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Abstract

Supervised training with cross-entropy loss
implicitly forces models to produce probabil-
ity distributions that follow a discrete delta dis-
tribution. Model predictions in test time are
expected to be similar to delta distributions
if the classifier determines the class of an in-
put correctly. However, the shape of the pre-
dicted probability distribution can become sim-
ilar to the uniform distribution when the model
cannot infer properly. We exploit this obser-
vation for detecting out-of-scope (OOS) utter-
ances in conversational systems. Specifically,
we propose a zero-shot post-processing step,
called Distance-to-Uniform (D2U), exploiting
not only the classification confidence score,
but the shape of the entire output distribution.
We later combine it with a learning procedure
that uses D2U for loss calculation in the su-
pervised setup. We conduct experiments using
six publicly available datasets. Experimental
results show that the performance of OOS de-
tection is improved with our post-processing
when there is no OOS training data, as well as
with D2U learning procedure when OOS train-
ing data is available.

1 Introduction

Automated conversational systems have recently
received attention from the research community
(Dopierre et al., 2021; Mehri et al., 2020; Qin et al.,
2021). In applications such as voice assistants, Spo-
ken Language Understanding (Young et al., 2013)
aims to extract meaning from the user inputs, called
utterances, in order to process and execute desired
functionalities. The task of Intent Detection, or
Intent Classification, aims to classify user utter-
ance into a set of system-identifiable intents. How-
ever, supervised training of such systems can only
cover a restricted set of classes, i.e. in-scope (INS)
classes. To enhance user experience, the task of
Out-of-Scope (OOS) detection (Lin and Xu, 2019a;
Xu et al., 2021; Zhan et al., 2021; Shen et al., 2021)
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Figure 1: Sample output distributions of an INS classi-
fier predicting the intent of an INS and OOS utterance.
Since OOS utterances do not belong to any intent, the
prediction gets closer to the uniform distribution.

distinguishes INS utterances from those that do not
belong to the scope of the classifier with dedicated
model architectures and loss functions.

Existing methods in OOS detection utilize the
classifier confidence score for a given utterance
with thresholding to classify highly confident pre-
dictions as INS and lower confidence predictions
as OOS. However, softmax classifiers suffer from
overconfident predictions for OOS data (Hendrycks
and Gimpel, 2017), which makes it difficult to ac-
curately determine a threshold value. Confidence
loss (Lee et al., 2018) mitigates this by calculat-
ing the KL Divergence between model prediction
and the uniform distribution to decrease the confi-
dence for OOS input. We adapt a similar idea to
the zero-shot setup with a novel post-processing
step and exploit it jointly in the supervised setup
with a learning procedure. The joint application of
supervised D2U learning and D2U post-processing
forms a novel OOS detection pipeline.

Figure 1 illustrates output probability distribu-
tions of a classifier for predicting the intent class for
an INS and OOS utterance. The classifier, trained
only on INS utterances, is confused when OOS
utterance is given. The model assigns closer proba-
bilities for different classes since there is no correct
class for this OOS utterance, hence the resulting
distribution gets closer to a uniform distribution
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Figure 2: The histogram of prediction probability
scores for INS and OOS utterances (MLE) by using
a classifier trained on only INS utterances at the left.
Instead of MLE, for the same classifier, cross-entropy
score between prediction distribution and uniform dis-
tribution (D2U) is given at the right. A vertical decision
boundary is more accurately determined with D2U.

than a discrete delta distribution.
Based on this observation, we propose to mea-

sure the dissimilarity from or distance to the uni-
form distribution (D2U). Statistical distance cal-
culations between the prediction and uniform dis-
tribution enable the decision boundary to be more
accurate. Figure 2 illustrates possible benefits of us-
ing distance to the uniform distribution with cross-
entropy. The subplot at the left shows the distribu-
tion of the number of utterances according to their
Maximum Likelihood Estimate (MLE) score. The
subplot at the right shows the same distribution ac-
cording to cross-entropy score between prediction
probability and uniform distribution. A decision
boundary or threshold can be easily determined us-
ing D2U’s cross-entropy as a post-processing step
without any OOS training data.

When OOS training data is available (Larson
et al., 2019), D2U can be used as a loss function
to minimize the distance between OOS predictions
and the uniform distribution. Such a loss function
forces OOS predictions to be less confident, and
benefit D2U post-processing further. To test our
hypothesis that D2U is a useful method for OOS
detection, we answer following research questions:

• RQ1: Does the application of D2U as a post-
processing step on INS classifier predictions in-
crease OOS detection performance when there is
no OOS training data?

• RQ2: Does incorporating D2U into the training
procedure as a particular loss function boost per-
formance when OOS training data is available?

• RQ3: Is the performance of OOS detection sig-
nificantly improved by D2U over existing state-
of-the-art methods?

2 Related Work

We divide OOS detection studies into three cate-
gories: (i) Confidence-based, (ii) representation-
based, and (iii) distance-based methods.

2.1 Confidence-based OOS detection

Threshold-based Methods Thresholding is a com-
mon approach in OOS detection (Larson et al.,
2019; Feng et al., 2020; Zhang et al., 2020), which
reflects the intuition that a classifier output is more
confident for a sample that follows its training dis-
tribution. The overconfidence problem of softmax
classifiers (Hendrycks and Gimpel, 2017), although
less apparent in Transformer-based (Vaswani et al.,
2017) models (Hendrycks et al., 2020), hinders
threshold-based OOS detection performance.

Post-processing Methods The overconfidence
problem of softmax classifiers is tackled by post-
processing predictions. ODIN (Liang et al., 2018)
and SofterMax (Lin and Xu, 2019b) apply tem-
perature scaling for enlarging the confidence gap
between INS and OOS instances, since INS logits
are ideally further away on the positive axis of the
softmax input. Gangal et al. (2020) utilize likeli-
hood ratios with generative classifiers to distinguish
OOS predictions. Our method, D2U, employs a
confidence-based post-processing method.

2.2 Representation-based OOS detection

Dedicated model architectures or loss functions
help represent utterances in a high-dimensional
space suitable for OOS detection. Large Margin
Cosine Loss (LMCL) ensures that INS intents are
tightly clustered (Zeng et al., 2021a), so that OOS
utterances are exposed for outlier detection algo-
rithms, such as Local Outlier Factor (Lin and Xu,
2019a). Intent class embeddings (Cavalin et al.,
2020) model OOS detection as a reverse dictionary
task by mapping intent classes and utterances to the
same space. Yilmaz and Toraman (2020) propose
a feature representation mechanism that uses KL
Divergence to capture the changes in model predic-
tions during sequential processing of utterances.

In order to mitigate data scarcity, Marek et al.
(2021) propose a method to generate OOS data
with Generative Adversarial Networks. GANs are
also utilized to generate high-dimensional repre-
sentations that are hard to distinguish from that of
real utterances, providing adversarial signals to the
INS classifier which increases the robustness of the
model (Zeng et al., 2021b; Liang et al., 2021).



2.3 Distance-based OOS detection

Distances and divergences are useful tools in OOS
detection, since they provide a measure of dissimi-
larity that can distinguish INS and OOS samples.
Xu et al. (2020) utilize Euclidean and Mahalanobis
distances with generative classifiers to identify out-
liers with Gaussian Discriminative Analysis. Ma-
halanobis distance calculated using representations
from the intermediate layers of BERT (Devlin et al.,
2019) increases OOS detection performance (Shen
et al., 2021). Lee et al. (2018) introduce the con-
fidence loss in Computer Vision for GANs that
calculates KL Divergence between the training pre-
dictions for OOS samples and uniform distribution.

The idea of measuring the distance between pre-
diction distribution and uniform distribution is uti-
lized in different learning architectures (Lee et al.,
2018; Gangal et al., 2020), but not extensively stud-
ied for OOS intent detection. Besides, we explore
various distance metrics in zero-shot OOS detec-
tion and different distance-to-uniform training pro-
cedures in supervised setup.

3 Distance-to-Uniform OOS Detection

3.1 D2U post-processing for zero-shot setup

Supervised classifiers trained on INS data model
the ground truth labels with a discrete delta func-
tion that corresponds to the label, given as follows.

δci(x) =

{
1, if x = ci

0, otherwise
(1)

For the data instance i, ci is the ground-truth
label indicating the correct class. The cross-entropy
loss between softmax model output and discrete
delta function is given as follows.

LCE = − 1

N

N∑
i=1

δci(x) log P̂ (ui) (2)

Here, P̂ (ui) is the output probability distribu-
tion of the model for utterance ui in a batch of N
utterances, and ci is the correct class label for the
given utterance. This criterion implicitly forces
the model to generate confident predictions for a
given data point with maximal confidence score
assigned to the ground-truth class label, and low
prediction scores for the other classes. When an
OOS utterance is given to an intent classifier that
is trained using only INS data, the classifier gets
confused, i.e., the output probability distribution

is more dissimilar to a delta distribution than what
an INS utterance would result in. In other words,
output distributions of OOS samples get closer to
the uniform distribution than that of INS samples,
an observation that we exploit for OOS detection.

The conventional methods for OOS detection
make use of a pre-determined threshold value on
the Maximum Likelihood Estimate (MLE) score
assigned to the predicted label, given as follows.

OOS(ui) =

{
1, if max(P̂ (ui)) < θ

0, otherwise
(3)

Here, θ is a pre-defined threshold value between
0 and 1, and max(P̂ (ui)) is the MLE score, which
considers only the confidence and ignores the shape
of the distribution. We exploit the information con-
veyed by the shape of the entire prediction distri-
bution by first calculating a distance between the
output distribution P̂ and the uniform distribution
U before applying the threshold, given as follows.

OOS(ui) =

{
1, if dst(P̂ (ui), U) < θ

0, otherwise
(4)

The distance determined by the dst(.) function
between P̂ (ui) and U can be calculated with var-
ious distance metrics. We experiment with geo-
metric distance calculations, such as Euclidean
distance and Cosine distance; as well as statisti-
cal distance calculations, such as Jensen-Shannon
distance and symmetrized Kullback-Leibler diver-
gence. The distance value calculated by the dst(.)
function can be intuitively interpreted as the level of
confidence of the model. When the distance value
is low, the model is less confident and more con-
fused, since the output distribution assigns closer
scores for each class.

This is an architecture-agnostic zero-shot post-
processing step which can be generalized to any
classification model trained with cross-entropy loss
with no need for OOS training data. OOS detec-
tion in test time is achieved by a function of the
prediction distribution given by D2U.

3.2 Distance metrics for post-processing
We examine a number of geometric and statistical
distance measures listed as follows.

• Bray Curtis Distance (BC): For two probability
distributions, u and v, the Bray Curtis distance is
given as

∑
i |ui − vi|/

∑
i |ui + vi|.
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Figure 3: The supervised learning architecture of D2U.
INS utterances are learned with conventional cross-
entropy loss against true label distribution, while OOS
loss is calculated against the uniform distribution.

• Canberra Distance (Cbr): Canberra distance be-
tween u and v is

∑
i (|ui − vi|/(ui + vi)).

• Cosine Distance (Cos): Derived from the Cosine
similarity, the Cosine distance is formulated as
1− (u ·v/||u||2||v||2) where ||.||2 is the L2 norm.

• Euclidean Distance (Euc): The Euclidean dis-
tance between u and v is given as ||u− v||2.

• Hellinger Distance (Helng): The Hellinger dis-
tance between u and v is ||

√
u−
√
v||2/

√
2.

• Cross-Entropy (CE): Cross-Entropy is a measure
of dissimilarity between distributions u and v
given as −

∑
i ui log vi.

• Symmetrized KL Divergence (KL): The sym-
metrized Kullback-Leibler divergence is given as
[KL(u, v) + KL(v, u)]/2 where KL(u, v) =∑

i ui log (ui/vi).
• Jenshen Shannon Distance (JS): JS distance be-

tween u and v is KL(u,m)/2 + KL(v,m)/2
where m is the mean of two distributions.

3.3 D2U training for supervised setup
When OOS training data is available, we modify
the fine-tuning procedure as in Figure 3, to increase
the similarity between OOS prediction and uniform
distribution. We use pretrained BERT (Devlin et al.,
2019) as the classifier network. The loss function
for INS utterances, Lins, is still cross-entropy be-
tween true label and prediction, given as follows.

Lins = −
1

Nins

Nins∑
i=1

δ(ci) log P̂ (ui) (5)

For OOS utterances, the loss Loos, is calculated
against the uniform distribution, given as follows.

Loos =
1

Noos

Noos∑
i=1

dst(P̂ (ui), U) (6)

Table 1: The statistics of the datasets used in this study.

ACID Banking CLINC HWU64 SNIPS TOP
INS 22,172 13,081 22,500 23,431 13,784 36,668
OOS 16,000 16,000 16,000 16,000 16,000 3,653
Total 38,172 29,081 38,500 39,431 29,784 40,321
Vocabulary 25,083 26,702 25,810 26,069 30,100 12,610
Avg. Len. 8.95 9.85 8.39 7.25 8.65 8.93
Classes 175 77 150 46 7 16

The total loss is the weighted average over a
batch of utterances containing Nins number of INS
utterances and Noos number of OOS utterances,
given as follows.

Ltotal =
NinsLins +NoosLoos

Nins +Noos
(7)

As the dst(.) function in Equation 6, we experi-
ment with differentiable functions; such as cross-
entropy, KL divergence, and Sinkhorn distance (Cu-
turi, 2013), named as D2U-CE, D2U-KL, and D2U-
S, respectively. These functions treat the model
output and ground truth as probability distributions
and provide a differentiable measure. We do not
modify the loss calculation for INS utterances so
as not to affect the INS classification performance.

Note that this architecture does not model the
OOS intent as a separate class. Therefore, post-
processing is applied as described in Section 3.1
in test time. Since the loss function incorporates
D2U into training, the performance gain by the
post-processing is expected to increase.

4 Experiments

4.1 Datasets

We use six publicly available intent classification
datasets, some of which include labeled OOS data.
We give the main statistics of the datasets in Ta-
ble 1. CLINC (Larson et al., 2019) is a dataset
with 150 INS intent classes targeting various do-
mains with curated OOS data. We use the OOS
split of CLINC to augment other existing intent
detection datasets that do not include labeled OOS
data; which are ACID (Acharya and Fung, 2020),
Banking (Casanueva et al., 2020), HWU64 (Liu
et al., 2019), and SNIPS (Coucke et al., 2018). We
observe that HWU64 has many short and noisy ut-
terances, we therefore remove any utterances with
length less than or equal to three words.

TOP (Gupta et al., 2018) is an intent detection
dataset that generalizes conventional intent label-
ing with semantic parsing. The intent labels fol-
low a hierarchical structure with potentially many



labels for an utterance. However, we take only
root intent class label into account to be consis-
tent with other datasets. The utterances with the
intent labels "UNSUPPORTED" and "UNSUP-
PORTED_NAVIGATION" are treated as OOS.

The variety of the number of classes, average
length (number of words), and vocabulary size
provide a wide spectrum for understanding differ-
ent OOS detection scenarios. For instance, TOP
dataset can be considered a low resource setup
since the number of OOS utterances is significantly
lower than INS utterances.

4.2 Evaluation metrics

To assess the performance of OOS detection, we
report the scores of Receiver Operating Curve
Area Under Curve (ROC AUC), False Positive
Rate at 90% OOS True Positive Rate (FPR90),
and False Negative Rate at 90% OOS True Nega-
tive Rate (FNR90) using sklearn (Pedregosa et al.,
2011). These metrics are independent of the thresh-
old value used for decision boundary, providing a
means of fair comparison. We also report weighted
OOS Recall and weighted OOS F1 based on the
threshold value that maximizes the Youden’s J
statistic (Youden, 1950) on a validation set.

Compared to Precision, Recall is arguably a
more critical performance metric for OOS detec-
tion; since Recall considers Type II error, meaning
that OOS utterances are mislabeled as INS. In this
case, the voice assistant would execute a task that
the user does not intent to do. We argue that ROC
is a more generic measure that considers the per-
formances of varying thresholds, than Recall and
F1 considering only a fixed threshold.

4.3 Baseline approaches

In the experiments, BERT (Devlin et al., 2019)
with softmax layer is used as the classifier network.
For RQ1, the baseline zero-shot post-processing
approaches are listed below.

• MLE (Hendrycks and Gimpel, 2017; Hendrycks
et al., 2020): The confidence score of a classifier
trained only on INS data is used for thresholding.

• Softmax temperature scaling (Temp) (Liang
et al., 2018; Lin and Xu, 2019b): As a modifi-
cation to the MLE setup, the softmax input is
applied a temperature value of 103.

• Standard deviation (Stdev): We use the stdev
of the distribution before thresholding since OOS
predictions would have lower standard deviation.

Original test

Fold #1

Fold #2

Fold #10

. . .

Original train + val

. . . . . .

Figure 4: Modified leave-one-out 10-fold split strategy
that complies with original splits. At each fold, only
10% of test data is included, while 90% of training data
is retained and the remaining 10% is used as validation.

• Entropy (Ent) (Shen et al., 2021): The entropy
of the prediction distribution, H(P̂ (ui)), is cal-
culated before applying the threshold, as follows.

OOS(ui) =

{
1, if H(P̂ (ui)) > θ

0, otherwise
(8)

For RQ2, we use D2U zero-shot cross-entropy
post-processing (D2U-zero) as the baseline method,
since we examine any improvement in supervised
setup over zero-shot. For RQ3, we compare super-
vised D2U with the following baselines.

• Large Margin Cosine Loss (LMCL) (Zeng
et al., 2021b): Cosine distance among INS class
centroids is increased up to a margin. We set the
margin as 0.35, and scaling factor as 30.

• Domain Regularization Module (DRM) (Shen
et al., 2021): DRM introduces domain logits for
regularization during INS training. We slightly
modify the design and apply sigmoid to domain
logits before dividing the classification logits for
training stability.

• BERT-Binary (Binary) (Devlin et al., 2019):
The "bert-base-uncased" model fine-tuned as a
binary classifier for OOS detection.

• Entropy Regularization (Reg.) (Zheng et al.,
2020): Entropy of OOS predictions are maxi-
mized while minimizing INS training loss.

4.4 Experimental design
To avoid potential annotator-dependent effects as
noted by Larson et al. (2019) and comply with the
original splits, we modify 10-fold leave-one-out
cross-validation as illustrated in Figure 4. The vali-
dation splits are used to find confidence threshold
values for Recall and F1 calculations. We validate
statistically significant differences in the average
performances of 10-folds with the two-tailed paired
t-test at a 95% interval with Bonferroni correction.



Table 2: RQ1: D2U-zero with various distance metrics vs. post-processing baselines in zero-shot setup. Row-wise
best scores are given in bold. (↑) and (↓) indicate that higher and lower scores are better, respectively. "•" indicates
statistically significant differences with two-tailed paired t-test at a 95% interval (with Bonferroni correction p <
0.0125) in pairwise comparison between D2U-zero and all baselines except the ones marked with "◦".

Metric Dataset Baselines D2U-zero
MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ROC AUC (↑)
ACID 90.93 91.83◦ 91.54 91.98 92.01 91.40 90.18 91.54 92.08 91.54 92.14• 92.13
Banking 94.92 96.15 95.88 96.66 97.03• 96.89 96.09 95.88 96.99 95.88 96.91 96.97
CLINC 95.34 96.16 95.52 95.90 96.32• 96.09 96.26 95.52 96.24 95.52 96.20 96.25
HWU64 79.29 80.46 79.95 80.90 80.32 81.49• 80.49 79.95 81.16 79.95 80.92 81.05
SNIPS 95.45 96.20 95.50 95.70 96.33• 95.61 95.83 95.50 95.86 95.50 96.15 96.04
TOP 74.23 73.23 74.26 74.19 73.24 74.32 74.36• 74.26 74.18 74.26 73.25 73.76

FPR90 (↓)
ACID 25.00 22.10◦ 20.70◦ 19.85◦ 21.40 24.80 28.60 20.70 20.90 20.70 19.70• 20.70
Banking 13.30 10.00 11.30 7.85 7.30 6.60 12.00 11.30 6.20 11.30 6.30 6.10•
CLINC 9.30 7.80◦ 9.30 8.00◦ 7.50• 8.10 7.70 9.30 7.70 9.30 7.80 7.60
HWU64 58.90 54.10 55.70 48.12 52.50 51.60 55.00 55.70 52.20 55.70 52.60 51.90
SNIPS 10.40 8.40 10.30 10.71 8.40 10.40 10.30 10.30 9.90 10.30 8.60 8.70
TOP 51.38 53.00 51.38 66.65 53.00 51.38 51.38 51.38 51.50 51.38 53.00 51.75

FNR90 (↓)
ACID 27.30 25.67 26.22 19.70• 21.46◦ 20.60◦ 26.70 26.22 20.45◦ 26.22 21.38◦ 20.75◦
Banking 14.36 10.49 11.37 7.20• 8.01◦ 8.79◦ 13.68 11.37 7.88◦ 11.37 7.69◦ 7.79◦
CLINC 11.80 9.16◦ 11.60 8.90 8.36 8.11 7.56• 11.60 7.98 11.60 8.67 8.31
HWU64 51.97 52.26 51.75 52.80◦ 52.01 47.14 47.01• 51.75 48.63 51.75 51.03 49.57
SNIPS 11.14 9.29 11.14 11.80 9.29 11.14 11.14 11.14 10.71 11.14 9.71 10.29
TOP 67.88 69.05 67.89 51.50 69.07 67.89 67.90 67.89 68.17 67.89 69.04 68.46

Note that the test splits do not overlap in order to
satisfy the independence criterion of t-test.

The experiments are designed with respect to
our research questions (RQ 1-3). First, we fine-
tune a BERT classifier (Devlin et al., 2019) using
huggingface implementation (Wolf et al., 2019) for
INS intent detection with cross-entropy loss, and
apply different D2U post-processing methods for
RQ1. Then, we fix the post-processing method,
and examine the effect of supervised D2U training
for RQ2. Lastly, we compare D2U with state-of-
the art baselines for RQ3 to assess the performance
gain of our method.

4.5 Experimental results
RQ1: D2U in zero-shot setup. In Table 2, we re-
port ROC AUC, FPR90, and FNR90 scores for dif-
ferent post-processing methods applied to a BERT-
based INS classifier with no OOS training data.
Our proposed method, D2U-zero, statistically sig-
nificantly outperforms all baselines in all datasets
with respect to ROC AUC score. Using cross-
entropy for D2U-zero has better performance in
majority of cases, compared to other distance met-
rics. The reason for its success might be that cross-
entropy is the loss function used in the training
procedure of the model. In terms of FPR90 and
FNR90, D2U-zero does not always outperform all
baselines. Though, the cases when baselines out-
perform are not statistically significant. This shows
that the baseline methods can optimize FPR90 and
FNR90 individually but cannot outperform D2U in
terms of ROC which considers Type I and Type II

Table 3: RQ2: D2U training compared to zero-shot.
"•" indicates statistically significant differences with
the two-tailed paired t-test at a 95% interval in pairwise
comparison between D2U-zero and best supervised.

Data Method ROC↑ FPR90↓ FNR90↓ REC↑ F1↑

A
C

ID

D2U-zero 92.01 21.40 21.46 86.43 88.69
D2U-CE 96.75 7.30• 7.96 95.98 95.55
D2U-KL 96.78• 7.90 7.76• 96.31• 96.01•
D2U-S 95.88 8.80 9.54 93.18 93.78

B
an

ki
ng

D2U-zero 97.03 7.30 8.01 91.47 91.67
D2U-CE 99.36• 1.00• 0.23• 96.66 96.55
D2U-KL 99.25 1.70 0.39 97.47• 97.42•
D2U-S 98.79 2.00 2.12 95.90 95.88

C
L

IN
C D2U-zero 96.32 7.50 8.36 91.31 91.75

D2U-CE 97.48 5.10 6.18 93.27 92.84
D2U-KL 97.29 5.20 4.93• 93.33 92.91
D2U-S 97.69• 3.90• 5.36 94.53• 94.53•

H
W

U
64

D2U-zero 80.32 52.50 52.01 76.83 76.03•
D2U-CE 87.37• 31.70 37.05• 74.58 68.18
D2U-KL 87.19 30.30• 41.50 75.27 69.41
D2U-S 82.23 47.80 49.10 74.28 68.30

SN
IP

S D2U-zero 96.33 8.40 9.29 88.35 88.43
D2U-CE 98.61 2.70 2.86 89.47 89.52
D2U-KL 99.16• 1.60• 1.57• 88.59 88.64
D2U-S 98.39 2.80 2.29 90.29 90.36

TO
P

D2U-zero 73.24 53.00 69.07 84.54 86.14
D2U-CE 97.42 6.25 4.03• 94.55 95.01
D2U-KL 97.50• 5.88• 4.10 95.17• 95.51•
D2U-S 94.94 12.00 15.61 92.13 92.95

errors simultaneously. Entropy (Shen et al., 2021)
is a strong baseline that performs better than other
baselines with respect to all performance metrics.

RQ2: D2U in supervised setup. Next, we
report the effect of D2U training on OOS detec-
tion in Table 3. Since our concern here is to ob-



Table 4: RQ3: D2U vs. OOS detection baselines. The bold score is the best. The underlined score is the best that
baseline achieves when D2U outperforms, or vice versa. "•" indicates statistically significant differences with the
two-tailed paired t-test at a 95% interval (with Bonferroni correction p < 0.0071) in pairwise comparisons between
D2U and all baselines except the ones marked with "◦". If baseline outperforms, "•" indicates the difference (with
Bonferroni correction p < 0.0167) in pairwise comparisons between the baseline and our best version.

Train ACID Banking CLINC
ROC FPR FNR REC F1 ROC FPR FNR REC F1 ROC FPR FNR REC F1

MLE (Hendrycks et al., 2020) 90.9 25.0 67.9 84.9 87.5 94.9 13.3 14.4 89.4 89.6 95.3 9.3 11.8 90.2 90.8
Temp. (Liang et al., 2018) 91.8 22.1 69.1 85.8 88.2 96.2 10.0 10.5 90.3 90.5 96.2 7.8 9.2 90.1 90.7
Entropy (Shen et al., 2021) 92.0 19.9 51.5 86.9 89.0 96.7 7.9 7.2 91.6 91.8 95.9 8.0 8.9 90.3 90.8
Binary (Devlin et al., 2019) 97.2 6.2 6.7 96.5 96.1 99.9 0.2 0.2 97.9 97.8 85.6 48.6 31.4 88.3 86.1
LMCL (Zeng et al., 2021a) 94.1 15.6 66.5 88.4 90.1 97.2 6.3 8.1 92.6 92.6 96.3 7.4 9.9 90.8 91.3
DRM (Shen et al., 2021) 93.2 19.9 62.5 86.8 89.0 96.1 13.1 11.4 90.6 90.5 95.9 8.5 9.7 91.0 91.4
Reg. (Zheng et al., 2020) 96.0 10.3 7.1 95.6 95.1 99.0 2.4 0.9 96.8 96.8 97.3◦ 6.5 6.8 93.3◦ 92.9◦
D2U-CE-CE (ours) 96.8 7.3 8.0 96.0 95.6 99.4 1.0 0.2 96.7 96.6 97.5 5.1 6.2 92.3 92.8
D2U-KL-CE (ours) 96.8 7.9 7.8 96.3 96.0 99.3 1.7 0.4 97.5 97.4 97.3 5.2 4.9 93.3 92.9
D2U-S-CE (ours) 95.9 8.8 9.5 93.2 93.8 98.8 2.3 2.1 95.9 95.9 97.7• 3.9• 5.4 94.5• 94.5•

Train HWU64 SNIPS TOP
ROC FPR FNR REC F1 ROC FPR FNR REC F1 ROC FPR FNR REC F1

MLE (Hendrycks et al., 2020) 79.3 58.9 52.0 73.0 73.7 95.5 10.4 11.1 88.3◦ 88.4◦ 74.2 51.4 67.9 84.9 86.6
Temp. (Liang et al., 2018) 80.5 54.1 52.3 76.7 76.5 96.2 8.4 9.3 88.4◦ 88.5◦ 73.2 53.0 69.1 84.5 86.1
Entropy (Shen et al., 2021) 80.9 48.1 52.8 77.7 77.3 95.7 10.7 11.8 88.2◦ 88.3◦ 74.2 66.7 51.5 84.8 86.5
Binary (Devlin et al., 2019) 88.0 35.8◦ 31.0 74.7 67.8 98.9◦ 1.7◦ 2.0◦ 86.2◦ 86.2◦ 97.3◦ 4.4• 5.8◦ 97.0• 97.0•
LMCL (Zeng et al., 2021a) 84.3 43.0 49.0 80.3• 80.2• 85.2 49.5 31.9 67.8 66.3 70.6 69.8 66.5 57.8 66.3
DRM (Shen et al., 2021) 79.3 56.9 50.3 73.4 74.0 93.6 13.4 12.0 87.9◦ 87.9◦ 77.0 50.1 62.5 81.7 84.4
Reg. (Zheng et al., 2020) 83.4 46.5 45.2 74.0 67.0 98.6◦ 2.5◦ 2.7◦ 88.4◦ 88.5◦ 96.5 7.5 7.1◦ 94.5 94.9
D2U-CE-CE (ours) 87.4 31.7 37.1 74.6 68.2 98.6 2.7 2.9 89.5 89.5 97.4 6.3 4.0• 94.6 95.0
D2U-KL-CE (ours) 87.2 30.3• 41.5 75.3 69.4 99.2• 1.6• 1.6• 88.6 88.6 97.5• 5.9 4.1 95.2 95.5
D2U-S-CE (ours) 82.2 47.8 49.1 74.3 68.3 98.4 2.8 2.3 90.3• 90.4• 94.9 12.0 15.6 92.1 93.0

serve any improvement over zero-shot setup, we
fix post-processing method as cross-entropy for all
methods due to its performance in the previous
experiment. The results show that using D2U as
a loss function statistically significantly improves
the performance of D2U-zero in almost all cases.
KL divergence loss (D2U-KL) and Cross-Entropy
loss (D2U-CE) are effective D2U methods in all
datasets, except that Sinkhorn distance (D2U-S)
is effective in CLINC dataset. The choice of loss
function is a hyperparameter that can be tuned ac-
cording to specific use cases and datasets.

RQ3: D2U versus state-of-the-art. The per-
formances of state-of-the-art baseline OOS detec-
tion models, regardless of zero-shot or supervised,
and D2U methods are compared in Table 4, with
extensive results reported in the Appendix. MLE,
softmax temperature (Temp.), Entropy, LMCL, and
DRM are zero-shot OOS detection setups, whereas
entropy regularization (Reg.) and BERT-Binary
(Binary) are supervised setups. D2U statistically
significantly outperforms most baselines, although
Binary is a strong baseline method that outperforms
D2U in ACID and Banking datasets and challenges
it in HWU64 and TOP, which is not statistically sig-
nificant. The reason for this might be the prevalent
domain difference between INS and OOS utter-
ances in ACID, Banking and TOP datasets; which

belong to the insurance, banking, and navigation
applications, respectively. It causes a trivial detec-
tion for the BERT-based binary classifier. HWU64
contains generic utterances like queries and ques-
tions which may coincide with the OOS split and
disturb the training process of D2U. The combi-
nation of D2U training and D2U post-processing
demonstrates its advantage in CLINC where INS
and OOS utterances span a wide spectrum.

5 Discussion

5.1 Domain analysis

To validate our hypothesis that domain-specific
datasets provide an advantage to the Binary method,
we apply UMAP (Becht et al., 2019) dimension
reduction on the CLS embeddings of Binary and
D2U CE models and plot them in Figure 5. It is ap-
parent that the OOS utterances are separated from
INS utterances when there is a clear domain differ-
ence as in ACID and Banking. However, when this
separation becomes fuzzy, Binary fails to properly
distinguish INS and OOS utterances as in CLINC.
There is also an overlapping set of INS and OOS
utterances in SNIPS for Binary.

In D2U-CE plots, the clusters of INS intents are
easily identifiable since the model is trained for
intent detection, however, OOS utterances do not
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Figure 5: UMAP distributions of CLS embeddings.

form a separate cluster. We see that the training
procedure does not necessarily enforce a cluster-
ing on the OOS embeddings since the model is
trained to output a uniform distribution for OOS in-
puts. D2U achieves competitive performance even
though there are overlapping embeddings of INS
and OOS utterances, highlighting the importance
of D2U post-processing in the supervised setup.

5.2 Qualitative analysis

We provide a qualitative analysis on the effect
of D2U training. We illustrate the model out-
put distributions for INS utterance "get me to
ritzville by 4 via the freeway." belonging to the
"GET_DIRECTIONS" intent, and the OOS utter-
ance "how many skating rinks are available in the
south pacific tomorrow at 10" taken from the TOP
dataset in Figure 6. We observe that the OOS utter-
ance results in an overconfident prediction in the
BERT MLE model whereas the prediction distribu-
tion of D2U-CE is similar to uniform distribution.

5.3 INS performance

In Table 5, we analyze if OOS detection models
deteriorate INS performance. MLE baseline does
not modify the training procedure. The results
show that INS classification performance is not
dramatically deteriorated by the supervised models
including D2U in SNIPS and TOP, whereas it is
even improved in the remaining datasets. Although
D2U’s INS performance is similar to other super-
vised models, D2U has better OOS performance
than others, as observed in Table 4. The reason for
the increase in INS detection performance could
be the regularization signal provided by the OOS
loss as observed by Shen et al. (2021). Note that
this effect becomes more apparent when domain
difference is prevalent (in ACID and Banking).

We do not include Binary, which has no capabil-
ity of INS classification. Binary has a challenging
OOS performance in Table 4, but D2U has advan-
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Figure 6: The effect of D2U on prediction distributions.

Table 5: Weighted F1 score for INS classification.

Method Datasets
ACID Banking CLINC HWU64 SNIPS TOP

MLE 80.74 84.91 95.67 81.97 98.14 98.60
LMCL 85.69 89.64 95.83 82.08 97.86 98.56
DRM 88.70 89.89 96.25 82.49 98.14 98.68
Reg. 86.60 91.22 96.38 82.55 97.43 98.32
D2U-CE 86.40 90.95 96.42 82.31 97.84 98.26
D2U-KL 86.26 90.69 96.22 82.72 98.01 98.29
D2U-S 86.50 91.52 96.34 82.16 97.43 98.37

tage of showing state-of-the-art performances for
both INS and OOS detection.

5.4 Limitations

We acknowledge some limitations to our study. Ex-
cept for CLINC and TOP, the datasets we use are
augmented with the OOS data from CLINC. How-
ever, we argue that the majority of the data remains
OOS for other datasets since it is sampled from
Wikipedia (Larson et al., 2019). Moreover, D2U
has effective performance on CLINC and TOP
datasets which are designed with OOS utterances.

We leave the selection of the distance metric in
post-processing and supervised learning as a hyper-
parameter of D2U. In the results, this might pro-
vide an advantage to D2U in comparisons since we
do not apply hyperparameter tuning for baselines.
However, we use default or suggested parameter
settings for baselines. We adopt transparency in
reporting the results that are also detailed in Ap-
pendix.

Zero-shot D2U post-processing emphasizes the
distinction between INS and OOS utterances when
confidence score becomes misleading. However,
D2U struggles in the ultimate case where an OOS
utterance is mapped to an INS class with ~100%
confidence (see Figure 6 BERT MLE). Nonethe-
less, D2U suffers from such overconfident predic-
tions less than existing methods (see Table 2).

5.5 Ethical considerations

We list a number of ethical concerns related to envi-
ronmental impact, explainability, and transparency
in this section. We employ BERT fine-tuning with



small modifications, therefore the environmental
impact can be considered small. Our work focuses
on well-known OOS detection task with established
use cases, therefore there would be no risk for un-
intended use. We use publicly available datasets
with licences suitable for academic research.

To assure explainability and transparency, we
report the length of utterances and domains of
datasets in Section 4.1. We report the statistics
of datasets and figuratively report the split strategy
used in the experiments in Section 4.1. There are
two setups in our study. The zero-shot setting does
not include any training. In the supervised setup,
the complexity of our method is quite similar to
regular fine-tuning procedure of BERT. The thresh-
olding hyperparameter is decided by maximizing
the Youden’s J statistic as explained in Section 4.2.
In Section 4.3, we also report the hyperparameters
of the baseline methods. We employ a modified
10-fold cross-validation strategy as explained in
Section 4.4 and apply t-test with Bonferroni correc-
tion to all experimental results.

6 Conclusion

We propose an OOS detection pipeline with a dis-
tance calculation between classifier prediction and
uniform distribution, called D2U. In the zero-shot
setup, D2U serves as an architecture-agnostic post-
processing step to emphasize the distinction be-
tween INS and OOS. In the supervised setup, we
bring closer OOS predictions to uniform distribu-
tion with a modified loss function. Experimental
results, supported by statistical tests, show that
D2U outperforms existing baselines in zero-shot,
and has challenging performance in the supervised
setup. We plan to extend our study to different
architectures and deep learning tasks in the future.

References
Shailesh Acharya and Glenn Fung. 2020. Using opti-

mal embeddings to learn new intents with few exam-
ples: An application in the insurance domain.

Etienne Becht, Leland McInnes, John Healy, Charles-
Antoine Dutertre, Immanuel WH Kwok, Lai Guan
Ng, Florent Ginhoux, and Evan W Newell. 2019.
Dimensionality reduction for visualizing single-cell
data using umap. Nature Biotechnology, 37(1):38–
44.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Ef-
ficient intent detection with dual sentence en-

coders. In Proceedings of the 2nd Work-
shop on NLP for ConvAI - ACL 2020. Data
available at https://github.com/PolyAI-LDN/task-
specific-datasets.

Paulo Cavalin, Victor Henrique Alves Ribeiro, Ana Ap-
pel, and Claudio Pinhanez. 2020. Improving out-of-
scope detection in intent classification by using em-
beddings of the word graph space of the classes. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3952–3961, Online. Association for Computa-
tional Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Advances in neu-
ral information processing systems, 26:2292–2300.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Thomas Dopierre, Christophe Gravier, and Wilfried
Logerais. 2021. ProtAugment: Intent detection
meta-learning through unsupervised diverse para-
phrasing. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 2454–2466, Online. Association for Computa-
tional Linguistics.

Yulan Feng, Shikib Mehri, Maxine Eskenazi, and
Tiancheng Zhao. 2020. “none of the above”: Mea-
sure uncertainty in dialog response retrieval. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2013–
2020, Online. Association for Computational Lin-
guistics.

Varun Gangal, Abhinav Arora, Arash Einolghozati, and
Sonal Gupta. 2020. Likelihood ratios and genera-
tive classifiers for unsupervised out-of-domain de-
tection in task oriented dialog. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7764–7771.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_10.pdf
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_10.pdf
http://ceur-ws.org/Vol-2666/KDD_Converse20_paper_10.pdf
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/2020.emnlp-main.324
https://doi.org/10.18653/v1/2021.acl-long.191
https://doi.org/10.18653/v1/2021.acl-long.191
https://doi.org/10.18653/v1/2021.acl-long.191
https://doi.org/10.18653/v1/2020.acl-main.182
https://doi.org/10.18653/v1/2020.acl-main.182
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300


pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. In 5th International
Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An eval-
uation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1311–1316.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin.
2018. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. In Interna-
tional Conference on Learning Representations.

Chaojie Liang, Peijie Huang, Wenbin Lai, and Ziheng
Ruan. 2021. Gan-based out-of-domain detection
using both in-domain and out-of-domain samples.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7663–7667. IEEE.

Shiyu Liang, Yixuan Li, and R Srikant. 2018. Enhanc-
ing the reliability of out-of-distribution image detec-
tion in neural networks. In 6th International Confer-
ence on Learning Representations, ICLR 2018.

Ting-En Lin and Hua Xu. 2019a. Deep unknown in-
tent detection with margin loss. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5491–5496, Florence,
Italy. Association for Computational Linguistics.

Ting-En Lin and Hua Xu. 2019b. A post-processing
method for detecting unknown intent of dialogue
system via pre-trained deep neural network classifier.
Knowledge-Based Systems, 186:104979.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking natural lan-
guage understanding services for building conversa-
tional agents. In 10th International Workshop on
Spoken Dialogue Systems Technology 2019.

Petr Marek, Vishal Ishwar Naik, Anuj Goyal, and Vin-
cent Auvray. 2021. Oodgan: Generative adversarial

network for out-of-domain data generation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies: Indus-
try Papers, pages 238–245.

Shikib Mehri, Mihail Eric, and Dilek Hakkani-Tur.
2020. Dialoglue: A natural language understand-
ing benchmark for task-oriented dialogue. arXiv
preprint arXiv:2009.13570.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Libo Qin, Fuxuan Wei, Tianbao Xie, Xiao Xu, Wanx-
iang Che, and Ting Liu. 2021. GL-GIN: Fast and
accurate non-autoregressive model for joint multi-
ple intent detection and slot filling. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 178–188,
Online. Association for Computational Linguistics.

Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia
Jin. 2021. Enhancing the generalization for intent
classification and out-of-domain detection in SLU.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2443–2453, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Hong Xu, Keqing He, Yuanmeng Yan, Sihong Liu, Zi-
jun Liu, and Weiran Xu. 2020. A deep generative
distance-based classifier for out-of-domain detection
with mahalanobis space. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1452–1460.

Keyang Xu, Tongzheng Ren, Shikun Zhang, Yihao
Feng, and Caiming Xiong. 2021. Unsupervised
out-of-domain detection via pre-trained transform-
ers. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),

https://doi.org/10.18653/v1/P19-1548
https://doi.org/10.18653/v1/P19-1548
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.190
https://doi.org/10.18653/v1/2021.acl-long.190
https://doi.org/10.18653/v1/2021.acl-long.85
https://doi.org/10.18653/v1/2021.acl-long.85
https://doi.org/10.18653/v1/2021.acl-long.85


pages 1052–1061, Online. Association for Computa-
tional Linguistics.

Eyup Halit Yilmaz and Cagri Toraman. 2020. KLOOS:
KL Divergence-Based Out-of-Scope Intent Detec-
tion in Human-to-Machine Conversations, page
2105–2108. Association for Computing Machinery,
New York, NY, USA.

WJ Youden. 1950. Index for rating diagnostic tests.
Cancer, 3(1):32–35.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
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A Appendix

We report Receiver Operating Curve Area Under
Curve, False Positive Rate at 90% OOS True Pos-
itive Rate, False Negative Rate at 90% OOS True

Negative Rate, weighted OOS Recall, and weighted
OOS F1 scores in Tables 6, 7, 8, 9, 10 respec-
tively. Different training procedures, baseline and
proposed, are reported in rows and different post-
processing methods, baseline and proposed, are
reported in columns.

Baseline training methods are BERT-based in-
scope classifier (MLE) (Larson et al., 2019; Devlin
et al., 2019), Large Margin Cosine Loss (LMCL)
(Zeng et al., 2021a), Domain Regularization Mod-
ule (DRM) (Shen et al., 2021), entropy regular-
ization (Reg.) (Zheng et al., 2020), and BERT-
binary classifier (Binary) (Devlin et al., 2019). Post-
processing methods are not applicable for Binary
training since it models OOS detection as a binary
classification problem. Baseline post-processing
methods are Maximum Likelihood Estimate (MLE)
(Gangal et al., 2020; Zhang et al., 2020), softmax
temperature (Temp) (Liang et al., 2018; Lin and
Xu, 2019b), standard deviation (Stdev), and entropy
(Ent) (Shen et al., 2021).
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Table 6: Average ROC AUC score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 90.93 91.83 91.54 91.98 92.01 91.40 90.18 91.54 92.08 91.54 92.14 92.13
LMCL 94.05 94.07 94.23 94.04 93.72 89.31 85.54 94.23 93.88 94.23 93.91 93.89
DRM 93.23 92.43 93.54 93.95 91.70 94.07 93.67 93.54 94.00 93.54 92.92 93.85
Reg. 95.98 96.56 96.15 96.50 97.06 96.82 97.10 96.15 96.84 96.15 96.75 96.81
Binary 97.19 - - - - - - - - - - -

D2U-CE 95.63 96.22 95.85 96.17 96.75 96.43 96.72 95.85 96.47 95.85 96.42 96.46
D2U-KL 95.47 96.25 95.65 96.06 96.78 96.47 96.77 95.65 96.49 95.65 96.37 96.45
D2U-S 94.46 95.14 94.80 95.24 95.88 95.55 95.61 94.80 95.63 94.80 95.54 95.61

Banking

MLE 94.92 96.15 95.88 96.66 97.03 96.89 96.09 95.88 96.99 95.88 96.91 96.97
LMCL 97.19 97.20 97.32 97.15 96.88 94.07 91.61 97.32 97.01 97.32 97.04 97.03
DRM 96.12 96.97 96.70 97.47 96.56 98.06 97.93 96.70 97.97 96.70 97.28 97.88
Reg. 98.95 99.12 99.03 99.13 99.19 99.16 99.18 99.03 99.18 99.03 99.16 99.17
Binary 99.88 - - - - - - - - - - -

D2U-CE 99.07 99.28 99.14 99.24 99.36 99.26 99.29 99.14 99.28 99.14 99.29 99.29
D2U-KL 98.99 99.19 99.07 99.15 99.25 99.19 99.22 99.07 99.22 99.07 99.22 99.22
D2U-S 97.83 98.53 98.12 98.43 98.79 98.61 98.65 98.12 98.65 98.12 98.63 98.64

CLINC

MLE 95.34 96.16 95.52 95.90 96.32 96.09 96.26 95.52 96.24 95.52 96.20 96.25
LMCL 96.31 96.30 96.30 96.14 95.81 92.51 86.08 96.30 95.95 96.30 96.02 95.99
DRM 95.85 94.47 96.00 96.19 93.78 96.29 95.73 96.00 95.88 96.00 95.07 95.63
Reg. 97.29 97.63 97.31 97.47 97.58 97.52 97.55 97.31 97.62 97.31 97.65 97.64
Binary 85.57 - - - - - - - - - - -

D2U-CE 97.08 97.47 97.14 97.30 97.48 97.27 97.31 97.14 97.42 97.14 97.48 97.45
D2U-KL 96.86 97.29 96.90 97.04 97.29 97.07 97.12 96.90 97.20 96.90 97.26 97.23
D2U-S 96.71 97.54 96.85 97.15 97.69 97.22 97.33 96.85 97.42 96.85 97.53 97.48

HWU64

MLE 79.29 80.46 79.95 80.90 80.32 81.49 80.49 79.95 81.16 79.95 80.92 81.05
LMCL 84.28 84.37 84.98 85.17 85.33 84.04 82.50 84.98 85.28 84.98 85.27 85.27
DRM 79.32 79.05 80.00 80.67 78.68 81.55 80.50 80.00 80.75 80.00 79.66 80.31
Reg. 83.38 86.34 84.19 85.68 87.05 86.78 87.22 84.19 86.70 84.19 86.51 86.62
Binary 88.02 - - - - - - - - - - -

D2U-CE 83.64 86.58 84.42 85.80 87.37 87.09 87.60 84.42 86.98 84.42 86.77 86.89
D2U-KL 83.46 86.44 84.14 85.50 87.19 86.71 87.27 84.14 86.64 84.14 86.54 86.62
D2U-S 79.67 81.74 80.42 81.69 82.23 82.86 82.57 80.42 82.41 80.42 82.13 82.27

SNIPS

MLE 95.45 96.20 95.50 95.70 96.33 95.61 95.83 95.50 95.86 95.50 96.15 96.04
LMCL 85.18 87.54 88.20 90.45 93.15 89.91 93.08 88.20 91.69 88.20 91.87 91.76
DRM 93.58 94.47 93.63 93.82 94.58 93.75 93.95 93.63 93.98 93.63 94.43 94.13
Reg. 98.61 98.74 98.61 98.64 98.76 98.62 98.63 98.61 98.65 98.61 98.73 98.67
Binary 98.91 - - - - - - - - - - -

D2U-CE 98.51 98.60 98.52 98.53 98.61 98.52 98.54 98.52 98.54 98.52 98.60 98.56
D2U-KL 98.97 99.15 98.99 99.01 99.16 98.99 99.02 98.99 99.04 98.99 99.14 99.09
D2U-S 98.24 98.37 98.25 98.30 98.39 98.29 98.32 98.25 98.32 98.25 98.37 98.34

TOP

MLE 74.23 73.23 74.26 74.19 73.24 74.32 74.36 74.26 74.18 74.26 73.25 73.76
LMCL 70.62 70.11 70.72 70.88 70.11 70.58 71.29 70.72 70.95 70.72 70.43 70.70
DRM 76.97 76.59 76.99 76.96 76.61 77.06 77.13 76.99 76.98 76.99 76.60 76.83
Reg. 96.45 96.57 96.45 96.47 96.57 96.45 96.47 96.45 96.49 96.45 96.56 96.52
Binary 97.29 - - - - - - - - - - -

D2U-CE 97.30 97.42 97.30 97.33 97.42 97.31 97.34 97.30 97.35 97.30 97.41 97.38
D2U-KL 97.39 97.50 97.41 97.43 97.50 97.42 97.43 97.41 97.44 97.41 97.49 97.46
D2U-S 94.68 94.94 94.71 94.76 94.94 94.75 94.78 94.71 94.80 94.71 94.92 94.87



Table 7: Average FPR90 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 25.00 22.10 20.70 19.85 21.40 24.80 28.60 20.70 20.90 20.70 19.70 20.70
LMCL 15.60 15.50 14.80 13.83 17.40 37.10 46.20 14.80 16.50 14.80 16.50 16.50
DRM 19.90 20.80 18.40 13.51 24.80 14.40 16.30 18.40 15.00 18.40 18.80 15.30
Reg. 10.30 8.60 9.70 8.41 7.20 7.40 7.10 9.70 7.50 9.70 8.20 7.60
Binary 6.17 - - - - - - - - - - -

D2U-CE 10.30 8.20 9.40 8.54 7.30 7.50 7.40 9.40 7.20 9.40 7.70 7.30
D2U-KL 10.70 8.90 9.90 7.56 7.90 8.00 7.80 9.90 8.10 9.90 8.10 8.10
D2U-S 11.90 10.30 11.00 9.57 8.80 9.00 9.30 11.00 9.10 11.00 9.40 9.30

Banking

MLE 13.30 10.00 11.30 7.85 7.30 6.60 12.00 11.30 6.20 11.30 6.30 6.10
LMCL 6.30 6.20 5.50 7.00 7.10 19.40 25.80 5.50 6.80 5.50 6.80 6.80
DRM 13.10 8.40 10.20 6.06 9.20 4.60 4.90 10.20 5.20 10.20 7.30 5.30
Reg. 2.40 1.80 2.20 0.36 1.60 1.60 1.40 2.20 1.70 2.20 1.60 1.70
Binary 0.16 - - - - - - - - - - -

D2U-CE 2.40 1.60 2.10 0.23 1.00 1.00 1.00 2.10 1.00 2.10 1.00 1.00
D2U-KL 2.70 1.60 2.50 0.39 1.70 1.70 1.60 2.50 1.70 2.50 1.80 1.70
D2U-S 5.80 3.70 5.20 2.25 2.00 2.60 1.90 5.20 2.60 5.20 3.40 2.80

CLINC

MLE 9.30 7.80 9.30 8.00 7.50 8.10 7.70 9.30 7.70 9.30 7.80 7.60
LMCL 7.40 7.30 7.60 8.51 8.60 18.30 35.40 7.60 8.40 7.60 8.50 8.40
DRM 8.50 11.80 8.50 7.64 13.70 7.80 9.50 8.50 8.30 8.50 9.40 8.20
Reg. 6.50 5.10 6.60 5.13 5.10 4.80 4.90 6.60 5.00 6.60 5.10 5.20
Binary 48.58 - - - - - - - - - - -

D2U-CE 6.70 5.40 6.70 5.62 5.10 5.90 5.40 6.70 5.50 6.70 5.50 5.60
D2U-KL 6.50 5.50 6.50 4.89 5.20 5.90 5.80 6.50 5.70 6.50 5.60 5.70
D2U-S 7.10 4.50 7.10 6.38 3.90 4.80 4.60 7.10 4.60 7.10 4.80 4.50

HWU64

MLE 58.90 54.10 55.70 48.12 52.50 51.60 55.00 55.70 52.20 55.70 52.60 51.90
LMCL 43.00 42.90 38.10 41.84 37.30 41.70 44.90 38.10 37.50 38.10 37.10 37.30
DRM 56.90 51.10 53.00 49.62 54.30 52.40 53.00 53.00 50.80 53.00 51.50 51.40
Reg. 46.50 32.70 41.20 41.84 29.60 31.30 29.60 41.20 31.80 41.20 32.60 32.10
Binary 35.77 - - - - - - - - - - -

D2U-CE 44.90 35.10 40.80 40.43 31.70 31.70 30.60 40.80 32.50 40.80 33.50 33.10
D2U-KL 43.80 33.70 39.90 42.48 30.30 31.50 31.10 39.90 33.00 39.90 33.30 33.10
D2U-S 57.60 48.10 53.00 46.84 47.80 47.40 48.50 53.00 47.30 53.00 48.10 47.60

SNIPS

MLE 10.40 8.40 10.30 10.71 8.40 10.40 10.30 10.30 9.90 10.30 8.60 8.70
LMCL 49.50 41.90 36.70 29.86 21.10 30.10 16.40 36.70 24.10 36.70 24.10 24.10
DRM 13.40 10.20 13.40 10.86 10.20 13.40 13.30 13.40 12.40 13.40 10.40 11.50
Reg. 2.50 2.20 2.50 2.29 2.20 2.50 2.50 2.50 2.40 2.50 2.20 2.30
Binary 1.71 - - - - - - - - - - -

D2U-CE 2.70 2.70 2.70 3.14 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70
D2U-KL 2.10 1.60 2.10 2.14 1.60 2.10 2.10 2.10 1.90 2.10 1.60 1.60
D2U-S 2.90 2.80 2.90 3.00 2.80 2.90 2.90 2.90 2.80 2.90 2.80 2.70

TOP

MLE 51.38 53.00 51.38 66.65 53.00 51.38 51.38 51.38 51.50 51.38 53.00 51.75
LMCL 69.75 70.13 69.50 65.06 70.75 70.63 71.50 69.50 70.50 69.50 70.25 70.25
DRM 50.13 51.88 50.13 59.79 51.88 50.13 50.13 50.13 50.88 50.13 51.63 50.63
Reg. 7.50 7.25 7.50 4.90 7.25 7.50 7.50 7.50 7.50 7.50 7.25 7.25
Binary 4.43 - - - - - - - - - - -

D2U-CE 6.13 6.25 6.13 4.04 6.25 6.13 6.13 6.13 6.13 6.13 6.25 6.13
D2U-KL 6.25 5.88 6.25 3.57 5.88 6.25 6.38 6.25 6.25 6.25 5.88 6.00
D2U-S 11.63 11.88 11.63 12.94 12.00 11.63 11.50 11.63 11.63 11.63 11.88 11.75



Table 8: Average FNR90 score of 10-Fold binary OOS Detection. Row-wise lowest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 27.30 25.67 26.22 19.70 21.46 20.60 26.70 26.22 20.45 26.22 21.38 20.75
LMCL 16.36 16.30 14.80 15.80 16.57 28.78 38.57 14.80 15.58 14.80 15.30 15.39
DRM 16.42 20.92 16.23 15.00 23.88 13.31 14.48 16.23 13.95 16.23 18.94 14.33
Reg. 10.80 8.79 10.39 8.70 7.61 8.32 7.48 10.39 8.08 10.39 8.30 8.20
Binary 6.70 - - - - - - - - - - -

D2U-CE 11.11 9.11 10.12 8.00 7.96 8.40 8.03 10.12 8.41 10.12 8.61 8.47
D2U-KL 12.84 9.99 12.04 9.00 7.76 8.05 7.53 12.04 8.17 12.04 8.85 8.35
D2U-S 12.69 10.41 11.88 10.20 9.54 9.68 10.00 11.88 9.87 11.88 9.76 9.71

Banking

MLE 14.36 10.49 11.37 7.20 8.01 8.79 13.68 11.37 7.88 11.37 7.69 7.79
LMCL 8.05 7.95 6.78 6.30 9.09 18.60 25.96 6.78 8.44 6.78 8.34 8.37
DRM 11.43 9.71 9.90 7.20 12.12 4.76 5.90 9.90 5.47 9.90 8.99 6.19
Reg. 0.94 0.42 0.52 1.80 0.42 0.55 0.46 0.52 0.55 0.52 0.55 0.55
Binary 0.20 - - - - - - - - - - -

D2U-CE 0.42 0.26 0.26 1.30 0.23 0.26 0.26 0.26 0.26 0.26 0.26 0.26
D2U-KL 1.50 0.59 0.72 1.80 0.39 0.59 0.72 0.72 0.52 0.72 0.42 0.49
D2U-S 4.85 3.58 3.68 3.70 2.12 2.38 2.57 3.68 2.41 3.68 2.74 2.57

CLINC

MLE 11.80 9.16 11.60 8.90 8.36 8.11 7.56 11.60 7.98 11.60 8.67 8.31
LMCL 9.91 9.96 9.76 8.30 10.76 21.51 45.62 9.76 10.44 9.76 10.13 10.20
DRM 9.69 16.31 9.67 7.90 21.27 7.80 10.36 9.67 8.84 9.67 12.62 9.69
Reg. 6.82 5.42 6.73 6.00 5.11 5.18 5.36 6.73 5.20 6.73 5.36 5.18
Binary 31.40 - - - - - - - - - - -

D2U-CE 7.40 6.13 7.33 6.60 6.18 6.18 6.11 7.33 6.04 7.33 6.09 6.02
D2U-KL 6.60 5.07 6.42 6.20 4.93 4.82 4.82 6.42 4.87 6.42 4.96 4.82
D2U-S 8.33 5.98 8.16 6.50 5.36 5.84 5.53 8.16 5.84 8.16 6.00 5.89

HWU64

MLE 51.97 52.26 51.75 52.80 52.01 47.14 47.01 51.75 48.63 51.75 51.03 49.57
LMCL 48.97 48.55 47.91 37.40 47.01 47.86 52.18 47.91 47.52 47.91 47.78 47.78
DRM 50.34 62.91 50.47 51.10 62.91 51.88 57.31 50.47 57.39 50.47 60.81 59.74
Reg. 45.17 41.62 45.13 34.70 40.60 41.88 40.09 45.13 40.77 45.13 41.50 40.81
Binary 31.00 - - - - - - - - - - -

D2U-CE 45.43 38.59 45.17 36.10 37.05 41.58 37.09 45.17 40.34 45.17 39.10 39.87
D2U-KL 45.56 42.74 45.64 35.90 41.50 40.47 39.19 45.64 41.84 45.64 42.56 41.88
D2U-S 50.00 49.23 49.96 48.70 49.10 45.77 45.21 49.96 47.99 49.96 49.06 48.63

SNIPS

MLE 11.14 9.29 11.14 11.80 9.29 11.14 11.14 11.14 10.71 11.14 9.71 10.29
LMCL 31.86 30.86 31.43 30.30 23.29 31.86 26.00 31.43 29.43 31.43 28.29 28.43
DRM 12.00 10.57 12.00 14.30 10.57 12.00 12.00 12.00 11.71 12.00 10.43 11.71
Reg. 2.71 2.14 2.57 3.10 2.00 2.43 2.43 2.57 2.43 2.57 2.29 2.29
Binary 2.00 - - - - - - - - - - -

D2U-CE 3.29 3.00 3.29 2.90 2.86 3.29 3.29 3.29 3.29 3.29 3.14 3.14
D2U-KL 2.86 1.86 2.86 2.30 1.57 2.71 2.57 2.86 2.29 2.86 1.86 2.14
D2U-S 3.43 2.43 3.43 3.10 2.29 3.29 3.14 3.43 2.86 3.43 2.43 2.86

TOP

MLE 67.88 69.05 67.89 51.50 69.07 67.89 67.90 67.89 68.17 67.89 69.04 68.46
LMCL 66.54 72.06 66.61 69.88 72.97 66.54 68.03 66.61 69.61 66.61 71.76 71.35
DRM 62.51 62.65 62.51 50.38 62.66 62.51 62.51 62.51 62.39 62.51 62.68 62.55
Reg. 7.06 6.07 7.05 7.50 6.02 7.06 6.76 7.05 6.63 7.05 6.17 6.44
Binary 5.75 - - - - - - - - - - -

D2U-CE 5.10 4.22 5.08 6.13 4.03 4.93 4.42 5.08 4.62 5.08 4.32 4.48
D2U-KL 5.25 4.25 5.21 6.38 4.10 5.22 4.55 5.21 4.67 5.21 4.32 4.54
D2U-S 14.98 15.59 14.99 11.63 15.61 14.98 15.00 14.99 15.10 14.99 15.64 15.19



Table 9: Average Recall score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 84.86 85.76 87.23 86.88 86.43 85.80 84.10 87.23 87.48 87.23 87.81 87.18
LMCL 88.35 88.79 88.79 87.47 86.84 80.77 77.23 88.79 87.04 88.79 87.26 87.07
DRM 86.81 89.53 88.83 90.02 89.63 90.73 90.33 88.83 90.70 88.83 90.23 90.56
Reg. 95.58 95.76 95.92 96.03 96.00 96.08 96.25 95.92 96.05 95.92 96.06 96.05
Binary 96.45 - - - - - - - - - - -

D2U-CE 95.11 95.28 95.44 95.65 95.98 95.92 96.03 95.44 95.90 95.44 95.86 95.90
D2U-KL 95.64 95.91 96.04 96.23 96.31 96.30 96.38 96.04 96.26 96.04 96.25 96.25
D2U-S 92.43 93.05 93.39 93.34 93.18 92.85 91.56 93.39 93.12 93.39 93.36 93.26

Banking

MLE 89.36 90.29 90.88 91.62 91.47 91.57 89.78 90.88 92.04 90.88 92.09 92.04
LMCL 92.56 92.78 93.19 92.65 92.43 86.81 85.04 93.19 92.65 93.19 92.53 92.68
DRM 90.59 93.32 92.01 93.69 92.83 94.45 94.10 92.01 94.55 92.01 93.49 94.30
Reg. 96.83 96.98 96.93 97.17 97.40 97.42 97.40 96.93 97.40 96.93 97.35 97.47
Binary 97.84 - - - - - - - - - - -

D2U-CE 96.76 96.63 96.68 96.49 96.66 96.63 96.61 96.68 96.54 96.68 96.54 96.54
D2U-KL 97.10 97.20 97.25 97.10 97.47 97.57 97.54 97.25 97.44 97.25 97.47 97.44
D2U-S 94.52 95.41 95.41 96.02 95.90 95.87 95.80 95.41 96.04 95.41 96.12 96.07

CLINC

MLE 90.22 90.05 90.29 90.25 91.31 91.07 91.04 90.29 90.82 90.29 90.27 90.45
LMCL 90.78 90.80 91.20 91.40 91.20 88.44 81.44 91.20 91.27 91.20 91.11 91.15
DRM 90.95 92.53 90.96 91.75 91.85 92.73 92.75 90.96 92.93 90.96 92.73 92.76
Reg. 93.29 93.31 93.49 93.38 93.31 93.33 93.33 93.49 93.56 93.49 93.49 93.56
Binary 88.31 - - - - - - - - - - -

D2U-CE 92.35 92.84 92.60 92.87 93.27 93.33 93.11 92.60 93.13 92.60 93.31 93.00
D2U-KL 93.16 93.64 93.35 93.05 93.33 93.13 93.02 93.35 93.62 93.35 93.09 93.55
D2U-S 93.42 94.55 93.93 94.58 94.53 94.67 94.65 93.93 94.67 93.93 94.62 94.87

HWU64

MLE 73.02 76.65 74.79 77.66 76.83 77.34 75.57 74.76 77.40 74.79 77.57 77.31
LMCL 80.33 80.24 81.32 81.38 81.92 80.75 79.10 81.32 81.95 81.32 81.83 81.98
DRM 73.44 77.01 76.29 77.22 76.77 77.99 77.51 76.29 77.69 76.29 77.22 77.43
Reg. 73.95 74.58 74.43 74.43 74.94 74.82 74.73 74.43 74.70 74.43 74.79 74.79
Binary 74.70 - - - - - - - - - - -

D2U-CE 73.23 75.09 73.89 74.22 74.58 74.40 74.76 73.89 74.16 73.89 74.16 74.10
D2U-KL 73.74 74.76 74.07 74.58 75.27 74.97 75.54 74.07 74.43 74.07 75.27 74.79
D2U-S 74.25 75.00 74.16 74.37 74.28 74.37 73.89 74.16 74.40 74.16 74.55 74.73

SNIPS

MLE 88.29 88.41 88.29 88.24 88.35 88.29 88.06 88.29 88.24 88.29 88.41 88.06
LMCL 67.76 71.76 74.65 79.35 83.12 79.94 85.82 74.65 80.71 74.65 80.65 80.71
DRM 87.88 89.24 87.88 88.41 89.18 87.88 88.06 87.88 88.88 87.88 89.12 88.88
Reg. 88.41 88.94 88.35 87.94 89.53 88.47 89.06 88.35 89.35 88.35 88.88 89.35
Binary 86.18 - - - - - - - - - - -

D2U-CE 88.24 89.41 88.65 87.76 89.47 89.18 89.12 88.65 89.18 88.65 89.47 89.24
D2U-KL 88.53 88.59 88.53 88.00 88.59 88.94 88.76 88.53 88.71 88.53 88.65 88.76
D2U-S 87.00 90.29 86.41 87.82 90.29 89.35 89.35 86.41 89.65 86.41 90.35 90.29

TOP

MLE 84.85 84.52 84.85 84.75 84.54 84.85 84.71 84.85 84.71 84.85 84.49 83.14
LMCL 57.78 68.92 57.53 61.81 75.63 58.43 67.12 57.53 65.35 57.53 68.10 64.83
DRM 81.68 72.93 81.68 79.17 72.87 81.68 81.78 81.68 79.49 81.68 72.80 75.56
Reg. 94.51 95.23 94.51 94.76 95.07 94.77 95.60 94.51 95.07 94.51 95.04 94.97
Binary 96.95 - - - - - - - - - - -

D2U-CE 93.85 94.34 93.84 94.00 94.55 94.00 94.90 93.84 94.56 93.84 94.33 94.49
D2U-KL 94.21 95.07 94.21 94.29 95.17 94.52 95.55 94.21 95.25 94.21 95.17 95.35
D2U-S 91.29 91.92 91.29 91.70 92.13 91.29 91.36 91.29 91.90 91.29 91.97 91.59



Table 10: Average F1 score of 10-Fold binary OOS Detection. Row-wise highest scores are given in bold.

Data Training MLE Temp Stdev Ent CE BC Cbr Cos JS Euc KL Helng.

ACID

MLE 87.51 88.21 89.24 89.03 88.69 88.24 86.95 89.24 89.45 89.24 89.71 89.24
LMCL 90.14 90.46 90.47 89.52 89.05 84.60 81.99 90.47 89.20 90.47 89.35 89.22
DRM 89.00 90.83 90.42 91.34 90.83 91.85 91.51 90.42 91.81 90.42 91.40 91.70
Reg. 95.10 95.28 95.46 95.58 95.58 95.67 95.89 95.46 95.62 95.46 95.65 95.63
Binary 96.07 - - - - - - - - - - -

D2U-CE 94.43 94.60 94.80 95.09 95.55 95.47 95.61 94.80 95.46 94.80 95.42 95.46
D2U-KL 95.19 95.55 95.64 95.88 96.01 95.99 96.08 95.64 95.94 95.64 95.93 95.93
D2U-S 93.16 93.66 93.90 93.87 93.78 93.51 92.59 93.90 93.71 93.90 93.89 93.81

Banking

MLE 89.60 90.53 91.03 91.76 91.67 91.74 90.04 91.03 92.17 91.03 92.22 92.18
LMCL 92.63 92.87 93.27 92.75 92.52 87.21 85.42 93.27 92.72 93.27 92.61 92.74
DRM 90.50 93.16 91.89 93.54 92.60 94.36 93.99 91.89 94.42 91.89 93.31 94.19
Reg. 96.75 96.91 96.85 97.12 97.35 97.38 97.35 96.85 97.35 96.85 97.30 97.43
Binary 97.79 - - - - - - - - - - -

D2U-CE 96.66 96.54 96.59 96.37 96.55 96.53 96.50 96.59 96.43 96.59 96.43 96.43
D2U-KL 97.03 97.13 97.18 97.02 97.42 97.52 97.50 97.18 97.39 97.18 97.41 97.39
D2U-S 94.48 95.36 95.36 95.98 95.88 95.86 95.80 95.36 96.02 95.36 96.07 96.03

CLINC

MLE 90.75 90.65 90.82 90.80 91.75 91.54 91.50 90.82 91.32 90.82 90.84 91.00
LMCL 91.27 91.29 91.61 91.79 91.59 88.98 82.71 91.61 91.68 91.61 91.54 91.57
DRM 91.39 92.66 91.39 92.08 91.94 92.96 92.93 91.39 93.12 91.39 92.90 92.97
Reg. 92.89 92.89 93.12 92.96 92.91 92.95 92.94 93.12 93.22 93.12 93.13 93.22
Binary 86.07 - - - - - - - - - - -

D2U-CE 91.64 92.26 91.98 92.30 92.84 92.87 92.63 91.98 92.61 91.98 92.86 92.46
D2U-KL 92.70 93.28 92.90 92.54 92.91 92.65 92.55 92.90 93.23 92.90 92.58 93.15
D2U-S 93.46 94.55 93.92 94.58 94.53 94.64 94.61 93.92 94.66 93.92 94.63 94.86

HWU64

MLE 73.72 76.50 75.08 77.33 76.03 76.96 75.26 75.06 76.80 75.08 77.07 76.79
LMCL 80.18 80.08 81.09 81.16 81.77 80.52 78.90 81.09 81.69 81.09 81.53 81.74
DRM 74.01 76.66 76.06 76.82 76.11 77.68 76.98 76.06 77.30 76.06 76.90 77.00
Reg. 66.95 68.19 67.81 67.85 68.80 68.52 68.49 67.81 68.21 67.81 68.37 68.37
Binary 67.83 - - - - - - - - - - -

D2U-CE 65.55 69.02 66.65 67.39 68.18 67.69 68.60 66.65 67.29 66.65 67.45 67.31
D2U-KL 66.42 68.42 67.16 68.23 69.41 68.91 69.88 67.16 67.81 67.16 69.37 68.46
D2U-S 69.28 69.93 68.67 68.85 68.30 68.39 67.82 68.67 68.64 68.67 68.95 69.31

SNIPS

MLE 88.37 88.49 88.37 88.31 88.43 88.37 88.13 88.37 88.31 88.37 88.49 88.13
LMCL 66.27 71.04 74.22 79.27 83.13 79.87 85.91 74.22 80.68 74.22 80.61 80.68
DRM 87.94 89.29 87.94 88.46 89.23 87.94 88.11 87.94 88.93 87.94 89.17 88.94
Reg. 88.46 88.99 88.40 87.98 89.57 88.52 89.10 88.40 89.40 88.40 88.93 89.40
Binary 86.15 - - - - - - - - - - -

D2U-CE 88.29 89.45 88.69 87.81 89.52 89.23 89.17 88.69 89.22 88.69 89.52 89.28
D2U-KL 88.58 88.64 88.58 88.05 88.64 89.00 88.82 88.58 88.76 88.58 88.70 88.82
D2U-S 87.02 90.36 86.43 87.87 90.36 89.42 89.42 86.43 89.71 86.43 90.42 90.36

TOP

MLE 86.57 86.13 86.57 86.50 86.14 86.57 86.47 86.57 86.48 86.57 86.11 85.19
DRM 84.41 77.62 84.41 82.42 77.56 84.41 84.48 84.41 82.64 84.41 77.53 79.50
Reg. 94.93 95.55 94.93 95.14 95.42 95.15 95.85 94.93 95.41 94.93 95.39 95.32
LMCL 66.25 75.13 66.04 69.48 80.25 66.71 73.74 66.04 72.34 66.04 74.48 71.90
Binary 96.95 - - - - - - - - - - -

D2U-CE 94.42 94.83 94.41 94.55 95.01 94.55 95.29 94.41 95.00 94.41 94.82 94.95
D2U-KL 94.71 95.43 94.71 94.78 95.51 94.97 95.84 94.71 95.58 94.71 95.51 95.67
D2U-S 92.29 92.78 92.29 92.61 92.95 92.29 92.35 92.29 92.77 92.29 92.82 92.53


