988 0.992 0.99
Random Forests 1.0 0.999 0.995 0.945 1.0 0.999 0.999 0.99
Voting 0.852 0.852 0.942 0.917 0.869 0.868 0.951 0.946
LagrangeEmbedding Net 1.0 1.0 0.971 0.963 0.999 0.999 0.992 0.992

3.1.3 EXPERIMENTAL VALIDATION OF ERROR-BOUND FORMULA

Our LagrangeEmbedding exhibits the unique advantage of being explainable, distinguishing it from
most network-based encoders with a black-box nature. Its performance is predictable even before
learning. To illustrate this property, we conducted experiments of fitting two objective functions:
y = sin 1

x and y =
∑2

i=1 sin
xi

2π . Subsequently, we evaluated the test l2 errors. The results de-
picted in Figure 4 provide compelling evidence that 1

m

∑m−1
i=0 |f(x(i);θ) − y(i)|2 = O(n

−1/d
t ).

Since (nt/d!)
1/d = O(h−1), we experimentally prove that the LagrangeEmbedding-based network

f(x;θ) holds the error-bound formula Eqn. (1).
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Figure 4: Left - the results of 32 experiments fitting a 1-dimensional function y = sin 1
x , with each

gray point representing an experiment and showing the relationship between n−1
t and Mean Square

Error (MSE). Right - 32 experiments fitting a 2-dimensional function y =
∑2

i=1 sin
xi

2π , mirroring
the left side with gray points signifying individual experiments and demonstrating the relationship
between n−1/2

t and MSE.

3.2 COMPUTER VISION

In this section, our attention turns towards verifying the generalization of our encoder across differ-
ent recognition tasks. Furthermore, we demonstrate the advantage of LagrangianEmbedding-based
networks in faster training.
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3.2.1 PREPROCESSING LAYER

In this section, we address the application of LagrangeEmbedding for feature extraction from im-
ages, using the basic MNIST dataset as an example. If we employ LagrangeEmbedding to extract
features from images directly, it will map R784 to [0, 1]n, and the computational consumption will
become extremely large. Since Error = O(h) = O(n−1/784), each twofold improvement in per-
formance or halved training MSE loss requires an exponential increase in the number of model
parameters to 2784 times. In theory, as a universal encoder, LagrangeEmbedding could handle the
most complex recognition tasks, for example, classifying images on the MNIST dataset with 2784

different classes. Therefore, for the real MNIST dataset, LagrangeEmbedding is a heavyweight en-
coder. To address the problem, we introduce an untrainable preprocessing layer that compresses the
raw image x into a series of one-dimensional data X:

Yi,j,k =
∑2

p=0

∑2
q=0 Wp,q,kx28(2i+p)+2j+q, i, j = 0, · · · 12; k = 0, 1, 2, 3,

Zi,j,k,l =
∑2

p=0

∑2
q=0 Wp,q,lY2i+p,2j+q,k, i, j = 0, · · · 5; k, l = 0, 1, 2, 3,

X96i+16j+4k+l,0 = Zi,j,k,l, i, j = 0, · · · 5; k, l = 0, 1, 2, 3,

where the binary tensor W has values: W:,1,0 = W1,0,1 = Wi,i,2 = Wi,2−i,3 = 1.

Remark: This preprocessing layer contains no trainable model parameters. Empirically, the model’s
performance does not significantly change when modifying W. This preprocessing layer is not the
only way of dimensionality reduction.

3.2.2 EXPERIMENTAL VALIDATION OF ENCODER GENERALIZATION

To demonstrate the generalization of LagrangeEmbedding for various image recognition tasks, we
introduce the neural network architecture depicted in Figure 5. Both the preprocessing layer and
LagrangeEmbedding have non-trainable model parameters. The branch for image classification
employs a linear layer, while the branch for image super-resolution utilizes another linear layer.

Raw Image Preprocessing LagrangeEmbedding

linear CrossEntropyLoss

linear MSELoss

Figure 5: The network architecture comprises two branches: one dedicated to image classification
and the other to image super-resolution. All shadowed blocks are frozen and untrainable.

We set the degree of freedom n of LagrangeEmbedding to 16. For the linear layer dedicated to
image classification, we employ the Adam optimizer to minimize cross-entropy loss with a learning
rate of 0.001 and a batch size of 64 during training. After the first epoch, the model achieves a test
accuracy exceeding 96%, reaching a peak accuracy of 97.25% within ten epochs. As for the linear
layer used for image super-resolution, we utilize the Adam optimizer to minimize MSE loss with
a learning rate of 0.0001 and a batch size of 64 for training. The target output is high-resolution
images with size (32, 32), bicubic interpolated from raw images. After the first epoch, the model
reaches a minimum test MSE of 0.0003, then no longer decline in the subsequent four epochs.

Post-testing, the LagrangeEmbedding-based network, which we used as an example, demonstrates
performance roughly on par with a 6-layer CNN comprising 0.42 million parameters. The distinctive
advantage of LagrangeEmbedding lies in its ability to limit neural network architecture to just one
linear layer, typically completing training within one epoch, faster than other models.

3.3 NATURAL LANGUAGE PROCESSING

In this section, we delve into the practical application of LagrangeEmbedding for text feature ex-
traction using the AG News dataset (Zhang et al., 2015) for classification tasks. Our experimen-
tal findings reveal that LagrangeEmbedding can directly extract features from raw text. However,
recognizing that tokens are unordered categorical variables, to enhance performance, we add a pre-
processing layer that converts each token to a four-dimensional vector, the proportion of the token
appearing in four categories.
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Throughout our experiment, we set the degree of freedom n of LagrangeEmbedding to 64. We
employ the SGD optimizer to minimize the cross-entropy loss, initiating with a learning rate of 5.0
and reducing it by a factor of 0.1 every two epochs. The batch size is set to 32. This experiment
showcases the neural network achieving 90.01% test accuracy after the first epoch, with 90.4% test
accuracy reached within just five epochs.

The LagrangeEmbedding-based network possesses a unique characteristic in text classification
tasks: the number of its parameters remains independent of the token count. Compared to word2vec-
based networks, our model performs equally well in classification but boasts only 256 model pa-
rameters, a significant reduction from the word2vec-based network with more than 6.13 million
parameters.

4 FUTURE DIRECTIONS

It is essential to acknowledge that LagrangeEmbedding is not without limitations. Firstly, our multi-
scale domain decomposition method for initializing LagrangeEmbedding faces challenges in terms
of parallelization and acceleration. In our implementation, this algorithm still runs in a non-parallel
mode. Secondly, LagrangeEmbedding is a heavyweight tool for extracting features because it al-
ways considers the most complex scenarios. For instance, when loading a 24-bit RGB image with
a size of (1024, 1024), the LagrangeEmbedding doesn’t know the underly number of classifica-
tion categories, and it always tries to extract features for the classification task with 2561024

2

cat-
egories. Consequently, when doing an easy recognition task with high dimensional raw data, the
LagrangeEmbedding will waste huge computing resources. As shown in section 3.2.1, our solution
is adding an untrainable preprocessing layer to the model for reducing the dimension of raw data.

Future research should focus on developing efficient multiscale domain decomposition methods and
better preprocessing layers.

5 CONCLUSION

We believe that when the performance of unsupervised encoders starts to approach or surpass that
of neural network-based encoders, training will no longer be necessary for representation learning.

In an era marked by the rapid evolution of neural network-based encoders, our exploration began
by recognizing their undeniable efficacy in extracting meaningful features from raw data. However,
a thought-provoking revelation emerged from the study of transfer learning: these task-specific en-
coders exhibit unsupervised characteristics. This revelation prompted us to delve into the audacious
question of whether unsupervised encoders could reach the performance of those neural network-
based encoders.

Our response to this question culminated in the creation of LagrangeEmbedding, a revolutionary
unsupervised encoder, which has a universal architecture capable of accommodating diverse raw
data types and recognition tasks. LagrangeEmbedding extracts features by depicting the distribution
of raw data, eliminating the need to consider the underlying meaning of raw data. This inherent
characteristic grants it the property of generalization. As demonstrated in section 3.2.1, it efficiently
extracts features from the output of a meaningless preprocessing layer.

Our experiments demonstrated the advantages of LagrangeEmbedding-based networks in several
key aspects: 1) An unparalleled level of explainability. Our experimental results show that the
performance of such models is in perfect agreement with the theoretical bound error formula, which
demystifies the representation learning process. 2) Quick training. These models contain only one
linear layer for training. They usually converged within a mere 1 to 2 epochs, challenging the
conventional wisdom that the training method is essential for representation learning.

In conclusion, our research introduces a novel encoder derived from mature mathematical theory,
rather than being proposed through extensive experimental trials. It stands as an explainable and
non-black-box-like encoder, challenging long-standing assumptions about the role of training in
feature extraction. By obviating the need for extensive training and fine-tuning, this encoder holds
high value in representation learning research.
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A PROOF OF LAGRANGE BASIS EXPRESSION

We will now demonstrate, in three concise steps, that Eqn. (3) qualifies as a Lagrange basis function.
Piecewise Linear: Since {Uj,0, · · · ,Uj,d} are piecewise linear functions, their linear combination
Li is also piecewise linear.
Kronecker Delta: From the definition of U and S, we have the following equation:

[x0 · · · xd−1 1] = [Uj,0(x) · · · Uj,d(x)]


p
(Tj,0)
0 · · · p

(Tj,0)
d−1 1

...
. . .

...
...

p
(Tj,d−1)
0 · · · p

(Tj,d−1)
d−1 1

p
(Tj,d)
0 · · · p

(Tj,d)
d−1 1

 .

Decomposing this equation, we obtain x =
∑d

k=0 Uj,k(x)p
(Tj,k) and

∑d
k=0 Uj,k(x) = 1. This

implies two important conclusions: Uj,k′(p(Tj,k′′ )) = 1k′=k′′ and minτ Uj,τ (x) ≥ 0 is true if and
only if x belongs to the j-th simplex. Therefore, we have{

1minτ Uj,τ (p(i))≥0 = Mi,j,k = Uj,k(p
(i)) = 1, if i = Tj,k

Mi,j,k = Uj,k(p
(i)) = 0, if i ̸= Tj,k

This proves that Li(p
(j)) = 1i=j .

Globally Continuity: Lastly, since Li is inherently linear within all simplices and exhibits continu-
ity across all grid nodes, we can conclude that Li is globally continuous.

B VISUALIZATION OF LAGRANGIAN BASIS

In section 2, we introduced first-order Lagrange basis functions, a set of piecewise linear functions
defined on a mesh. Each basis function corresponds to a node.

Consider the grid depicted in Figure 6 (left). Taking the node p(20) as an example, it has a total of
four neighboring nodes: p(5), p(0), p(7), and p(4). By connecting these nodes, we can determine
the support of the basis function L20.

In Figure 6 (middle), we present the function graphs of L20 and L7. It can be observed that these
functions exhibit linear variations on each mesh triangle. Taking L20 as an example, its function
value at p20 is 1, and 0 at all other nodes. Similarly, L7 has a function value of 1 at p7 and 0 at other
nodes.

In Figure 6 (right), the orange triangles represent the function graph of f(x;θ) on the do-
main △p(0)p(7)p(9), where the function values of f(x;θ) at the vertices (p(0),p(7),p(9)) are
(θ0,θ7,θ9), respectively. The green dots represent a subset of training set, where the projections
(raw data) fall on△p(0)p(7)p(9). As shown in equation (2), when the number of green points does
not exceed three, there exists a solution of (θ0,θ7,θ9) such that all green points lie on the surface
of f(x;θ), such that MSE reach a minimum value of 0.

−4 −2 0 2 4
−4

−2

0

2

4

p(20)

p(5)

p(4)

p(7)

p(0) L7

L20

Figure 6: Data visualization. Left - an example of 2-dimensional mesh. Middle - the graphs of basis
functions L20 and L7. Right - the graphs of the function f(x;θ) and a subset of training set.
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C THE TRADITIONAL EXPRESSION OF LAGRANGE BASIS

Given the complexity of FEM as a numerical method, to enhance understanding, we start with a
two-dimensional case and a triangulated mesh to illustrate the traditional expression of basis func-
tions. Let triangle △ be defined by nodes {p(i),p(j),p(k)}. The following barycentric coordinates
{λ△,i, λ△,j , λ△,k} are three first-degree polynomials of x[

λ△,i(x)
λ△,j(x)
λ△,k(x)

]
=

p(i)
0 p

(j)
0 p

(k)
0

p
(i)
1 p

(j)
1 p

(k)
1

1 1 1

−1 [
x0

x1

1

]
.

Referring to the instance depicted in Fig. 1 (left), the mesh consists of eight nodes and seven
triangles. Specifically, let {△(j) = △p(Tj,0)p(Tj,1)p(Tj,2)|j = 0, · · · , 6}. We will now verify that
the following ψ3 corresponds to the third basis function in this mesh

ψ3(x) =
1

max(
∑

i∈{2,3,6,5} 1x∈△(i) , 1)

∑
i∈{2,3,6,5}

1x∈△(i)λ△(i),3(x).

First, ψ3 possesses values of Kronecker Delta:

ψ3(x) =



1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(0),

1

max(2, 1)
(1 · 0 +1 · 0 +0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(1),

1

max(2, 1)
(0 · λ△(2),3(x)+1 · 0 +1 · 0 +0 · λ△(5),3(x))= 0, if x = p(2),

1

max(4, 0)
(1 · 1 +1 · 1 +1 · 1 +1 · 1) = 1, if x = p(3),

1

max(2, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · 0 +1 · 0) = 0, if x = p(4),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(5),

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))= 0, if x = p(6),

1

max(2, 1)
(1 · 0 +0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · 0) = 0, if x = p(7),

Then, ψ3 is a first-degree polynomial in every triangle and supp ψ3 = inn ∪i∈{2,3,6,5} △(i):

ψ3(x) =



1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T0,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T1,

1

max(1, 1)
(1 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(2),3(x), if x ∈ inn T2,

1

max(1, 1)
(0 · λ△(2),3(x)+1 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(3),3(x), if x ∈ inn T3,

1

max(0, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+0 · λ△(5),3(x))=0, if x ∈ inn T4,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+0 · λ△(6),3(x)+1 · λ△(5),3(x))=λ△(5),3(x), if x ∈ inn T5,

1

max(1, 1)
(0 · λ△(2),3(x)+0 · λ△(3),3(x)+1 · λ△(6),3(x)+0 · λ△(5),3(x))=λ△(6),3(x), if x ∈ inn T6,

Finally, since ψ3 is continuous in all nodes and first-degree in all triangles, it is globally continuous.
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D ADDITIONAL EXPERIMENTS AND APPLICATIONS

D.1 FITTING HIGH-NOISE DATASET

In this section, we conduct the LagrangeEmbedding-based network on fitting the dataset A =
{(x, y)|X ∼ U(−4, 4), Y ∼ N (sinx, 0.2 cos2 x)}. A comprises 6000 examples, with 5000 for
training and 1000 for testing. Figure 7 shows the training progress.

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=32 (c) epoch=4, num simplices=145 (d) epoch=10, num simplices=414

Figure 7: Blue dots represent the training set, while the orange curve represents the network.

D.2 FITTING MULTI-FREQUENCY DATASET

In this section, we conduct the LagrangeEmbedding-based network on fitting the dataset A =
{(x, y)| 1x ∼ U(0.02, 0.5), y = sin 1

x}. A comprises 6000 examples, with 5000 for training and
1000 for testing. Figure 8 illustrates the training progress. Remarkably, after just 4 epochs of
training, the neural network outputs closely approximate the target values. By the 32nd epoch’s
conclusion, the neural network outputs and target values are nearly indistinguishable.

(a) epoch=0, num simplices=1 (b) epoch=0, num simplices=16 (c) epoch=0, num simplices=32 (d) epoch=0, num simplices=64

(e) epoch=2, num simplices=268 (f) epoch=4, num simplices=654 (g) epoch=9, num simplices=1423 (h) epoch=32, num simplices=2648

Figure 8: Blue dots represent the training set, while the orange curve represents the network.

D.3 FIT A VECTOR-VALUED FUNCTION

In this instance, we utilize the LagrangeEmbedding-based network to fit spherical harmonics.
Our dataset denoted as A = {(x,y)|x = (θ, ϕ),y = (Real(Y 2

4 (θ, ϕ)), Imag(Y 2
4 (θ, ϕ))),Θ ∼

U(0, 2π),Φ ∼ U(0, π)} , comprises 48,000 examples, with 40,000 allocated for training and an
additional 8,000 for testing. Figure 9 shows the training progress.

D.4 SOLVE PDES

In this section, we utilize the LagrangeEmbedding-based network to address the following partial
differential equations (PDEs):{

∆u+ (u− β)2 = (α cosx sin y − 1)2 + 1, (x, y) ∈ Ω;

u = β, (x, y) ∈ ∂Ω.
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(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=68 (c) epoch=0, num simplices=372 (d) epoch=1, num simplices=850

(e) epoch=2, num simplices=1330 (f) epoch=3, num simplices=1862 (g) epoch=16, num simplices=6620 (h) epoch=32, num simplices=12160

Figure 9: In each block, the left panel represents the real part of our model output, while the right
panel represents the imaginary part of the model output.

Here, Ω = [0, 1] × [0, 1]. We construct a dataset that takes (α, β) as input data and assigns the
corresponding numerical solution of the PDEs as the target output. This dataset comprises 12,000
examples, with α randomly selected from the distribution U(−π/2, π/2) and β randomly chosen
from the distribution U(0, 2π). We then split the dataset into two parts: 10,000 for training and
2,000 for testing. Figure 10 illustrates how well the network predicts the exact solution.

(a) epoch=0, num simplices=2 (b) epoch=0, num simplices=139 (c) epoch=1, num simplices=628 (d) epoch=3, num simplices=962

Figure 10: Residual - The gap between the exact solution and the model output.

E ABLATION STUDIES

In Sections 3 and 5, when we mentioned that ”LagrangeEmbedding can be comparable to neu-
ral network-based encoders,” we intended to convey that ”the LagrangeEmbedding-based network
performs equally well or even better than models of similar scale.” To avoid any potential misunder-
standing, we have conducted additional experiments for image classification tasks.

Table 2 presents the results of these experiments, which were carried out on MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 datasets. The 4-layer model instances and training con-
figurations used in these experiments were sourced from the PyTorch tutorial page (https:
//github.com/pytorch/examples/tree/main/mnist). In their setup, the AdaDelta
optimizer was employed to minimize cross-entropy loss, starting with a learning rate of 1.0 and
reducing it by a factor of 0.7 after each epoch. The batch size was set to 64, and the total training
epochs were set to 14.

In Table 2, when the “EMBED” column is marked as False, it indicates that we trained the entire
CNN. When “EMBED” is marked as True, we froze the CNN (except for the last linear layer) as
a preprocessing layer and inserted our parameter-free LagrangeEmbedding before the final linear
layer. We then trained only the final linear layer. If the “DATA AUG” is marked as True, it signifies
the use of random horizontal flip as a data augmentation technique. The “INIT TIME” column
reports the wall-clock time taken for initializing our LagrangeEmbedding on an RTX 2080ti GPU.

In the case of using LagrangeEmbedding, to improve time efficiency and extract non-low-level fea-
tures from large raw data, here we employ LagrangeEmbedding as a low-rank mapping. We de-
compose the d-dimensional input space into the product of d one-dimensional spaces and apply
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Table 2: Ablation studies.

Dataset EMBED DATA AUG ACC@1 INIT TIME

MNIST ✗ ✗ 99.14% N/A
✓ ✗ 99.17% 1.55s

Fashion MNIST ✗ ✗ 92.47% N/A
✓ ✗ 92.56% 1.55s

Fashion MNIST ✗ ✓ 92.14% N/A
✓ ✓ 92.14% 2.08s

CIFAR-10 ✗ ✗ 71.43% N/A
✓ ✗ 71.54% 1.83s

CIFAR-10 ✗ ✓ 71.93% N/A
✓ ✓ 72.09% 2.29s

CIFAR-100 ✗ ✗ 36.50% N/A
✓ ✗ 36.78% 1.84s

CIFAR-100 ✗ ✓ 36.58% N/A
✓ ✓ 36.97% 2.30s

LagrangeEmbedding in each one-dimensional space:

Original LagrangeEmbedding :Rd → [0, 1]n

x 7→ (L1(x), · · · ,Ln(x))

Low Rank LagrangeEmbedding :R× · · · × R→ [0, 1]nd

x 7→ (L1(x1), · · · ,Ln(x1), · · · ,L1(xd), · · · ,Ln(xd))

This approach partitions the high-dimensional input space of LagrangeEmbedding to reduce com-
putational costs and accelerate the initialization process.

In these experiments, the PyTorch model instance has the same size as the LagrangeEmbedding-
based network. However, while the former trains the entire model, the latter only trains the final
linear layer. Notably, the latter performs equal time efficiency during inference, and outperforms in
evaluation results. Although the LagrangeEmbedding-based network requires initialization before
use, its actual initialization time is minimal.

F COMPARISON WITH KERNEL METHODS

Our LagrangeEmbedding-based network and the kernel method share some high-level properties.
For instance, both are linear models and serve as universal approximators. However, their underlying
principles are different: kernel methods map low-dimensional linearly inseparable data to high-
dimensional and linearly separable data, whereas our method only maps weak-correlated data to be
linearly separable. Specifically, if two input data are very close, the inner product of their projections
will be close to 1, but if their similarity exceeds the threshold (i.e., longer than one simplex), their
projections will be orthogonal. From Figure 1, we have:

LagrangeEmbedding

(
1

3
(p(1) + p(2) + p(3))

)
=

(
0,

1

3
,
1

3
,
1

3
, 0, 0, 0, 0

)
LagrangeEmbedding

(
1

3
(p(2) + p(3) + p(4))

)
=

(
0, 0,

1

3
,
1

3
,
1

3
, 0, 0, 0

)
LagrangeEmbedding

(
1

3
(p(0) + p(5) + p(6))

)
=

(
1

3
, 0, 0, 0, 0,

1

3
,
1

3
, 0

)
The first point 1

3 (p
(1) + p(2) + p(3)) ∈ △p(1)p(2)p(3) and the second point 1

3 (p
(2) + p(3) + p(4)) ∈

△p(2)p(3)p(4) belong to adjacent triangles, so their LagrangeEmbedding projections are close, and
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the inner product is close to 1. However, the first point 1
3 (p

(1) + p(2) + p(3)) ∈ △p(1)p(2)p(3) and
the third point 1

3 (p
(0) + p(5) + p(6)) ∈ △p(0)p(5)p(6) belong to distant triangles, so their projections

are orthogonal.

LagrangeEmbedding has two characteristics:

1. The inner product of two data in the input space does not necessarily correlate with the
inner product in the projection space. In the projection space, their inner product is solely
determined by the multi-scale mesh, and the mesh structure is determined by learning the
data distribution in the input space. Therefore, for LagrangeEmbedding, two data with
inner products close to 1 in the input space may potentially be orthogonal in the projection
space.

2. The LagrangeEmbedding-based network can have unlimited width if we continuously in-
crease its degrees of freedom.

Finally, LagrangeEmbedding has a cost-efficient solution for extracting features from high-
dimensional raw data (see Appendix E, Low-Rank LagrangeEmbedding). Furthermore, La-
grangeEmbedding can be used independently or as a parameter-free module inserted into a neural
network to enhance the performance (see Appendix E, Table 2). Therefore, we believe our approach
holds advantages over (Lee et al., 2017; Matthews et al., 2018; Kapoor et al., 2021).
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