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ABSTRACT

Existing latent diffusion models excel at text-to-motion generation for single-
person, but struggle with multi-person scenarios. This is largely due to the lim-
ited capacity of the latent representation, which fails to capture complex spatio-
temporal dynamics between individuals (e.g., relative orientation). To address
this, we introduce Interaction Latent Diffusion (ILD) model. Unlike previ-
ous methods using the single-token latent space under geometric constraint, ILD
leverages an interaction-aware, multi-token latent space that is enhanced by inter-
person constraints and aligned with pretrained tokenizers, strengthening its ex-
pressibility. Building on ILD, we further improve the physical plausibility and en-
sure real-time inference by introducing two key components. Firstly, we propose
an efficient neural collision guidance combined with high-order ODE solvers,
avoiding the costly occupancy-based detection while reducing artifacts and la-
tency. Secondly, we develop Flash ILD (FILD), a distilled model capable of one-
step generation through a tailored consistency distillation and distribution match-
ing pipeline. We evaluate the proposed ILD and FILD qualitatively and quan-
titatively on InterHuman and Inter-X datasets. Specifically, on the InterHuman
dataset, ILD achieves a new state-of-the-art FID of 4.869 (vs. 5.154 for Inter-
Mask), meanwhile FILD accelerates inference from 10 FPS to 30 FPS. The code
will be available.

1 INTRODUCTION

Figure 1: The motion generation quality (FID
score) and speed (AITS) comparisons between
ILD, FILD, and SOTA methods on the Interhu-
man dataset. The model closer to the origin is bet-
ter. All tests are performed on one NVIDIA A100.

As a powerful generative model, diffusion mod-
els (DMs) have been widely used in synthetic
human motion generation, such as text-to-
motion tasks (Tevet et al., 2022b; Liang et al.,
2024; Guo et al., 2024; Zhang et al., 2023;
Tevet et al., 2022a; Cai et al., 2024) generating
high-quality and diverse motions by effectively
modeling many-to-many distributions. How-
ever, their success in single-person synthesis
has not translated to multi-person interactions.
They suffer from intensive computational costs,
a lack of physical grounding, and, most crit-
ically, a representational bottleneck. These
limitations hinder applications in downstream
tasks, such as robotics, which require quick re-
sponse time (e.g., 30 FPS (Goyal et al., 2024))
and physically plausible movement.

As shown in Fig. 1, previous multi-person gen-
eration methods (Ponce et al., 2024; Liang
et al., 2024) use two-stream diffusion models
with shared weights for each person, struggling with sampling efficiency. In contrast, existing la-
tent diffusion (Rombach et al., 2022) models have demonstrated remarkable inference time reduc-
tion and high-fidelity generation for single-person tasks (Dai et al., 2024; Zhu et al., 2025), which
use Variational Auto-Encoders (VAEs) (Kingma, 2013) to compress motion data before conditional
generation via diffusion models (Ho et al., 2020). However, generalizing latent diffusion for multi-
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person scenarios remains challenging (Li et al., 2024a): 1) It is difficult to model spatial-temporal
relationships between individuals, such as relative orientation (Li et al., 2024b). Because single-
token latent spaces (i.e. 1 × 256) (Chen et al., 2023) lack such expressive capacity. 2) Multi-token
spaces theoretically offer higher reconstruction fidelity, but diffusion models often fail to learn the
complex coordination between tokens (Xie et al., 2024b; Hansen-Estruch et al., 2025).

To address this, we propose Interaction Latent Diffusion (ILD), a generative model that jointly cap-
tures multi-person motion dynamics. Our key insight is to design a unibranch VAE that compresses
multi-person motion into an interaction-aware, multi-token latent space, simultaneously improving
the VAE’s reconstruction accuracy and the upper bound on diffusion generation quality. Firstly,
we apply geometric and interactive constraints to capture complex inter- and intra-personal pat-
terns. Secondly, we unlock the capabilities of multi-token latent spaces (e.g. 4 × 512) by aligning
with a pretrained discrete motion prior (Guo et al., 2024). Notably, unlike previous multi-token
methods (Xie et al., 2024b; Dai et al., 2025), these designs enhance the VAE capacity without sig-
nificantly increasing the diffusion computational overhead.

While promising, efficiently generating physically plausible motion with diffusion models remains
an open challenge, where the sampling efficiency depends on (Chadebec et al., 2024; Kohler et al.,
2024) the per-step cost and the total iteration steps. To ensure physical grounding, previous meth-
ods (Li et al., 2024b; Jiang et al., 2025b) rely on complex post-hoc optimization at each sampling
step, typically involving time-consuming occupancy-based collision detection (Mihajlovic et al.,
2022). To reduce the per-step cost, we introduce a lightweight neural collision guidance (Mihajlovic
et al., 2025) that efficiently penalizes interpenetration. Moreover, to reduce the total number of sam-
pling steps, we replace the standard DDIM sampler with a high-order ODE solver (Zhang & Chen,
2022). Together, these training-free enhancements enable ILD to generate physically plausible in-
teractions with competitive fidelity in a highly efficient 10-step regime.

Building on ILD’s ability to generate high-quality interactions, we further develop an enhanced
version called Flash Interaction Latent Diffusion (FILD) model. FILD achieves real-time, few-step
inference by overcoming the numerical instability in few-step sampling (Chadebec et al., 2024;
Zhou et al., 2024). Inspired by Dai et al. (2024), we distil a student network (i.e., FILD) from
a teacher network (i.e., ILD) using consistency models (Song et al., 2023), while simultaneously
refining the guidance training scheme to enhance performance. Rather than relying on pairwise
loss, we employ distribution matching distillation (Yin et al., 2024) to align the student and teacher
output distributions, which faithfully replicates the teacher’s noise-to-sample mapping. By fine-
tuning diffusions to learn both data distributions and ‘fake’ distributions produced by our distilled
generator, we steer synthetic interactions towards higher realism.

In summary, our contributions are as follows.
• We propose Interaction Latent Diffusion (ILD), which features an interaction-aware VAE with

novel alignment constraints. These constraints structure the multi-token latent space to unlock
better diffusion training, resulting in both superior performance and reduced denoising latency.

• We enhance ILD’s physical grounding and efficiency via a neural collision guidance that eliminates
costly occupancy-based optimisation, and a high-order ODE solver that reduces sampling steps by
5× (from 50 to 10) without compromising fidelity.

• We further improve ILD’s efficiency by introducing the Flash Interaction Latent Diffusion (FILD)
model. The pretrained ILD is distilled to a student denoiser via tailored consistency models and
employs distribution matching to stabilize the generation quality for 1-step real-time sampling.

• Extensive experiments demonstrate ILD’s superior generation fidelity, achieving SoTA FID score
on InterHuman (4.869 vs. InterMask’s 5.154) and Inter-X (0.297 vs. InterMask’s 0.399) datasets.
Concurrently, its real-time counterpart (i.e., 30 FPS), FILD, achieves a competitive FID score of
4.980 on InterHuman.

2 RELATED WORK
2.1 TEXT-CONDITIONED MOTION GENERATION

Given the stochastic and diverse nature of human motion, denoising Diffusion Probabilistic Mod-
els (DDPM) have been one of the most dominant methods in the area of motion generation (Yuan
et al., 2023; Alexanderson et al., 2023; Barquero et al., 2023; Zhang et al., 2024b; Hoang et al.,
2024). Early work by Zhang et al.applied diffusion models to text-conditioned human motion gen-
eration with MotionDiffuse (Zhang et al., 2024a), enhancing the diversity and plausibility of gener-
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ated motions. Subsequently, Guy et al.introduced an adapted classifier-free diffusion-based model,
Motion Diffusion Model (MDM) (Tevet et al., 2022b), to denoise the signal by predicting original
motions instead of added noise. Similar to us, MDM requires fewer GPU resources and can fur-
ther improve performance by utilizing extra geometric losses. For interaction motion generation,
Shafir et al.introduced ComMDM (Shafir et al., 2023), which uses two pretrained MDM priors and
a communication block to coordinate interactions between motions. Then, Tanaka et al.proposed
the Role-aware Interaction Generation Diffusion-based model (Tanaka & Fujiwara, 2023), which
incorporates semantic information such as active and passive roles from the action labels. More
recently, Ponce et al. (Ponce et al., 2024) proposed in2IN to capture the intra-personal dynamics,
conditioned not only on the overall interaction but also on the extra individual descriptions from
each person. Concurrently, InterMask (Guo et al., 2024) utilizes 2D Vector Quantised VAE (Van
Den Oord et al., 2017) to convert motion sequences into discrete token maps under geometric con-
straint and a generative masked modeling (He et al., 2022) framework to reconstruct it. However,
it ignores inter-individual constraints in token maps, and its two-stream individual encoder design
may hinder inference speed. In contrast, under a joint distribution of two individuals, we present
ILD to capture additional interactive information in the latent space.
2.2 FAST TEXT-TO-MOTION DIFFUSION MODELS

The mode-covering behaviour of diffusion models makes them prone to spending excessive amounts
of capacity for capturing imperceptible details of the data and thus requires huge computing re-
sources and long inference times (Chen et al., 2023). To tackle this, Chen et al.introduced latent
diffusion models (Rombach et al., 2022) to significantly improve both the training and sampling ef-
ficiency of denoising diffusion models without degrading their quality. Dai et al.proposed a Motion
Latent Consistency Model (Dai et al., 2024) via latent consistency distillation, extending controllable
motion generation to a millisecond level. Recently, MotionPCM (Jiang et al., 2025a) introduced the
multi-interval design of Phased Consistency Model, reducing accumulated random noise in multi-
step sampling. However, those methods are tailored for single-person motion generation, and the
applied single-token results in artifacts for interaction generation Our work shows that ILD can re-
duce per-step evaluation latency and FILD can further conduct the distillation learning for the one-
step generation. To enhance the real-time performance, FILD incorporates distribution matching
constraints (Yin et al., 2024) to stabilise distillation learning via the consistency models. Finally, the
Human-X (Ji et al., 2025) framework achieves real-time reaction (i.e., single-agent-motion) genera-
tion by coupling a low-frequency diffusion planner with a high-frequency physics tracker. Instead,
our work improves the intrinsic efficiency of diffusion models for dual-agent generation.
3 METHOD

Given a text prompt, our goal is to generate an interaction sequence x1:N
I = {xa, xb}1:N ∈ RN×2D,

where xa ∈ RN×D and xb ∈ RN×D represent the motion sequences of individual participants (see
details in Sec 4.1). Here, N and D denote the length and dimensionality, respectively.

3.1 INTERACTION-AWARE VARIATIONAL AUTO-ENCODER

Our Interaction-Aware VAE (IA-VAE), illustrated in Stage 1 of Fig. 2, learns a continuous latent
space for the entire interaction sequence with variational inference. The interaction transformer
encoder and decoder consist of the transformer encoder and decoder, with skip connections and
layer norms, respectively. Similar to TEMOS (Petrovich et al., 2022), the interaction encoder takes a
sequence of interaction of arbitrary length x1:N

I = {xa, xb}1:N ∈ RN×2D as input and compresses
x1:N into a latent representation z ∈ RL×K with high informative density. Then, the interaction
decoder reconstructs the latent vector z into motion sequences x̂1:N

I = {x̂a, x̂b}1:N .

Interaction-aware Latent Space. In a typical VAE training process, motion reconstruction x1:N is
constrained by the Mean Squared Error (MSE) and Kullback-Leibler (KL) losses. However, motion
reconstruction generally requires more regularization for better fidelity, such as the commonly used
geometric loss (Tevet et al., 2022b), which prevents intra-person artifacts from generating smooth
and natural motions. Thus, following Javed et al. (2024); Li et al. (2024a), we applied the Bone
length (BL) loss and the foot contacting loss as the geometric loss of IA-VAE:

Lgeometric = λBL LBL + λFC Lfoot . (1)
In practice, these constraints are insufficient to train a robust representation for interaction recon-
struction, likely due to the high uncertainty from the interplay of two people. To handle the complex
spatial-temporal relationships between individuals, especially for the relative position and orienta-
tion (Li et al., 2024b), we further introduce interactive losses(Liang et al., 2024) for IA-VAE training,
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Figure 2: Overview of the proposed pipeline. Stage 1: An Interaction-Aware VAE (IA-VAE) is de-
signed to learns an expressive, multi-token latent space by introducing interaction-aware constraints
and motion tokeniser alignment loss (Sec.3.1). Stage 2: Interaction Latent Diffusion Denoiser em-
ploys a second-order DEIS solver to reduce sampling to just 10 steps, while a lightweight implicit
guidance maintains physical plausibility at test-time (Sec.3.2). Stage 3: Flash Interaction Latent
Diffusion (FILD) distils the 10-step model into a one-step generator using a tailored consistency
distillation framework, further refined by distribution matching (Sec.3.3).

comprising masked joint distance map (DM) loss and relative orientation (RO) loss:

Linteractive = λDM LDM + λRO LRO . (2)

We follow the training objective design in Liang et al. (2024), and refer the reader to Appendix A
for details. Finally, we combine them into a interaction-aware loss: Lia = Lgeometric + Linteractive.

Motion Tokenizer Alignment. Beyond spatial-temporal regularization, the dimensionality of the
latent space is critical (Hansen-Estruch et al., 2025). While a higher-resolution latent space im-
proves reconstruction, it often degrades the fidelity of the subsequent diffusion process (Xie et al.,
2024a), as it requires substantially larger diffusion models and more training iterations to achieve
comparable generation performance. On the other hand, previous methods (Chen et al., 2023; Dai
et al., 2024) ease the learning of the denoising process by simplifying the target distribution via the
low-dimensional latent code (e.g. 1× 256), which unavoidably bottlenecks the generative model, as
the auto-encoder struggles with effective motion reconstruction.

To resolve this dimensionality trade-off, we introduce a novel motion alignment loss (Yao et al.,
2025) (See Eq. 3), which forces the latent space of IA-VAE to align with a powerful, pretrained
discrete tokenizer (i.e., Vector Quantised-VAE (VQ-VAE)). Unlike Xie et al. (2024b) using cascade
diffusion to scale up model parameters, we enhance the capacity of the multi-token latent space, as
well as diffusion performance, without increasing diffusion parameters or significant extra compu-
tational cost (see Table 2d).

This approach is motivated by the key insight that discrete VQ-VAEs can learn more robust and
efficient motion representations compared to their continuous counterparts (Zhang et al., 2023;
Javed et al., 2024), which often struggle with redundancy and error amplification (Meng et al.,
2024). Therefore, instead of simplifying our latent space, we leverage a pretrained Residual VQ-
VAE (RVQ-VAE) (Guo et al., 2024) as a prior tokenizer and use an alignment loss to transfer its
structural properties to the multi-token latent space. Compared to previous single-pass motion VQ
tokenizers (Zhang et al., 2023; Javed et al., 2024), RVQ-VAE employs iterative rounds of residual
quantization to reduce quantization errors progressively (Guo et al., 2024).

Especially, due to the incompatibility between IA-VAE and RVQ-VAE dimensionality, we need to
project motion latents to match them. We evaluate interpolation, downsampling, and linear layer
transformation, where we find the linear layer transformation provides the best results (See Ap-
pendix B for more details). In detail, the projected latent space zProj

ij is forced to align with the
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well-structured space fij of the pretrained RQ-VAE tokenizer, which minimizes the cosine similar-
ity gap with a margin m1 at each spatial location (i, j):

Lma =
1

h× w

h∑
i=1

w∑
j=1

ReLU

(
1−m1 −

zProj
ij · fij

∥zProj
ij ∥∥fij∥

)
. (3)

VAE Training Loss. This comprehensive training objective guides the IA-VAE to learn a high-
resolution latent space that respects both geometric and interactive constraints while aligning the
discrete motion tokenizer prior: LIA-VAE = λma ∗ Lma + λia ∗ Lia + λKL LKL + Lrec.
3.2 INTERACTION LATENT DIFFUSION DENOISER

As shown in Stage 2 of Fig. 2, ILD denoiser εθ takes as input a latent token z0 output by the encoder
of IA-VAE. The denoiser is designed to iteratively anneal the noise from a Gaussian distribution
to a latent space distribution p(z), by learning the noise prediction from a Markov process, giving
{zt}Tt=1. Compared to raw interaction sequences x1:N

I , the interaction-aware latent token z0 en-
hances the performance by removing high-frequency outliers and accelerating convergence. We use
the skip-transformers as the backbone of the denoiser, and apply the in-context condition mecha-
nism. Diffusion models consist of two interconnected processes, namely, forward and backward.

Multi-token Latent Computational Overhead. A potential concern is that the multi-token latent
space may significantly increase diffusion computational overhead due to the larger input. We pro-
posed to alleviate this by applying in-context learning (Ju et al., 2025), rather than the adaptive con-
dition mechanism (Peebles & Xie, 2023). In detail, time embedding t and text embedding c are first
added and then concatenated with latent embedding z, thus the input dimension din = dt+dc+dz ,
rather than d′in = dz for its adaptive counterpart. In practice, under a certain number (e.g., 4× 512),
the larger token length results in a negligible increase in the inference time (See Tab. 2d).

Forward Process. The forward diffusion process gradually corrupts the data by interpolating be-
tween a sampled data point z0 and Gaussian noise ϵ ∼ N (0, I). That is:

zt = q(z0, ϵ, t) = αtz0 + σtϵ, ∀t ∈ [0, T ], (4)

where αt and σt define the signal-to-noise ratio (SNR) of the stochastic interpolant zt. Following
previous work (Chen et al., 2023; Liang et al., 2024), we opt for coefficients (αt, σt) that satify
αt + σ2

t = 1, resulting in a variance-preserving process (Karras et al., 2022). Under the continuous
time limit, the forward process in Eq. 4 is equal to the stochastic differential equation (SDE): dz =

f(z, t)dt + g(t)dwt, where f(t) = d logαt

dt is a drift coefficient, g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t is the

diffusion coefficient.

Backward Process. Inversely, the backward diffusion process is intended to reverse the nois-
ing process and generate samples. According to Anderson’s theorem (Anderson, 1982), the for-
ward SDE introduced earlier satisfies a reverse-time diffusion equation, which can be reformu-
lated using the Fokker-Planck equations (Song et al., 2020) to have a deterministic counterpart
with equivalent marginal probability densities, known as the probability flow ODE (PF-ODE):
dz =

[
f(z, t)− 1

2
g(t)2∇z log pt(z)

]
dt. As demonstrated in (Hyvärinen & Dayan, 2005; Song et al., 2020),

this marginal transport map can be learned through maximum likelihood estimation of the perturba-
tion kernel of diffused data samples ∇z log pt(z|z0) in a simulation-free manner. This allows us to
estimate ϵ̂(zt, t)/σt ≈ ∇z log pt(z|z0), usually parameterized by a time-conditioned network.

Exact Solution of PF-ODEs. Given an initial value zs at time s > 0, the solution zt at time t ∈ [0, s]
of diffusion ODEs in Eq. 3.2 is expressed as a semi-linear ODE:

zt = e
∫ t
s
f(r)drzs︸ ︷︷ ︸

linear part

+

∫ t

s

(
e
∫ t
r
f(r)dr g

2(τ)

2στ
ϵθ(zτ , τ)

)
dτ,︸ ︷︷ ︸

non-linear part

(5)

It decouples the linear part and the nonlinear part. Unlike the black-box ODE solvers (Karras et al.,
2022), the linear part is exactly computed (i.e. f(t) = d logαt

dt , e
∫ t
s
f(r)dr = log αt

αs
), which eliminates

the approximation error of the linear term. However, the integral of the nonlinear component remains
complex, as it couples the coefficients related to the noise schedule (i.e., f(τ), g(τ), στ ) with the
intricate neural network ϵθ, making it difficult to approximate.

Second-order ODE-Solver using exact solution. The commonly used solver DDIM could be ob-
tained by deriving the first-order Taylor expansion formulae on Eq. 5’s non-linear part. Numerous
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numerical solvers (Lu et al., 2022; Zhao et al., 2023) exist for approximating the nonlinear compo-
nent, their performance varies significantly with large step sizes (fewer sampling steps). This mo-
tivated our development of a possible efficient discretization scheme balancing fidelity and speed.
Empirically (See Appendix C for details), we employ Diffusion Exponential Integrator Sampler
(DEIS) (Zhang & Chen, 2022) as the second-order approximation of Eq. 5’s non-linear part, with
respect to t, which minimizes error and achieves superior quality with 10 denoising steps:

zt−1 = αt

αt−1
zt +

ρt

log ρt−1−log ρt−2
[(log ρt − log ρt−1)ϵt − (log ρt − log ρt−2)ϵt+1] , (6)

where ρt =
σt

αt
, and ϵt represent the output of denoiser at timestep t.

Neural Implicit Collision Guidance. Compared to single-agent motion generation, mesh collision
artifacts between humans cause unique challenges for multi-person motion generation. Since the
interaction representation includes no explicit mesh information, it is difficult to constrain the inter-
person collision in the training process. Current methods (Jiang et al., 2025b; Ota et al., 2025)
alleviate this by adapting post-hoc optimization methods based on differentiable objectives, most of
which rely on the occupancy-based or explicit mesh-based detection.

However, such optimization is executed between different sampling steps, which inevitably incurs
additional computational cost and thus increases the per-step sampling latency of ILD if adapted.
To address this, we introduce an efficient neural collision guidance based on VolumetricSMPL (Mi-
hajlovic et al., 2025), which extends the SMPL (Loper et al., 2015) by representing human shape β
as a Signed Distance Field (SDF). By leveraging the Neural Blend Weights (Mihajlovic et al., 2023)
generator, it significantly reduces the computational costs compared to the previous neural implicit
detection (i.e. COAP (Mihajlovic et al., 2022)) and mesh-based detection (Jiang et al., 2020).

While VolumetricSMPL (Mihajlovic et al., 2025) provides an efficient SDF representation, it is not
explicitly designed for human-human collision. We therefore define a targeted interpenetration loss
by querying the SDFs of the two bodies’ surface A and B: Lip =

∑
va∈VA

−d̃B(va|βb, θb), as the
sum of penetration depths over all colliding vertices. During the denoising step zt−1 = DEIS(zt),
we decode zt−1 to poses and detect interpenetrations implicitly. (See Appendix D for Algorithm)
3.3 FLASH INTERACTION DIFFUSION DISTILLATION

While optimizing the latent diffusion training and improving the efficiency of the ODE sampler, ILD
requires 10 steps for satisfying interaction generation due to fidelity degeneration (see Tab. 2d). To
achieve real-time inference (i.e., 30 FPS), we introduce Flash Interaction Latent Diffusion (FILD),
which consists of Interaction Consistency Models and Interaction Distribution Matching. As shown
in Stage 3 of Fig. 2, FILD trains a student model based on the constraints from the frozen ILD
teacher denoiser, enabling single-step inference with preserved interaction generation quality.

Interaction Consistency Model. Similar to previous works (Dai et al., 2024; Jiang et al., 2025a),
FILD employs a consistency model (CM) (Song et al., 2023; Luo et al., 2023) as the backbone
scheduler to distill the student network, leveraging the knowledge from the teacher denoiser. The
consistency function is defined as f : (zt, t) 7→ zϵ, where 0 < ϵ ≪ T (such as 0.002), with
ẑϵ ∼ pdata(z) and zt is the noisy latent vector at timestep t. The self-consistency of the function is
expressed as: f(zt, t) = f(zt′ , t

′), ∀t, t′ ∈ [ϵ, T ]. The student consistency model, fΘ(·, ·), aims to
learn this property by training: fΘ(zt, t) = cskip(t)zt+cout(t)FΘ(zt, t), where cskip(t) and cout(t) are
differentiable functions with cskip(ϵ) = 1 and cout(ϵ) = 0. We leverage a pretrained teacher denoiser
Φ̂ to intially parameterize FΘ(zt, t) = Φ(x, t) for self-consistency learning. The consistency loss
for distillation learning is defined as:

Ldistill(Θ) = E[d(fΘ(ztn , tn), fΦ̂(ẑ
Φ̂
tn , tn))], (7)

where d(·, ·) is a chosen metric function for measuring the distance between two samples. fΘ(·, ·)
and fΦ̂(·, ·) are referred to as “online network” and “target network” respectively (Song et al., 2023).

Please note that it is non-trivial to conduct distillation learning for interaction generation by follow-
ing (Dai et al., 2024), which causes artifacts and instability. Thus, we introduce two key improve-
ments: 1) We skip the classifier-free guidance (CFG) distillation (Meng et al., 2023) for the student
network, which hampers one-step generation performance (see Sec. 2b). 2) We redefine ẑΦ̂ as a full
chain diffusion reverse process of the teacher denoiser instead of the one-step estimation used in
MotionLCM (Dai et al., 2024):

fΦ̂(ẑ
Φ̂
tn , tn)← ztn +

∑n
i=0(ti − ti−k)Φ̂(zti , ti, c; θ), (8)
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where Φ acts as the pretrained ILD denoiser with the DDIM solver. With these improvements, the
student network generates interaction sequences more efficiently in fewer steps, closely matching
the output of the pretrained ILD teacher denoiser with multi-step classifier-free guidance.

Interaction Distribution Matching. We also introduce Distribution Matching Distillation
(DMD) (Wang et al., 2023; Yin et al., 2024) training to improve the capability of the student net-
work. The DMD constraint is designed to ensure the generated samples closely mirror the interaction
distribution learned by the teacher denoiser, minimizing the KL divergence between the student dis-
tribution pstuθ and the teacher distribution pteaθ as: LDMD = DKL(p

stu
θ ∥ptea

ϕ ). According to Wang et al.
(2023), the gradient of the KL divergence to the student consistency model fΘ(zt, t) is:

∇ΘLDMD = E
[(
sstu(y)− stea(y)

)
∇fΘ(zt,t)

]
, (9)

where stea and sstu are the score functions of teacher denoiser Φ̂ and student denoiser Φ, and y =
fΘ(zt, t) is the consistency model output in Eq. 3.3. However, it remains challenging to compute this
gradient (Yin et al., 2024) since the scores diverge for samples with low probability, specifically, the
teacher distribution is highly likely to vanish for fake samples. Thus, the one-step student prediction
y is re-noised using a uniformly sampled timestep t′ ∼ U([0, 1]) and the teacher noise schedule.
The new noisy sample is passed through the frozen teacher denoiser to get the score function for
the teacher distribution stea(fθ(zt′ , t

′)) = −(ϵtea
ϕ (zt′ , t

′)/σ(t′)), according to (Karras et al., 2022).
Rather than another dedicated diffusion model (Chadebec et al., 2024), we utilise the student model
for the score function of the student distribution sstu(fθ(zt′ , t

′)) = −(ϵstu
ϕ (zt′ , t

′)/σ(t′)).

Taken together, the proposed FILD is trained to minimize a weighted combination of the distillation
loss and the distribution matching losses: LFILD = Ldistil + λDMDLDMD.

4 EXPERIMENTS
4.1 DATASETS

We utilize InterHuman (Liang et al., 2024) and Inter-X (Xu et al., 2024) datasets for the evaluation of
text-to-interaction generation performance, which contain 7,779 and 11,388 interaction sequences,
respectively. Each interaction sequence is annotated with 3 textual descriptions.

InterHuman follows the SMPL (Loper et al., 2015) skeleton representation with 22 joints, in-
cluding the root joint. Each interaction sequence in a certain frame ith could be represented by
xi =

[
jpg, j

v
g , j

r, cf
]
, which is the collection of joint positions jpg ∈ R2×22×3, joint velocities

jvg ∈ R2×22×3, 6D representation rotations jr ∈ R2×21×6, and binary foot-ground contact features
cf ∈ R2×4, resulting in a total input dimension of 524.

Inter-X follows the SMPL-X (Pavlakos et al., 2019) skeleton representation, comprising 54 body
and hand joints, accompanied by root orientation and translation. Each interaction sequence could
be represented by xi =

[
rpg, j

r
]
, and which is the collection of root joint positions rpg ∈ R2×3, Euler

Angle representation rotations jr ∈ R2×55×3, resulting in a total input dimension of 336.
4.2 EVALUATION METRICS
We employ the evaluation metrics following previous studies (Liang et al., 2024; Guo et al., 2022).
Fidelity is assessed using Frechet Inception Distance (FID), R-precision, and Multimodal Distance
(MM Dist), and diversity is evaluated with Diversity and Multimodality scores. We evaluate the
collision metric via winding number (Mihajlovic et al., 2022). (See Appendix D for implementation
and training details, Appendix E for metric definition, and Appendix F for hyperparameter ablation)
4.3 RESULTS
4.3.1 QUANTITATIVE RESULTS

In Table 1, we present the overall evaluation with respect to fidelity and diversity metrics. For the
InterHuman dataset (Liang et al., 2024), the proposed ILD has achieved the best ‘FID’ and competi-
tive ‘R Precision’ results. Notably, ILD presents a very close ‘Multimodal Dist’ with SoTA models.
For the Inter-X dataset (Liang et al., 2024), the proposed ILD excels across all fidelity metrics except
for the ‘MModality’ metrics. FILD keeps the second-best performance in terms of ‘R Precision’ and
‘FILD’. Overall, the diversity metric ‘Multimodality’ shows room for improvement. We hypothe-
size that freezing the IA-VAE may reduce diversity in generations for unseen text descriptions, but
this can be a favorable trade-off in applications that prioritize precise and realistic motion synthesis.

4.3.2 QUALITATIVE RESULTS

Fig. 3 demonstrates ILD’s ability to generate more realistic human interactions compared to Inter-
Mask (Javed et al., 2024). In the “taekwondo” scenario, ILD correctly synthesizes dynamic attack-
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Table 1: Quantitative evaluation on the InterHuman and InterX test sets. ± indicates a 95% confi-
dence interval and→means the closer to ground truth the better. Bold face indicates the best result,
while underline refers to the second best. ’†’ refers to TIMotion based on the Transformer.

Dataset Method R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

Inter
Human

Ground Truth 0.452±0.008 0.610±0.009 0.701±0.008 0.273±0.007 3.755±0.008 7.948±0.064 -

TEMOS (Petrovich et al., 2022) 0.224±0.010 0.316±0.013 0.450±0.018 17.375±0.043 6.342±0.015 6.939±0.071 0.535±0.014

T2M (Guo et al., 2022) 0.238±0.012 0.325±0.010 0.464±0.014 13.769±0.072 5.731±0.013 7.046±0.022 1.387±0.076

MDM (Tevet et al., 2022b) 0.153±0.012 0.260±0.009 0.339±0.012 9.167±0.056 7.125±0.018 7.602±0.045 2.350±0.080

ComMDM (Shafir et al., 2023) 0.223±0.009 0.334±0.008 0.466±0.010 7.069±0.054 6.212±0.021 7.244±0.038 1.822±0.052

InterGen (Liang et al., 2024) 0.371±0.010 0.515±0.012 0.624±0.010 5.918±0.079 5.108±0.014 7.387±0.029 2.141±0.063

in2IN (Ponce et al., 2024) 0.425±0.008 0.576±0.008 0.662±0.009 5.535±0.120 3.803±0.002 7.953±0.047 1.215±0.023

TIMotion† (Wang et al., 2025) 0.491±0.005 0.648±0.004 0.724±0.004 5.433±0.080 3.775±0.001 8.032±0.030 0.952±0.032

InterMask (Ponce et al., 2024) 0.449±0.004 0.599±0.005 0.683±0.004 5.154±0.061 3.790±0.002 7.944±0.033 1.737±0.020

ILD 0.495±0.005 0.630±0.005 0.709±0.004 4.869±0.073 3.777±0.001 7.976±0.027 0.881±0.022

FILD 0.484±0.005 0.636±0.004 0.701±0.003 4.980±0.041 3.780±0.001 8.024±0.032 1.124±0.020

InterX

Ground Truth 0.429±0.004 0.626±0.003 0.736±0.003 0.002±0.002 3.536±0.013 9.734±0.078 -

TEMOS (Petrovich et al., 2022) 0.092±0.003 0.171±0.003 0.238±0.002 29.258±0.069 6.867±0.013 4.738±0.078 0.672±0.041

T2M (Guo et al., 2022) 0.184±0.010 0.298±0.006 0.396±0.005 5.481±0.382 9.576±0.006 5.771±0.151 2.761±0.042

MDM (Tevet et al., 2022b) 0.203±0.009 0.329±0.007 0.426±0.005 23.701±0.057 9.548±0.014 5.856±0.077 3.490±0.061

ComMDM (Shafir et al., 2023) 0.090±0.002 0.165±0.004 0.236±0.004 29.266±0.067 6.870±0.017 4.734±0.067 0.771±0.053

InterGen (Liang et al., 2024) 0.207±0.004 0.335±0.005 0.429±0.005 5.207±0.216 9.580±0.011 7.788±0.208 3.686±0.052

TIMotion† (Wang et al., 2025) 0.412±0.004 0.601±0.004 0.714±0.003 0.385±0.218 3.706±0.015 9.191±0.092 2.437±0.069

InterMask (Ponce et al., 2024) 0.403±0.005 0.595±0.004 0.705±0.005 0.399±0.013 3.705±0.017 9.046±0.073 2.261±0.081

ILD 0.441±0.005 0.621±0.004 0.733±0.004 0.297±0.012 3.568±0.028 9.253±0.067 1.931±0.024

FILD 0.424±0.005 0.603±0.005 0.728±0.004 0.305±0.010 3.667±0.012 8.944±0.072 2.168±0.044

ILD InterMask

The two guys are practicing taekwondo, and one person is executing offensive moves while the other person is evading the attacks.”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
These two people face each other. One person approaches and hands over an item to the other.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
The other person bends down to help the first one up and puts both hands on their chest to support them walking to the side.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3: Qualitative comparison (zoom in to see it better) between InterMask (Javed et al., 2024)
and ILD, highlighting ILD’s superior interaction quality and text adherence. The visualization is
based on aitviewer software (Kaufmann et al., 2022). The deeper colors indicate the later in time.

and-evade motions with combative contact, while InterMask ignores its semantics with only generic
motions. For the “hand over” prompt, ILD models the explicit hand-to-hand exchange between two
people. In contrast, InterMask’s result is ambiguous, in which only one person shows the transfer
gesture. In the complex “helping up” interaction, ILD generates a physically plausible supportive
lift. InterMask’s output suffers from severe interpenetration, and the characters bend in parallel,
failing to form a supportive connection.
4.4 ABLATION STUDIES
ILD Component Contribution Analysis. Table 2a shows that removing the designed loss functions
degrades ILD’s performance, particularly the interactive loss. We also compare it with the In-
terLDM (Li et al., 2024a), which only adapts the geometric loss. The results confirm the critical
importance of modeling relationships between individuals when generating interaction sequences.
FILD Component Contribution Analysis. We compare with MotionLCM (Dai et al., 2024), which
also utilises the consistency models for real-time individual motion generation. Table 2b shows that
omitting the conditioning training of the classifier-free guidance scale can help stabilise distillation
training. The key improvement comes from a full chain diffusion backwards rather than a fixed
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Table 2: Ablation results on the InterHuman dataset.

Methods FID ↓ R Top 3 ↑
InterLDM 5.619 0.638
ILD 4.869 0.709

w/o Int. Loss 6.145 0.671
w/o Geo. Loss 5.189 0.680
w/o KL. Loss 5.454 0.677

(a) The ablation study for
interaction-aware loss.

Methods FID ↓ R Top 3 ↑
MotionLCM 10.262 0.591
FILD 4.980 0.701

w/o CFG Scale 6.301 0.666
w/o Full Chain 7.209 0.649
w/o DMD. Loss 5.724 0.654

(b) The ablation study to verify key
components of the proposed FILD.

Methods Collision ↓ AITS ↓
InterGen 0.989 2.892
ILD 0.913 0.097

w. SDF 0.557 1.025
w. COAP 0.297 4.793
w. VM (ours) 0.264 0.564

(c) Physical performance for differ-
ent collision detection.

Solver Steps Method FID↓ AITS↓
DDIM 10 in2IN 5.927 0.608
DEIS 10 in2IN 5.712 0.614
DDIM 10 ILD 5.263 0.093
DPM 10 ILD 5.037 0.097
DEIS 10 ILD 4.869 0.097
DEIS 1 in2IN 19.323 0.126
DEIS 1 ILD 12.292 0.034
CM 1 FILD 4.980 0.032

(d) Influence of the ODE solver and sampling steps
on computational efficiency.

Dimension Alignment rFID↓ gFID↓ AITS↓
1× 512 ✘ 0.776 4.981 0.089
2× 512 ✘ 0.412 5.237 0.093
4× 512 ✘ 0.185 5.214 0.095
8× 512 ✘ 0.134 5.931 0.119
1× 512 ✓ 0.998 4.967 0.089
2× 512 ✓ 0.493 5.097 0.094
4× 512 ✓ 0.212 4.869 0.097
8× 512 ✓ 0.159 5.511 0.125

(e) Influence of the ILD latent dimension and align-
ment on VAE (rFID) and diffusion (gFID) fidelity.

interval step (such as 10 in Dai et al. (2024)) for training consistency models. Additionally, DMD
loss could further enhance it through the adversarial learning scheme.

ILD w. SDF w. VM

Figure 4: Optimization ’Hugging’
with different collision detection,
including two views, where green
circles indicate correct collision
optimization, while red circles de-
note incorrect optimization.

Physical Plausibility and Efficiency. As shown in Table 2c and
Fig. 4, compared to the InterGen (Liang et al., 2024) with-
out any post-hoc optimization, the collision guidance (Karun-
ratanakul et al., 2023) substantially reduces interpenetration.
Our implicit model based on VolumetricSMPL (Mihajlovic
et al., 2025) generates more physically plausible motions than
mesh-based SDF (Jiang et al., 2020) methods. Crucially, im-
proved physical accuracy does not come at a significant cost.
Our method’s optimization is 2× faster than SDF and 9× faster
than COAP (Mihajlovic et al., 2022), respectively, using the
same optimization iterations and hardware (NVIDIA A100).
Sampling Method Efficiency Comparison. As shown in Ta-
ble 2d, we compare the proposed methods with the SoTA dif-
fusion model in2IN (Ponce et al., 2024), ILD shows minimal
degradation during few-step sampling due to its interaction-
aware latent space. Moreover, DEIS (Zhang & Chen, 2022)
solver consistently outperforms DDIM in few-step settings for
both motion-space and latent-space diffusion models (see Ap-
pendix H for computational resource comparison).
Dimension size and Tokenizer Alignment Analysis Table 2e de-
tails our analysis of the latent space dimensionality. We observe that the higher dimensions improve
reconstruction but reduce generation quality. Our proposed tokenizer alignment loss effectively mit-
igates this issue, enhancing generative performance in high-dimensional settings. Notably, due to
in-context learning for the text condition, the increased dimension causes minor computational de-
lays for diffusion generation, where only negligible overhead cost stems from the linear projection
required to align the dimensions of the RQ-VAE (Guo et al., 2024) and the IA-VAE.
5 CONCLUSION
In this work, we present Interaction Latent Diffusion (ILD) and its real-time variant, Flash ILD
(FILD), to generate complex, multi-person interactions from text. Our core contribution is an
interaction-aware, multi-token latent space embedded in ILD, unlocking the full capacity of the dif-
fusion model. By constraining with inter-person relationships and aligning with a pretrained motion
tokenizer, we enhance its expressive capacity without destabilizing the diffusion process. To achieve
efficient and physically plausible synthesis, we couple a high-order ODE solver with a lightweight
neural collision guidance, enabling high-fidelity generation in a few steps. Building on this, FILD
distills the learned ILD into a one-step generator via a tailored consistency and distribution matching
pipeline. Extensive evaluations on the InterHuman and Inter-X datasets demonstrate that our work
offers a robust framework for efficient dyadic interaction generation, achieving a balance between
quality and speed. Moving forward, we aim to integrate more sophisticated physical constraints
directly into training.
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Appendix

This appendix provides a detailed explanation of our loss functions (Sec. A), more motion tokenizer
alignment qualitative results (Sec. B), the empirical study for different ODE solvers (Sec. C), the
algorithms for ILD sampling (Sec. D), implementation details (Sec. E), details of metric definitions
(Sec. F), ablation studys (Sec. G) on classifier-free guidance hyperparameters, batch size and loss
weights and a computational resource comparison (Sec. H). We also provide a statement for LLM
usage in Sec. I.

Video. In the supplementary video, we show 1) more comparisons of text-to-interaction genera-
tion, 2) more ablation study cases, and 3) additional samples of failure cases. We suggest the reader
watch this video for dynamic motion results.

A INTERACTIVE AND GEOMETRIC LOSS FUNCTION

In a typical VAE training process, motion reconstruction x1:N is constrained by the Mean Squared
Error (MSE) and Kullback-Leibler (KL) losses. To enhance the physical plausibility within in-
volved individuals and preserve the original interaction relationships between individuals, we further
adapted the geometric loss and interactive loss.

Firstly, motion generation is generally regularized using geometric loss (Tevet et al., 2022b), which
enforces physical plausibility and prevents artifacts from generating smooth and natural motions. In
this work, we applied the Bone length (BL) loss and foot contacting loss as follows:

LBL = ∥B (x̂a)−B (xa)∥22 + ∥B (x̂b)−B (xb)∥22 , (10)

Lfoot =
1

N − 1

N−1∑
i=1

∥∥∥(FK
(
x̂i+1
foot

)
− FK

(
x̂i
foot

))
· fi
∥∥∥2
2

(11)

Lgeometric = λBL LBL + λFC Lfoot (12)
where B represents the bone lengths in a predefined human body kinematic tree derived from the
global joint positions, and FK denotes the forward kinematic function converting joint rotations
into joint positions. Bone length loss LBL constrains the global joint positions of each person
to satisfy skeleton consistency, which implicitly encodes the human body’s kinematic structure.
fi ∈ {0, 1}J is the binary foot contact mask for each frame i, indicating whether they touch the
ground; it mitigates the foot-sliding effect by nullifying velocities when touching the ground.

Secondly, to handle the complexity of spatial relations in multi-person interactions, we further in-
troduce interactive losses, comprising masked joint distance map (DM) loss and relative orientation
(RO) loss (Liang et al., 2024) as follows:

LDM =
∥∥(M(x̂a, x̂b)−M(xa,xb))⊙ I(Mxz(xa,xb) < M̄)

∥∥2
2

(13)

LRO = ∥Oy (IK (x̂a) , IK (x̂b))−Oy (IK (xa) , IK (xb))∥22 (14)

Linteractive = λDM LDM + λRO LRO (15)

Regarding the DM loss, we first measure the Nj × Nj joint distance map between two generated
individual motions and then match it with the ground truth. Besides, we activate this loss only when
the horizontal distance between the two generated individual motions is small enough, which could
stabilize the training process. As shown in Equation (13), I is the indicator function that masks
the loss by applying a 2D distance threshold on the XZ-plane, Mxz represents the distance map
projected onto the XZ-plane, M is the distance threshold, and O indicates the Hadamard product.
The RO loss estimates the relative root orientation of two people and aligns it with the ground truth.
As shown in Equation (14), IK represents the inverse kinematics process, which outputs the joint
rotations, and Oy indicates the 2D root relative orientation between the two people around the Y -axis
obtained from rotations.
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Specifically, in the DM loss, ‘M’ is the distance map in world coordinates. Instability stems from
large distance variations, and we set a low threshold M to alleviate it and enhance close-interaction
generation. In the RO loss, the root rotation is not provided in the InterHuman representation (jr ∈
R2×21×6). To calculate it, we compute the normalized hip vector a⃗ = j⃗rh−j⃗lh

∥⃗jrh−j⃗lh∥
, where j⃗rh, j⃗lh ∈

R3 are right and left hip positions. With unit y axis vector y⃗ = [0, 1, 0], the forward vector is derived
as f⃗ = y⃗×a⃗

∥y⃗×a⃗∥ . The orientation difference between predicted and ground truth forward vectors is
then used to compute the RO loss in the XZ plane, the process is differentiable.

B MOTION TOKENIZER

Table 3: The influence of motion alignment loss on reconstruction and generation performance. The
latent dimension here is set as 4× 512.

Tokenizer Reconstruction Performance Generation Performance↓
rFID↓ MPJPE↓ MPJVE ↓ gFID↓ gRTop3↑ AITS↓

ILD w/o. MA loss 0.185 10.05 8.47 5.214 0.673 0.095
ILD w. MA loss (VQ-VAE) 0.306 11.43 8.98 5.687 0.630 0.095
ILD w. MA loss (RVQ-VAE) 0.212 9.79 8.36 4.869 0.709 0.097

Interpolation 0.297 10.56 8.61 5.309 0.644 0.095
Pooling 0.341 10.13 8.54 6.313 0.621 0.096
Linear layer transformation 0.212 9.79 8.36 4.869 0.709 0.097

C ODE SOLVER EMPIRICAL STUDY

Our empirical analysis validates three key insights: 1) Higher-order solvers reduce errors in few-step
settings. Fig. 5 shows that the second-order samplers like DEIS (Zhang & Chen, 2022) outperform,
especially in the few-step settings, while DDIM maintains its potential in many-step sampling. 2)
Interaction-aware latent space enhances exact PF-ODE solver advantages. Interestingly, for the
ILD trained without interaction-aware space on Fig. 6, DDIM shows a higher sampling error than
all other ODE solvers, even including HeuD solver (Karras et al., 2022) with its non-analytical
solution. 3) Higher-order solvers improve diffusion distillation. Based on Fig. 7, we also find that
High-order ODE solvers boost FILD performance, with the ILD teacher using UniPC (Zhao et al.,
2023) solver providing the most accurate cases for the student to mimic.

D ILD SAMPLING ALGORITHM

Algorithm 1: ILD Sampling
Input: Prompt T , steps N , params K, body shape θ, η
Output: Motion sequence xI

1 c← Etext(T ) , zN ∼ N (0, I);
2 ϵtN+1

← ϵθ(zN , tN , c);
3 for i = N to 1 do
4 zi−1 ← DEIS(zi, ϵti , ϵti+1

);
5 xi−1 ← DIA(zi−1) ; // Decode
6 for k = 1 to K do
7 β ← xi−1 ; ∇ ← ∇zi−1

VM(β, θ);
8 zi−1 ← zi−1 − η · ∇/||∇||;
9 end

10 end
11 return DIA(z0); // Decode
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Figure 5: ILD

Figure 6: ILD w/o IA-VAE

Figure 7: FILD
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E IMPLEMENTATION DETAILS

For pretraining of the ILD-VAE model, motion transformer encoders and decoders all consist of
11 layers and 8 heads with skip connection by default, the transformer-based denoiser of ILD is
almost the same architecture as VAE, except for the 13 layers. We employ a frozen CLIP-ViT-
L/14 model as the text encoder, yielding text embedding c ∈ R768, and adopt the classifier-free
guidance (Ho & Salimans, 2022) where the 10% random CLIP embeddings are set to zero during
training and the guidance coefficient is set to 3 during sampling. The hyperparameters used in ILD
are: λMA = 0.01, λBL = 10, λFC = 30, λRO = 0.01, λDM = 3, λKL = 0.00001, and M = 1.
All our models are trained with the AdamW optimizer using a fixed learning rate of 0.00001. Our
mini-batch size is set to 128 during the whole training stage. The number of diffusion steps is 1000
during training, while 10 during inference using the DEIS sampling strategy (Zhang & Chen, 2022),
and the variances are scaled linearly from 0.000085 to 0.012. For the FILD, the student network
shares a similar architecture with ILD, and the λDMD is set as 0.001, the skipping interval for the
consistency model is 50, and we use UniPC solver (Zhao et al., 2023) as the ODE solver for the
full chain reverse process. The training was performed on one A100 GPU, with ILD-VAE training
taking 72 hours over 6000 epochs, ILD training taking 16 hours over 2000 epochs, and FILD training
taking 20 hours over 2000 epochs. Testing was conducted on one A100 GPU.

Pretained RQ-VAE Implementation Details. We follow almost the same setting from Mo-
mask (Guo et al., 2024), except that we train it on InterHuman (Ionescu et al., 2013) and two indi-
viduals are encoded jointly into a single latent space. The batch size is set to 256. The learning rate
reaches 2e-4 after 2000 iterations with a linear warm-up schedule. We employ 4-layer resblocks for
both the encoder and decoder, with a down-scale factor of 4. The quantization dropout ratio q is set
to 0.2. The RVQ consists of 6 quantization layers, each with a codebook containing 512 codes with
512 dimensions. .

Baseline setting. We compare with various text-to-motion methods in two-person interactive sce-
narios, including single-person methods VAE-based TEMOS (Petrovich et al., 2022) and T2M (Guo
et al., 2022), diffusion-based MDM (Tevet et al., 2022b), and the two-person diffusion-based method
ComMDM (Shafir et al., 2023), InterGen (Liang et al., 2024), in2IN (Ponce et al., 2024), TIM (Wang
et al., 2025), and InterMask (Javed et al., 2024) based on masked transformer. To conduct fair
comparisons, the above single-person methods are trained with the same InterHuman and Inter-X
training set and test set. To extend single-person motion synthesis models to handle two-person inter-
action, the networks’ input and output dimensions are modified to accommodate the non-canonical
representation of the InterHuman dataset. Specifically, we report the results of TIM, which was built
upon a Transformer backbone.

F EVALUATION METRICS

F.1 FRECHET INCEPTION DISTANCE (FID)

The FID (Heusel et al., 2017) measures the distribution distance between the generated and real
interaction features.

FID = ∥µgt − µpred∥2 − Tr(Σgt +Σpred − 2(ΣgtΣpred)
1
2 )

where µgt and µpred are the mean ground-truth and generated interaction features, and Σ represents
the covariance matrix.

F.2 MULTIMODAL DISTANCE (MM-DIST)

This metric calculates the average Euclidean distances between each text feature and the generated
interaction feature.

MM-Dist =
1

N

N∑
i=1

∥ft,i − fm,i∥

where ft,i and fm,i are the features of the ith text-interaction pair.
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F.3 DIVERSITY

All generated interactions are randomly sampled to calculate the average Euclidean distances be-
tween two subsets.

Diversity =
1

Xd

Xd∑
i=1

∥xi − x′
i∥

F.4 MULTIMODALITY (MMODALITY)

This metric assesses the variability given multiple text descriptions by calculating the average pair-
wise Euclidean distance between motion features.

MModality =
1

Jm ×Xm

Jm∑
j=1

Xm∑
i=1

∥xj,i − x′
j,i∥

where xj,i and x′
j,i are the features of the jth pair of the ith text description.

F.5 INTERPENETRATION (COLLISION) METRIC

Our interpenetration metric is based on a Mesh-derived Signed Distance Field (SDF) (Jiang et al.,
2020), which quantifies the distance of a point to a mesh surface, indicating whether the point
is inside or outside. Specifically, for each human meshM, we first construct an explicit SDF field
ΦM(p) by voxelizing the mesh and computing the signed distance for each voxel. This field provides
continuous distance values for any query point p via trilinear interpolation. The sign convention is
negative for points insideM and positive for points outside.

For a query point q with respect to a meshM, the SDF value fM(q) is thus directly obtained from
the precomputed field ΦM(q):

fM(q) = ΦM(q) (16)
For two interacting human meshes,MA andMB , the interpenetration score is calculated symmet-
rically. We measure the extent to which mesh MA penetrates MB , and vice versa, by summing
the penetration depths of each mesh’s vertices with respect to the other’s SDF. The total collision is
given by:

Cinter(MA,MB) =
∑

vA∈MA

σ(−fMB
(vA)) · IfMB

(vA)<0 +
∑

vB∈MB

σ(−fMA
(vB)) · IfMA

(vB)<0

(17)
where vA and vB are the sets of vertices for meshesMA andMB , respectively. σ(·) is the sigmoid
function, and I(·) is the indicator function. This formulation penalizes only points that are inside an-
other mesh (i.e., f < 0), with the sigmoid function providing a smooth penalty based on penetration
depth. A higher score indicates a more severe interpenetration between the two individuals.

G HYPERPARAMETER ABLATION STUDY

Here, we conduct two different text-to-motion experiments on InterHuman dataset, which aims
to explore the influence of hyperparameters in classifier-free diffusion guidance (Ho & Salimans,
2022). The first experiment is to change the text dropout p from 0.1 to 0.5 while keeping the scale
s as 3.0. The second experiment changes the scale s from 1.5 to 5.0 while keeping the text dropout
p at 0.1. In Tab. 4, we find that by changing dropout p from 0.1 to 0.2, the FID metric worsened,
but the R Precision metric improved. And with the text dropout p increase, all the fidelity metrics
declined, with the diversity metric achieving its best result at p = 0.3. We assume that the higher
the value of text dropout, the less information is available for text embedding, thus degrading per-
formance. Furthermore, results indicate that as the guidance scale s increases, both the FID and
diversity metrics improve when the guidance is approximately 3.0. Meanwhile, the R Precision and
Multimodal Distance metrics show improvement with higher guidance scales.

As shown in Tab. 5, we study the influence of batch size on model performance. Firstly, we increased
the batch size from 32 to 512 while keeping the learning rate at 1e-4. As we can see, the batch size
achieves the best results when set to 128, but the fidelity metrics are worse when the batch size is
larger. Notably, with a batch size of 128, the GPU memory consumption is under 10 GB, allowing
efficient training even on a single 2080ti GPU.
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Table 4: Ablation study on the classifier-free guidance hyperparameters: text dropout probability p
and guidance scale s. ’*’ means we choose it for the final evaluation. The best performance for each
metric is highlighted in bold.

Methods Classifier-free R Precision R Precision R Precision FID ↓ Multimodal Dist ↓ Diversity→Dropout Scale top 1 ↑ top 2 ↑ top 3 ↑
Real - - 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064

ILD p = 0.10 s = 3.0 0.471±.007 0.615±.007 0.694±.007 4.935±.069 3.784±.002 7.965±.031

ILD p = 0.20 s = 3.0 0.501±.006 0.638±.004 0.715±.005 5.218±.064 3.782±.001 7.891±.029

ILD p = 0.30 s = 3.0 0.493±.005 0.628±.004 0.698±.005 5.372±.074 3.789±.001 7.885±.031

ILD p = 0.40 s = 3.0 0.475±.005 0.609±.006 0.686±.005 5.516±.062 3.797±.002 7.938±.032

ILD p = 0.50 s = 3.0 0.478±.006 0.612±.004 0.690±.004 5.541±.076 3.795±.001 7.842±.037

ILD p = 0.10 s = 1.5 0.412±.005 0.551±.006 0.635±.006 6.251±.095 3.815±.001 7.674±.029

ILD p = 0.10 s = 2.0 0.449±.006 0.589±.006 0.672±.006 5.133±.078 3.801±.002 7.795±.031

ILD p = 0.10 s = 2.5 0.478±.006 0.614±.006 0.691±.007 4.887±.071 3.792±.002 7.869±.031

ILD∗ p = 0.10 s = 3.0 0.495±.005 0.630±.005 0.709±.004 4.869±.073 3.777±.001 7.976±.027

ILD p = 0.10 s = 3.5 0.482±.007 0.618±.007 0.697±.007 4.976±.072 3.783±.001 7.995±.031

ILD p = 0.10 s = 4.0 0.484±.007 0.620±.007 0.700±.007 5.102±.075 3.782±.001 8.063±.030

ILD p = 0.10 s = 4.5 0.486±.007 0.619±.007 0.701±.007 5.245±.079 3.781±.001 8.079±.030

ILD p = 0.10 s = 5.0 0.487±.006 0.620±.007 0.699±.006 5.413±.082 3.782±.001 8.088±.029

As illustrated in Tab. 6, we present a more detailed comparison of the interactive and geometric loss
designs. Overall, the interactive loss contributes more than the geometric loss. The RO loss func-
tion seems to be the most important among the various loss functions. Without it, the FID metrics
get the worst results, and the diversity metric achieves an abnormally high value, highlighting the
significance of the relative root orientation information. In contrast, the model gets minimal impact
without the foot contact loss function, and interestingly, the R precision exhibits slight improvement.
This suggests that the limited capacity of the latent space may hinder the effective learning of mean-
ingful but challenging-to-contain foot contact status information. Since the similar significance of
various metrics, we aim to select parameters for high-quality interaction generation, by primarily
focusing on FID while considering R-precision as a secondary target.

Table 5: Ablation study on the batch size. Our final model, ILD, achieves the best trade-off in
performance and stability with a batch size of 128, which is used for all other experiments. ’*’
indicates the chosen configuration.

Methods Batch R Precision R Precision R Precision FID ↓ Multimodal Dist ↓ Diversity→Size top 1 ↑ top 2 ↑ top 3 ↑
Real - 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064

ILD 32 0.481±.006 0.628±.006 0.701±.006 5.952±.092 3.784±.001 7.981±.037

ILD 64 0.499±.005 0.640±.005 0.713±.004 5.315±.079 3.780±.001 7.915±.036

ILD* 128 0.495±.005 0.630±.005 0.709±.004 4.869±.073 3.777±.001 7.976±.027

ILD 256 0.235±.005 0.351±.005 0.428±.006 10.104±.099 3.901±.002 7.896±.033

ILD 512 0.128±.002 0.203±.004 0.261±.004 9.897±.118 3.972±.002 7.781±.035

Table 6: We study the influence of the loss function and model architecture on text-to-motion. ’*’
means we choose it for the final evaluation.

Methods R Precision R Precision R Precision FID ↓ Multimodal Dist ↓ Diversity→top 1 ↑ top 2 ↑ top 3 ↑
Real 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064

ILD w/o DM Loss 0.469±.005 0.618±.007 0.695±.005 5.201±.074 3.765±.001 7.859±.030

ILD w/o RO Loss 0.455±.005 0.615±.009 0.683±.008 5.738±.067 3.841±.002 8.102±.028

ILD w/o Interactive Loss 0.451±.006 0.602±.006 0.671±.005 6.145±.108 3.795±.002 7.996±.020

ILD w/o BL Loss 0.478±.005 0.614±.005 0.690±.005 5.072±.067 3.832±.001 7.785±.033

ILD w/o FC Loss 0.471±.003 0.625±.005 0.700±.004 5.013±.061 3.839±.001 7.882±.036

ILD w/o Geometric Loss 0.467±.004 0.619±.004 0.680±.005 5.189±.071 3.788±.001 7.924±.036
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H COMPUTATIONAL RESOURCE

Table 7: Comparative analysis of computational efficiency and performance. Metrics are calculated
on an A100 GPU.

Method Params (M) FLOPs (G) AITS (s) FID FPS
InterGen 182.2 80.5 2.89 5.918 <1
in2IN 184.8 87.4 2.98 5.177 <1
InterMask 126.5 43.9 0.77 5.154 1
ILD 38.4 22.3 0.09 4.869 10
FILD 38.4 7.8 0.03 4.980 30

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, Large Language Models (LLMs) were utilized as a writing assistance
tool. Their use was strictly limited to improving the language and readability of the text, includ-
ing correcting grammar and refining sentence structure. The LLMs played no role in the research
ideation, data analysis, or the formulation of scientific conclusions. The authors take full responsi-
bility for all content presented.
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