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Abstract

Exploiting the cross-impact between intent de-001
tection and slot filling, two main tasks for nat-002
ural language understanding (NLU), has been003
a recent trend for NLU research. While the004
cross-impact has often been modeled implicitly005
through joint learning, various methods have006
also been proposed to explicitly use slot in-007
formation to facilitate intent detection and/or008
extract intent information to facilitate slot fill-009
ing. However, previous works haven’t fully010
explored the potential of the cross-impact yet.011
To better capture the benefit of intent-slot cor-012
relation, this paper proposes a novel joint learn-013
ing framework, named IterNLU, to iteratively014
learn intent detection and slot filling with up-015
dated slot and intent information fed in, respec-016
tively, per iteration. In each iteration, we at-017
tempt to extract the most effective intent/slot018
representation based on available information019
to assist subsequent detection of slot/intent.020
Our proposed approach achieves 0.95% and021
1.74% absolute gains on semantic frame accu-022
racy over the best previous state-of-the-art NLU023
approach on two public benchmark datasets,024
ATIS and Snips, respectively. We also conduct025
systematic analyses on the effect of feeding in026
different types of intent/slot information as well027
as on system efficiency.028

1 Introduction029

Natural language understanding is a technology030

critical for many language/speech related applica-031

tions, such as dialog systems (Chen et al., 2017; Tur032

and De Mori, 2011). Intent detection and slot fill-033

ing are two main tasks of NLU, targeting to detect034

the user intent (e.g., play music) and the relevant035

slots (e.g., song/artist names) in the input sentence036

(e.g., "play Faded by Alan Walker"), respectively.037

The two tasks can be modeled individually, with ei-038

ther traditional algorithms (e.g., maximum entropy039

model, support vector machines, and conditional040

random fields (CRF)) or various neural networks041

(Haffner et al., 2003; Hashemi et al., 2016; Ray- 042

mond and Riccardi, 2007; McCallum et al., 2000; 043

Mesnil et al., 2015). Since intent detection and 044

slot filling are correlated by nature, jointly learning 045

the two tasks has become increasingly popular for 046

NLU especially after 2015 (Liu and Lane, 2016; 047

Zhang et al., 2019; Chen et al., 2019). 048

As joint learning has been proven effective to 049

enhance NLU, which indicates the benefit of cap- 050

turing the cross-impact between intent detection 051

and slot filling, an emerging recent trend for NLU 052

research is to explicitly make use of the slot-intent 053

correlation to facilitate the two tasks. Most of such 054

efforts attempt to extract intent information to fa- 055

cilitate slot filling in certain way (Goo et al., 2018; 056

Qin et al., 2019, 2020). Wang et al. (2018) and E 057

et al. (2019) attempt to use the correlation to aid 058

both tasks. While Wang et al. (2018) adopt separate 059

bidirectional LSTM (BiLSTM) for each task and 060

feeds the intent/slot hidden representation into the 061

counterpart decoder, E et al. (2019) adopt a shared 062

BiLSTM for both task, computing attention-based 063

slot and intent context vectors (that are augmented 064

with each other iteratively) to facilitate the intent 065

and slot prediction, respectively. 066

In this paper, we aim to fully capture the bene- 067

fit of slot-intent correlation in NLU, and propose 068

a joint learning NLU approach that not only ex- 069

plicitly extracts intent and slot information to im- 070

prove slot filling and intent detection, respectively, 071

but also conducts iterative intent detection and slot 072

filling. We refer to this approach as the IterNLU 073

framework. Note that none of the previous NLU 074

approaches conducts multiple passes of intent de- 075

tection and slot filling iteratively. We believe that 076

such iteration is beneficial, as it imitates the hu- 077

man behavior that human may read through a diffi- 078

cult/challenging sentence several times to fully un- 079

derstand it. We construct the IterNLU framework 080

as a set of intent detection and slot filling modules 081

stacked upon the BERT embedding representations. 082
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In each intent/slot module, we use an individual083

BiLSTM RNN to encode the input received from084

the preceding module, and attempt to extract the085

best possible intent/slot information to feed into086

the subsequent module with the aim of facilitating087

the counterpart learning. We evaluate the proposed088

approach on two popular NLU benchmark datasets,089

ATIS and Snips. The experimental results obtained090

are encouraging, our approach leads to 7.6% and091

16.4% relative reductions on overall error rate over092

the best state-of-the-art baseline performance for093

ATIS and Snips, respectively.094

We further investigate the effect of extracting var-095

ious types of intent and slot information on the per-096

formance of the IterNLU framework in this work.097

The efficiency of the IterNLU framework is also098

investigated with various number of intent-slot iter-099

ations adopted.100

2 Related Works101

There are many previous works in literature that102

jointly learn intent detection and slot filling us-103

ing various approaches, ranging from Triangular104

CRF (Xu and Sarikaya, 2013), Capsule Neural Net-105

work (Zhang et al., 2019), to RNN based models106

(Hakkani-Tür et al., 2016; Guo et al., 2014; Zhang107

and Wang, 2016; Liu and Lane, 2016). Recently,108

pre-trained language models (Peters et al., 2018;109

Devlin et al., 2019; Vaswani et al., 2017), which110

are proven effective across many NLP tasks, have111

been deployed in NLU too (Chen et al., 2019; Qin112

et al., 2019). Chen et al. (2019) successfully used113

the BERT model to significantly boost the NLU114

performance, showing the effectiveness of contex-115

tualized embedding. In this work, we follow these116

previous efforts to jointly learn intent detection and117

slot filling, using a joint cross-entropy loss func-118

tion, and also adopt the BERT model to provide119

contextualized embeddings to the intent/slot lay-120

ers. Note that BiLSTM has been found effective to121

model NLU in many of these previous works (Liu122

and Lane, 2016; Wang et al., 2018; E et al., 2019).123

This work thus adopts BiLSTM to implement the124

intent detection and slot filling modules.125

For the previous NLU methods that explicitly126

use intent/slot information to facilitate the counter-127

part learning, intent information has been extracted128

as token-wise hidden representation, context vec-129

tor obtained by attention computation, or intent130

prediction representation to aid the detection of131

slots through certain mechanism (e.g., gate) (Wang132

et al., 2018; Goo et al., 2018; Li et al., 2018; E et al., 133

2019; Qin et al., 2019). We compare these options 134

for intent information extraction in our proposed 135

IterNLU framework, while extending the attention 136

computation by including sentence-level hidden 137

representation to better capture the sentence intent. 138

Regarding the slot information extraction, we fol- 139

low (Wang et al., 2018) to investigate the token- 140

wise slot hidden representation, and also explore 141

the use of slot prediction representation, inspired 142

by the intent information extraction case. Note that 143

there is a recent work Slot Refine (Wu et al., 2020) 144

that feeds in the slot prediction to a second pass of 145

decoding to solve the uncoordinated slots problem, 146

but no intent information is explicitly extracted to 147

aid the second pass in that work. 148

The major difference between our proposed 149

IterNLU approach and the previous works on joint 150

intent detection and slot filling is that IterNLU in- 151

troduces iterative intent detection and slot filling. 152

In (E et al., 2019) and (Qin et al., 2020), a certain 153

mechanism (i.e., mutual reinforcement, and multi- 154

layer graph attention network) is proposed to itera- 155

tively augment the intent and slot representation ex- 156

tracted from the decoder, either to facilitate the slot 157

filling alone or to improve both tasks. Since such 158

iteration is only used as a post-processing after the 159

RNN pass, mainly iterating between the slot/intent 160

representations, only limited cross-impact infor- 161

mation can be captured. In contrast, our IterNLU 162

framework conducts much thorough iteration, it- 163

erating the whole intent detection and slot filling 164

procedures in order to fully capture the intent-slot 165

correlation. The IterNLU approach is similar to 166

end-to-end memory networks in the sense that they 167

both stack repetitive functional layers (e.g., mem- 168

ory layers) that each receives the output from the 169

previous layer as input (Sukhbaatar et al., 2015; 170

Kenter and de Rijke, 2017). 171

3 Approach 172

In this section, we propose the IterNLU framework, 173

first introducing the overall system structure and 174

then presenting the intent detection and slot filling 175

modules, respectively. 176

3.1 Overall Framework Structure 177

The overall structure of the iterNLU framework is 178

illustrated in Figure 1. The framework involves 179

N repetitions of intent detection module and slot 180

filling module, stacked upon an embedding module, 181
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Figure 1: Overall structure of IterNLU framework.

to enable iterative intent detection and slot filling.182

Given an input sentence w1w2w3...wn , we first183

encode each word wk as an embedding vector ek.184

The word embedding module can either be imple-185

mented with certain pre-trained model (Pennington186

et al., 2014; Joulin et al., 2017; Devlin et al., 2019;187

Radford et al.) or be developed from scratch. In188

this work, we adopt BERT (Devlin et al., 2019) to189

generate contextualized word embedding vectors.190

In this framework, each intent module receives191

the word embeddings as well as the slot informa-192

tion representations (i.e., s1, s2, s3, ...sn) extracted193

from the preceding slot module (if available) as194

the module input, and generates a sequence of rep-195

resentations (i.e., i1, i2, i3, ...in) that encode the196

detected intent(s). The subsequent slot module197

then conducts slot filling using those intent repre-198

sentations together with the word embeddings as199

the input. The last intent/slot module generates the200

final intent/slot prediction. Note that the order of201

the intent and slot modules in each repetition can202

be switched with minor system modifications.203

We train the whole IterNLU framework using a204

joint cross-entropy loss function as follows,205

Ljoint = −
nI∑
j=1

yIj log
(
ŷIj
)
−

L∑
i=1

nS∑
j=1

ySi,j log
(
ŷSi,j

)
206

where nI and nS refer to the numbers of intent207

and slot types respectively, ŷIj and ŷSi,j refer to the 208

intent and slot predictions, yIj and ySi,j refer to the 209

corresponding ground-truth for intent and slot, and 210

L refers to the number of tokens in the sentence. 211

In this work, we tie all the parameters for the in- 212

tent modules as well as for the slot modules. While 213

the weight sharing may improve the system ro- 214

bustness by providing additional regularization, the 215

main advantage of such design is that in this way, 216

once the model is trained, the number of intent-slot 217

repetitions (i.e., N) for inference can be different 218

from (e.g., smaller than) that used in training. This 219

may bring significant improvement on inference 220

efficiency, as will be discussed in Section 5.3. 221

3.2 Intent Detection Module 222

Each intent detection module attempts to provide 223

the best possible intent information of the given sen- 224

tence to the subsequent slot filling module, while 225

the last intent module also generates the intent de- 226

tection result. In this work, we implement each 227

intent module based on BiLSTM together with an 228

attention mechanism, as illustrated in Figure 2. 229

For each token wk, we concatenate the word em- 230

bedding ek with the slot information representation 231

sk received from the previous slot filling module 232

(for the first intent module, sk is invalidated as 233

0), and feed it into the intent module BiLSTM. 234

Upon receiving such input, the BiLSTM processes 235

the given sentence in both forward and backward 236

directions. We first extract token-wise intent hid- 237

den representations [hf1 , h
b
1], [h

f
2 , h

b
2], ...[h

f
n, hbn] by 238

concatenating the hidden representations generated 239

by the BiLSTM in each direction. We then concate- 240

nate the last states of both directions, each of which 241

covers the information of the whole sentence, to 242

generate a sentence-level intent representation, de- 243

noted as hsent = [hfn, hb1]. This representation is 244

effective for intent detection as it well captures the 245

sentence context. 246

It is possible to directly feed each token-wise in- 247

tent representation into the subsequent slot module 248

as ik, or broadcast the sentence-level representation 249

hsent for all tokens to the next module, as will be 250

discussed in Section 5.1. In this work, we attempt 251

to further enhance the sentence-level intent repre- 252

sentation to better capture the intent information. 253

We propose an attention mechanism that leverages 254

hsent with the token-wise intent representations 255

through an attention network. The attention net- 256

work can be potentially implemented in various 257
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Figure 2: Illustration of the intent detection and slot filling modules.

ways (Vaswani et al., 2017; Liu and Lane, 2016). In258

this work, we follow (Liu and Lane, 2016) to use a259

feed-forward network to model attention. Different260

from (Liu and Lane, 2016), our attention method in-261

cludes not only token-wise hidden representations262

but also the sentence-level hidden representation263

hsent into the calculation of the weighted sum in a264

self-attention manner (see Figure 2). Our method265

generates an enhanced intent representation, de-266

noted as iatt, as follows,267

iatt =
∑
h∈H

α(h) · h268

where H is the collection of hsent and the token-269

wise representations. α(h) is the weight for h,270

calculated as follows:271

score(h) = vTa tanh(Wah+ Uahsent) ∈ R272

α(h) =
exp(score(h))∑

h′∈H exp(score(h′))
273

where Wa, Ua ∈ Rm×2d, va ∈ Rm denote the274

weight matrices, d refers to the hidden state di-275

mension of BiLSTM, and m refers to the attention276

hidden dimension.277

The obtained intent representation iatt is then278

broadcast into the subsequent slot filling module279

for each token as all the ik. In this study, regard-280

less of the intent information extracted, the intent281

detection module always predicts the intent results282

based on hsent (by applying a linear prediction283

layer on top of the hsent representation), in order284

to facilitate the analysis.285

3.3 Slot Filling Module 286

Each slot filling module is implemented with BiL- 287

STM too in this work. The concatenation of the 288

word embedding and the intent representation re- 289

ceived from the preceding intent module per token, 290

i.e., [ek, ik](k = 1...n), serves as the input to the 291

slot BiLSTM. We concatenate the hidden states 292

generated by both directions of the BiLSTM for 293

each token, i.e., [hfk , h
b
k], to form the token-wise 294

slot hidden representation, denoted as hslotk . 295

Similar to the extraction of intent information, 296

various slot information can be extracted to facili- 297

tate the subsequent intent detection. The extracted 298

slot representation sk (as in Figures 1 and 2) could 299

be hslotk or certain slot prediction vector. In this 300

work, we adopt a one-hot representation of slot pre- 301

diction result as sk. We apply a linear projection 302

layer on top of hslotk to get slot prediction vector ok, 303

which shows the predicted probability distribution 304

over all the possible slot labels, for the kth token. 305

The prediction vector is then converted into a one- 306

hot representation (by setting the dimension of the 307

predicted label as 1 and others as 0) as sk. 308

4 Experiments 309

4.1 Data 310

We conduct the experiments on two public bench- 311

mark datasets, ATIS (Hemphill et al., 1990) and 312

Snips (Coucke et al., 2018). The ATIS (Air Travel 313

Information Systems) corpus contains 18 distinct 314

intents and 127 slot labels, covering air travel re- 315

lated topics. From the original 4978 training sen- 316

tences of ATIS, we randomly reserve 500 sentences 317
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as the development set, and use the remaining as318

the training set. We directly use the the original319

893 testing sentences are the testing set. The Snips320

corpus was collected from daily smart-home con-321

versations, involving 7 intent labels and 72 slot322

labels in total. There are 13084, 700 and 700323

sentences in the training, development and test-324

ing sets, respectively, for Snips. In both the ATIS325

and Snips datasets, slots are labelled following the326

IOB schema (Ramshaw and Marcus, 1995).327

4.2 Experimental Settings328

We develop the IterNLU framework using Pytorch329

(Paszke et al., 2019). For the embedding layer, we330

adopt the BERT variant BERT-base-uncased (Wolf331

et al., 2019), and following (Chen et al., 2019), use332

the BERT representation of the first subword to333

represent a word token. For the intent detection334

and slot filling modules, we set the hidden state335

dimension of BiLSTM as 256 for each module,336

while in each intent module, the output dimension337

of the attention mechanism is set as 128. Unless338

stated otherwise, a same number of intent-slot rep-339

etitions (e.g., N = 5) is adopted for both training340

and inference. We train the whole system using341

Adam (with weight decay) optimizer (Loshchilov342

and Hutter, 2018) together with the early stopping343

criteria (patience= 50). A learning rate of 1e-5344

and batch size of 128 are adopted in training. The345

model is regularized with weight decay parameter346

set as 0.01 and dropout probability set as 0.2. To347

avoid exploding gradient problem, gradient clip-348

ping is used (maximum-gradient-norm set to 5).349

We also select a set of previous NLU approaches350

that achieve state-of-the-art performance as the351

baseline algorithms for comparison, as listed in352

Table 1. We evaluate each of the baseline methods353

on ATIS and Snips separately. For those algorithms354

with open-source code available (i.e., Capsule-355

NLU, SF-ID, AGIF, and SlotRefine), we directly356

use the provided code to run the experiments. We357

re-implement the other approaches (i.e., Attention358

Enc.-Dec., Bi-Model, Stack Propagation + BERT,359

and Joint BERT) based on the corresponding pa-360

pers. For each baseline algorithm, we develop it361

using the recommended settings in the correspond-362

ing paper if any, and manually tune the remaining363

hyperparameters for ATIS and Snips, respectively.364

Throughout this work, the hyperparameters are365

tuned on corresponding development data, and the366

reported results are evaluated on testing data.367

4.3 Results 368

We evaluate the proposed IterNLU approach (with 369

various repetition number N adopted) as well as 370

the baseline NLU algorithms using the same train- 371

ing/development/testing sets for ATIS and Snips. 372

To reduce the impact of randomness and provide 373

a fair comparison, we independently perform the 374

training and evaluation for each of the listed NLU 375

models five times, and report the mean performance 376

together with the standard deviation for each evalu- 377

ation metric. The comparison results are shown in 378

Table 1. The evaluation metrics used include 1) the 379

F1 score for slot filling, 2) the accuracy for intent 380

detection, and 3) the sentence-level semantic frame 381

accuracy, referred to as overall accuracy, which cal- 382

culates the portion of the sentences whose slots and 383

intents are both correctly detected. 384

From Table 1, we can see that the "Joint BERT" 385

(Chen et al., 2019) is a NLU approach challenging 386

to beat. It outperforms all the other baseline algo- 387

rithms, including those newly proposed ones, in 388

terms of overall accuracy in our multi-run statistics 389

based fair comparison. It is encouraging that our 390

proposed IterNLU approach achieves significant 391

further improvements 1. Over the best baseline 392

"Joint BERT (+ CRF)", our best IterNLU models 393

(by setting N as 5 for ATIS and 2 for Snips) bring 394

0.95% and 1.74% absolute increases on overall ac- 395

curacy for ATIS and Snips, respectively. Note that 396

the previously reported improvement on overall ac- 397

curacy over "Joint BERT" baseline is only <0.5% 398

absolute for ATIS and <0.2% absolute for Snips 399

(Wu et al., 2020). 400

The benefit of IterNLU may come from 1) the 401

module design, 2) information sharing between the 402

intent detection and slot filling modules, and 3) 403

iterative learning. To analyze the individual contri- 404

butions of these factors, we also implement another 405

system (denoted as "Parallel Implementation" in 406

Table 1) that cuts off the intent-slot information 407

sharing in IterNLU(N=1) by applying the same in- 408

tent detection module and slot filling module in 409

parallel upon the word embedding module, both 410

only using BERT embedding as input. 411

On ATIS, as shown in Table 1, the Parallel 412

Implementation achieves similar performance as 413

the baseline "Joint BERT (+CRF)" approach. By 414

feeding intent information into the slot module, 415

IterNLU(N=1) not only achieves higher slot filling 416

1p<0.05 in t-test,compared with each baseline on overall
accuracy. The box plots in Appendix also support the claim.
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ATIS Dataset Snips Dataset

Model Slot Intent Overall Slot Intent Overall
(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc.)

Attention Enc.-Dec. (Liu and Lane, 2016) 94.64 97.42 84.76 91.29 97.80 81.29
(±0.43) (±0.10) (±0.79) (±0.83) (±0.19) (±1.52)

Bi-Model (Wang et al., 2018) 95.24 96.68 85.34 93.50 97.09 84.37
(±0.20) (±0.27) (±0.26) (±0.23) (±0.19) (±0.71)

Capsule-NLU (Zhang et al., 2019) 94.56 80.11 71.54 92.13 97.86 83.29
(±0.44) (±12.43) (±9.4) (±0.49) (±0.23) (±0.83)

SF-ID (ID first + CRF) (E et al., 2019) 95.42 96.24 84.82 90.61 96.83 77.66
(±0.11) (±0.73) (±0.84) (±0.29) (±0.54) (±0.54)

SF-ID (SF first + CRF) (E et al., 2019) 95.33 96.86 84.95 90.89 96.91 78.40
(±0.15) (±0.28) (±0.30) (±0.61) (±0.50) (±1.06)

Joint BERT (without CRF) (Chen et al., 2019) 95.40 98.00 87.38 95.60 98.26 89.29
(±0.25) (±0.15) (±0.54) (±0.45) (±0.29) (±1.02)

Joint BERT (+ CRF) (Chen et al., 2019) 95.72 97.91 87.56 95.56 98.34 89.37
(±0.13) (±0.25) (±0.41) (±0.61) (±0.21) (±1.14)

Stack Propagation + BERT (Qin et al., 2019) 94.56 97.80 85.07 95.20 98.26 88.83
(±0.46) (±0.17) (±1.08) (±0.36) (±0.17) (±0.93)

AGIF (Qin et al., 2020) 95.72 96.66 86.65 94.19 97.28 86.49
(±0.09) (±0.24) (±0.32) (±0.27) (±0.27) (±0.69)

SlotRefine (Wu et al., 2020) 96.20 97.34 85.34 92.75 97.54 82.94
(±0.26) (±0.24) (±0.61) (±0.70) (±0.44) (±1.10)

Parallel Implementation 95.71 97.91 87.79 95.94 98.34 90.57
(±0.15) (±0.26) (±0.43) (±0.58) (±0.22) (±1.07)

IterNLU (N=1) 95.83 97.96 88.17 95.94 98.51 90.37
(±0.06) (±0.22) (±0.15) (±0.50) (±0.21) (±1.12)

IterNLU (N=2) 95.88 98.00 88.17 96.26 98.60 91.11
(±0.05) (±0.08) (±0.21) (±0.27) (±0.21) (±0.49)

IterNLU (N=3) 95.84 97.87 88.26 96.07 98.34 90.57
(±0.14) (±0.38) (±0.48) (±0.16) (±0.37) (±0.49)

IterNLU (N=4) 95.73 98.09 88.17 95.93 98.46 90.26
(±0.20) (±0.14) (±0.35) (±0.60) (±0.32) (±1.28)

IterNLU (N=5) 95.97 97.96 88.51 96.23 98.74 90.60
(±0.16) (±0.08) (±0.45) (±0.12) (±0.14) (±0.19)

Table 1: Performance comparison on ATIS and Snips datasets. Each result reported is the average performance
across 5 independent runs together with the standard deviation listed in parentheses.

ATIS Dataset Snips Dataset

Intent Information Slot Intent Overall Slot Intent Overall
(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc.)

token-wise hidden rep. 95.73 97.87 87.70 96.01 98.49 90.69
sentence hidden rep. 95.82 97.89 87.68 96.12 98.46 90.86
intent prediction (prob.) 95.99 97.89 88.26 95.81 98.46 90.31
intent prediction (one-hot) 95.76 97.85 87.61 95.98 98.43 90.49
token-sent. attention 95.97 97.96 88.51 96.23 98.74 90.60

Table 2: IterNLU (N=5) performance with different types of intent information extracted to facilitate slot filling.
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F1 as expected, but also brings higher intent de-417

tection accuracy, possibly due to backpropagation.418

By also feeding slot information into the intent419

module, IterNLU(N=2) obtains further enhanced420

performances on slot filling and intent detection.421

These observations illustrate the benefit of intent-422

slot information sharing. Regarding iterative learn-423

ing, more iterations in general lead to small but424

steady performance improvements on ATIS. This425

is unsurprising since while IterNLU(N=1) can al-426

ready handle most sentences, only those challeng-427

ing sentences need iterative understanding. The428

more challenging a sentence is, the more iterations429

are needed. While the iteration number increases,430

the number of those applicable challenging sen-431

tences decreases. This leads to small but cumula-432

tively substantial improvement for iterations.433

On Snips, the Parallel Implementation already434

outperforms all baseline algorithms, indicating the435

benefit of module design. With IterNLU, the per-436

formances are substantially further improved in all437

the three metrics if N=2 is used (where intent-slot438

correlation in both directions is explored). How-439

ever, in contrast to the case of ATIS, the perfor-440

mance change of IterNLU becomes noisy on Snips441

when N is increased further. This is possibly be-442

cause the sentences in Snips are relatively simple,443

and the benefit of using more iterations to han-444

dle challenging sentences may be diluted by the445

added confusion from unnecessary computation on446

simple sentences. The performance differences on447

ATIS and Snips show that for IterNLU, the rep-448

etition number N should be chosen based on the449

characteristics of the target data, i.e., be tuned as a450

hyperparameter on the development set.451

5 Analysis452

5.1 Effect of Intent Information Extraction453

In this subsection, we investigate the impact of ex-454

tracting different types of intent representation (i.e.,455

ik) to facilitate subsequent slot filling on the perfor-456

mance of the IterNLU framework. With the remain-457

ing part of the framework fixed, we evaluate five458

variants of the intent representation, including (1)459

token-sentence attention: the proposed attention-460

based intent representation described in section461

3.2, (2) token-wise hidden rep.: [hfk , h
b
k] generated462

by the intent BiLSTM, (3) sentence hidden rep.:463

the sentence-level hidden representation hsent, (4)464

intent prediction (prob.): the intent prediction vec-465

tor (showing probability distribution over all the466

intent labels) generated by the linear prediction 467

layer on top of the intent BiLSTM, and (5) intent 468

prediction (one-hot): the one-hot representation 469

converted from the intent prediction vector by set- 470

ting the dimension of the predicted intent as 1 and 471

others as 0. Except for token-wise hidden rep., all 472

the other variants are sentence-level intent repre- 473

sentations, each broadcast into the subsequent slot 474

module as all the ik (k = 1...n). The resulting 475

IterNLU performance using these intent informa- 476

tion variants are shown in Table 2. To facilitate 477

the discussion, in this subsection as well as the 478

next one, we set the repetition number N as 5 for 479

both training and evaluation, and report the average 480

results across five independent runs. 481

From Table 2, we can see that compared with 482

feeding in token-wise [hfk , h
b
k], feeding in the 483

sentence-level hsent brings better improvement on 484

slot filling. Note that token-wise intent represen- 485

tation has been used in the Bi-Model and Stack 486

Propagation algorithms to either directly or indi- 487

rectly (through token-level intent prediction) fa- 488

cilitate slot filling. This observation shows that 489

providing intent information as reliably as possi- 490

ble is beneficial. Unsurprisingly, adopting the en- 491

hanced sentence intent representation, i.e., token- 492

sentence attention, further improves the slot filling 493

performance (Slot F1 increased from 95.73/95.82 494

to 95.97 on ATIS, and from 96.01/96.12 to 96.23 on 495

Snips), which also benefits intent detection through 496

iteration. In (Qin et al., 2019), it was reported that 497

token-wise intent information performs better than 498

sentence-level intent information to aid slot filling, 499

as it may ease the error propagation. Our obser- 500

vation is inconsistent with that, possibly because 501

the error propagation problem can be relieved by 502

intent-slot iterations for IterNLU. We also evalu- 503

ate the two prediction related intent representation 504

variants, because directly feeding in the intent pre- 505

diction result may ease the learning task for the 506

slot module. The experimental results show that 507

intent prediction (prob.) brings a best Slot F1 result 508

on ATIS, but in general, the intent prediction vari- 509

ants fail to outperform the proposed token-sentence 510

attention method for intent information extraction. 511

5.2 Effect of Slot Information Extraction 512

This subsection evaluates the IterNLU performance 513

with different types of slot information extracted 514

to facilitate the subsequent intent detection, with 515

other parts of the framework fixed. Slot informa- 516
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ATIS Dataset Snips Dataset

Slot Information Slot Intent Overall Slot Intent Overall
(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc.)

token-wise hidden rep. 95.81 97.78 87.70 96.27 98.69 90.94
slot prediction (prob.) 95.84 98.02 88.15 96.01 98.43 90.54
slot prediction (one-hot) 95.97 97.96 88.51 96.23 98.74 90.60

Table 3: IterNLU (N=5) performance with different types of slot information extracted to facilitate intent detection.

Figure 3: Inference time with varying Neval.

tion is token-wise by nature. We evaluated three517

slot representation variants in this work: (1) slot518

prediction (one-hot): the proposed one-hot slot pre-519

diction representation described in section 3.3, (2)520

slot prediction (prob.): the slot prediction vector521

ok, and (3) token-wise hidden rep.: the token-wise522

hidden representation hslotk . The comparison re-523

sults are shown in Table 3. On ATIS data, using524

slot prediction representations leads to better intent525

detection performance compared with adopting the526

token-wise hidden representation, and slot predic-527

tion (one-hot) achieves the best overall accuracy.528

However, for Snips, token-wise hidden rep. obtains529

relatively similar Slot F1 and intent accuracy as530

slot prediction (one-hot), while achieving the best531

overall accuracy. The discrepancy is probably due532

to the difference in slot distribution between ATIS533

and Snips datasets. It indicates that selecting a suit-534

able slot representation based on the target data535

could be beneficial.536

5.3 System Efficiency537

We evaluate the training/inference efficiency of538

the IterNLU framework using a single NVIDIA539

Geforce RTX 2080 GPU. The training procedure540

takes about 1.1 and 1.6 hours on average for ATIS541

and Snips, respectively, and is insensitive to the542

repetition number used (N ranging from 1 to 5).543

For inference, given a trained model, iterating the544

intent detection and slot filling modules various 545

times leads to different efficiencies. Figure 3 il- 546

lustrates the impact of the repetition number used 547

for inference, denoted as Neval, on inference time, 548

evaluated on the ATIS and Snips testing sets. 549

One interesting observation is that given a 550

trained model, varying Neval for inference leads to 551

almost the same prediction performance. This is 552

mainly because all parameters are tied for the intent 553

detection modules and for the slot filling modules. 554

The knowledge learned through iterated training is 555

thus captured in the parameters of the intent/slot 556

module. Note that if the parameters are not tied, 557

iterations will benefit both training and inference 558

in general. For the proposed approach with tied 559

parameters, we thus recommend to adopt multiple 560

repetitions (e.g., N = 5 for ATIS and N = 2 for 561

Snips) for the training of IterNLU, and only run the 562

intent detection module followed by the slot filling 563

module once for inference. In this way, we can 564

maximize the inference efficiency with negligible 565

performance loss. For IterNLU, the majority (i.e., 566

95.8%) of parameters come from the BERT embed- 567

ding module. The benefit of setting Neval = 1 on 568

inference efficiency will be even more significant if 569

the BERT is replaced by a parameter-efficient alter- 570

native such as DistillBERT (Sanh et al., 2019; Jiao 571

et al., 2019; Iandola et al., 2020) in the framework. 572

6 Conclusion 573

This paper proposes a new NLU framework, called 574

IterNLU, to iteratively learn intent detection and 575

slot filling, with not only intent but also slot infor- 576

mation explicitly extracted to aid the subsequent 577

counterpart processing. The aim is to fully capture 578

the intent-slot correlation to benefit NLU. Our ex- 579

perimental results show that the proposed approach 580

outperforms previous state-of-the-art NLU meth- 581

ods on both ATIS and Snips datasets. Systematic 582

analyses of the IterNLU framework on the effect 583

of various intent/slot information extraction and 584

system efficiency are also conducted in this work. 585
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A Box plots 780

Given the randomness involved in the evaluation 781

of neural network based approaches, box plots can 782

be helpful in differentiating algorithms based on 783

their performance. We thus represent the compar- 784

ison results in Section 4.3 with box plots as well, 785

in addition to Table 1. For each dataset, we select 786

the top five baseline approaches in terms of overall 787

accuracy from Table 1, and compare them with the 788

best IterNLU model (i.e., IterNLU(N=5) for ATIS; 789

IterNLU(N=2) for Snips) in the box plots. We also 790

include the Parallel Implementation (denoted as 791

"IterNLU (parallel implementation)" in the box- 792

plots figures) to illustrate the benefit of iterative 793

learning with intent-slot information sharing. The 794

resulting box plots, which are drawn with Plotly 795

library2 (version 4.14.3) in Python3, are listed in 796

the two figures below for ATIS and Snips, respec- 797

tively. In the box plots, the solid line inside each 798

box indicates the median, while the dashed line 799

indicates the mean. 800

2https://plotly.com/
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Figure 4: Performance comparison of the best IterNLU model with the top-5 baseline approaches and the Parallel
Implementation, evaluated in terms of overall accuracy (%) on ATIS data.

Figure 5: Performance comparison of the best IterNLU model with the top-5 baseline approaches and the Parallel
Implementation, evaluated in terms of overall accuracy (%) on Snips data.
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