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Abstract

Exploiting the cross-impact between intent de-
tection and slot filling, two main tasks for nat-
ural language understanding (NLU), has been
a recent trend for NLU research. While the
cross-impact has often been modeled implicitly
through joint learning, various methods have
also been proposed to explicitly use slot in-
formation to facilitate intent detection and/or
extract intent information to facilitate slot fill-
ing. However, previous works haven’t fully
explored the potential of the cross-impact yet.
To better capture the benefit of intent-slot cor-
relation, this paper proposes a novel joint learn-
ing framework, named IterNLU, to iteratively
learn intent detection and slot filling with up-
dated slot and intent information fed in, respec-
tively, per iteration. In each iteration, we at-
tempt to extract the most effective intent/slot
representation based on available information
to assist subsequent detection of slot/intent.
Our proposed approach achieves 0.95% and
1.74% absolute gains on semantic frame accu-
racy over the best previous state-of-the-art NLU
approach on two public benchmark datasets,
ATIS and Snips, respectively. We also conduct
systematic analyses on the effect of feeding in
different types of intent/slot information as well
as on system efficiency.

1 Introduction

Natural language understanding is a technology
critical for many language/speech related applica-
tions, such as dialog systems (Chen et al., 2017; Tur
and De Mori, 2011). Intent detection and slot fill-
ing are two main tasks of NLU, targeting to detect
the user intent (e.g., play music) and the relevant
slots (e.g., song/artist names) in the input sentence
(e.g., "play Faded by Alan Walker"), respectively.
The two tasks can be modeled individually, with ei-
ther traditional algorithms (e.g., maximum entropy
model, support vector machines, and conditional
random fields (CRF)) or various neural networks

(Haffner et al., 2003; Hashemi et al., 2016; Ray-
mond and Riccardi, 2007; McCallum et al., 2000;
Mesnil et al., 2015). Since intent detection and
slot filling are correlated by nature, jointly learning
the two tasks has become increasingly popular for
NLU especially after 2015 (Liu and Lane, 2016;
Zhang et al., 2019; Chen et al., 2019).

As joint learning has been proven effective to
enhance NLU, which indicates the benefit of cap-
turing the cross-impact between intent detection
and slot filling, an emerging recent trend for NLU
research is to explicitly make use of the slot-intent
correlation to facilitate the two tasks. Most of such
efforts attempt to extract intent information to fa-
cilitate slot filling in certain way (Goo et al., 2018;
Qin et al., 2019, 2020). Wang et al. (2018) and E
et al. (2019) attempt to use the correlation to aid
both tasks. While Wang et al. (2018) adopt separate
bidirectional LSTM (BiLSTM) for each task and
feeds the intent/slot hidden representation into the
counterpart decoder, E et al. (2019) adopt a shared
BiLSTM for both task, computing attention-based
slot and intent context vectors (that are augmented
with each other iteratively) to facilitate the intent
and slot prediction, respectively.

In this paper, we aim to fully capture the bene-
fit of slot-intent correlation in NLU, and propose
a joint learning NLU approach that not only ex-
plicitly extracts intent and slot information to im-
prove slot filling and intent detection, respectively,
but also conducts iterative intent detection and slot
filling. We refer to this approach as the IterNLU
framework. Note that none of the previous NLU
approaches conducts multiple passes of intent de-
tection and slot filling iteratively. We believe that
such iteration is beneficial, as it imitates the hu-
man behavior that human may read through a diffi-
cult/challenging sentence several times to fully un-
derstand it. We construct the IterNLU framework
as a set of intent detection and slot filling modules
stacked upon the BERT embedding representations.



In each intent/slot module, we use an individual
BiLSTM RNN to encode the input received from
the preceding module, and attempt to extract the
best possible intent/slot information to feed into
the subsequent module with the aim of facilitating
the counterpart learning. We evaluate the proposed
approach on two popular NLU benchmark datasets,
ATIS and Snips. The experimental results obtained
are encouraging, our approach leads to 7.6% and
16.4% relative reductions on overall error rate over
the best state-of-the-art baseline performance for
ATIS and Snips, respectively.

We further investigate the effect of extracting var-
ious types of intent and slot information on the per-
formance of the IterNLU framework in this work.
The efficiency of the IterNLU framework is also
investigated with various number of intent-slot iter-
ations adopted.

2 Related Works

There are many previous works in literature that
jointly learn intent detection and slot filling us-
ing various approaches, ranging from Triangular
CRF (Xu and Sarikaya, 2013), Capsule Neural Net-
work (Zhang et al., 2019), to RNN based models
(Hakkani-Tiir et al., 2016; Guo et al., 2014; Zhang
and Wang, 2016; Liu and Lane, 2016). Recently,
pre-trained language models (Peters et al., 2018;
Devlin et al., 2019; Vaswani et al., 2017), which
are proven effective across many NLP tasks, have
been deployed in NLU too (Chen et al., 2019; Qin
et al., 2019). Chen et al. (2019) successfully used
the BERT model to significantly boost the NLU
performance, showing the effectiveness of contex-
tualized embedding. In this work, we follow these
previous efforts to jointly learn intent detection and
slot filling, using a joint cross-entropy loss func-
tion, and also adopt the BERT model to provide
contextualized embeddings to the intent/slot lay-
ers. Note that BILSTM has been found effective to
model NLU in many of these previous works (Liu
and Lane, 2016; Wang et al., 2018; E et al., 2019).
This work thus adopts BiLSTM to implement the
intent detection and slot filling modules.

For the previous NLU methods that explicitly
use intent/slot information to facilitate the counter-
part learning, intent information has been extracted
as token-wise hidden representation, context vec-
tor obtained by attention computation, or intent
prediction representation to aid the detection of
slots through certain mechanism (e.g., gate) (Wang

etal.,2018; Gooetal., 2018; Lietal., 2018; Eet al.,
2019; Qin et al., 2019). We compare these options
for intent information extraction in our proposed
IterNLU framework, while extending the attention
computation by including sentence-level hidden
representation to better capture the sentence intent.
Regarding the slot information extraction, we fol-
low (Wang et al., 2018) to investigate the token-
wise slot hidden representation, and also explore
the use of slot prediction representation, inspired
by the intent information extraction case. Note that
there is a recent work Slot Refine (Wu et al., 2020)
that feeds in the slot prediction to a second pass of
decoding to solve the uncoordinated slots problem,
but no intent information is explicitly extracted to
aid the second pass in that work.

The major difference between our proposed
IterNLU approach and the previous works on joint
intent detection and slot filling is that IterNLU in-
troduces iterative intent detection and slot filling.
In (E et al., 2019) and (Qin et al., 2020), a certain
mechanism (i.e., mutual reinforcement, and multi-
layer graph attention network) is proposed to itera-
tively augment the intent and slot representation ex-
tracted from the decoder, either to facilitate the slot
filling alone or to improve both tasks. Since such
iteration is only used as a post-processing after the
RNN pass, mainly iterating between the slot/intent
representations, only limited cross-impact infor-
mation can be captured. In contrast, our IterNLU
framework conducts much thorough iteration, it-
erating the whole intent detection and slot filling
procedures in order to fully capture the intent-slot
correlation. The IterNLU approach is similar to
end-to-end memory networks in the sense that they
both stack repetitive functional layers (e.g., mem-
ory layers) that each receives the output from the
previous layer as input (Sukhbaatar et al., 2015;
Kenter and de Rijke, 2017).

3 Approach

In this section, we propose the IterNLU framework,
first introducing the overall system structure and
then presenting the intent detection and slot filling
modules, respectively.

3.1 Overall Framework Structure

The overall structure of the iterNLU framework is
illustrated in Figure 1. The framework involves
N repetitions of intent detection module and slot
filling module, stacked upon an embedding module,
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Figure 1: Overall structure of IterNLU framework.

to enable iterative intent detection and slot filling.

Given an input sentence w;waws... Wy, , we first
encode each word wy, as an embedding vector eg.
The word embedding module can either be imple-
mented with certain pre-trained model (Pennington
et al., 2014; Joulin et al., 2017; Devlin et al., 2019;
Radford et al.) or be developed from scratch. In
this work, we adopt BERT (Devlin et al., 2019) to
generate contextualized word embedding vectors.

In this framework, each intent module receives
the word embeddings as well as the slot informa-
tion representations (i.e., s1, S, S3, ...Sp,) extracted
from the preceding slot module (if available) as
the module input, and generates a sequence of rep-
resentations (i.e., i1, 19,13, ...1,,) that encode the
detected intent(s). The subsequent slot module
then conducts slot filling using those intent repre-
sentations together with the word embeddings as
the input. The last intent/slot module generates the
final intent/slot prediction. Note that the order of
the intent and slot modules in each repetition can
be switched with minor system modifications.

We train the whole IterNLU framework using a
joint cross-entropy loss function as follows,

ny L ng
Ejoim‘ = - Zy]] lOg (@JI) - Z Z yfj lo-g (gf])
j=1 i=1 j=1

where ny and ng refer to the numbers of intent

and slot types respectively, g]][ and @;9 ; refer to the
intent and slot predictions, yjl and yf ; refer to the
corresponding ground-truth for intent and slot, and
L refers to the number of tokens in the sentence.
In this work, we tie all the parameters for the in-
tent modules as well as for the slot modules. While
the weight sharing may improve the system ro-
bustness by providing additional regularization, the
main advantage of such design is that in this way,
once the model is trained, the number of intent-slot
repetitions (i.e., V) for inference can be different
from (e.g., smaller than) that used in training. This
may bring significant improvement on inference
efficiency, as will be discussed in Section 5.3.

3.2 Intent Detection Module

Each intent detection module attempts to provide
the best possible intent information of the given sen-
tence to the subsequent slot filling module, while
the last intent module also generates the intent de-
tection result. In this work, we implement each
intent module based on BiLSTM together with an
attention mechanism, as illustrated in Figure 2.

For each token wy, we concatenate the word em-
bedding e; with the slot information representation
sk received from the previous slot filling module
(for the first intent module, s; is invalidated as
0), and feed it into the intent module BiLSTM.
Upon receiving such input, the BILSTM processes
the given sentence in both forward and backward
directions. We first extract token-wise intent hid-
den representations [h? RY], R, hs], ..[hd, ht] by
concatenating the hidden representations generated
by the BiLSTM in each direction. We then concate-
nate the last states of both directions, each of which
covers the information of the whole sentence, to
generate a sentence-level intent representation, de-
noted as hgent = [h{i, R%]. This representation is
effective for intent detection as it well captures the
sentence context.

It is possible to directly feed each token-wise in-
tent representation into the subsequent slot module
as iy, or broadcast the sentence-level representation
hsent for all tokens to the next module, as will be
discussed in Section 5.1. In this work, we attempt
to further enhance the sentence-level intent repre-
sentation to better capture the intent information.
We propose an attention mechanism that leverages
hsent With the token-wise intent representations
through an attention network. The attention net-
work can be potentially implemented in various
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Figure 2: Illustration of the intent detection and slot filling modules.

ways (Vaswani et al., 2017; Liu and Lane, 2016). In
this work, we follow (Liu and Lane, 2016) to use a
feed-forward network to model attention. Different
from (Liu and Lane, 2016), our attention method in-
cludes not only token-wise hidden representations
but also the sentence-level hidden representation
hsent into the calculation of the weighted sum in a
self-attention manner (see Figure 2). Our method
generates an enhanced intent representation, de-
noted as 74, as follows,

iatt = Z Ct(h) -h

heH

where H is the collection of h.,; and the token-
wise representations. «(h) is the weight for A,
calculated as follows:

score(h) = vgtanh(Wah + Ughsent) €R

exp(score(h))

a(h) = > pew exp(score(h/))

where W,,U, € R™*2d 4, € R™ denote the
weight matrices, d refers to the hidden state di-
mension of BiILSTM, and m refers to the attention
hidden dimension.

The obtained intent representation . is then
broadcast into the subsequent slot filling module
for each token as all the 7. In this study, regard-
less of the intent information extracted, the intent
detection module always predicts the intent results
based on hgen (by applying a linear prediction
layer on top of the hgey; representation), in order
to facilitate the analysis.

3.3 Slot Filling Module

Each slot filling module is implemented with BiL-
STM too in this work. The concatenation of the
word embedding and the intent representation re-
ceived from the preceding intent module per token,
i.e., [ex,ix|(k = 1...n), serves as the input to the
slot BILSTM. We concatenate the hidden states
generated by both directions of the BiLSTM for
each token, i.e., [hg, hi], to form the token-wise
slot hidden representation, denoted as hilOt.
Similar to the extraction of intent information,
various slot information can be extracted to facili-
tate the subsequent intent detection. The extracted
slot representation sy, (as in Figures 1 and 2) could
be hzl"t or certain slot prediction vector. In this
work, we adopt a one-hot representation of slot pre-
diction result as s;. We apply a linear projection
layer on top of hiwt to get slot prediction vector o,
which shows the predicted probability distribution
over all the possible slot labels, for the k" token.
The prediction vector is then converted into a one-
hot representation (by setting the dimension of the
predicted label as 1 and others as 0) as sy.

4 Experiments

4.1 Data

We conduct the experiments on two public bench-
mark datasets, ATIS (Hemphill et al., 1990) and
Snips (Coucke et al., 2018). The ATIS (Air Travel
Information Systems) corpus contains 18 distinct
intents and 127 slot labels, covering air travel re-
lated topics. From the original 4978 training sen-
tences of ATIS, we randomly reserve 500 sentences



as the development set, and use the remaining as
the training set. We directly use the the original
893 testing sentences are the testing set. The Snips
corpus was collected from daily smart-home con-
versations, involving 7 intent labels and 72 slot
labels in total. There are 13084, 700 and 700
sentences in the training, development and test-
ing sets, respectively, for Snips. In both the ATIS
and Snips datasets, slots are labelled following the
IOB schema (Ramshaw and Marcus, 1995).

4.2 Experimental Settings

We develop the IterNLU framework using Pytorch
(Paszke et al., 2019). For the embedding layer, we
adopt the BERT variant BERT-base-uncased (Wolf
et al., 2019), and following (Chen et al., 2019), use
the BERT representation of the first subword to
represent a word token. For the intent detection
and slot filling modules, we set the hidden state
dimension of BiLSTM as 256 for each module,
while in each intent module, the output dimension
of the attention mechanism is set as 128. Unless
stated otherwise, a same number of intent-slot rep-
etitions (e.g., N = 5) is adopted for both training
and inference. We train the whole system using
Adam (with weight decay) optimizer (Loshchilov
and Hutter, 2018) together with the early stopping
criteria (patience= 50). A learning rate of le-b
and batch size of 128 are adopted in training. The
model is regularized with weight decay parameter
set as 0.01 and dropout probability set as 0.2. To
avoid exploding gradient problem, gradient clip-
ping is used (maximum-gradient-norm set to 5).
We also select a set of previous NLU approaches
that achieve state-of-the-art performance as the
baseline algorithms for comparison, as listed in
Table 1. We evaluate each of the baseline methods
on ATIS and Snips separately. For those algorithms
with open-source code available (i.e., Capsule-
NLU, SF-ID, AGIF, and SlotRefine), we directly
use the provided code to run the experiments. We
re-implement the other approaches (i.e., Attention
Enc.-Dec., Bi-Model, Stack Propagation + BERT,
and Joint BERT) based on the corresponding pa-
pers. For each baseline algorithm, we develop it
using the recommended settings in the correspond-
ing paper if any, and manually tune the remaining
hyperparameters for ATIS and Snips, respectively.
Throughout this work, the hyperparameters are
tuned on corresponding development data, and the
reported results are evaluated on testing data.

4.3 Results

We evaluate the proposed IterNLU approach (with
various repetition number N adopted) as well as
the baseline NLU algorithms using the same train-
ing/development/testing sets for ATIS and Snips.
To reduce the impact of randomness and provide
a fair comparison, we independently perform the
training and evaluation for each of the listed NLU
models five times, and report the mean performance
together with the standard deviation for each evalu-
ation metric. The comparison results are shown in
Table 1. The evaluation metrics used include 1) the
F1 score for slot filling, 2) the accuracy for intent
detection, and 3) the sentence-level semantic frame
accuracy, referred to as overall accuracy, which cal-
culates the portion of the sentences whose slots and
intents are both correctly detected.

From Table 1, we can see that the "Joint BERT"
(Chen et al., 2019) is a NLU approach challenging
to beat. It outperforms all the other baseline algo-
rithms, including those newly proposed ones, in
terms of overall accuracy in our multi-run statistics
based fair comparison. It is encouraging that our
proposed IterNLU approach achieves significant
further improvements !. Over the best baseline
"Joint BERT (+ CRF)", our best IterNLU models
(by setting N as 5 for ATIS and 2 for Snips) bring
0.95% and 1.74% absolute increases on overall ac-
curacy for ATIS and Snips, respectively. Note that
the previously reported improvement on overall ac-
curacy over "Joint BERT" baseline is only <0.5%
absolute for ATIS and <0.2% absolute for Snips
(Wu et al., 2020).

The benefit of IterNLU may come from 1) the
module design, 2) information sharing between the
intent detection and slot filling modules, and 3)
iterative learning. To analyze the individual contri-
butions of these factors, we also implement another
system (denoted as "Parallel Implementation" in
Table 1) that cuts off the intent-slot information
sharing in IterNLU(N=1) by applying the same in-
tent detection module and slot filling module in
parallel upon the word embedding module, both
only using BERT embedding as input.

On ATIS, as shown in Table 1, the Parallel
Implementation achieves similar performance as
the baseline "Joint BERT (+CRF)" approach. By
feeding intent information into the slot module,
IterNLU(N=1) not only achieves higher slot filling

'p<0.05 in t-test,compared with each baseline on overall
accuracy. The box plots in Appendix also support the claim.



H ATIS Dataset Snips Dataset

Model Slot Intent Overall | Slot Intent Overall
(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc))
Attention Enc.-Dec. (Liu and Lane, 2016) 94.64 9742 84.76 91.29 97.80 81.29
(£0.43)  (£0.10)  (£0.79) | (£0.83) (£0.19)  (£1.52)
Bi-Model (Wang et al., 2018) 9524  96.68 85.34 93.50 97.09 84.37
(£0.20)  (£0.27)  (£0.26) | (£0.23) (£0.19)  (£0.71)
Capsule-NLU (Zhang et al., 2019) 9456  80.11 71.54 92.13 97.86 83.29
(£0.44)  (£12.43)  (£9.4) | (£0.49) (£0.23)  (+0.83)
SFE-ID (ID first + CRF) (E et al., 2019) 9542  96.24 84.82 90.61 96.83 77.66
(£0.11)  (£0.73)  (£0.84) | (£0.29) (£0.54)  (+0.54)
SF-ID (SF first + CRF) (E et al., 2019) 95.33  96.86 84.95 90.89 96.91 78.40
(£0.15)  (£0.28)  (£0.30) | (£0.61) (£0.50)  (+1.06)
Joint BERT (without CRF) (Chen et al., 2019) | 95.40  98.00 87.38 95.60 98.26 89.29
(£0.25)  (£0.15)  (£0.54) | (£0.45) (4£0.29)  (£1.02)
Joint BERT (+ CRF) (Chen et al., 2019) 95.72 9791 87.56 95.56 98.34 89.37
(£0.13)  (£0.25)  (£0.41) | (£0.61) (£0.21)  (£1.14)
Stack Propagation + BERT (Qin et al., 2019) 9456  97.80 85.07 95.20 98.26 88.83
(£0.46)  (£0.17)  (£1.08) | (£0.36) (£0.17)  (£0.93)
AGIF (Qin et al., 2020) 95.72  96.66 86.65 94.19 97.28 86.49
(£0.09)  (£0.24)  (£0.32) | (£0.27) (£0.27)  (+0.69)
SlotRefine (Wu et al., 2020) 96.20 97.34 85.34 9275 97.54 82.94
(£0.26)  (£0.24)  (£0.61) | (£0.70) (£0.44)  (+1.10)
Parallel Implementation 95.71 97.91 87.79 95.94  98.34 90.57
(£0.15)  (£0.26)  (£0.43) | (£0.58) (£0.22)  (£1.07)
IterNLU (N=1) 95.83  97.96 88.17 9594  98.51 90.37
(£0.06)  (£0.22)  (£0.15) | (£0.50) (£0.21)  (*£1.12)
IterNLU (N=2) 95.88  98.00 88.17 96.26 98.60 91.11
(£0.05)  (£0.08)  (£0.21) | (£0.27) (£0.21)  (+0.49)
IterNLU (N=3) 95.84  97.87 88.26 96.07 98.34 90.57
(£0.14)  (£0.38)  (£0.48) | (£0.16) (£0.37)  (+0.49)
IterNLU (N=4) 95.73  98.09 88.17 9593 98.46 90.26
(£0.20)  (£0.14)  (£0.35) | (£0.60) (4£0.32)  (£1.28)
IterNLU (N=5) 9597  97.96 88.51 96.23 98.74 90.60
(£0.16)  (£0.08)  (£0.45) | (£0.12) (£0.14)  (=£0.19)

Table 1: Performance comparison on ATIS and Snips datasets. Each result reported is the average performance
across 5 independent runs together with the standard deviation listed in parentheses.

H ATIS Dataset ‘ Snips Dataset ‘

Intent Information Slot Intent Overall | Slot Intent Overall

(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc)
token-wise hidden rep. 95.73 97.87 87.70 | 96.01 98.49 90.69
sentence hidden rep. 95.82 97.89 87.68 |96.12 9846  90.86
intent prediction (prob.) 95.99 97.89 88.26 | 95.81 98.46 90.31
intent prediction (one-hot) || 95.76  97.85 87.61 | 9598 98.43 90.49
token-sent. attention 95.97 97.96 88.51 | 96.23 98.74 90.60

Table 2: TterNLU (N=5) performance with different types of intent information extracted to facilitate slot filling.




F1 as expected, but also brings higher intent de-
tection accuracy, possibly due to backpropagation.
By also feeding slot information into the intent
module, IterNLU(N=2) obtains further enhanced
performances on slot filling and intent detection.
These observations illustrate the benefit of intent-
slot information sharing. Regarding iterative learn-
ing, more iterations in general lead to small but
steady performance improvements on ATIS. This
is unsurprising since while IterNLU(N=1) can al-
ready handle most sentences, only those challeng-
ing sentences need iterative understanding. The
more challenging a sentence is, the more iterations
are needed. While the iteration number increases,
the number of those applicable challenging sen-
tences decreases. This leads to small but cumula-
tively substantial improvement for iterations.

On Snips, the Parallel Implementation already
outperforms all baseline algorithms, indicating the
benefit of module design. With IterNLU, the per-
formances are substantially further improved in all
the three metrics if N=2 is used (where intent-slot
correlation in both directions is explored). How-
ever, in contrast to the case of ATIS, the perfor-
mance change of IterNLU becomes noisy on Snips
when N is increased further. This is possibly be-
cause the sentences in Snips are relatively simple,
and the benefit of using more iterations to han-
dle challenging sentences may be diluted by the
added confusion from unnecessary computation on
simple sentences. The performance differences on
ATIS and Snips show that for IterNLU, the rep-
etition number N should be chosen based on the
characteristics of the target data, i.e., be tuned as a
hyperparameter on the development set.

5 Analysis

5.1 Effect of Intent Information Extraction

In this subsection, we investigate the impact of ex-
tracting different types of intent representation (i.e.,
11,) to facilitate subsequent slot filling on the perfor-
mance of the IterNLU framework. With the remain-
ing part of the framework fixed, we evaluate five
variants of the intent representation, including (1)
token-sentence attention: the proposed attention-
based intent representation described in section
3.2, (2) token-wise hidden rep.: [hi, hz] generated
by the intent BiLSTM, (3) sentence hidden rep.:
the sentence-level hidden representation hgepy, (4)
intent prediction (prob.): the intent prediction vec-
tor (showing probability distribution over all the

intent labels) generated by the linear prediction
layer on top of the intent BiLSTM, and (5) intent
prediction (one-hot): the one-hot representation
converted from the intent prediction vector by set-
ting the dimension of the predicted intent as 1 and
others as 0. Except for token-wise hidden rep., all
the other variants are sentence-level intent repre-
sentations, each broadcast into the subsequent slot
module as all the ¢, (k = 1...n). The resulting
IterNLU performance using these intent informa-
tion variants are shown in Table 2. To facilitate
the discussion, in this subsection as well as the
next one, we set the repetition number N as 5 for
both training and evaluation, and report the average
results across five independent runs.

From Table 2, we can see that compared with
feeding in token-wise [hﬁ, R}], feeding in the
sentence-level hgep; brings better improvement on
slot filling. Note that token-wise intent represen-
tation has been used in the Bi-Model and Stack
Propagation algorithms to either directly or indi-
rectly (through token-level intent prediction) fa-
cilitate slot filling. This observation shows that
providing intent information as reliably as possi-
ble is beneficial. Unsurprisingly, adopting the en-
hanced sentence intent representation, i.e., token-
sentence attention, further improves the slot filling
performance (Slot F1 increased from 95.73/95.82
t0 95.97 on ATIS, and from 96.01/96.12 to 96.23 on
Snips), which also benefits intent detection through
iteration. In (Qin et al., 2019), it was reported that
token-wise intent information performs better than
sentence-level intent information to aid slot filling,
as it may ease the error propagation. Our obser-
vation is inconsistent with that, possibly because
the error propagation problem can be relieved by
intent-slot iterations for IterNLU. We also evalu-
ate the two prediction related intent representation
variants, because directly feeding in the intent pre-
diction result may ease the learning task for the
slot module. The experimental results show that
intent prediction (prob.) brings a best Slot F1 result
on ATIS, but in general, the intent prediction vari-
ants fail to outperform the proposed token-sentence
attention method for intent information extraction.

5.2 Effect of Slot Information Extraction

This subsection evaluates the IterNLU performance
with different types of slot information extracted
to facilitate the subsequent intent detection, with
other parts of the framework fixed. Slot informa-



‘ H ATIS Dataset ‘ Snips Dataset ‘
Slot Information Slot Intent Overall | Slot Intent Overall
(F1) (Acc.) (Acc.) (F1) (Acc.) (Acc.)
token-wise hidden rep. 95.81 97.78 87.70 | 96.27 98.69  90.94
slot prediction (prob.) 95.84 98.02 88.15 | 96.01 98.43 90.54
slot prediction (one-hot) || 95.97 97.96 88.51 | 96.23 98.74 90.60

Table 3: IterNLU (N=5) performance with different types of slot information extracted to facilitate intent detection.
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tion is token-wise by nature. We evaluated three
slot representation variants in this work: (1) slot
prediction (one-hot): the proposed one-hot slot pre-
diction representation described in section 3.3, (2)
slot prediction (prob.): the slot prediction vector
o, and (3) token-wise hidden rep.: the token-wise
hidden representation hzl"t. The comparison re-
sults are shown in Table 3. On ATIS data, using
slot prediction representations leads to better intent
detection performance compared with adopting the
token-wise hidden representation, and slot predic-
tion (one-hot) achieves the best overall accuracy.
However, for Snips, token-wise hidden rep. obtains
relatively similar Slot F1 and intent accuracy as
slot prediction (one-hot), while achieving the best
overall accuracy. The discrepancy is probably due
to the difference in slot distribution between ATIS
and Snips datasets. It indicates that selecting a suit-
able slot representation based on the target data
could be beneficial.

5.3 System Efficiency

We evaluate the training/inference efficiency of
the IterNLU framework using a single NVIDIA
Geforce RTX 2080 GPU. The training procedure
takes about 1.1 and 1.6 hours on average for ATIS
and Snips, respectively, and is insensitive to the
repetition number used (N ranging from 1 to 5).
For inference, given a trained model, iterating the

intent detection and slot filling modules various
times leads to different efficiencies. Figure 3 il-
lustrates the impact of the repetition number used
for inference, denoted as V..., on inference time,
evaluated on the ATIS and Snips testing sets.

One interesting observation is that given a
trained model, varying N.,.; for inference leads to
almost the same prediction performance. This is
mainly because all parameters are tied for the intent
detection modules and for the slot filling modules.
The knowledge learned through iterated training is
thus captured in the parameters of the intent/slot
module. Note that if the parameters are not tied,
iterations will benefit both training and inference
in general. For the proposed approach with tied
parameters, we thus recommend to adopt multiple
repetitions (e.g., N = 5 for ATIS and N = 2 for
Snips) for the training of IterNLU, and only run the
intent detection module followed by the slot filling
module once for inference. In this way, we can
maximize the inference efficiency with negligible
performance loss. For IterNLU, the majority (i.e.,
95.8%) of parameters come from the BERT embed-
ding module. The benefit of setting N, = 1 on
inference efficiency will be even more significant if
the BERT is replaced by a parameter-efficient alter-
native such as DistillBERT (Sanh et al., 2019; Jiao
et al., 2019; Iandola et al., 2020) in the framework.

6 Conclusion

This paper proposes a new NLU framework, called
IterNLU, to iteratively learn intent detection and
slot filling, with not only intent but also slot infor-
mation explicitly extracted to aid the subsequent
counterpart processing. The aim is to fully capture
the intent-slot correlation to benefit NLU. Our ex-
perimental results show that the proposed approach
outperforms previous state-of-the-art NLU meth-
ods on both ATIS and Snips datasets. Systematic
analyses of the IterNLU framework on the effect
of various intent/slot information extraction and
system efficiency are also conducted in this work.
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A Box plots

Given the randomness involved in the evaluation
of neural network based approaches, box plots can
be helpful in differentiating algorithms based on
their performance. We thus represent the compar-
ison results in Section 4.3 with box plots as well,
in addition to Table 1. For each dataset, we select
the top five baseline approaches in terms of overall
accuracy from Table 1, and compare them with the
best IterNLU model (i.e., IterNLU(N=5) for ATIS;
IterNLU(N=2) for Snips) in the box plots. We also
include the Parallel Implementation (denoted as
"IterNLU (parallel implementation)" in the box-
plots figures) to illustrate the benefit of iterative
learning with intent-slot information sharing. The
resulting box plots, which are drawn with Plotly
library? (version 4.14.3) in Python3, are listed in
the two figures below for ATIS and Snips, respec-
tively. In the box plots, the solid line inside each
box indicates the median, while the dashed line
indicates the mean.
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Figure 4: Performance comparison of the best IterNLU model with the top-5 baseline approaches and the Parallel
Implementation, evaluated in terms of overall accuracy (%) on ATIS data.
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Figure 5: Performance comparison of the best IterNLU model with the top-5 baseline approaches and the Parallel
Implementation, evaluated in terms of overall accuracy (%) on Snips data.
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