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ABSTRACT

Featurizing odorants to enable robust prediction of their properties is difficult due
to the complex activation patterns that odorants evoke in the olfactory system.
Structurally similar odorants can elicit distinct activation patterns in both the sen-
sory periphery (i.e., at the receptor level) and downstream brain circuits (i.e., at
a perceptual level). Despite efforts to design or discover features for odorants to
better predict how they activate the olfactory system, we lack a universally ac-
cepted way to featurize odorants. In this work, we demonstrate that feature-based
approaches that rely on pre-trained foundation models do not significantly out-
perform classical hand-designed features on odorant-receptor binding tasks, but
that targeted foundation model fine-turning can increase model performance be-
yond these limits. To show this, we introduce a new model that creates olfaction-
specific representations: LoRA-based Odorant-Receptor Affinity prediction with
CROSS-attention (LORAX). We compare existing chemical foundation model
representations to hand-designed physicochemical descriptors using feature-based
methods and identify large information overlap between these representations,
highlighting the necessity of fine-tuning to generate novel and superior odorant
representations. We show that LORAX produces a feature space more closely
aligned with olfactory neural representation, enabling it to outperform existing
models on predictive tasks.

1 INTRODUCTION

A pervasive question in olfaction is: ‘What is the best way to represent odorants?’. In other words,
what are the best features to represent an odorant that are predictive of how that odorant will inter-
act with the olfactory system? This question has remained elusive due to complex structure-odor
relationships, where similar odorants can elicit divergent neural responses (Sell, 2006). Early ef-
forts, inspired by chemoinformatics, focused on sets of hand-selected physicochemical descriptors
(molecular weight, ring count, etc.) to best capture trends in neural data (Schmuker et al., 2007;
Haddad et al., 2008a; Haddad et al., 2008b; Boyle et al., 2013; Gabler et al., 2013), and these de-
scriptors remain a central tool in olfactory neuroscience (Pashkovski et al., 2020; Yang et al., 2023).
More recently, deep learning has enabled the extraction of data-driven chemical features that facil-
itate a more accurate and comprehensive mapping of odor space (Seshadri et al., 2022; Lee et al.,
2023; Shuvaev et al., 2024).
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Within data-driven models, two broad approaches have emerged (Figure 1): supervised training of
tailored architectures, such as graph neural networks (Figure 1B, left), and foundation models (Fig-
ure 1A and B, center), which are self-supervised approaches that leverage unlabeled data to generate
useful chemical representations for post-hoc application (Shin et al., 2023; Taleb et al., 2024). The
latter approach offers a promising solution to the challenges of constructing representations, par-
ticularly for olfaction where datasets are typically small. Moreover, given the estimated billions of
potential odorants (Mayhew et al., 2022), self-supervised approaches may generalize more effec-
tively by leveraging large unlabeled molecular datasets to capture trends not otherwise discernible.

Despite the potential of foundation models, their application to olfaction has been limited and not
quantitatively and exhaustively compared to earlier approaches. Here, we evaluate several chemical
foundation models and find they do not improve predictive performance over classical physicochem-
ical descriptors on odorant-receptor binding tasks (Section 3). Using two statistical shape analysis
methods, canonical correlation analysis (CCA) and orthogonal Procrustes analysis, we find many
of these representations have strong information overlap with physicochemical features, suggesting
that self-supervised learning alone does not yield features well suited for odorant-receptor binding
prediction.

To address this limitation, we introduce a model based on fine-tuning to produce novel odorant rep-
resentations tailored to olfacation (Figure 1C). Our model, LoRA-based Odorant-Recptor Affinity
prediction with CROSS-attention (LORAX; Figure 3), employs low-rank adaptations (Hu et al.,
2021) of chemical foundation models to fine-tune their representations, making them more amenable
for olfaction (Section 4). We demonstrate LORAX’s odorant representation allows for better perfor-
mance on odorant-receptor datasets and better generalization to unseen odorants. Furthermore, we
show that the LORAX representation is more aligned with neural representation, providing insight
into the cause of increased model performance.

Figure 1: LORAX presents a new approach to incorporate chemical foundation models to predict
odorant-receptor affinity. (A) Architecture of chemical and protein foundation models. (B) Current
approaches to predicting affinity of odorant-receptor binding. (C) Putative thought model given
our approach and results: We hypothesize that fine-tuning allows for creation of optimal odorant
representations that outperform existing approaches.

2 RELATED WORKS

Physicochemical features to predict affinity. Guo & Kim (2010) predicted odorant-receptor re-
lationships by representing odorants with GRIND descriptors (Pastor et al., 2000) and encoding
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receptors with multidimensional scaling vectors, using partial least squares. Boyle et al. (2013)
and Gabler et al. (2013) use optimized physicochemical descriptors to predict receptor activation,
employing hierarchical clustering, and support vector machines and random forests, respectively.
Cong et al. (2022) uses physicochemical descriptors of odorants and multiple sequence alignment
similarities of receptors to train a random forest that generates predictions. Berwal et al. (2025)
uses molecular docking simulations with K-means clustering of odorants based on physicochemical
descriptors to generate affinity predictions.

Supervised learning to predict affinity. Achebouche et al. (2022) develop graph and convolutional
neural networks to predict receptor activation. Hladiš et al. (2022) and Chithrananda et al. (2024) use
graph neural networks (GNNs) to represent odorants combined with a protein foundation model to
predict odorant-receptor binding. None of these approaches investigate chemical foundation models
as odorant featurizers: while Chithrananda et al. (2024) and Hladiš et al. (2022) incorporate protein
foundation models into odorant-receptor affinity prediction, they employ randomly initialized GNN
architectures with supervised training rather than pre-trained models.

Pre-trained and fine-tuned chemical foundation models in olfaction. Shin et al. (2023) use the
chemical foundation models MolCLR (Wang et al., 2022) and SMILES Transformer (Honda et al.,
2019) to represent odorants to predict odor percepts. Similarly, Taleb et al. (2024) use MoLformer
(Ross et al., 2022) to featurize odorants and predict their percept. Both groups found chemical
foundation models offer valuable features that can aid odor prediction. However, these groups do
not test chemical foundation models to predict odorant-receptor affinity and do not utilize as broad a
selection of chemical foundation models as we do. To our knowledge, chemical foundation models
have not been applied to predict odorant-receptor interactions, and different chemical foundation
models have not been systematically benchmarked to evaluate their effectiveness. Furthermore, the
LoRA-based fine tuning we introduce and the performance improvements it produces have not been
documented for olfactory tasks.

3 DO CHEMICAL FOUNDATION MODELS CREATE EFFECTIVE FEATURES?

We benchmarked a variety of chemical foundation models to examine which, if any, enhance
odorant-receptor affinity prediction. To do this, we compiled three datasets highlighted in the section
below.

3.1 DATASETS

Each dataset includes the amino acid sequence of the receptor, a chemical identifier of the odorant
(e.g., SMILES string (Weininger, 1988)), and an experimental measurement of odorant-receptor
affinity. These datasets span mammals and non-mammals and employ diverse methodologies for
assessing odorant-receptor interactions.

Hallem Dataset. Hallem & Carlson (2006) reports the responses of 24 D. melanogaster receptors
to 110 odorants using electrophysiology, yielding a total of 2,640 odorant-receptor pairs. Responses
are average spikes per second across a range of concentrations. We normalize the data by z-scoring
all responses, using the mean and standard deviation of the entire dataset (i.e., we don’t z-score
responses for each receptor individually).

Carey Dataset. Carey et al. (2010) reports the responses of 50 A. gambiae receptors to 110 odorants
using electrophysiology, yielding a total of 5,500 odorant-receptor pairs. Responses are quantified
as in the Hallem dataset. We normalize the dataset by z-scoring all responses, as in the Hallem
dataset.

M2OR. Mammalian odorant-receptor interactions collected from 45 different sources (Lalis et al.,
2024). The dataset contains 771 odorants and 1402 receptors across 16 species totaling 53,444
paired responses. We used a subset of 46,563 odorant-receptor pairs to compare LORAX to previous
models. Each paired response is categorized as either one for responsive or zero for non-responsive.

M2OR (EC50). The M2OR dataset has a variety of data quality. Much of the data comes from
‘primary’ or ‘secondary’ screening, which are not as precise as data collected in the Hallem and
Carey datasets. For benchmarking, we use the M2OR ‘EC50’ data, as it is the highest quality and
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foundation model comparison does not require the entire dataset. This subset of the data contains
474 odorants and 503 receptors, yielding a total of 5,834 odorant-receptor pairs.

3.2 BENCHMARKING MODELS

To effectively benchmark chemical foundation models against standard methods, we select six
physicochemical representations, five transformer-based foundation models, three GNN-based foun-
dation models, and one randomly generated representation as a lower bound (see Appendix A for
details). We use three feature-based models (i.e., models that are not fine-tuned) to benchmark these
representations. For models that incorporate a protein foundation model, we use ESM (Rives et al.,
2021). As we are predominantly interested in odorant representations, we used only one protein
foundation model.

Molecule only model (MO). A ridge regression model using only odorant representations. This
model is trained on every receptor individually1 and results are averaged over all receptors. This
model assesses the effectiveness of the odorant representations alone, testing whether only chemical
information can predict receptor activation.

Molecule + protein model (MP). A ridge regression model2 that uses an odorant representation
concatenated with a protein representation to predict affinity. This model tests the ability of the
odorant representation to predict binding with additional receptor target information.

ProSmith. We adapt a state-of-the-art multi-modal transformer (Kroll et al., 2024) to test odorant
representations for affinity prediction.

Further details of these benchmarking models are provided in Appendix B and C. Performance
was evaluated using 5-fold cross-validation with random splits3. Averaged prediction metrics are
reported for the Carey, Hallem, and M2OR (EC50) datasets.

3.3 CHEMICAL FOUNDATION MODELS DO NOT IMPROVE ODORANT-RECEPTOR AFFINITY
PREDICTION

Benchmarking results are shown in Table 1 and Appendix G. We focus on the Carey dataset but the
observations and conclusions are consistent across the other datasets as well.

Table 1: Affinity prediction performance across odorant representations for the Carey dataset for the
three models outlined in Section 3.2. Reported as mean coefficient of determination (R2) ± standard
deviation across 5-fold cross validation. Best performing representations are bolded.

Odorant representation MO MP ProSmith
CATS 0.110 ± 0.227 0.271 ± 0.013 0.637 ± 0.019
MordredDescriptors 0.178 ± 0.261 0.295 ± 0.022 0.719 ± 0.021
Pharmacophore2D 0.175 ± 0.261 0.282 ± 0.018 0.548 ± 0.014
RDKitDescriptors2D 0.034 ± 0.404 0.264 ± 0.021 0.720 ± 0.026
ScaffoldKeyCalculator 0.005 ± 0.280 0.246 ± 0.016 0.594 ± 0.022
ECFP 0.207 ± 0.410 0.297 ± 0.020 0.664 ± 0.034
Roberta-Zinc480M-102M 0.181 ± 0.237 0.295 ± 0.020 0.672 ± 0.030
GPT2-Zinc480M-87M 0.121 ± 0.266 0.296 ± 0.023 0.668 ± 0.027
ChemGPT-19M -0.029 ± 1.046 0.285 ± 0.028 0.685 ± 0.024
MolT5 0.215 ± 0.279 0.302 ± 0.018 0.676 ± 0.022
ChemBERTa-77M-MTR 0.218 ± 0.298 0.290 ± 0.019 0.704 ± 0.017
gin supervised infomax 0.243 ± 0.273 0.303 ± 0.021 0.671 ± 0.016
gin supervised edgepred 0.189 ± 0.308 0.295 ± 0.019 0.687 ± 0.027
gin supervised contextpred 0.257 ± 0.255 0.303 ± 0.021 0.699 ± 0.033
random -0.071 ± 0.137 0.294 ± 0.023 0.586 ± 0.037

1For the M2OR (EC50) dataset, we exclude receptors with fewer than 50 entries when training the MO
model, as this amount of data is too limited to ensure reliable training.

2The MP and MO models are a logistic regression with an L2 penalty for the M2OR (EC50) dataset.
3We use a random stratified split for the MO model on the M2OR (EC50) dataset.
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From these results, we draw three conclusions. First, molecular information alone is insufficient to
do prediction. This conclusion is supported by the MO column in Table 1. We see low R2 scores
with high variance across folds, indicating that solely using the odorant representations is insufficient
for accurate prediction. Both physicochemical and chemical foundation model representations lack
sufficient contextual information to predict binding.

Second, incorporating protein information is essential for achieving reliable prediction. This can
be seen by the large performance increase from the MO to MP models, showing that incorporat-
ing receptor information increases R2 scores and decreases variance across folds. Additionally, we
obtain very high predictive power using the ProSmith model when both receptor and odorant rep-
resentations are combined through a transformer. This highlights the importance of multi-modal
approaches in this domain.

Third, the choice of odorant representation has little effect on predictive performance. We per-
formed a one-way ANOVA followed by a Bonferroni-corrected post-hoc Tukey test on our ProSmith
results. Our analysis showed, with the exception of ‘Pharmacophore2D’ and ‘ScaffoldKeyCalcula-
tor’, all representations performed equivalently. This is surprising, especially given the success of
foundation models in other domains. One would expect that chemical foundation model represen-
tations would provide richer molecular context for predicting odorant-receptor affinity, but given
results highlighted here, it seems these representations do not offer important features that enhance
predictability.

3.4 CHEMICAL FOUNDATION MODEL REPRESENTATIONS ARE ALIGNED WITH
PHYSICOCHEMICAL FEATURES

To understand the failure of foundation models to improve prediction, we analyzed foundation model
odorant representations by calculating dissimilarity metrics between each representation (Williams
et al., 2022). We embedded all odorants in the Carey dataset into their respective feature spaces
and calculated both orthogonal Procrustes distance metrics (Figure 2a) and CCA distance metrics
(Figure 2b) between each pair of representations (see Appendix D for details).

Figure 2: Distance metrics between odorant representations in the Carey dataset. Shown are (A)
orthogonal Procrustes distance and (B) CCA distance metrics. See Williams et al. (2022) and Ap-
pendix D for details on these metrics.

From these distance matrices, particularly the Procrustes matrix, we see that many of the odor spaces
are aligned. The only two representations that are visibly dissimilar (‘ScaffoldKeyCalculator’ and
‘Pharmacophore2D’) are the worst performing representations (Table 1), while every other represen-
tation forms a block of low similarity scores in the upper left. The odorant representations that are
the most similar also share similar performance in Table 1. In addition to performance trends, this
analysis uncovers other patterns present in the representations. For example, the most similar rep-
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resentations, ‘gin supervised contextpred’ and ‘gin supervised edgepred’, are generated from two
instantiations of the same GNN (Hu et al., 2020). We also see that the ‘ChemBERTa-77M-MTR’
representation, a foundation model trained on 77 million SMILES strings to predict RDKit de-
scriptors, is similar to the ‘RDKitDescriptors2D’ representation. Analyzing these spaces, and their
dissimilarities, explains why many of these descriptors perform the same: there is heavy overlap of
information content, making the representations fairly homogeneous and redundant.

4 LORAX: FINE TUNING CHEMICAL FOUNDATION MODELS WITH LORA

Given the observed redundancy among chemical representations, we developed a model that is able
to fine-tune, and adapt, these chemical foundation models to create an olfaction-tailored represen-
tation. All models tested in Section 3 are feature-based, relying on fixed chemical (and protein)
representations rather than adapting them through fine-tuning. A key advantage of fine-tuning is
that it produces a new, task-tailored representation rather than depending solely on pre-trained em-
beddings. Prior work has demonstrated that fine-tuning is generally more effective than feature-
based methods (Devlin et al., 2019), and adapter techniques, such as LoRA (Hu et al., 2021), enable
efficient fine-tuning of large models. Given that many of the foundation model representations
have large information overlap, we predicted that refining these representations would yield more
informative and task relevant features for olfactory tasks. Motivated by these considerations, we
introduce LORAX (Figure 3).

Figure 3: LORAX model. (A) A multi-modal LoRA adapted transformer model with a cross at-
tention block for odorant-receptor prediction. r is the rank of the low rank adapter matrices. (B)
An ensemble of gradient boosted decision tree (XGBoost) models are used to enhance performance
while also providing model interpretability. A weighted sum of these XGBoost models is used to
get the final prediction. ‘Original representation’ means the non-LoRA fine-tuned foundation model
representation. Orange represents the protein foundation model and blue represents the chemical
foundation model.

LORAX is a multi-modal transformer that incorporates a protein and a chemical foundation model
to predict affinity (Figure 3a). LORAX uses LoRA to update the chemical representation over
training. The protein and chemical foundation model can be any model on Huggingface, but for
all analysis in this work, we use ESM (Rives et al., 2021) to represent receptors and ChemBERTa-
77M-MTR (Ahmad et al., 2022) to represent odorants. We take inspiration from Kroll et al. (2024)
and incorporate an ensemble of gradient boosted decision tree models (XGBoost, (Chen & Guestrin,
2016)) to make final predictions (Figure 3b). Each XGBoost model in the ensemble uses a distinct
set of input features: (1) the transformer’s penultimate representation (referred to as the <cls>
token), (2) the concatenated original chemical and protein foundation model representations, and
(3) the concatenation of the <cls> token with the original chemical and protein foundation model
representations. Architecture and training details are available in Appendix F.
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4.1 LORAX CONSTRUCTS A BETTER ODORANT REPRESENTATION

We trained LORAX on the Carey dataset and found it performs almost identically to ProSmith
(LORAX R2: 0.712 ± 0.032, ProSmith R2: 0.703 ± 0.017, p=0.264 paired t-test, data not shown).
However, when we interrogate the trained models, we uncovered nuanced differences between them.
Because ProSmith and LORAX have similar architectures and both employ identical XGBoost en-
sembles, a direct comparison between them is possible. When examining the ensemble weights
(Figure 4B), we found that ProSmith places high confidence in the XGBoost model that uses only
the original chemical and protein foundation model representations. In other words, the additional
representation produced by the transformer (the <cls> token) is largely ignored. This is supported
by the relatively weak standalone validation accuracy, prior to XGBoost, (Figure 4A, gray) showing
ProSmith’s transformer lacks predictive performance. When we compute these metrics for LORAX
(Figure 4, blue), we see the validation accuracy of its multi-modal transformer is much higher and
the weights placed on XGBoost models without the <cls> token are lower. We conclude that
LORAX extracts more relevant information for the task from the protein and chemical foundation
models.

Figure 4: LORAX and ProSmith representation comparison after training on the Carey dataset.
(A) Validation R2 scores for ProSmith and LORAX prior to applying XGBoost. (B) The weight
assigned to the XGBoost model that takes only the original chemical foundation model and protein
foundation model representations.

With this context, we next examined whether the differences in representation weighting between
ProSmith and LORAX translate into improved odorant representations across different scenarios.
We first wanted to assess the generalizability of LORAX. Using the Carey dataset, we trained both
LORAX and ProSmith4 on two scenarios: 1) generalize to unseen receptors (i.e., receptors in the
test set are never seen in training), and 2) generalize to unseen odorants (i.e., odorants in the test set
never appear in training). As shown in Table 2, LORAX exhibits superior generalization to unseen
odorants over ProSmith. Although this improvement is not statistically significant (p=0.069, Fried-
man test), it indicates that LORAX representations may capture more chemically relevant features
for odorant–receptor binding prediction. In the unseen receptor scenario, LORAX and ProSmith
perform equivalently (p=1.000). Overall, while generalization for both models remains challenging,

4We train ProSmith with the ChemBERTa-77M-MTR model for appropriate comparison.
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LORAX notably outperforms the Naı̈ve baseline in both scenarios (p=0.069) while ProSmith fails
to outperform the Naı̈ve model on the unseen odorant task (p=1.000).

Table 2: LORAX, ProSmith, and a Naı̈ve models performance on the Carey dataset under two
generalization settings. The Naı̈ve model predicts the mean of the training set for all values in the
test set. Shown are R2 scores for the test set for each random split. Bolded are the best performing
models.

Scenario Method rand split 1 rand split 2 rand split 3 rand split 4 rand split 5 avg std
Unseen odorants ProSmith -2.098 -0.812 0.364 0.246 0.288 -0.402 1.064

LORAX -1.039 0.201 0.472 0.292 0.298 0.045 0.614
Naı̈ve -0.037 -0.051 -4.924 -0.050 -0.020 -1.016 1.954

Unseen receptors ProSmith 0.072 0.246 0.263 -0.137 -0.003 0.088 0.169
LORAX -0.032 0.051 0.031 0.133 0.117 0.060 0.067
Naı̈ve -0.060 -0.096 -0.019 -0.129 -0.059 -0.072 0.037

To further interrogate LORAX, we examine how the model performs relative to other models on the
full M2OR dataset, a larger dataset that presents greater diversity and complexity, offering a more
rigorous test of model performance. We utilize the weighting scheme outlined in Hladiš et al. (2022)
to account for differing data quality. As shown in Table 3, LORAX demonstrates superior perfor-
mance compared to both Hladiš et al. (2022) and MolOR, yielding a statistically significant improve-
ment over the latter (p-value < 0.003, MCC across splits5). LORAX also outperforms ProSmith,
which is evaluated here on M2OR for the first time (p-value=0.067, MCC across splits). While
ProSmith achieves a higher AUROC, LORAX demonstrates improvements in MCC and F-score
over state-of-the-art protein-molecule interaction models not previously tested on M2OR. Given the
large class imbalance in the M2OR dataset, where the proportion of responsive datapoints is much
lower than that of non-responsive ones, MCC and F-score provide a more accurate assessment of
model performance than AUROC. This confirms that fine-tuning chemical foundation models offers
an important avenue to improve odorant-receptor prediction.

Table 3: Comparison of MolOR, Hladiš et al., ProSmith, and LORAX across multiple metrics
trained on the M2OR dataset. LORAX (C) fine-tunes only the chemical foundation model; LO-
RAX (P + C) fine-tunes both chemical and protein foundation models. Values for Hladiš et al. are
taken from their publication. Uncertainties for all models are standard deviation across 5 fold cross
validation. Bold indicates highest value in each column. n/a entries indicate that the authors did not
report that metric. AUROC: area under the receiver operating characteristic curve, AveP: average
precision, MCC: Matthews correlation coefficient.

AUROC AveP Precision Recall F-score MCC
MolOR (Weighted) 76.12 ± 1.53 0.626 ± 0.05 0.507 ± 0.05 0.727 ± 0.06 0.595 ± 0.02 0.467 ± 0.03
Hladiš et. al. n/a 0.780 ± 0.01 0.689 ± 0.02 0.698 ± 0.04 0.693 ± 0.02 0.605 ± 0.02
ProSmith 90.47 ± 0.98 0.584 ± 0.03 0.764 ± 0.06 0.671 ± 0.06 0.712 ± 0.02 0.641 ± 0.03
LORAX (P + C) 82.43 ± 0.86 0.776 ± 0.03 0.729 ± 0.06 0.727 ± 0.03 0.727 ± 0.02 0.650 ± 0.03
LORAX (C) 83.24 ± 1.34 0.778 ± 0.03 0.710 ± 0.05 0.754 ± 0.02 0.730 ± 0.03 0.651 ± 0.04

We also tested a version of LORAX that uses both a LoRA adapted protein foundation model and
a LoRA adapted chemical foundation model (LORAX (P + C)). Interestingly, this model performs
slightly worse than the model with only chemical foundation model fine-tuning, even though LO-
RAX (P + C) has ∼2 million more parameters than LORAX (C). We conclude that the task benefits
mainly from LORAX’s improved chemical representations, while the original protein representa-
tions are already sufficient. In summary, we found that LORAX fine-tuning produced models with
more refined <cls> tokens, translating to improved prediction on M2OR and improved generaliz-
ability to unseen odorants.

5A statistical comparison against the model from Hladiš et al. (2022) could not be computed due to lack of
access to per-split metrics.
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4.2 LORAX ODOR SPACE IS SIMILAR TO UNDERLYING NEURAL REPRESENTATION

Given LORAX’s promising capabilities, we analyzed the odorant representations it produces. We
plot CCA distances of LORAX’s odor space for the Carey dataset in Figure 5.

Figure 5: CCA distance matrix showing the LORAX and ChemBERTa-77M-MTR representations
on the Carey dataset. ‘neural representation’ encodes each odorant as a feature vector based on the
responses it elicits from each neuron. Red dashed lines indicate transformer-based foundation model
representations, blue solid lines indicate GNN-based foundation model representations, and orange
dotted lines indicate physicochemical representations. Full distance matrices shown in Figure 7.

Additionally, for this distance matrix, we include a ‘neural representation’, in which each odorant
is represented as a vector of the neural responses it elicits. We compare the LORAX representation
with ‘ChemBERTa-77M-MTR’, the foundation model that is adapted using LoRA during training,
for the Carey dataset. The ‘ChemBERTa-77M-MTR’ representation can be considered the initial
state before fine-tuning while ‘LORAX’ represents the final state after adaptation.

We found the LORAX representation is more dissimilar from many of the physicochemical de-
scriptors than ChemBERTa-77M-MTR and more similar to all graph based methods (ECFP and all
the GNN foundation models). Additionally, the LORAX representation is more aligned with the
neural representation than the ChemBERTa-77M-MTR representation. These analyses reveal that
LORAX is generating a unique representation, distinct from the original foundation model, that is
better suited to describe odorant-receptor relationships and therefore generating a more informative
odor space.

5 DISCUSSION

Identifying representations that best characterize odorants for olfactory prediction has been a ma-
jor research focus. We systematically evaluated representations from several pre-trained chemical
foundation models and found they did not provide an improvement over hand-tuned physicochemi-
cal descriptors for odorant-receptor binding tasks. To move beyond this limitation, we introduced a
new model, LORAX, for fine-tuning chemical foundation models to produce richer and more pow-
erful representations. Collectively, we present two novel and interconnected findings: 1) To our
knowledge, we performed the first and most comprehensive analysis of chemical foundation models
applied to olfaction to demonstrate their effective equivalence with physicochemical descriptors; 2)
We introduced the first application of LoRA fine-tuning of chemical foundation models for olfaction,
demonstrating the improvement that fine-tuning offers. Our results demonstrate that while existing
chemical foundation models may capture overlapping information for olfactory datasets, targeted
fine-tuning creates specialized and potentially more powerful representations than those obtained
from pre-trained models alone. We argue that these models have significant potential for olfactory
neuroscience, particularly in addressing key challenges such as limited data and vast chemical search
spaces.
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We hypothesize the targeted fine-tuning LoRA provides identifies a ‘sweet spot’ that balances the
strengths of alternative approaches (Figure 1C). Although speculative, support for this hypothesis
is found in Table 3. Supervised approaches that lack the context of pre-trained models underper-
form likely due to overfitting (Hladiš et al., 2022). Pre-trained models alone likewise underperform
because a limited initial representation leads to underfitting. How then can we selectively modify
a pre-trained representation to better generalize to a task without running into problems that come
with non-selective fine-tuning or supervised learning alone? The selective nature of LoRA’s low-
rank assumption enables robust generalization while not entirely erasing the benefits that come from
pre-training. To the best of our knowledge, this work presents the first application of LoRA to olfac-
tion, and given its strength and natural approach to balancing over- and underfitting when fine-tuning
pre-trained models, we expect it to provide impactful and wide-ranging future uses in olfaction.

There remain many exciting avenues for future exploration with this modeling framework. A dom-
inant question in olfaction is how do chemical features produce olfactory perception? (Zhou et al.,
2018; Seshadri et al., 2022; Lee et al., 2023; Yang et al., 2023; Qian et al., 2023; Shuvaev et al.,
2024). Shin et al. (2023) and Taleb et al. (2024) found that pre-trained models with indiscriminate
or no fine-tuning improved performance on perception tasks; our results suggest further improve-
ment can be achieved with LoRA-based fine-tuning. Additionally, LORAX is modular by design,
allowing for the interchange of protein and chemical foundation models. While our analysis utilizes
ChemBERTa-77M-MTR (Ahmad et al., 2022), the field of chemical foundation modeling is rapidly
advancing with larger and more diverse models. Systematic benchmarking and further training with
these new models may yield even more optimal odorant representations.

Despite our progress, several important questions remain. For example, how robust are the LORAX-
learned representations when transferring to different olfactory datasets? Which components of
LORAX contribute the most to prediction performance? Why does simultaneous fine-tuning of both
protein and chemical foundation models hamper performance? We leave these to future work, with
the anticipation that continued research will deepen our understanding of how chemical foundation
models can be effectively leveraged in olfaction.
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A DATA REPRESENTATION

Here we describe the various methods we use to featurize odorants and receptors. For odorant
featurization, we wanted a diverse array of chemical foundation models as well as physicochemical
descriptors to get a good sense of what features need to go into an odorant representation to be able
to effectivity predict how that odorant binds with a given receptor. The odorant representations we
used are described in Table 4. For all odorant representations in Section 3 we use Molfeat (Noutahi
et al., 2023) to generate representations. In Section 4, we use Huggingface to generate molecular
representations as we focus on finetuning the original models when we train LORAX.

We would also like to note that the generation of chemical foundation models is a rapidly progressing
field, and we realize that some of the most recent chemical foundation models such as Uni-Mol
(Zhou et al., 2022) and MolGPS (Sypetkowski et al., 2024) are not present in this study. However,
we would like to highlight that we cover a variety of architectures, pre-training tasks, and model
sizes in our selection of chemical foundation models.

Table 4: Summary of molecular descriptors used in this work.

Descriptor Source Description

CATS Physicochemical A representation designed for drug discovery applications that uses a histogram of
distances between atom pairs to represent a molecule (Schneider et al., 1999). We use
the 2D version.

MordredDescriptors Physicochemical A collection of 1,800 features representing the physicochemical, topological, geomet-
rical, and constitutional properties of molecules (Moriwaki et al., 2018). We remove
NaN values and z-score each feature.

Pharmacophore2D Physicochemical Computes topological distances between all pairs of atoms within a molecule. Atoms
are featurized with a variety of physical properties. These feature pairs and distances
are encoded into a fixed-length bit vector; we use a 2048-length vector.

RDKitDescriptors2D Physicochemical All 2D physicochemical descriptors from RDKit, an open-source cheminformatics
toolkit for molecular representation, manipulation, and analysis.

ScaffoldKeyCalculator Physicochemical Encoding of simple substructure features of molecular scaffolds, such as hydrogen
bond donors, acceptors, and aromatic rings, into a fixed-length binary vector (Ertl,
2021). We use a 42-length vector.

ECFP Physicochemical Circular molecular fingerprints that represent a molecule by iteratively encoding the
local atomic environments around a defined radius (Rogers & Hahn, 2010).We use a
2000-length vector.

Roberta-Zinc480M-102M Transformer A RoBERTa style transformer with 102M parameters trained with a masked language
model objective on 480M SMILES strings (Heyer, 2023).

GPT2-Zinc480M-87M Transformer A GPT2 style transformer with 87M parameters trained on a next character prediction
task on 480M SMILES strings (Heyer, 2024).

ChemGPT-19M Transformer A GPT3 style transformer with over 1B parameters trained on a next character predic-
tion task on 10M SELFIES strings (Frey et al., 2022).

MolT5 Transformer A T5 style transformer that is trained on both SMILES strings and natural language
text (Edwards et al., 2022). This model uses a ‘replace corrupted spans’ task, where
the model samples natural language text and a SMILES string simultaneously, masks
various parts of each, then trains the model to predict masked sections.

ChemBERTa-77M-MTR Transformer A RoBERTa style transformer trained to predict a set of 200 molecular properties on
77M SMILES strings (Ahmad et al., 2022).

gin supervised infomax GNN A graph isomorphism network (GIN) trained on 2M molecules to maximize the mu-
tual information between local node representations and whole graph representations
(Hu et al., 2020; Veličković et al., 2018).

gin supervised edgepred GNN A GIN trained on 2M molecules to predict masked edge attributes of molecular graphs
(Hu et al., 2020).

gin supervised contextpred GNN A GIN trained on 2M molecules to use subgraphs of the molecules to predict their
surrounding graph structures (Hu et al., 2020).

random random As a baseline, we generate a random vector representation for every odorant. This
gives us a lower bound on performance.

As we are mainly interested in exploring the efficacy of different odorant representations, we only
use a single protein foundation model ESM (Rives et al., 2021). For benchmarking in Section 3 we
use ‘esm1b t33 650M UR50S’, the esm model used by default in ProSmith (Kroll et al., 2024). In
Section 4, we use a newer version of the ESM model ‘esm2 t33 650M UR50D’.
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B PROBLEM STATEMENT AND MODEL DESCRIPTIONS FOR BENCHMARKING
STUDY

We represent any featurization of an odorant as a vector x ∈ Rn, where n is the embedding dimen-
sion of the representation.6 Similarly, we represent a receptor as a matrix P ∈ Rlp×m, where lp
is the sequence length of the receptor (number of amino acids)7. Given an odorant–receptor pair
{x,P }, our goal is to predict the experimentally measured affinity y with various odorant embed-
dings:

f({x,P }) = y. (1)

We use three different models to assess the efficacy of chemical foundation models. A schematic of
all three models can be seen in Figure 6.

Figure 6: Schematic showing all the benchmarking models used in Section 3. Odorant representation
can be any representation highlighted in Table 4. Protein representation is ESM.

B.1 MOLECULE ONLY MODEL (MO)

A ridge regression model that predicts affinity using only chemical foundation model representa-
tions. For each receptor, the model takes the form

f(x|P ) = y (2)

where only the odorant representation x is used. For each receptor, we run a nested 5-fold cross
validation. We conduct a grid search over regularization parameters from 21 values spaced evenly
on a logarithmic scale between 10−10 to 1010. For the M2OR dataset, as it is a binary classification
task instead of a regression, we use a L2 penalized logistic regression instead of a ridge regression.
For M2OR we use a stratified split to ensure there is both positive and negative examples in each of
the splits. Additionally, we ignore proteins with <50 odorants, as there is not enough data associated
with those odorants to ensure reliable prediction.

B.2 MOLECULE + PROTEIN MODEL (MP)

A ridge regression model that uses both molecular and protein embeddings. Specifically, we con-
catenate the odorant embedding with a mean-pooled protein embedding

(x||p) ∈ Rn+m, p = meanpool(P ) (3)

6Some transformer models produce representations that scale with the sequence length of the molecule. To
compare these fairly with physicochemical descriptors and GNN-based embeddings, we mean-pool across the
sequence dimension.

7The receptor embedding dimension m is determined by the protein foundation model.
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where || denotes concatenation, and train

f(x||p) = y (4)

This model, similarly to the MO model, uses a nested 5-fold cross validation scheme. We again use
logistic regression with an L2 penalty to train this model on M2OR. We no longer take out any data
from the M2OR dataset, as we did in the MO model.

B.3 PROSMITH

A state of the art small molecule protein multi-modal transformer model (Kroll et al., 2024). The
odorant and receptor representations are projected into a shared q-dimensional space using respec-
tive MLPs, MLPc(·) and MLPp(·), and concatenated as

MLPp(P )||MLPc(x) ∈ R(lp+1)×q (5)

Simlarly to the LORAX model, the transformer f processes this sequence and produces a joint
representation <cls>

f(MLPp(P )||MLPc(x)) = MLP (<cls>) = yint (6)

where yint is an intermediate odorant-receptor affinity prediction. The <cls> token is then com-
bined with molecular and protein representations via an ensemble of XGBoost models:

yfin = c1 ∗ h1(<cls>) + c2 ∗ h2(p||x) + c3 ∗ h3(<cls>||p||x) (7)

where yfin is the final prediction of the model, h1,2,3 are the XGBoost models, and the ensemble
weights ci satisfy

∑
i ci = 1. This model is also trained using nested 5-fold cross validation. It

is trained in a two step fashion, where the best performing transformer model on the validation
data is saved and used to generate the <cls> token. Next, each XGBoost is tuned independently
via hyperopt, using random search over 500 iterations. The hyperparameter space and ranges are
detailed in Table 6. After hyperparameter selection, the XGBoost models are trained on the training
set and evaluated on the validation set to generate ensemble weights c1, c2, and c3. Finally, the
weighted ensemble is used to predict affinities.

C GCN MODEL

In addition to the models highlighted in Appendix B, we build a graph convolutional neural network
(GCN, (Kipf & Welling, 2017)) to predict receptor responses from odorants alone. This method is
similar to the MO model, but uses a graph representation as an input feature, and uses a GCN to
predict odorant responses given a receptor.

The GCN predicts affinity using only molecular features. For each receptor, we train the GCN to
take, as input, a graph G = (V,E), where a node vector xi ∈ V is a 30-dimensional vector generated
using deepchem (Ramsundar et al., 2019), and the connectivity of the graph is described using an
adjacency matrix A where Aij = 1 if (ei, ej) ∈ E and Aij = 0 if (ei, ej) /∈ E.

For each dataset, for each protein, we randomly split the data up into train, validation, and test
graphs. For the M2OR (EC50) dataset, as for the MO model, we use a random stratified splitting
strategy to ensure there are both positive and negative examples in all data splits and ignore proteins
with less than 50 examples. We train 5 GCN’s per receptor using a 5-fold cross validation strategy,
and report the average performance of all GCNs, averaged over folds and over all proteins in the
dataset in Table 5. These results confirm, as we note in the main test, that using molecular features
alone are insufficient for affinity prediction, and the use of protein information is necessary to create
a reliably predictive model.
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Table 5: Summary of GCN results. We report average R2 values for the Hallem and Carey datasets
and Matthews correlation coefficient (MCC) for the M2OR (EC50) dataset, each ± standard devia-
tion computed across 5-fold cross validation and across proteins within each dataset.

Dataset GCN performance

Hallem (Hallem & Carlson (2006)) -0.0538 ± 0.255
Carey (Carey et al. (2010)) -0.0933 ± 0.781
M2OR (EC50) (Lalis et al. (2024)) 0.0032 ± 0.051

D METRIC SPACE DISTANCE CALCULATION DETAILS

Here we provide a brief overview of how the distance metrics in the paper were calculated. Consider
two odorant representations (e.g., CATS and ECFP) that map an odorant to feature vectors xi ∈ Rn

and xj ∈ Rm. Embedding an entire dataset of N odorants with each representation yields matrices
Xi ∈ RN×n and Xj ∈ RN×m. To project each representation into the same space, we use PCA
to reduce the dimensionality of both matrices to k = 42, resulting in Xi,Xj ∈ RN×k.8 We then
optimize the following

Q∗ = argmin
Q∈O

||Xi −XjQ|| (8)

where O is the set of k × k orthogonal matrices. This optimization problem can be solved by doing
a singular value decomposition on X⊤

i Xj where Q∗ = UV ⊤. We calculate distance between the
two spaces with

d(Xi,Xj) = arccos

(
1

n

n∑
i=1

σi

)
(9)

where σ are the singular values of X⊤
i Xj . Optimizing equation 8 and calculating distance from

equation 9 gives rise to the orthogonal Procrustes distance metric mentioned in the main text. If we
instead whiten each representation as

Xθ
i = Xi(X

⊤
i Xi)

1/2, Xθ
j = Xj(X

⊤
j Xj)

1/2 (10)

and solve

Q∗ = argmin
Q∈O

||Xθ
i −Xθ

jQ|| (11)

the resulting distances (again calculated via equation 9) correspond to the CCA distance metrics
reported in the main text. These metrics are calculated using the package ‘netrep’ from Williams
et al. (2022).

E NEURAL REPRESENTATION GENERATION

In this section we outline how the ‘neural representation’ feature space is created for Figure 5 and
Figure 7. The Carey dataset can be represented as a matrix X ∈ Rn×m, where n is the number
of odorants and m is the number of receptors. Each odorant is described by its response profile
across all receptors, so the feature vector for odorant i is the i-th row of X , denoted xi ∈ Rm. This
makes the entire matrix X a representation of all odorants defined by their activation patterns across
every receptor. This feature matrix X is what we call ‘neural representation’, and it can be directly
compared to any other feature matrix Y ∈ RN×k (e.g. CATS or ECFP) to assess alignment. We
use CCA and Procrustes alignment on the ‘neural representation’ and all representations of odorants
used in the paper to get a sense of how aligned the featrure spaces are.

8We use 42 here because the largest representation vector, ‘ScaffoldKeyCalculator’, is 42 length.
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Figure 7: Full distance matrices using Procrustes (right) and CCA (left) distance metrics correspond-
ing to the distance matrices shown in Figure 5.

F LORAX MODEL DETAILS

In this section we describe, in depth, model details of our LORAX model. LORAX uses the Hug-
gingface and PEFT libraries to adapt both the chemical and protein foundation models. All results
shown in this work (unless otherwise specified) only adapt the chemical foundation model. The
chemical foundation model adapter was run with r = 8 rank adapter matrices on the query, key
and value matrices with α = 8. We do not train the bias parameters. We have a dropout rate of
0.1 in the adapter matrices during training. We do not use rslora (Kalajdzievski, 2023) as we are
interested in starting from the original chemical foundation model representation to see how the
representation changes over training. The cross attention block of the model is composed of two
multi-headed attention layers. Both of these layers use 8 heads by default. The SMILES multi-
headed attention layer takes the last hidden state of the LoRA adapted chemical foundation model
(smilora) as the query, and the last hidden state of the protein foundation model (protori) as the
key and value matrices. The protein multi-headed attention layer does the opposite taking protori

as the query matrix and smilora as the key and value matrices. In both of these multi-headed at-
tention layers there is a dropout rate of 0.1 during training. After the cross attention block, there
is a residual connection where the output of the SMILES (protein) multi-headed attention layer is
added to smilora (protori). These representations are then passed through a layer norm. Both
the protein and odorant representations are then mean pooled across their sequence dimensions and
concatenated together. This concatenation is the <cls> token referenced in the main text. The
<cls> token is then put through an MLP with default dimension 512 to predict affinity between the
odorant and receptor. During training, the model is run with a batch size of 12 for 50 epochs for the
Carey, Hallem, and M2OR (EC50) datasets and batch size 21 for 15 epochs for the M2OR dataset.
By default the training is conducted at a learning rate of 1e-5 unless otherwise specified. We use
Adam as our optimizer.

Throughout training, the loss on the validation set is monitored, and the weights of multi-modal
transformer model with the lowest validation loss are saved. Then, <cls> tokens are generated for
all data using that multi-modal transformer model. We then train 3 separate XGBoost models. One
model takes, as input, the <cls> token; one takes, as input, the original, non LoRA-optimized,
chemical foundation model concatenated to the protein foundation model representation; and the
last model takes, as input, the <cls> token concatenated with the non LoRA-optimized chemical
foundation model representation and the protein foundation model representation. Each XGBoost
model has a set of hyperparameters that we optimize on the validation set using hyperopt. The
hyperparameters, as well as the range of their values, are highlighted in Table 6. The parameters are
optimized using a random search over a default of 500 iterations. After optimizing hyperparameters
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for all three XGBoost models, they weighted according to their accuracy on the validation dataset.
Finally, all XGBoost models are used to predict the test set values using the confidence weights.
Code for this model will be following publication.

Table 6: Hyperparameters and their search ranges for XGBoost optimization.

Hyperparameter Search Range

learning rate 0.01 – 0.5
max depth 6, 7, 8, 9, 10, 11, 12, 13, 14
reg lambda 0 – 5
reg alpha 0 – 5
max delta step 0 – 5
min child weight 0.1 – 15
num rounds 30 – 1000
weight 0.01 – 0.99

G ALL DATASETS AND METRICS STUDIED

This section presents all metrics and datasets omitted from Section 3. Tables 7 and 8 provide affinity
prediction results and additional ProSmith metrics, respectively, for the Hallem dataset. Table 9
reports further metrics for the ProSmith model trained on the Carey dataset. Tables 10 and 11 show
affinity prediction performance and other relevant metrics for the ProSmith model on the M2OR
(EC50) dataset. Finally, Table 12 highlights general metrics for each dataset used in the paper.

Table 7: Affinity prediction performance across odorant representations for the Hallem dataset.
Reported as mean R2 ± standard deviation across 5 fold cross validation. Best performing repre-
sentations are highlighted in bold.

Odorant representation MO MP ProSmith
CATS -0.129 ± 1.819 0.367 ± 0.033 0.561 ± 0.032
MordredDescriptors 0.137 ± 0.341 0.382 ± 0.042 0.579 ± 0.036
Pharmacophore2D 0.192 ± 0.247 0.389 ± 0.037 0.530 ± 0.059
RDKitDescriptors2D 0.044 ± 0.201 0.302 ± 0.043 0.601 ± 0.057
ScaffoldKeyCalculator -0.014 ± 0.219 0.272 ± 0.040 0.501 ± 0.044
ECFP 0.182 ± 0.282 0.389 ± 0.036 0.558 ± 0.036
Roberta-Zinc480M-102M 0.183 ± 0.252 0.398 ± 0.039 0.564 ± 0.041
GPT2-Zinc480M-87M 0.095 ± 0.205 0.367 ± 0.041 0.521 ± 0.067
ChemGPT-19M 0.118 ± 0.240 0.359 ± 0.035 0.559 ± 0.051
MolT5 0.156 ± 0.249 0.389 ± 0.035 0.555 ± 0.046
ChemBERTa-77M-MTR 0.198 ± 0.349 0.373 ± 0.039 0.574 ± 0.040
gin supervised infomax 0.198 ± 0.287 0.396 ± 0.041 0.530 ± 0.044
gin supervised edgepred 0.177 ± 0.252 0.390 ± 0.040 0.550 ± 0.031
gin supervised contextpred 0.203 ± 0.411 0.396 ± 0.043 0.547 ± 0.061
random -0.069 ± 0.119 0.382 ± 0.039 0.439 ± 0.073
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Table 8: Other metrics for the ProSmith model trained on the Hallem dataset. Error indicates stan-
dard deviation across 5 fold cross validation. Best performing representations are highlighted in
bold. MSE: mean squared error, rm2: modified R2 defined as r2m = r2(1 −

√
r2 − r20) where

r2 and r20 are correlation coeficients with and without intercept respectfully (Roy et al., 2013), CI:
concordance index.

Odorant representation MSE rm2 CI
CATS 0.462 ± 0.042 0.548± 0.034 0.818±0.006
MordredDescriptors 0.444 ±0.052 0.571± 0.043 0.824± 0.009
Pharmacophore2D 0.494± 0.068 0.526± 0.052 0.806± 0.007
RDKitDescriptors2D 0.421± 0.075 0.587± 0.061 0.830± 0.007
ScaffoldKeyCalculator 0.524± 0.050 0.491±0.044 0.813± 0.011
ECFP 0.466± 0.049 0.551± 0.034 0.821±0.004
Roberta-Zinc480M-102M 0.459± 0.053 0.554± 0.046 0.824± 0.005
GPT2-Zinc480M-87M 0.505 ± 0.081 0.511±0.062 0.810± 0.011
ChemGPT-19M 0.465± 0.068 0.551± 0.058 0.821± 0.008
MolT5 0.470± 0.066 0.546± 0.052 0.818± 0.010
ChemBERTa-77M-MTR 0.449± 0.055 0.563± 0.045 0.821±0.004
gin supervised infomax 0.494± 0.052 0.522±0.045 0.820± 0.007
gin supervised edgepred 0.474± 0.045 0.541 ± 0.031 0.826± 0.003
gin supervised contextpred 0.478± 0.074 0.533± 0.060 0.819± 0.007
random 0.590± 0.086 0.434± 0.071 0.793± 0.012

Table 9: Other metrics for the ProSmith model trained on the Carey dataset. Error indicates standard
deviation across 5 fold cross validation. Best performing representations are highlighted in bold.
MSE: mean squared error, rm2: modified R2 defined as r2m = r2(1 −

√
r2 − r20) where r2 and r20

are correlation coeficients with and without intercept respectfully (Roy et al., 2013), CI: concordance
index.

Odorant representation MSE rm2 CI
CATS 0.378 ± 0.036 0.631 ± 0.016 0.815 ± 0.008
MordredDescriptors 0.293 ± 0.037 0.717 ± 0.027 0.822 ± 0.005
Pharmacophore2D 0.471 ± 0.038 0.543 ± 0.011 0.801 ± 0.008
RDKitDescriptors2D 0.292 ± 0.039 0.718 ± 0.028 0.821 ± 0.009
ScaffoldKeyCalculator 0.422 ± 0.031 0.590 ± 0.023 0.796 ± 0.012
ECFP 0.351 ± 0.046 0.658 ± 0.030 0.805 ± 0.010
Roberta-Zinc480M-102M 0.341 ± 0.037 0.666 ± 0.031 0.817 ± 0.011
GPT2-Zinc480M-87M 0.347 ± 0.045 0.661 ± 0.030 0.813 ± 0.011
ChemGPT-19M 0.328 ± 0.034 0.680 ± 0.024 0.816 ± 0.014
MolT5 0.338 ± 0.038 0.669 ± 0.021 0.812 ± 0.005
ChemBERTa-77M-MTR 0.309 ± 0.032 0.700 ± 0.020 0.822 ± 0.010
gin supervised infomax 0.343 ± 0.034 0.667 ± 0.018 0.812 ± 0.013
gin supervised edgepred 0.326 ± 0.035 0.681 ± 0.028 0.820 ± 0.011
gin supervised contextpred 0.315 ± 0.047 0.696 ± 0.035 0.822 ± 0.008
random 0.431 ± 0.047 0.582 ± 0.038 0.796 ± 0.011
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Table 10: Affinity prediction performance across odorant representations for the M2OR (EC50)
dataset. As stated in the main text, this dataset it a subset of of the M2OR dataset using on EC50
labeled data. Reported as mean Matthew’s correlation coefficient (MCC) ± standard deviation. Best
performing representations are highlighted in bold.

Odorant representation MO MP ProSmith
CATS 0.090 ± 0.262 0.562 ± 0.030 0.674 ± 0.029
MordredDescriptors 0.113 ± 0.291 0.568 ± 0.027 0.709 ± 0.018
Pharmacophore2D 0.097 ± 0.270 0.570 ± 0.030 0.656 ± 0.032
RDKitDescriptors2D 0.066 ± 0.241 0.515 ± 0.038 0.694 ± 0.024
ScaffoldKeyCalculator 0.053 ± 0.198 0.583 ± 0.025 0.646 ± 0.032
ECFP 0.096 ± 0.293 0.581 ± 0.030 0.663 ± 0.016
Roberta-Zinc480M-102M 0.131 ± 0.310 0.568 ± 0.029 0.697 ± 0.027
GPT2-Zinc480M-87M 0.109 ± 0.286 0.563 ± 0.026 0.678 ± 0.023
ChemGPT-19M 0.103 ± 0.295 0.574 ± 0.035 0.683 ± 0.017
MolT5 0.113 ± 0.294 0.589 ± 0.035 0.685 ± 0.030
ChemBERTa-77M-MTR 0.172 ± 0.351 0.591 ± 0.030 0.696 ± 0.033
gin supervised infomax 0.109 ± 0.300 0.595 ± 0.030 0.684 ± 0.030
gin supervised edgepred 0.118 ± 0.312 0.593 ± 0.021 0.692 ± 0.040
gin supervised contextpred 0.103 ± 0.266 0.589 ± 0.031 0.695 ± 0.026
random 0.004 ± 0.120 0.550 ± 0.029 0.640 ± 0.027

Table 11: Other metrics for the ProSmith model trained on the M2OR (EC50) dataset. Error indi-
cates standard deviation across 5 fold cross validation. Best performing representations are high-
lighted in bold. AUROC: area under the receiver operating characteristic curve.

Odorant representation Accuracy AUROC
CATS 0.877 ± 0.013 0.917 ± 0.006
MordredDescriptors 0.892 ± 0.006 0.933 ± 0.007
Pharmacophore2D 0.872 ± 0.012 0.913 ± 0.007
RDKitDescriptors2D 0.886 ± 0.008 0.931 ± 0.007
ScaffoldKeyCalculator 0.870 ± 0.012 0.910 ± 0.005
ECFP 0.873 ± 0.005 0.923 ± 0.009
Roberta-Zinc480M-102M 0.889 ± 0.010 0.927 ± 0.005
GPT2-Zinc480M-87M 0.882 ± 0.008 0.923 ± 0.005
ChemGPT-19M 0.883 ± 0.006 0.923 ± 0.006
MolT5 0.884 ± 0.010 0.925 ± 0.007
ChemBERTa-77M-MTR 0.888 ± 0.012 0.927 ± 0.003
gin supervised infomax 0.884 ± 0.010 0.925 ± 0.006
gin supervised edgepred 0.887 ± 0.013 0.928 ± 0.008
gin supervised contextpred 0.887 ± 0.010 0.925 ± 0.004
random 0.870 ± 0.010 0.902 ± 0.007
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Table 12: Summary table for all datasets used in this work. nR refers to the number of unique
receptors in the dataset, nO refers to the number unique of odorants, and pairs refers to the number
of recptor-odorant pairs in each dataset.

Dataset nR nO Pairs Response

Hallem (Hallem & Carlson (2006)) 24 110 2640 spikes/s
Carey (Carey et al. (2010)) 50 110 5500 spikes/s
M2OR (EC50) (Lalis et al. (2024)) 508 474 5835 binary
M2OR (Lalis et al. (2024)) 1237 596 46563 binary
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