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ABSTRACT

The massive successes of large language models (LLMs) encourage the emerg-
ing exploration of LLM-based Autonomous Agents (LAAs). An LAA is able to
generate actions with its core LLM and interact with environments, which facil-
itates the ability to resolve complex tasks by conditioning on past interactions
such as observations and actions. Since the investigation of LAA is still very re-
cent, limited explorations are available. Therefore, we provide a comprehensive
comparison of LAA in terms of both agent architectures and LLM backbones.
Additionally, we propose a new strategy to orchestrate multiple LAAs such that
each labor LAA focuses on one type of action, i.e. BOLAA, where a controller
manages the communication among multiple agents. We conduct simulations on
both decision-making and multi-step reasoning environments, which comprehen-
sively justify the capacity of LAAs. Our performance results provide quantitative
suggestions for designing LAA architectures and the optimal choice of LLMs, as
well as the compatibility of both. Original codes1 are released. We also provide a
unified benchmark protocol with AgentLite2.

1 INTRODUCTION

Recent booming successes of large language models (LLMs) (OpenAI, 2023; Touvron et al., 2023)
motivate emerging exploration of employing LLM to tackle various complex tasks (Zhang et al.,
2023), amongst which LLM-based Autonomous Agents (LAAs) (Shinn et al., 2023; Madaan et al.,
2023b; Huang et al., 2022; Kim et al., 2023; Paul et al., 2023; Yao et al., 2023a) stand with most spot-
lights. LAA extends the intelligence of LLM to sequential action executions, exhibiting superiority
in interacting with environments and resolving complex tasks via collecting observations. To name a
few, BabyAGI3 proposes an AI-powered task management system, which leverages OpenAI LLM4

to create, prioritize, and execute tasks. AutoGPT5 is another popular open-source LAA framework
that enables the API calling capability of LLMs. AutoGen Wu et al. (2023) and Langchain6 also
release library for building agent and multi-agent systems. Also, new LAA methods Yao et al.
(2023a); Zheng et al. (2024); Jang (2023); Yao et al. (2023b) emerge quickly in regards of the opti-
mal approach for agent interactions and reasoning.

Due to the initial investigation, LAA is rather under-explored. Firstly, the optimal agent architecture
is undetermined. ReAct (Yao et al., 2023a) prompts the agents with pre-defined examples such that
the LLM learns to generate the next action via in-context learning. Moreover, ReAct argues that

∗zhiweiliu@salesforce.com
1https://github.com/salesforce/BOLAA
2https://github.com/SalesforceAIResearch/AgentLite/tree/main/benchmark
3https://github.com/yoheinakajima/babyagi
4https://platform.openai.com/docs/api-reference
5https://github.com/Significant-Gravitas/Auto-GPT
6https://github.com/langchain-ai/langchain/
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an agent should have intermediate reasoning steps before action executions. ReWOO (Xu et al.,
2023) introduces additional planning steps for LAA. Reflection (Jang, 2023; Yao et al., 2023b) are
verified as effective self-correction reasoning strategy for agents. Langchain generalizes the agent
with zero-shot tool usage ability. Intrinsically, the optimal architecture of agents should be aligned
with both tasks and the associated LLM backbone, which is less explored in the existing works.

Secondly, understanding the efficacy of the existing LLMs in LAA is far from comprehensive.
The existing preliminary works only compare the performances of a few LLM backbones. Re-
Act adopts the PaLM (Chowdhery et al., 2022) as the backbone LLM. ReWOO employs OpenAI
text-davinci-003 model for instruction-tuning Alpaca model (Taori et al., 2023) for agent planning.
MIND2Web (Deng et al., 2023) compares Flan-T5 and OpenAI GPT3.5/4 for generalist web agent.
Nevertheless, few current works comprehensively compare the performance of LAA with regard to
various pre-trained LLMs. A very recent work (Liu et al., 2023) releases a benchmark for evaluating
LLMs as Agents. And AgentTuning (Zeng et al., 2023) enables the generalization ability for LLM
on multiple enviroments. Nevertheless, they seldomly consider the agent architectures along with
their LLM backbones. Selecting the optimal LLMs from both efficacy and efficiency perspectives
advances the current exploration of LAA.

Thirdly, the increasing complexity of tasks may require the orchestration of multiple agents. Re-
WOO recently identifies that decoupling reasoning from observation improves the efficiency for
LAA. In this paper, we argue that as the task complexity increases, especially in open-domain envi-
ronments, it is better to coordinate multiple agents to complete one task. For example, regarding the
web navigation task, we could employ one click agent to interact with clickable buttons and request
another search agent to retrieve additional resources. Nonetheless, there are few works discussing
how to orchestrate multiple agents and investigating the impacts of orchestration.

To address these research gaps, this paper proposes to comprehensively compare the performances
of LAAs. We dive deep into the agent architecture of LAAs and the LLM backbones. Specifically,
we construct agent benchmarks from the existing environments to evaluate the performances of
various agent architectures built upon various LLM backbones. The tasks in our agent benchmarks
are associated with different task complexity levels, which enables the agent performance analyses
w.r.t. task complexity. Regarding the orchestration of multiple LAAs, we propose a novel LAA
architecture BOLAA7, which has a controller module on top of multiple labor agents, for enabling
the selection and communication between multiple labor LAAs. The core in BOLAA is agent
selection module and communication module. This paper studies these two modules from both
heuristic-based and LLM-based methods. The contributions of this paper are as follows:

• We develop 6 different LAA agent architecture. We combine them with various backbone LLMs
to justify the designing intuition of LAA from prompting, self-thinking, and planning. We also
develop BOLAA for orchestrating multi-agent strategy, which enhances the action interaction
ability of individual agents.

• We conduct extensive experiments on both decision-making web navigation environment and
knowledge reasoning task environment. We report the performance in terms of final sparse re-
wards and intermediate recalls, which provides qualitative indications for the optimal choice of
LAAs as well as their compatible LLMs.

• BOLAA on the WebShop environment consistently yields the best performance compared with
other LAA architectures. Our results demonstrate that the importance of designing specialist
agents to collaborate on resolving complex task, which should be as equally important as training
a large LLM with high generalization ability.

2 RELATED WORK

2.1 AUGMENTED LANGUAGE AGENT ARCHITECTURE

The completion of a complex task typically entails multiple stages. An agent must possess an
understanding of these stages and plan accordingly. Chain-of-Thoughts (CoT) (Wei et al., 2022)
is a groundbreaking work that prompts the agent to deconstruct challenging reasoning tasks into

7For easy memorizing, we intentionally name it the same as paper title.
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Figure 1: The LAA architectures for Zeroshot-LAA (ZS-LAA), ZeroshotThink LAA (ZST-LAA)
and ReAct LAA. ZS-LAA generates actions from LLM with zeroshot prompt. ZST-LAA extends
ZS-LAA with self-think. ReAct LAA advances ZST-LAA with fewshot prompt. They all resolve a
given task by interacting with environment via actions to collect observations. Better view in colors.

smaller, more manageable steps. On the other hand, ReAct (Yao et al., 2023a) proposes leveraging
this aptitude for reasoning and action. This agent architecture has given rise to various applications,
including HuggingGPT (Shen et al., 2023), Generative Agents (Park et al., 2023), WebGPT (Nakano
et al., 2021), AutoGPT (Gravitas, 2023), BabyAGI (Nakajima, 2023), and Langchain (Chase, 2023).
However, these approaches neglect to incorporate valuable feedback, such as environment rewards,
to enhance the agent’s behaviors. Self-refine (Madaan et al., 2023a; Murthy et al., 2023; Hao et al.,
2023; Shinn et al., 2023; Yao et al., 2023b) tackles this limitation by employing a single LLM as a
generator, refiner, and provider of feedback, enabling iterative refinement of outputs.

2.2 WEB AND TOOL AGENT

Web navigation is the foundation for humans to collect information and communicate. Before the
boom of LLM, previous endeavours (Liu et al., 2018; Shi et al., 2017) already explored how to train
web agent in a web simulation environment. Very recently, a series of works have been devoted to
developing LAA to tackle complex web navigation tasks. MIND2Web (Deng et al., 2023) collects
a web browser data to fine-tune LLM to generate executable actions, which functions as a Web
LAA. WebAgent (Gur et al., 2023) is able to decompose task instruction into sub-tasks, which
directly generates executable python program for web navigation. WebArena (Zhou et al., 2023)
supports realistic tasks simulation for designing Web LAA. Langchain and ChatGPT redefines LLM
to behave as Web LAA. SeeAct Zheng et al. (2024) enables the vision ability of web agent.

Besides web browsing, LLMs are also able to leverage external tools to enhance their capabilities
and solve complex tasks, such as Gorilla (Patil et al., 2023), ToolLLM (Qin et al., 2023), tool docu-
mentation (Hsieh et al., 2023) and etc (Liu et al., 2023; Zeng et al., 2023). These works verify the
superior ability of LLMs in harnessing tools to solve more complex and open domain tasks.

3 AGENT ARCHITECTURES

In this section, we compare various LAA architectures. We first present how to design different
individual agents. We then present the our orchestration designing of multiple agents, i.e. BOLAA.

3.1 INDIVIDUAL AGENTS

Hereafter, we present 5 different LAAs. Each type of LAA is able to interact with the environment
with its own interaction strategy.

Zeroshot LAA (ZS-LAA) directly extends the LLM to be action executor. Specifically, the prompt
for LLMs to function as the action executor consists of detailed descriptions for those actions. For
example, if we prompt LAA to understand the click action with “click: using this action to click
observed [button], the clickable buttons are in [].”, it may behave as a web navigation agent. We
present the architecture of ZS-LAA in Figure 1(a). The working flow is as follows:
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Figure 2: The LAA architectures for PlanAct LAA and PlanReAct LAA.

• Initial step: firstly, the ZS-LAA receives the task instruction and constructs the zeroshot prompt.
Then, the LLM layer generates a possible response, which is parsed to output a feasible action.
After that, the observation from environment is appended into the agent memory.

• Working steps: the agent checks whether the task is finished. If not, ZS-LAA retrieves the previous
actions and observations from memory, and constructs the prompts for LLM to generate the next
executable actions. ZS-LAA continues the working stages until reaching the maximum steps or
completing the task.

ZS-LAA is a minimum LAA architecture. It enables the action generation ability of LLM via
zeroshot prompt layer, which is easy to generalize to new environments and requires no examples.

ZeroshotThink LAA (ZST-LAA) is an extended version of ZS-LAA. Different from ZS-LAA, ZST-
LAA has an additional self-think flow. The architecture of ZST-LAA is presented in Figure 1(b),
where we denote the self-think flow as in pink arrow lines. Self-think is running in intermediate
steps of action generations flow, which enables the Chain-of-Thought (CoT) reasoning ability.

• Self-think Step: before generating the next action, ZST-LAA collect observations and previous
actions to construct the think prompt. Then, the thought is stored into memory.

Self-think step is generally useful when given reasoning tasks. Note that the think prompt is also in
a zero-shot format, such as “think: using this action to plan your actions and reasoning”.

ReAct LAA additionally advances ZST-LAA in the prompt layer, where fewshot examples are
provided. The architecture of ReAct LAA is illustrated in Figure 1(c). ReAct LAA is able to
leverage successful running examples to improve the action generation ability of LLM and enhance
the environment interaction of LAA, because those fewshot examples endows the in-context learning
ability of LLM. However, the drawback for ReAct LAA is that, due to the limited context length,
fewer token spaces are available after the occupancy of fewshot examples in the prompt.

PlanAct LAA is designed to facilitate the planning ability of LAA. PlanAct LAA differs from ZS-
LAA in two parts: 1) the planning flow and 2) the fewshot prompt. The architecture is depicted
in Figure 2. The planning flow is executed before the initial action generation step, which has
additional plan prompt to construct the input for the core LLM.

• Planning Step: PlanAct LAA generates a plan for a given task before interacting with environ-
ments. The plan is memorized and will be retrieved to construct prompts.

It is worth noting that the plan prompt in this paper is in fewshot way, which allows LAA to generate
plans based on previous successful plans.

PlanReAct LAA extends PlanAct LAA with additional self-think flow, which also enables the CoT
ability. The architecture of PlanReAct LAA is presented in Figure 2. Intuitively, since the Planning
flow is executed before the LAA observes the environment, self-think flow alleviates the hallucina-
tion incurred from incorrect plans. Next, we introduce our BOLAA orchestrating architecture.
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3.2 BOLAA: ORCHESTRATING MULTIPLE AGENTS
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Figure 3: The BOLAA architecture, which employs a controller to orchestrate multiple LAAs.

Though the success of the existing LLMs in completing various language understanding tasks, plenty
of issues are still under-explored, such as the context length constraints, in-context learning and
generalization ability, and etc. Hence, it is challenging to employ an individual LAA to complete all
tasks, especially when tasks are of high complexity. Therefore, we propose a new agent architecture
for orchestrating multiple LAAs, which is illustrated in Figure 3. BOLAA has two main modules,
the labor agents pool and the controller. The labor agents pool manages multiple LAAs. Each LAA
may only focus on completing specialized tasks. For example, in the web navigation environment,
we could establish click LAA and search LAA. In this way, the former only generates the next button
to click, while the later only outputs search query, which divides a complex task into feasible tasks.
The controller is devised to selectively call LAAs from agents pool. Controller has agents selection
layer to choose the most relevant LAA(s) to call.

Agent Selection in BOLAA is one the core parts for orchestration. In this paper, we investigates two
types of selection process, i.e. heuristic-based and LLM-based method. The heuristic-based method
is to pre-define rules for selecting the labor LAA. Rules could be defined based on observation,
generated actions, etc. The LLM-based method is designing the controller based an LLM, and
enabling the labor agent selection as an action generation process of the LLM. As such, the controller
is functioning as the orchestrator agent, and its action is to select the optimal labor agent.

Communication in BOLAA is the other core part for orchestration. After selecting the labor LAA,
the controller constructs the message for the selected LAA and builds the communication. Again,
we also designed two types of methods for communication, i.e. heuristic-based and LLM-based
method. Heuristic-based method generates the communication message by a pre-defined template,
which ingests the observation from labor agents as a message for controller to send out. LLM-
based method drives an LLM to generate the communication message. The response from labor
agents are organized by a prompt template. Then, the LLM is prompted to generate communication
messages to those labor agents. The prompt for LLM includes the labor agent information, the task
instructions, history executions and demonstration examples.

After obtaining the response from the labor LAA, the controller parses it to an executable action and
then interacts with the environment. Note that we can also design those labor LAAs to be think/plan
agent. In this way, the self-think and plan work flows are also retained.

4 EXPERIMENT

4.1 ENVIRONMENT BENCHMARK

We construct the evaluation benchmarks from two environments, i.e., the WebShop (Yao et al.,
preprint) and HotPotQA (Yang et al., 2018) with Wikipedia API usage (Yao et al., 2023a). In Web-
Shop enviroment, we sample 900 tasks ranging from 6 different complexity levels for benchmark
evaluation. The BOLAA in WebShop is devised to be the orchestration on one search LAA and
one click LAA to generate search query and click elements, respectively. And the selection layer
is heuristic-based. Labor LAAs are selected based on observations. In HotPotQA environment, we
sample 300 tasks from 3 complexity levels. The BOLAA in HotPotQA is a reasoning LAA and
a search LAA, which tackling question reasoning and document retrieval tasks, respectively. The
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Table 1: Average reward in the WebShop environment. Len denotes the maximum context length.
Bold results denote the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline
results denote the best performance in one column, i.e. best LLM regarding one LAA architecture.

LLM Len. LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
fastchat-t5-3b 2k 0.3971 0.2832 0.3098 0.3837 0.1507 0.5169
vicuna-7b 2k 0.0012 0.0002 0.1033 0.0555 0.0674 0.0604
vicuna-13b 2k 0.0340 0.0451 0.1509 0.3120 0.4127 0.5350
vicuna-33b 2k 0.1356 0.2049 0.1887 0.3692 0.3125 0.5612
llama-2-7b-chat 4k 0.0042 0.0068 0.1248 0.3156 0.2761 0.4648
llama-2-13b-chat 4k 0.0662 0.0420 0.2568 0.4892 0.4091 0.3716
llama-2-70b-chat 4k 0.0122 0.0080 0.4426 0.2979 0.3770 0.5040
mpt-7b-instruct 8k 0.0001 0.0001 0.0573 0.0656 0.1574 0.0632
mpt-30b-instruct 8k 0.1664 0.1255 0.3119 0.3060 0.3198 0.4381
xgen-8k-7b-instruct 8k 0.0001 0.0015 0.0685 0.1574 0.1004 0.3697
longchat-7b-16k 16k 0.0165 0.0171 0.069 0.0917 0.1322 0.1964
longchat-13b-16k 16k 0.0007 0.0007 0.2373 0.3978 0.4019 0.3205
text-davinci-003 4k 0.5292 0.5395 0.5474 0.4751 0.4912 0.6341
gpt-3.5-turbo 4k 0.5061 0.5057 0.5383 0.4667 0.5483 0.6567
gpt-3.5-turbo-16k 16k 0.5657 0.5642 0.4898 0.4565 0.5607 0.6541

selection layer is LLM-based, where we designed prompts to ask LLM to select which LAA to call.
More details about environments are in appendix. The original implementation codes8 are released.
We further provide a unified benchmark evaluation protocol9 with AgentLite.

4.2 EVALUATION METRICS

We mainly use the reward score in each environment to evaluate the performances of LAAs. In the
WebShop environment, the reward is defined as the attribute overlapping ratio between the bought
item and ground truth item. In HotPotQA environment, the reward is defined as the F1 score grading
between agent answer and ground-truth answer. Additionally, we develop the Recall performance
for WebShop environment, which is defined as 1 if the ground truth item is retrieved and 0 if not
during one task session. The Recall is reported as the average recall scores across all tasks in
WebShop environment.

4.3 LLM UTILIZATION

The core component of LAA is the LLM backbone. We compare different LLMs with various
choices of model size and context length. We reported the results w.r.t. open LLM models such
as fastchat-3b, vicuna-1.3-7b/13b/33b (Zheng et al., 2023), Llama-2-7b/13b/70b10 (Touvron et al.,
2023), MPT-7b/30b (Team, 2023), xgen-8k-7b, longchat-16k-7b/13b and OpenAI API LLMs, in-
cluding text-davinci-003, gpt-3.5-turbo and gpt-3.5-turbo-16k.

4.4 DECISION-MAKING SIMULATION

In this section, we present and compare the decision-making performances of LAAs in the WebShop
environment. The performance regarding the average reward is reported in Table 1. The agent
prompts are constructed based on the maximum context length of different LLM models. We have
the following observation:

• BOLAA performs the best compared with the other LAA architectures, especially when built on
the high performing LLMs. BOLAA is able to actively select the appropriate LAA and yield

8https://github.com/salesforce/BOLAA
9https://github.com/SalesforceAIResearch/AgentLite/tree/main/benchmark

10All Llama-2 models are -chat-hf version.
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Table 2: Average recall in the WebShop environment. Len denotes the maximum context length.
Bold results denote the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline
results denote the best performance in one column, i.e. best LLM regarding one LAA architecture.

LLM Len. LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
fastchat-t5-3b 2k 0.3533 0.3122 0.3800 0.3700 0.3722 0.3867
vicuna-7b 2k 0.0833 0.0500 0.3600 0.3233 0.3278 0.3522
vicuna-13b 2k 0.0867 0.0644 0.3622 0.3444 0.2367 0.3700
vicuna-33b 2k 0.3600 0.3411 0.3822 0.3733 0.3567 0.3956
llama-2-7b-chat 4k 0.0678 0.0311 0.3744 0.3400 0.3578 0.3856
llama-2-13b-chat 4k 0.2856 0.2211 0.3844 0.3278 0.3500 0.4078
llama-2-70b-chat 4k 0.3344 0.3244 0.3789 0.3400 0.3600 0.4011
mpt-7b-instruct 8k 0.0144 0.0322 0.3644 0.3200 0.3400 0.3600
mpt-30b-instruct 8k 0.2973 0.3372 0.3333 0.3575 0.3412 0.3900
xgen-8k-7b-instruct 8k 0.0667 0.1400 0.3711 0.3400 0.3278 0.3800
longchat-7b-16k 16k 0.1344 0.1856 0.3644 0.3622 0.3622 0.3811
longchat-13b-16k 16k 0.0756 0.0867 0.3678 0.3467 0.3471 0.3789
text-davinci-003 4k 0.3800 0.3856 0.3767 0.3711 0.3889 0.3956
gpt-3.5-turbo 4k 0.3889 0.3756 0.3933 0.3789 0.3867 0.3929
gpt-3.5-turbo-16k 16k 0.3856 0.3833 0.4011 0.3756 0.3811 0.3933

qualitative communication, which stabilizes the action generation. We observe that BOLAA,
when paired with a 3b fastchat-t5 LLM, performs comparably to other LAA architectures with
more powerful LLMs. The superiority of BOLAA indicates that orchestrating multiple smaller-
sized LAAs is a better choice if the computing resources are limited. This further exemplifies the
potential for fine-tuning multiple smaller-sized specialised LAAs rather than fine-tuning one large
generalized LAA.

• Pairing the LLM with the optimal LAA architecture is crucial. For example, Llama-2-13b per-
forms best under PlanAct LAA arch while Llama-2-70b performs best under the BOLAA arch.
Also, Longchat-13b-16K performs best when using PlanAct and PlanReAct, which may indicate
the extraordinary planning ability of longchat-13b-16k models.

• Increasing the context length alone may not necessarily improve the LAA performances. For
example, when comparing longchat-13b-16k with llama-2-13b models, the latter yields better
performances though with less context length. By checking the running log of those LAAs, we
observe more occurrence of hallucinated generation when the LAA runs for more steps, which in
the end degrades the benefits of longer context.

• A powerful LLM is able to generalize under the zeroshot LAA arch. The best performance of
OpenAI API-based models are actually under ZS and ZST arch. This indicates the great po-
tential of developing a generic LAA with powerful LLM. Actually, this is currently what open-
source projects are working towards, directly calling OpenAI API and tuning the zeroshot agent
prompt instead. Our benchmark results quantitatively justify that using only a ZS LAA can already
achieve comparable or even better performances than LAA arch with additional Plan or Self-think
flow. However, for other less powerful LLMs, fewshot prompts are necessary for LAAs.

We also report the intermediate Recall performances for all LAAs, which are illustrated in Table 2.
High recall performances indicate that the LAA is capable of generating a precise search query.
High recalls usually lead to better rewards. But they are not tightly related. For example, Llama-2-
70b has a recall performance of nearly 0.3344 on ZS LAA, which is comparable to the best LAA.
However, the reward performance in Table 1 of ZS LAA Llama-2-70b is only 0.0122. The reason is
that generating the search query requires a different LLM ability from generating the correct click
action, where the latter is more challenging. Another observation is that our proposed BOLAA
generally performs the best on all LLMs, which indicates that separating the search agent from the
click agent improves the accuracy of the search action, leading to a higher recall value.

LAA performance w.r.t. Complexity. After the overall performances of those LAAs and LLMs
are compared, we conduct more details investigation of the performance w.r.t. the task complexity.
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Figure 4: The reward w.r.t. task complexity in WebShop. Each bar represents one LAA.

Table 3: Average reward in the HotPotQA environment. Len denotes the maximum context length.
Bold results denote the best results in one row, i.e. best LAA architecture w.r.t. one LLM. Underline
results denote the best performance in one column, i.e. best LLM regarding one LAA architecture.

LLM Len. LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
fastchat-t5-3b 2k 0.0252 0.0067 0.0692 0.1155 0.0834 0.1221
vicuna-7b 2k 0.1339 0.0797 0.0318 0.0868 0.0956 0.1521
vicuna-13b 2k 0.1541 0.0910 0.2637 0.1754 0.2075 0.2721
vicuna-33b 2k 0.2180 0.2223 0.2602 0.1333 0.2016 0.2754
llama-2-7b-chat 4k 0.0395 0.0207 0.2624 0.1780 0.1417 0.2613
llama-2-13b-chat 4k 0.1731 0.2313 0.2521 0.2192 0.2177 0.2773
llama-2-70b-chat 4k 0.2809 0.3207 0.3558 0.1424 0.1797 0.3681
mpt-7b-instruct 8k 0.0982 0.0483 0.1707 0.1147 0.1195 0.1775
mpt-30b-instruct 8k 0.1562 0.2141 0.3261 0.2224 0.2315 0.3521
xgen-8k-7b-instruct 8k 0.1502 0.1244 0.1937 0.1116 0.1096 0.2231
vicuna-7b-16k 16k 0.0773 0.1053 0.2554 0.1759 0.1642 0.2347
longchat-7b-16k 16k 0.0791 0.0672 0.2161 0.1296 0.0971 0.1917
longchat-13b-16k 16k 0.1083 0.0562 0.2387 0.1623 0.1349 0.2433
text-davinci-003 4k 0.3430 0.3304 0.4503 0.3577 0.4101 0.4743
gpt-3.5-turbo 4k 0.3340 0.3254 0.3226 0.2762 0.3192 0.3541
gpt-3.5-turbo-16k 16k 0.3027 0.2264 0.1859 0.2113 0.2251 0.3225

Due to the space limitation, we only report the performance of text-davinci-003 and llama-2-70b.
The reward performance is illustrated in Figure 4. The BOLAA model consistently performs better
on all complexity levels. We also observe the degraded performances when the task complexity is
increased, which follows the intuition. Surprisingly, we find out that further increasing the com-
plexity of tasks greater than 4 will not further degrade the performances. The reason is that the
recall performance increases when the task is of higher complexity. This is due to the fact that high-
complexity task instruction provides more additional context information for the LAA. As such, the
search action can be more specific and accurate under high complexity levels.

4.5 KNOWLEDGE REASONING SIMULATION

We benchmark on the HotPotQA environment to evaluate the multi-step reasoning ability of LAAs.
Since the available search, lookup and finish operations are all related to knowledge reasoning in
this environment and hard to separate, it is challenging to design heuristic-based methods for agent
selection and communication. Therefore, the BOLAA architecture for HotPotQA environment con-
stitutes two labor agents, a reasoning agent and a search agent. Reasoning agent has two actions, ask
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and answer. Ask action triggers the search agent to search corresponding context. Answer action is
to answer the given question. In our implementation, the reasoning agent is also a controller. In this
sense, the agent selection and communication are all LLM-based generation process. The results
are in Table 3. In general, BOLAA achieves the best performance on most LLMs. This indicates
the necessity of separation the reasoning and searching into different agents. Additionally, we also
observe the improvements is marginal or even no improvement when with small size LLMs. We
observe that those small size LLMs is unable to well generate the communication message between
reasoning agent and searching agent. Moreover, comparing ReAct, PlanAct, and PlanReAct, we
would conclude that planning flow of LAA hinders performance the in knowledge reasoning envi-
ronment and tasks. The reason is that knowledge reasoning tasks require contextualized information
to conduct reasoning, whereas planning flow is executed ahead of interactions. Thus, those gener-
ated plans tend to lead to more hallucination of LAA. Further, regarding this knowledge reasoning
task, model size is much more important than the context length. Large-sized model has better abil-
ities in reasoning, thus performing better. We also observe the best performance of Llama-2-70b on
all open-source LLMs, which suggests its potentially great fine-tuning ability.
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Figure 5: The reward w.r.t. complexity level in HotPotQA. Each bar represents one LAA.

LAA performance w.r.t. Complexity. Since we have easy, medium, and high level tasks, we
compare the performance of Llama-2-70b and OpenAI gpt-3 model regarding different levels of
complexity, as illustrated in Figure 5. We observe degrading performance if increasing the complex-
ity of tasks. In HotPotQA tasks, the hardness is defined as the question answer hops. Therefore, hard
question requires more context understanding and reasoning ability of LAA. BOLAA outperforms
other agent arches on most cases, especially on hard questions. This suggests that disentangling the
searching and reasoning as two agents strengthens question answering ability. Another observation
is that though OpenAI text-davinci-003 model consistently outperforms Llama-2-70b on all levels
of complexity, their difference is of smaller margin in hard questions. Since hard questions require
more reasoning efforts, we can conclude that Llama-2-70b posses comparable reasoning ability with
text-davinci-003.

5 CONCLUSION AND FUTURE WORK

In this paper, we systematically investigate the performances of various LAA architecture paired
with different LLM backbones. We also provide one novel orchestrating method for multiple agents,
i.e. BOLAA. The benchmarking results provide experimental justification for the LAA investigation
and verify the potential benefits of BOLAA architecture. During the investigation, we also identify
the challenge of designing BOLAA architecture for environments with compounding actions. In
the future, we will continue developing more LLM agent architectures and include more LLMs
and environments for evaluations. Also, we will keep exploring how to designing the separation
and orchestration of multiple agents, including more advanced techniques in agent selection and
communication.
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A ENVIRONMENT SETUP

WebShop is a recently proposed online shopping website environment with 1.18M real-world prod-
ucts and human instructions. Each instruction is associated with one ground-truth product, and
contains attribute requirements, e.g. I’m looking for a travel monopod camera tripod with quick
release and easy to carry, and price lower than 130.00 dollars. This instruction includes 3 attribute
requirements i.e. “quick release”, “camera tripod” and “easy carry” attributes. We define the com-
plexity of an instruction using the number of attribute requirements. Thus, this instruction example
above is of complexity 3. We equally sample 150 instructions regarding each complexity level.
Since we have fewer than 150 instructions for complexity larger than 6, we only include instruc-
tions from complexity in {1, 2, . . . , 6}, which sums up to 900 tasks for benchmark evaluation in the
WebShop environment. In the WebShop environment, an agent operates either SEARCH[QUERY] or
CLICK[ELEMENT] actions to interact the environment, for evaluating the interactive decision mak-
ing ability of LAA. The observation from WebShop is simplified web browser, which includes the
clickable buttons and associated page content. LAA interacts with the WebShop environment as a
web navigation agent.

HotPotQA with Wikipedia API is another environment considered in this paper, which contains
multi-hop questions answering tasks that requires reasoning over two or more Wikipedia passages.
This simulation environment serves as a powerful tool for evaluating the multi-step planning and
comprehension capabilities and information retrieval skills of AI models, ensuring they are profi-
cient in sourcing reliable information from vast online resources. With its unique blend of real-world
internet browsing scenarios and text analysis, HotpotQA is an invaluable asset for the advancement
of augmented large language agent systems. In HotPotQA environment, an agent has three types
of actions, i.e., SEARCH[ENTITY], LOOKUP[STRING] and FINISH[ANSWER] to interact with Hot-
PotQA environment. HotPotQA environment aims at evaluate the knowledge reasoning ability of
LAA. We randomly sample 100 questions from easy, medium and hard levels, which constitutes the
final 300 benchmark questions for evaluating LAAs.

B ADDITIONAL PERFORMANCE REPORT

We include some additional performance reports in appendix. The recall performance of text-
davinci-003 and Llama-2-70b-chat w.r.t. different complexity levels in Webshop enviroment are
illustrated in Figure 6. We observe that text-davinci-003 has the better performance compared with
Llama-2. And BOLAA generally outperforms other agent architectures on all different levels of
complexity.
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Figure 6: The recall w.r.t. task complexity in WebShop. Each bar represents one LAA.
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