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ABSTRACT

Tsetlin Machines (TMs) have garnered increasing interest for their ability to learn
concepts via propositional formulas and their proven efficiency across various
application domains. Despite this, the convergence proof for the TMs, particularly
for the AND operator (conjunction of literals), in the generalized case (inputs
greater than two bits) remains an open problem. This paper aims to fill this gap
by presenting a comprehensive convergence analysis of Tsetlin automaton-based
Machine Learning algorithms. We introduce a novel framework, referred to as
Probabilistic Concept Learning (PCL), which simplifies the TM structure while
incorporating dedicated feedback mechanisms and dedicated inclusion/exclusion
probabilities for literals. Given n features, PCL aims to learn a set of conjunction
clauses Ci each associated with a distinct inclusion probability pi. Most impor-
tantly, we establish a theoretical proof confirming that, for any clause Ck, PCL
converges to a conjunction of literals when 0.5 < pk < 1. This result serves
as a stepping stone for future research on the convergence properties of Tsetlin
automaton-based learning algorithms. Our findings not only contribute to the
theoretical understanding of Tsetlin automaton-based learning algorithms but also
have implications for their practical application, potentially leading to more robust
and interpretable machine learning models.

1 INTRODUCTION

Concept Learning, a mechanism to infer Boolean functions from examples, has its foundations in
classical machine learning Valiant (1984); Angluin (1988); Mitchell (1997). A modern incarnation,
the Tsetlin Machine (TM) Granmo (2018), utilizes Tsetlin Automata (TAs) Tsetlin (1961) to generate
Boolean expressions as conjunctive clauses. Contrary to the opaqueness of deep neural networks,
TMs stand out for their inherent interpretability rooted in disjunctive normal form Valiant (1984).
Recent extensions to the basic TM include architectures for convolution Granmo et al. (2019),
regression Abeyrathna et al. (2020), and other diverse variants Seraj et al. (2022); Sharma et al.
(2023); Abeyrathna et al. (2021; 2023). These advances have found relevance in areas like sentiment
analysis Yadav et al. (2021) and novelty detection Bhattarai et al. (2022).

Proving the convergence of a machine learning model is crucial as it guarantees the model’s reliability
and stability, ensuring that it reaches a consistent solution Shalev-Shwartz et al. (2010); Berkenkamp
et al. (2017). It also aids in the development and evaluation of algorithms, providing a theoretical
benchmark for performance and understanding the model’s limitations. Convergence analysis of
TMs reveals proven behavior for 1-bit Zhang et al. (2022) and 2-bit cases Jiao et al. (2021; 2023),
encompassing the AND, OR, and XOR operators. However, general convergence, especially with
more input bits, poses significant challenges. The crux of the issue stems from the clause-based
interdependence of literals in the learning mechanism of TMs. Essentially, the feedback to a literal is
influenced by other literals in the same clause. This interdependency, combined with vast potential
combinations of literals, compounds the difficulty in a general proof for TMs.

Addressing this, our work introduces Probabilistic inclusion of literals for Concept Learning (PCL),
an innovative TM variant. PCL’s design allows literals to be updated and analyzed independently,
contrasting starkly with standard TM behavior. This is achieved by tweaking feedback tables to
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Figure 1: A two-action Tsetlin automaton with 2N states Jiao et al. (2023).

exclude clause values during training and omitting the inaction transition. Additionally, PCL employs
dedicated inclusion probabilities for clauses to diversify the learned patterns. Most importantly,
we provide evidence that PCL clauses, under certain preconditions, can converge to any intended
conjunction of literals. Our assertions are bolstered by experimental results to confirm the theoretical
finding. Finally, it is important to note that our proof on the convergence of PCL does not imply
convergence of the original Tsetlin Machine, but it lays a robust foundation and outlines a clear
roadmap for potential proofs concerning learning algorithms that are based on Tsetlin Automaton.

2 TSETLIN MACHINE

Structure: A Tsetlin Machine (TM) processes a boolean feature vector x = [x1, . . . , xn] ∈ {0, 1}n
to assign a class ŷ ∈ {0, 1}. The vector defines the literal set L = {x1, . . . , xn,¬x1, . . . ,¬xn}. TM
uses subsets Lj ⊆ L to generate patterns, forming conjunctive clauses:

Cj(x) =
∧

lk∈Lj

lk. (1)

A clause Cj(x) = x1 ∧ ¬x2, for instance, evaluates to 1 when x1 = 1 and x2 = 0.

Each clause Cj uses a Tsetlin Automata (TA) for every literal lk. This TA determines if lk is Excluded
or Included in Cj . Figure 1 shows the states of a TA with two actions. Each TA chooses one of two
actions, i.e., either Includes or Excludes its associated literal. When the TA is in any state between 1
to N , the action Exclude is selected. Likewise, the action becomes Include when the TA is in any
state between N + 1 to 2N . The transitions among the states are triggered by a reward or a penalty
that the TA receives from the environment.

With the u clauses and 2n literals, there are u × 2n TAs. Their states are organized in the matrix
A = [ajk] ∈ {1, . . . , 2N}u×2n. The function g(·) maps the state ajk to actions Exclude (for states up
to N ) and Include (for states beyond N ).

Connecting the TA states to clauses, we get:

Cj(x) =

2n∧
k=1

[
g(ajk) ⇒ lk

]
. (2)

The imply operator governs the Exclude/Include action, being 1 if excluded, and the literal’s truth
value if included.

Classification: Classification uses a majority vote. Odd-numbered clauses vote for ŷ = 0 and
even-numbered ones for ŷ = 1. The formula is:

ŷ = 0 ≤
u−1∑

j=1,3,...

2n∧
k=1

[
g(ajk) ⇒ lk

]
−

u∑
j=2,4,...

2n∧
k=1

[
g(ajk) ⇒ lk

]
. (3)

Learning: The TM adapts online using the training pair (x, y). Tsetlin Automata (TAs) states
are either incremented or decremented based on feedback, categorized as Type I (triggered when
y = 1) and Type II (triggered when y = 0), shown in Table 1 and Table 2 respectively. For Type
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Input Clause 1 0
Literal 1 0 1 0

Include P(Reward) s−1
s

NA 0 0
Literal P(Inaction) 1

s
NA s−1

s
s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude P(Reward) 0 1
s

1
s

1
s

Literal P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s

0 0 0

Table 1: Type I Feedback.

Input Clause 1 0
Literal 1 0 1 0

Include P(Reward) 0 NA 0 0
Literal P(Inaction) 1.0 NA 1.0 1.0

P(Penalty) 0 NA 0 0

Exclude P(Reward) 0 0 0 0
Literal P(Inaction) 1.0 0 1.0 1.0

P(Penalty) 0 1.0 0 0

Table 2: Type II Feedback.

I, when both clause and literal are 1-valued, it adjusts TA states upwards to capture patterns in x.
When it is triggered for 0-valued clauses or literals, it adjusts states downwards to mitigate overfitting.
For Type II, it targets the Exclude action to refine clauses, focusing on instances where the literal is
0-valued but its clause is 1-valued. The likelihood, governed by a user parameter s > 1, is mainly
s−1
s or 1

s , but could be 1. The details of the updating rules can be found in Granmo (2018).

3 PCL: PROBABILISTIC INCLUSION OF LITERALS FOR CONCEPT LEARNING

In the PCL model, following the TM approach, a Tsetlin automata, denoted as TAi
j , is associated

with each literal lj and clause Ci to decide the inclusion or exclusion of the literal lj in Ci. The target
conjunction concept is represented by CT (e.g., CT = x1 ∧ ¬x2). The number of literals in CT is
given by m = |CT |, with m = 2 for the given example. We say that the literal lj satisfies a sample e
(also denoted by lj ∈ e) if it equals 1, and we say that lj violates a sample e (also denoted by lj /∈ e)
otherwise.

Given positive (e+, i.e., y = 1) and negative (e−, i.e., y = 0) samples, PCL learns a disjunctive
normal form (DNF) formula: C1 ∨ · · · ∨ Ck with Cj =

∧2n
i=1

[
g(aji ) ⇒ li

]
. In PCL, this DNF

formula classifies unseen samples, i.e., ŷ = C1 ∨ · · · ∨ Ck.

While both TM and PCL update the states of every TA using feedback from positive and negative
samples, there are notable differences in the PCL approach. In PCL, the inaction transition is disabled,
feedback is independent of the values of clauses during training, and instead of TM’s uniform
transition probabilities for each clause, PCL assigns a unique inclusion probability to each clause to
diversify learned patterns.

Figure 2 provides an example of the PCL architecture with two clauses, each associated with a pi
value. Black arrows represent reward transitions (enforce the action), whiles red arrows represent
penalty transitions (penalize the action). The current TA states (represented by the black dots)
translate to the clauses C1 = ¬x1 and C2 = ¬x1 ∧ ¬x2. The DNF C1 ∨ C2 can be then used to
classify unseen samples. TA states are initialized randomly and updated based on sample feedback.
Subsequent sections will delve into the feedback provided for each sample (on positive and negative
samples respectively).

3.1 FEEDBACK ON POSITIVE SAMPLES

Table 3 details the feedback associated with a positive sample e+. This feedback relies on the literal
value and the current action of its corresponding TA. As an illustration, if a literal is 1 in a positive
sample and the current action is “Include”, then the reward probability is denoted by pi, as shown in
Table 3.

A notable distinction from TM is that PCL’s feedback is independent of the clause’s value. Instead,
distinct probabilities are associated with each clause. As a result, Table 3 provides two columns: one
for satisfied literals and another for violated literals. For instance, the positive sample e+(1, 0, 1, 0)
satisfies literals x1, ¬x2, x3, and ¬x4 (having value 1) and violates literals ¬x1, x2, ¬x3, and x4

(having value 0).
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Action Transitions Feedback on lj ∈ e+ Feedback on ¬lj | lj ∈ e+

Include P (Reward) pi 0
P (Penalty) 1− pi 1

Exclude P (Reward) 1− pi 1
P (Penalty) pi 0

Table 3: Feedback on a positive sample e+ on clause Ci with pi.
Action Transitions Feedback on lj ∈ e− Feedback on ¬lj | lj ∈ e−

Include P (Reward) 1− pi pi
P (Penalty) pi 1− pi

Exclude P (Reward) pi 1− pi
P (Penalty) 1− pi pi

Table 4: Feedback on a negative samples e− on clause Ci with pi.

When literals oppose the positive sample e+ (refer to the last column of Table 3), it’s evident that
these literals are not constituents of the target conjunction. Therefore, they are excluded with a 1.0
probability. Conversely, literals aligning with e+ (as shown in the third column of Table 3) don’t have
assured inclusion. For conjunctions with many literals, including the majority is favored. However,
for those with a singular literal, the positive sample arises from one correct literal, rendering the others
superfluous. In such scenarios, the inclusion of most literals is discouraged, by having a smaller pi
value. Therefore, inclusion is activated based on a user-defined probability pi, while exclusion relies
on a probability of 1− pi. This is further illustrated in Example 1.

3.2 FEEDBACK ON NEGATIVE SAMPLES

Table 4 delineates the feedback related to a negative sample e−. Literals that violate the negative
sample e− are potential candidates for inclusion. This is based on the rationale that negating certain
literals might rectify the sample. However, the probability of their inclusion in clause Ci is dictated
by pi, and their probable exclusion is initiated with a likelihood of 1− pi (refer to the last column of
Table 4).

Conversely, literals that align with the negative sample e− are considered for exclusion, postulating
that the literal’s presence might be causing its negative label. Yet, this potential exclusion happens
with a probability of pi. Their probable inclusion is initiated with a likelihood of 1− pi (see the third
column of Table 4).

Example 1. Given n = 4, we plan to learn a target conjunction CT . The set of possible literals
are x1, x2, x3, x4,¬x1,¬x2,¬x3, and ¬x4. If we have a positive sample, e+, and we know that CT

includes exactly 4 literals, then all literals satisfying e+ should be included. However, if CT only
includes one literal, we should include only one literal satisfying the sample e+ (1 amongst 4 i.e.,
25% of literals). Hence, we can control, to some extent, the size of the learned clause by setting the
inclusion probability pi of the clause Ci (large if we want more literals, small otherwise).

3.3 PCL VS TM

When contrasting PCL with the standard TM, a primary distinction arises: In PCL, TAs for all
literals within a clause are updated autonomously. This individualized treatment of literals simplifies
the complexity of the theoretical convergence analysis compared to the traditional TM. Even with
a nuanced learning approach, PCL’s convergence proof offers profound insights into the learning
concept, thereby enhancing the theoretical grasp of the TM family.

4 PCL CONVERGENCE PROOF

In this section, we prove that PCL almost surely converges to any conjunction of literals in infinite
time horizon. Before that, we introduce some notations and definitions. There are three types of
literals. We denote by L1 literals lj such that lj ∈ CT (correct literals), by L2 literals ¬lj such that
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Figure 2: PCL example.

lj ∈ CT (negative literals) and by L3 literals lj such that lj /∈ CT ∧ ¬lj /∈ CT (irrelevant literals).
We now define the convergence to conjunction of literals.

Definition 1 (Convergence to a conjunction of literals). An algorithm almost surely convergences to
a conjunction of literals CT , if it includes every literal in L1 and excludes every literal in L2 and
every literal in L3 in infinite time horizon.

Given all the possible 2n samples, and a literal lj , we distinguish four sample classes:

A1: Positive samples, e+, such that lj is satisfied (lj ∈ e+).

A2: Positive samples, e+, such that lj is violated (lj /∈ e+).

A3: Negative samples, e−, such that lj is satisfied (lj ∈ e−).

A4: Negative samples, e−, such that lj is violated (lj /∈ e−).

In Table 5, we report the number of samples for each class/literal type. We denote by freq(i, j)
the number of samples for a literal of type Li in class Aj and by αi,j the relative frequency i.e.,
αi,j =

freq(i,j)
2n . For example, freq(1, 4) = 2n−1 and α1,4 = 2n−1

2n = 0.5.

Example 2. Suppose that n = 3 and CT = x1 ∧ ¬x2. We have 23 possible samples, i.e., (0, 0, 0),
(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1). Following CT , there are 23−2 = 2
positive samples and 23 − 23−2 = 6 negative samples. Literals in L1 are x1 and ¬x2, literals in L2

are ¬x1 and x2 and literals in L3 are x3 and ¬x3. For example, given the literal x1 (in L1): samples
in class A1 (positive samples where x1 equals 1) are (1, 0, 0) and (1, 0, 1); it is impossible to have a
sample in class A2, i.e, freq(1, 2) = 0 (we cannot have a positive sample that violates a literal in
CT ); samples in class A3 (negative samples where x1 equals 1) are (1, 1, 0) and (1, 1, 1); samples
in class A4 (negative samples where x1 equals 0) are (0, 0, 0), (0, 0, 1), (0, 1, 0) and (0, 1, 1). Note
that in the special case, where m = n, there are no literals in L3.

Following feedback tables, Table 6 presents possible actions and probability associated to each action
for each class of samples for a clause Ck (with inclusion probability pk).

Lemma 1. For p and α between 0 and 1, α × p + (1 − α) × (1 − p) > 0.5 if and only if
(p > 0.5 ∧ α > 0.5) or (p < 0.5 ∧ α < 0.5).

Theorem 1. Given a PCL with one clause, Ck, PCL will almost surely converge to the target
conjunction CT in infinite time horizon if 0.5 < pk < 1.
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Literal A1 A2 A3 A4

L1 2n−m 0 2n − 2n−m − 2n−1 2n−1

L2 0 2n−m 2n−1 2n − 2n−m − 2n−1

L3 2n−m−1 2n−m−1 2n−1 − 2n−m−1 2n−1 − 2n−m−1

Table 5: Frequency of each class w.r.t each literal type.
Sample Class Actions Probability

A1
Include pk
Exclude 1− pk

A2
Include 0.0
Exclude 1.0

A3
Include 1− pk
Exclude pk

A4
Include pk
Exclude 1− pk

Table 6: Summary of feedback w.r.t each sample class.

Proof. Given a clause Ck with inclusion probability pk, we prove that Ck converges to the target CT .
In other words, we prove that every literal in L1 is included and every literal in L2 or L3 is excluded
in infinite time horizon.

Given a clause Ck, we suppose that every TAk
j has a memory size of 2N . Let Ik(lj) denote the action

Include (when g(akj ) is 1) and Ek(lj) the action Exclude (when g(akj ) is 0) and let akj (t) denote the
state of TAk

j at time t. Because we have a single clause, Ck, the index k can be omitted.

Let E(lj)
+ (resp. I(lj)

+) denote the event where E(lj) is reinforced (resp. I(lj) is reinforced),
meaning a transition towards the most internal state of the arm, namely, state 1 for action E(lj) (resp.
state 2N for action I(lj)).

If aj ≤ N , the action is E(lj). E(lj)
+ corresponds to a reward transition, meaning, the TAj

translates its state to aj − 1 unless aj = 1, then it will maintain the current state. In other terms, at
time t, P (E(lj)

+) is P (aj(t+ 1) = f − 1 | aj(t) = f) if 1 < f ≤ N . In case, f = 1, P (E(lj)
+)

is P (aj(t+ 1) = 1 | aj(t) = 1).

If aj > N , the action is I(lj). I(lj)+ corresponds to a reward transition, meaning, TAj translates
its state to aj + 1 unless aj = 2N , then it will maintain the current state. In other terms, at time t,
P (I(lj)

+) is P (aj(t+ 1) = f + 1 | aj(t) = f) if N ≤ f < 2N . In case, aj = 2N , P (I(lj)
+) is

P (aj(t+ 1) = 2N | aj(t) = 2N).

We distinguish three cases: lj ∈ L1, lj ∈ L2 and lj ∈ L3.

Case 1: lj ∈ L1 We will prove P (I(lj)
+) > 0.5 > P (E(lj)

+).

Following Tables 5 and 6, we have:

P (I(lj)
+) = α× pk + (1− α)× (1− pk) s.t. α = α1,1 + α1,4.

This is, samples in classes A1 and A4 (α of the samples) suggest to include with probability pk and
samples in A3 ((1− α) of the samples) suggest to include with probability (1− pk). We know that
α1,4 = 2n−1

2n = 0.5, hence:
α1,1 + α1,4 > 0.5, i.e., α > 0.5.

Supposing that pk > 0.5, then we have P (I(lj)
+) > 0.5 (following Lemma 1).

We now compute P (E(lj)
+):

P (E(lj)
+) = α× (1− pk) + (1− α)× pk s.t. α = α1,1 + α1,4.

This is, samples in classes A1 and A4 (α of the samples) suggest to exclude with probability (1− pk)
and samples in class A3 ((1− α) of the samples) suggest to include with probability pk.

6



Under review as a conference paper at ICLR 2024

From before, we know that α > 0.5 and (1−pk) < 0.5, then P (E(lj)
+) < 0.5 (following Lemma 1).

Then:
P (I(lj)

+) > 0.5 > P (E(lj)
+).

Thus, literals in L1 will almost surely be included in infinite time horizon if pk > 0.5.

Case 2: lj ∈ L2 We will prove P (E(lj)
+) > 0.5 > P (I(lj)

+).

Following Tables 5 and 6, we have:

P (E(lj)
+) = α2,2 × 1.0 + α2,3 × pk + α2,4 × (1− pk).

This is, samples in class A2 (α2,2 of the samples) suggest to exclude with probability 1.0, samples
in A3 (α2,3 of the samples) suggest to exclude with probability pk and samples in A4 (α2,4 of the
samples) suggest to exclude with probability (1− pk). We know that:

α2,3 = 0.5 =⇒ α2,2 + α2,3 > 0.5,

α2,2 + α2,3 + α2,4 = 1 =⇒ α2,4 = 1− α2,2 − α2,3.

Because pk is a probability, we know that α2,2 × 1.0 ≥ α2,2 × pk, hence:

α2,2 × 1.0 + α2,3 × pk ≥ α2,2 × pk + α2,3 × pk

=⇒ α2,2 × 1.0 + α2,3 × pk ≥ (α2,2 + α2,3)× pk.

=⇒ α2,2 × 1.0 + α2,3 × pk + α2,4 × (1− pk) ≥ (α2,2 + α2,3)× pk + α2,4 × (1− pk)

=⇒ P (E(lj)
+) ≥ (α2,2 + α2,3)× pk + (1− α2,2 − α2,3)× (1− pk).

Knowing that α2,2 + α2,3 > 0.5, supposing that pk > 0.5, and following Lemma 1, we have:

(α2,2 + α2,3)× pk + (1− α2,2 − α2,3)× (1− pk) > 0.5 =⇒ P (E(lj)
+) > 0.5.

We now compute P (I(lj)
+):

P (I(lj)
+) = α2,3 × (1− pk) + α2,4 × pk.

This is, samples in class A3 (α2,3 of the samples) suggest to include with probability (1− pk) and
samples in A4 (α2,4 of the samples) suggest to include with probability pk.

We know that α2,3 = 2n−1

2n = 0.5 and α2,4 < 0.5, then:

α2,4 × pk < 0.5× pk

0.5× (1− pk) + α2,4 × pk < 0.5× (1− pk) + 0.5× pk,

0.5× (1− pk) + α2,4 × pk < 0.5 =⇒ P (I(lj)
+) < 0.5.

Then:
P (E(lj)

+) > 0.5 > P (I(lj)
+).

Thus, literals in L2 will almost surely be excluded in infinite time horizon if pk > 0.5.

Case 3: lj ∈ L3 We will prove P (E(lj)
+) > 0.5 > P (I(lj)

+).

Following Tables 5 and 6, we have:

P (E(lj)
+) = (α3,1 + α3,4)× (1− pk) + α3,2 × 1.0 + α3,3 × pk.

This is, samples in classes A1 and A4 (α3,1+α3,4 of the samples) suggest to exclude with probability
(1− pk), samples in A2 (α3,2 of the samples) suggest to exclude with probability 1.0 and samples in
A3 (α3,3 of the samples) suggest to exclude with probability pk.

From Table 5, we know that α3,1 = α3,2 and α3,3 = α3,4. Hence, by substitution:

P (E(lj)
+) = (α3,1 + α3,3)× (1− pk) + α3,1 + α3,3 × pk,
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P (E(lj)
+) = α3,1 × (1− pk) + α3,3 × (1− pk) + α3,1 + α3,3 × pk,

P (E(lj)
+) = α3,1 × (2− pk) + α3,3.

We add and remove α3,1:

P (E(lj)
+) = α3,1 × (2− pk) + α3,3 + α3,1 − α3,1.

From Table 5, we know that:
α3,3 + α3,1 = 0.5.

Then:

P (E(lj)
+) = α3,1 × (2− pk) + 0.5− α3,1 =⇒ P (E(lj)

+) = α3,1 × (1− pk) + 0.5.

We want to prove that:
α3,1 × (1− pk) + 0.5 > 0.5.

That is true only if:
α3,1 × (1− pk) > 0.

Given that L3 ̸= ∅, we know that α3,1 > 0, then we need:

1− pk > 0 =⇒ pk < 1.

Hence, P (E(lj)
+) > 0.5, but only if pk < 1.

We now compute P (I(lj)
+):

P (I(lj)
+) = (α3,1 + α3,4)× pk + α3,2 × 0.0 + α3,3 × (1− pk).

P (I(lj)
+) = (α3,1 + α3,4)× pk + α3,3 × (1− pk).

This is, samples in classes A1 and A4 (α3,1+α3,4 of the samples) suggest to include with probability
pk and samples in A3 (α3,3 of the samples) suggest to include with probability (1 − pk). From
Table 5, we know that α3,1 + α3,4 = 0.5 and α3,3 < 0.5, then:

0.5× pk + α3,3 × (1− pk) < 0.5× pk + 0.5× (1− pk)

0.5× pk + α3,3 × (1− pk) < 0.5 =⇒ P (I(lj)
+) < 0.5

P (E(lj)
+) > 0.5 > P (I(lj)

+).

Thus, literals in L3 will almost surely be excluded in infinite time horizon if pk < 1.

Hence, following Definition 4, PCL will almost surely converge to CT in infinite time horizon if
0.5 < pk < 1.

5 EXPERIMENTAL EVALUATION

Having established the theoretical convergence of PCL in Theorem 1, this section aims to substantiate
these findings through empirical tests.1 Our experimental goal can be succinctly framed as:

"Given all possible combinations as training examples (i.e., 2n samples), if we run
PCL (with a single clause Ck and inclusion probability pk) 100 times — each time
with a distinct, randomly generated target conjunction CT and varying number of
epochs — how often does PCL successfully learn the target conjunction CT ?"

1Code is available at https://anonymous.4open.science/r/dpcl-classifier-6D92/README.md
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5.1 EXPERIMENT 1: FIXED INCLUSION PROBABILITY (FIGURE 3(A))

In this experiment, the inclusion probability pk is set to a fixed value of 0.75, which falls between 0.5
and 1.0. We then observe the number of successful learnings in relation to the number of epochs for
different feature counts, denoted as n. We observe the following:

• As the epoch count increases, PCL consistently converges to the target, achieving this 100%
of the time for larger epoch numbers.

• For n = 8, PCL identifies all 100 targets by the 1,000th epoch. Furthermore, even at 600
epochs, the success rate is over 90%.

This performance corroborates the assertions made in Theorem 1, suggesting PCL’s capability to
converge over an infinite time horizon.

5.2 EXPERIMENT 2: VARYING INCLUSION PROBABILITIES (FIGURE 3(B))

Here, we keep the feature count fixed at n = 4 and vary the inclusion probability pk. The number of
successful learnings is plotted against the number of epochs. We observe the following:

• For pk < 0.5, PCL struggles to learn the targets, with success rates close to zero across
epochs.

• On the contrary, for 0.5 < pk < 1, PCL shows remarkable improvement, especially as the
number of epochs increases.

• Interestingly, at pk = 1, the success rate diminishes, indicating non-convergence.

These outcomes validate our precondition for PCL’s convergence: 0.5 < pk < 1. Overall, the findings
from our experiments robustly support Theorem 1, emphasizing that PCL exhibits convergence within
the range 0.5 < pk < 1.

(a) (b)

Figure 3: (a) The number of successes for each number of features n w.r.t the number of epochs
with pk = 0.75. (b) The number of successes w.r.t the number of epochs for n = 4 and different pk
values.

6 CONCLUSION

In this study, we introduced PCL, an innovative Tsetlin Agent-based method for deriving Boolean
expressions. Distinctively, PCL streamlines the TM training process by integrating dedicate inclusion
probability to each clause, enriching the diversity of patterns discerned. A salient feature of PCL
is its proven ability to converge to any conjunction of literals over an infinite time horizon, given
certain conditions—a claim corroborated by our empirical findings. This pivotal proof lays a solid
foundation for the convergence analysis of the broader TM family. The implications of our theoretical
insights herald potential for PCL’s adaptability to real-world challenges. Looking ahead, our ambition
is to enhance PCL’s capabilities to cater to multi-class classification and to rigorously test its efficacy
on practical applications.
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Methods Binary Iris Breast Cancer
Naive Bayes 91.6 64.2

Logistic Regression 92.6 65.5
1-layer NN 93.8 71.9

SVM 93.6 67.8
DT 94.7 70.6
RF 95.5 74.7

KNN 91.1 75.5
TM (300 clauses) 95.0 70.6
PCL (10 clauses) 94.2 69.5

Table 7: Empirical performance comparison.

Methods n=6 n=10
PCL (2 clauses) 100 100
TM (2 clauses) 96.87 93.50

Table 8: Noise-free example.

Algorithm 1 PCL training

1: Input: b training examples (ej , yj)
2: Initialize: Random initialization of TAs
3: Begin: nth training round
4: for ej ∈ {e1, ..., eb} do
5: for Ci ∈ {C1, ..., Cm} do
6: if (yj = 1) then
7: for (lk ∈ ej and lk /∈ ej) do
8: Feedback on positive samples w.r.t pi
9: end for

10: else: (yj = 0)
11: for (lk ∈ ej and lk /∈ ej) do
12: Feedback on negative samples w.r.t pi
13: end for
14: end if
15: end for
16: end for

A PCL AS CLASSIFIER

In our study, we employed PCL as a classification tool, using its Disjunctive Normal Form (DNF)
output, and tested it on binary iris and breast cancer datasets. We compared PCL’s performance
with that of the vanilla Tsetlin Machine (TM) and various established machine learning algorithms,
with results detailed in Table 7. Notably, PCL achieved competitive results with just 10 clauses over
50 training epochs, setting clause probabilities uniformly in the range [0.6, 0.8]. For comparison,
other methods used default settings from their implementations, while TM used 300 clauses with
specific settings (s = 2, T = 10) over 100 epochs. PCL, with the right pi settings, also attained a
96% accuracy rate on a binary MNIST dataset, distinguishing between 0s and 1s.

Additionally, we analyzed the convergence of PCL and TM using deterministic sample data, consisting
of n literals and a fixed target expression. We used this data to train and test the models, selecting
samples from all possible combinations. Both PCL and TM were limited to two clauses. As shown in
Table 8, PCL achieved 100% accuracy aligning with our convergence proof. In contrast, TM reached
96.87% and 93.50% accuracy for n = 6 and n = 10, respectively. It is important to note that these
accuracy figures, presented in Tables 7 and 8, are averages from 10 independent runs.

B PCL ALGORITHM

A formal algorithmic pseudo-code for PCL is given in Algorithm 1
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