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Reproducibility Summary1

The following paper is a reproducibility report for Pixel-wise Anomaly Detection in Complex Driving Scenes[4]2

published in CVPR 2021 as part of the ML Reproducibility Challenge 2021. We reproduced the results quantitatively,3

performed ablation studies, re-implemented the model in PyTorch Lightning and integrated WandB[1].4

Links: PyTorch Repository, PyTorch Lightning Repository, & Our WandB Report.5

Scope of Reproducibility6

Our efforts are focused on validating the authors’ proposed anomaly segmentation framework, which employs the latest7

re-synthesis approaches[8] and extends them to incorporate the advantages of uncertainty estimation methods[6] [7][11].8

This proposed model outperforms existing re-synthesis techniques by a significant margin on the task of anomaly9

segmentation on the Fishyscapes dataset.10

Methodology11

We initially re-implemented the dissimilarity module in PyTorch Lightning using the authors’ publicly available12

source code. PyTorch Lightning increases the readability, reproducibility, and robustness of the code. It also provides13

distributed training. We used pre-trained weights for image segmentation [14], image reconstruction[9] [13] and trained14

the dissimilarity model on the Cityscapes dataset[3]. We trained all the models on a single P-100 GPU offered by15

Kaggle for over 850 training hours.16

Results17

Overall, our results back the original paper’s claims. As shown in Table 3, our model outperforms the original study on18

a few metrics but slightly falls behind on others on the benchmarked Fishyscapes dataset; discussed in section 5.1.19

What was easy20

The paper was well-written and easy to understand. The provided open-source code is well-structured and modular.21

Having pre-trained weights available for standard segmentation and reconstruction models reduced computational load.22

What was difficult23

Even with modular code available, re-implementing the code in PyTorch Lightning proved more challenging than24

expected. Our experiments were limited by the model’s computational constraints, with an average training duration of25

25 hours per model and kaggle only providing 9 hours of continuous training time. The data generation method is not26

specified in the original repository; We have created a single script in our repository for the same.27

Communication with original authors28

Authors were contacted via email to help clarify queries about the code, dataset generation, and discrepancies in the29

results. Our final report received a positive review from the authors.30

Submitted to ML Reproducibility Challenge . Do not distribute.

https://anonymous.4open.science/r/synboost-6E3B/README.md
https://anonymous.4open.science/r/synboost-CC06/README.md
https://wandb.ai/dl-segmentation/MLRC_Synboost/reports/Synboost-MLRC-2021--VmlldzoxNTIyNDk2?accessToken=uevcwtv10q3bwg40rr4zbd3l5rxt4crs3bys6z6zf375xa123qusncm4cv38n95l


1 Introduction31

Deep neural networks are becoming increasingly prominent in various applications, including computer vision, speech32

recognition, and language modeling. One such application is Semantic Segmentation, the per-pixel categorization33

of objects in an image. Recent advancements in Deep learning have brought significant improvement in this task,34

providing very accurate results, yet these networks fail to detect objects which are not part of the training dataset. Since35

anomalies are a component of many critical real-world applications, such as autonomous driving, implementing these36

networks for real-time situations necessitates overcoming issues like recognizing anomalous objects (any impediment37

on the road) and misclassification.38

The existing methodologies either rely on predicted segmentation maps and their confidence scores or compare the39

reconstructed image to the predicted segmentation map to detect anomalies. However, these methods may fail as the40

segmentation network might make noisy anomaly predictions. Building over the existing resynthesis methods, the41

authors use uncertainty measures [6] [7] [11] to assist the dissimilarity network in differentiating the input and generated42

images that successfully generalizes to all anomalies.43

Figure 1: Anomaly Segmentation Framework described in Section 3.2

2 Scope of reproducibility44

We sought to answer the following questions by reproducing the results of the paper, as well as conducting additional45

experiments to corroborate the paper’s primary argument:46

1. What is the importance of the uncertainty map’s softmax entropy H(1), softmax distance D(2), and perceptual47

difference V (3) (section 4.2.1)?48

2. Can the network generalize to other segmentation and resynthesis networks (section 4.1.3)?49

3. How does the performance of segmentation and resynthesis networks affect the overall performance of the50

model (section 4.2.2)?51

4. Does the additional data generator added in this method improve the results (section 4.1.1)?52

5. Is it better to choose weights for uncertainty maps for prediction during training or at the end through grid53

search (section 4.1.2)?54

6. We further evaluate the sensitivity of our model to changes in the feature extractor module (encoder), activation55

function, and learning rate (section 4.2.3).56

3 Methodology57

3.1 Model descriptions58

The model mainly has three modules namely segmentation, synthesis, dissimilarity and an ensemble:59

Segmentation Module : We employ the pre-trained weights of the model as trained in [14] on Cityscapes dataset. In60

addition to generating a segmented image, we generate two dispersion maps, softmax entropy H and softmax distance61

D, which prove beneficial in understanding anomalies within the generated segmentation map (p(c) is the softmax62

probability for class c). For each pixel x, H and D are calculated as follows:63
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Hx = −
∑

c∈classes

p(c) log2 p(c) (1)

Dx = 1− max
c∈classes

p(c) + max
c1∈classes\(arg maxc p(c)

p(c1) (2)

Synthesis Module : To build a realistic image out of the segmentation map, we employ pre-trained weights from64

the model trained on Cityscapes dataset as a conditional generative adversarial network (c-GAN) [9] [13]. However,65

because the semantic map lacks information such as color appearance, per-pixel value comparison between the original66

input and the synthesized image is not possible. As a result, we use perceptual difference, which employs a pre-trained67

VGG16 model as a feature extractor to compare overall spatial structure rather than features such as color and texture,68

allowing us to better classify anomalies. For every pixel x of the input image and corresponding pixel r from the69

synthesized image V is defined as follows :70

V (x, r) =

N∑
1

1

Mi
||F i(x)− F i(r)||1 (3)

F(i) denotes the i-th layer with Mi elements of the VGG network and N layers, normalized between [0, 1].71

Figure 2: Spatial-Aware Dissimilarity Module described in Section 3.1

Spatial-Aware Dissimilarity Module : This module takes as input the original image, generated image, semantic map,72

and uncertainty maps (softmax entropy, softmax distance, perceptual difference) calculated in the previous steps to73

predict the anomaly segmentation map. It is mainly divided into three modules namely encoder, fusion and decoder:74

1. Encoder : Encoder uses a pretrained VGG 16[12] to extract features of resynthesis and input image. Whereas75

a simple CNN is used to extract features from the uncertainty maps and semantic map.76

2. Fusion Module : Concatenates and passes features extracted from resynthesis, input, segmented maps through77

a 1×1 convolution which is then passed into correlation block along with encoded uncertainty map where78

pointwise correlation is performed outputting four feature map resolutions corresponding to each of the four79

layers of the decoder.80

3. Decoder : There are four decoder blocks used in the dissimilarity network. The first decoder block takes the81

lowest resolution feature map. The concatenation of the feature map from the fusion module and the output of82

the preceding decoder block is used as the input for all subsequent decoder blocks.83

Ensemble : Dissimilarity module predictions are usually overconfident, which is reduced by combining final predictions84

with uncertainty maps (1),(2) ,(3) using appropriate weights obtained by grid search.85

3.2 Training Procedure86

We collect semantic maps and two uncertainty maps(H and D) by passing input images through the segmentation87

network. The synthesis network subsequently processes the predicted semantic map, which results in a photo-realistic88
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image. The perceptual difference is then calculated by comparing features between the input and generated images. The89

spatial-aware dissimilarity module receives uncertainty maps (1),(2) ,(3), input image, semantic map and resynthesized90

image to generate the anomaly prediction, which is then combined with uncertainty maps using optimal weights found91

via grid search.92

3.3 Datasets93

We employed the data generator technique provided in [8], which was expanded by assuming void labels in the ground94

truth semantic map as anomalies.95

Evaluation is done on two sets of Fishyscapes Benchmark[2]:96

1. FS Lost & Found[10]: A collection of 275 images with small objects (e.g. toys, boxes) on the roadway.97

2. FS Static[5]: A collection of 1000 images from Cityscapes blended with anomalous Pascal VOC objects.98

3.4 Hyperparameters99

Hyperparameter Value
Number of epochs 25 or 50

Learning rate 1E-4
Learning rate Policy ReduceLROnPlateau

Weight decay 0.0000
Power 0.9

Patience 10
Batch Size 4

β1 0.5
β2 0.999

Table 1: We observed that the optimal model is obtained between 5 and 15 epochs. As a result, for additional
experiments, we just train for 25 epochs.

3.5 Experimental setup100

The training code was run on KAGGLE with Tesla P100-PCIE-16GB GPU (NVIDIA-SMI 450.119.04, Driver Version:101

450.119.04, CUDA Version: 11.0).102

3.6 Computational requirements103

Using the pre-trained weights, the generation of semantic maps (softmax entropy, softmax distance) and synthesised104

images (along with perceptual difference) took 3 hours and 2 hours, respectively.

Training time per epoch (Dissimilarity Module) 30 minutes
GPU Requirement 9 - 10 Gb

CPU memory Requirement 2-3 Gb
Inference time (Dissimilarity Module) 63 ms

Table 2: Computational Requirement
105

4 Results106

4.1 Results reproducing original paper107

4.1.1 Main Results108

Sample
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

Original Study 43.22 15.79 72.59 18.75
Reproduced Results 44.47 18.7 71 17.17

Table 3: Benchmarked on Fishyscapes dataset[2] through model submission on official website

Table 3 shows that our model outperforms the original study in FPR 95 (False Positive Rate at 95% True Positive Rate)109

of FS STATIC and AP (Average Precision) of FS L&F on the benchmarked fishyscapes dataset, but slightly falls behind110

on AP of FS STATIC and FPR 95 of FS L&F; discussed in section 5.1111
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↑AP ↓FPR95 ↑AP ↓FPR95 ↑AP ↓FPR95 ↑AP ↓FPR95

Full Framework 51 ± 7 41 ± 1 55 ± 5 40 ± 5 57 ± 4 28 ± 2 62 ± 5 26 ± 1
w/o ensemble 59 ± 5 61 ± 2 58 ± 9 66 ± 8 55 ± 6 32 ± 4 57 ± 6 41 ± 12
w/o unc. maps 28 ± 6 60 ± 8 39 ± 9 64 ± 10 28 ± 6 64 ± 4 38 ± 8 51 ± 4
w/o data generator
& w/o unc. maps 14 ± 5 55 ± 9 15 ± 5 63 ± 12 11 ± 3 58 ± 9 14 ± 4 57 ± 11

Method
FS L&F (OURS) FS L&F FS Static (OURS) FS Static

Table 4: The following results are calculated on publicly available Fishyscapes validation datasets

The above results are reported as an average and standard deviation across five random weight initializations, as done in112

the original paper. Below are the training approaches whose results have been provided in Table 4:113

1. w/o unc maps : Training performed without the use of uncertainty maps (1),(2) ,(3).114

2. w/o data generator & w/o unc. maps : Training performed without using uncertainty maps (1), (2), (3) and115

without additional data generator as explained in section 3.3.116

3. Full Framework: Full training as instructed in section 3.2 along with data generator.117

4. w/o ensemble: Trained as instructed in section 3.2 except the ensemble.118

Table 4 shows that most of the results are within the authors’ given range. The minor differences can be explained119

since the model adjusts for larger variances shown in the results, and the five runs performed may not be adequate to120

generalize the model results. We can also see that uncertainty maps, data generator help to improve overall performance.121

Figure 3: Our predictions are comparable with the authors’ in detecting the main anomaly *

122

4.1.2 End to End ensemble Vs Ensemble Grid Search123

Method
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

ensemble grid search 51.54 42.36 57.36 28.22
end to end ensemble (OURS) 61.01 63.38 47.02 46.31
end to end ensemble 59.6 58.6 61.1 37.3

Table 5: Comparison between end to end ensemble training and ensemble through grid search.
Below are the training approaches whose results have been provided in the above table:124

1. ensemble through grid search: Training is carried out as stated in section 3.2, with weights for uncertainty125

determined at the end of training using grid search.126

2. end to end ensemble: Here, weights for uncertainty maps are learnable parameters optimized during training.127

*More images comparing author’s outputs and ours are provided in the Supplementary material
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We attribute higher deviation from results again to the fact that the experiments have a higher standard deviation, and128

even five runs may not be sufficient to generalize. However, in FS Static, our results show that an ensemble with129

empirical weights is more likely to identify intentionally blended objects, whereas end-to-end training is less likely130

since the network improves the weights before the final prediction. The increase in AP of FS L& F in end to end131

ensemble is expected as the network optimizes the weights efficiently. Our results supports the authors’ contention132

that utilising an ensemble through grid search yields lower FPR 95 values. In safety-critical contexts, this makes the133

ensemble with empirical weights for final prediction more practical (e.g., autonomous driving).134

4.1.3 Generalizability of the model135

Method
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

Original 51.54 42.36 57.36 28.22
Light (OURS) 32.88 50.96 28.68 31.84
Light 36 46.4 33.4 36.1
Im. Resyn.++ 5.7 47.7 8 62.7

Table 6: Testing dissimilarity module on lighter segmentation and resynthesis frameworks.

Below are the combination of segmentation and resynthesis networks used, whose results have been shown in Table 6:136

1. Original : SDCNet Segmentation + C-GAN Resynthesis Networks.137

2. LIGHT : ICNet Segmentation + Spade Resynthesis Networks.138

3. Im. Resyn.++ : Image Resynthesis++ is used for comparison as our method builds upon it.139

According to Table 6, the results for the light framework are significantly lower than the original model but significantly140

better than the original image resynthesis method(Im. Resyn.++), proving the authors’ claim that this method generalises141

well enough to be used as a wrapper to already existing segmentation and resynthesis networks.142

4.2 Results beyond original paper143

4.2.1 Importance of Uncertainty Maps144

Method
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

Full Framework 51.54 42.36 57.36 28.22
W/O Softmax Entropy 37.03 42.8 40.17 35.9
W/O Softmax Distance 45.93 41.47 53.47 27.47
W/O Perceptual Difference 51.7 39.57 51.8 27.83

Table 7: Assessing the significance of each uncertainty map

From Table 7, we can observe that omitting Softmax Entropy lowers all outcomes. Even Softmax Distance has a145

noticeable impact on the model’s performance. However, removing Perceptual Difference has almost no effect (except146

on AP of FS STATIC), which we believe is because the resynthesized image is already passed to the dissimilarity147

module, which does the task of differentiating input and resynthesized image.148

4.2.2 Importance of performance of Segmentation and Resynthesis networks149

Method
FS L&F FS Static

↑AP ↓FPR95 ↑AP ↓FPR95

Moderate1 44.767 38.88 31.6 39.167
Moderate2 49.87 43.83 50.93 29.2

Table 8: Effect of segmentation and resynthesis networks.

Below are the combination of segmentation and resynthesis networks used, whose results have been shown in Table 8:150

1. Moderate1 : SDCNet Segmentation + Spade Resynthesis Networks.151

2. Moderate2 : ICNet Segmentation + C-GAN Resynthesis Networks.152

6



From Table 8, the quality of the segmentation and resynthesis networks has an impact on the outcomes, and it is clear that153

the original performs better than light because it employs superior segmentation and synthesis methods. Results of Light154

version and original can be referenced from Table 6. Original findings outperform Moderate1 (lighter segmentation,155

same resynthesis network) and Moderate2 (same segmentation, lighter resynthesis network), demonstrating that both156

synthesis and segmentation are critical components of the model and are directly connected to its overall performance.157

4.2.3 Network Tuning158

(a) AP Vs Encoder (b) FPR 95 Vs Encoder
Figure 4: VGG16 dominates ResNet18 & ResNet101 dominates VGG16 in FPR 95 of FS L&F and AP of FS STATIC

(a) AP Vs Learning Rate (b) FPR 95 Vs Learning Rate
Figure 5: Overall the Original Learning Rate(1e-4) seems to perform better.

(a) AP Vs Activation Function (b) FPR 95 Vs Activation Function
Figure 6: We can observe the supremacy of SeLU over ReLU when used in dissimilarity module in all the outcomes.

5 Discussion159

Our results are on par with those of the authors’ on the private test data but do not exactly match the results on the160

validation datasets despite utilizing the exact parameters described in the paper. Nonetheless, they are practically on par161

with them, proving the authors’ claim. Section 4.1.3 demonstrates that the model can generalize to even lower-level162

segmentation and synthesis networks, allowing it to be used as a wrapper to any pre-trained segmentation and resynthesis163

models. Section 4.2.2 demonstrates the importance of segmentation and resynthesis network performance. In Section164

4.1.2, we can see that ensemble using grid search outperforms end-to-end ensemble.165
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We provide two arguments to explain why our results differ from the authors. Firstly with five random initializations,166

we can see very high standard deviation; so, other standard deviation remains to be accounted for, and these runs are167

insufficient to generalize conclusions. Secondly, the weights for FS L&F and FS STATIC for uncertainty maps after168

ensemble are different, as mentioned in section 5.1.169

We quantitatively confirmed the relevance of uncertainty maps in section 4.2.1, where we observed that removing170

the softmax entropy map or the softmax distance map has a considerable effect on outcomes, although removing171

the perceptual difference had little to no effect. To improve anomaly segmentation, all uncertainty maps are heavily172

employed in conjunction with their complimentary information.173

We also attempted to enhance the findings in section 4.2.3; (4a, 4b) we replaced the VGG16 encoder with ResNet18 and174

ResNet101; (6a, 6b) We tried commonly used ReLU instead of SeLU activation function in the dissimilarity module;175

(5a, 5b) we modified learning rates. Despite improvements in a few outcomes, the parameters used by authors proved to176

be the best, with a strong balance among all metrics.177

5.1 Further discussion on discrepancies of the results178

Table 4 shows that ensemble weights are an important aspect of the model, as they reduce the model’s overconfidence.179

The challenge, however, is determining the optimal ensemble weights for the model. The sensitivity to these ensemble180

weights is one of the key causes for our results’ divergence.181

For most of our runs, the ensemble weights for FS L&F differed from those for FS STATIC. This makes keeping the182

final ensemble weights a little more challenging. In most circumstances, [0.75,0.25,0,0] (the four weights being for183

original output, entropy, perceptual difference, and softmax distance, respectively) yields a better outcome. However,184

employing these weights degrades the results of FS L&F; which can be seen from its FPR 95 in Table 3.185

Table 4 shows that the model accounts for more significant variations, and the five runs done may be insufficient to186

generalise the results. This large deviation in model results might be the reason for lower AP of FS Static in Table 3.187

Another thing to note is that all of the tuning and validation is done on the Fishyscapes validation datasets, even though188

the Fishyscapes paper expressly warns that this may result in overfitting to the validation set and will most likely not189

result in better performance on the unexpected test data. The fact that our model doesn’t perform on par with the190

original model on the validation datasets, but performs well on private test data proves this claim. But owing to a191

shortage of suitable anomaly detection datasets we are forced to use these validation datasets for tuning. Furthermore,192

choosing tuning/validation datasets for anomaly segmentation is always difficult since we are constantly in danger of193

overfitting the parameters to specific abnormalities.194

What was easy195

The paper was well-written and easy to understand. The provided open-source code is well-structured and modular.196

Having pre-trained weights available for standard segmentation and reconstruction models reduced computational load.197

What was difficult198

Even with modular code available, re-implementing the code in PyTorch Lightning proved more challenging than199

expected. Our experiments were limited by the model’s computational constraints, with an average training duration of200

25 hours per model and kaggle only providing 9 hours of continuous training time. The data generation method is not201

specified in the original repository; We have created a single script in our repository for the same.202

Communication with original authors203

Authors were contacted via email to help clarify queries about the code, dataset generation, and discrepancies in the204

results. Our final report received a positive review from the authors.205
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Future Scope209

From Table 4, we see that the dissimilarity module alone takes 63ms. Further, considering inference time of segmentation210

and resynthesis networks limits the model from applying it for real-time tasks. Hence improving the model for real-time211

performance would be a considerable task for future. One approach to get around this could be to use distributed212

training. Because PyTorch Lightning is hardware agnostic and easy to scale, it streamlines this task.213
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