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ABSTRACT

Digital images are underexposed due to poor scene lighting or hardware limita-
tions, reducing visibility and level of detail in the image, which will affect sub-
sequent high-level tasks and image aesthetics. Therefore, it is of great practi-
cal significance to enhance low-light images. Among existing low-light image
enhancement techniques, Retinex-based methods are the focus today. However,
most Retinex methods either ignore or poorly handle noise during enhancement,
which can produce unpleasant visual effects in low-light image enhancement and
affect high-level tasks. In this paper, we propose a robust low-light image en-
hancement method RetinexUTV, which aims to enhance low-light images well
while suppressing noise. In RetinexUTV, we propose an adaptive illumination es-
timation unfolded total variational network, which approximates the noise level
of the real low-light image by learning the balance parameter of the total varia-
tion regularization term of the model, obtains the noise level map and the smooth
noise-free sub-map of the image. The initial illumination map is then estimated
by obtaining the illumination information of the smooth sub-map. The initial re-
flection map is obtained through the initial illumination map and original image.
Under the guidance of the noise level map, the noise of the reflection map is sup-
pressed, and finally it is multiplied by the adjusted illumination map to obtain
the final enhancement result. We test our method on real low-light datasets LOL,
VELOL, and experiments demonstrate that our method outperforms state-of-the-
art methods.

1 INTRODUCTION

Recording people’s lives by taking pictures or videos is becoming more and more popular. How-
ever, since most users lack professional shooting skills, many photos are captured in less than ideal
lighting conditions such as night time and backlight. Such images have low contrast, strong noise,
and unclear details, which not only affect the human visual experience, but also limit the application
of many computer vision algorithms, such as object recognition and object detection.

There are several approaches to enhance low-light images, including histogram equalization
(Abdullah-Al-Wadud et al., 2007; Pizer, 1990), inverse domain operations (Li et al., 2015; Zhang
et al., 2016), Retinex decomposition (Xiao & Shi, 2013; Jobson et al., 1997a;b; Herscovitz & Yadid-
Pecht, 2004) and deep learning (Yang et al., 2016; Lore et al., 2017). Histogram equalization-based
methods flatten the histogram and stretch the dynamic range of intensity, thereby amplifying the
illumination of low-light images. If noise is not specifically considered, noise and artifacts will be
amplified in its results. Some researchers noticed the similarity between haze images and inverted
low-light images. Therefore, these inverse domain-based methods apply de-overlapping methods
to enhance low-light images. To jointly adjust illumination and suppress noise, a method based on
Retinex theory is proposed. Methods based on Retinex decomposition treat the scene in the human
eye as the product of the reflection layer and the illumination layer. Enhanced results are pro-
duced by adjusting the corresponding layers. The earliest methods directly regard the decomposed
reflection layer as the enhancement result (Jobson et al., 1997b;a; Xiao & Shi, 2013; Herscovitz
& Yadid-Pecht, 2004). Single-scale Retinex (SSR)(Jobson et al., 1997b) and Multi-scale Retinex
(MSR) (Jobson et al., 1997a) utilize Gaussian filters to build Retinex representations. In (Xiao &
Shi, 2013), a bilateral filter is used to remove halo artifacts. Later methods adjust the illumination
and reflection layers and reconstruct the enhanced result by combining them. In (Kimmel et al.,
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Figure 1: The proposed framework. Our sequential processing is divided into two stages. In the first
stage, the illumination map and noise level map are obtained by using the unfolding total variation.
In the second stage, the reflection map is obtained by calculating the illumination map and the origi-
nal image. Input the reflection map and the noise level map into the non-blind denoising subnetwork
to suppress the noise to obtain reflection map without noise, then adjusted with the illumination map
to obtain an enhanced denoised image.

2003; Ng & Wang, 2011; Fu et al., 2014), the variational model estimates the piecewise continuous
reflection layer and smooth illumination layer of the Retinex model. With the development of deep
learning, many deep learning based methods have been proposed, Lore et al. (2017) used a deep
autoencoder named Low Light Net (LLNet) to perform contrast enhancement and denoising.

Due to the interpretability of the Retinex theory and the ease of modeling, more and more methods
have been proposed to combine deep learning with Retinex. The first one to combine deep learning
with Retinex is RetinexNet(Wei et al., 2018), which uses a decomposition network and a brightness
adjustment network. The two sub-networks complete the enhancement of the dark light image,
and the subsequent methods are improved on this basis, such as adding a denoising network to
the decomposed reflection image, and adding a brightness correction network to the decomposed
lighting network, such as KinD(Zhang et al., 2019). These methods are all trained under the expected
noise model, but still lack robustness in real dark-light environments because the noise exhibits
different noise levels.

In our proposed method, we use the unfolding total variational model to estimate the noise level
map and the illumination map, then the reflection map is obtained through the illumination map,
and the reflection map is denoised through the guidance of the noise level map. In the Retinex
theory, the anticipate illumination map needs to be smooth enough in space, while the reflection
map needs edge details to represent the essence of the object. In this paper, we consider noise as a
non-negligible factor in Retinex-based decomposition. The proposed model and method are noise-
aware throughout the process, rather than in the form of individual ad-hoc operations. Compared
with previous methods that only consider light noise modeling, this paper also aims to model and
remove strong noise in low-light images(Wang et al., 2020). Firstly, we build a unfolding total
variational model to estimate the noise level map and noise-free smooth map, and then obtain the
illumination information of the noise-free smooth map to obtain the original illumination map. Then
according to the retienex theory, the original illumination map and the original image are calculated
to obtain the original reflection map, and the reflection map is denoised by the guidance of the noise
level map. The illumination map is adjusted by the light adjustment network to obtain the adjusted
illumination map. Finally, multiply them to get the enhanced image. Specific process is shown in
Figure 1. The contributions of this paper are mainly reflected in the following aspects:
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• We propose a robust low-light enhancement method RetinexUTV for joint denoising. Previous
Retinex decompositions often ignored noise as a pre- or post-processing term, which compromised
the overall visual quality. The variational model we built estimates both the noise level map and the
illumination map, resulting in a noise-free enhancement result.

• We introduce noise levels into Retinex enhancements. Most of the existing enhancement algo-
rithms only focus on low visibility problems or suppress noise under assumed noise levels, resulting
in a lack of robustness. We learn a noise level map by learning a balance parameter in a model-based
total variation regularization denoising method to approximate the noise level of real low-light im-
ages.

• Our proposed method achieves excellent results on real captured low-light images with various
noise levels.

2 RELATED WORK

The traditional Retinex model(Land & McCann, 1971) regards the image S as the physical product
of the reflection layer R and the illumination layer I , and models it as: S = I ·R, where the reflec-
tion R describes the intrinsic properties of the captured object, is considered consistent under any
brightness condition, and is full of structural details. Illumination I represents various brightnesses
on the object. It is segment-wise continuous and preserves dominant edges without small gradients.
We know that low light may introduce a lot of noise to the image, and when the image is enhanced,
it will inevitably exacerbate the noise, so we consider a robust Retinex model (Li et al., 2018), which
contains an additional noise term N , As follows:

S = I ·R+N. (1)

Many methods focus on the illumination component I . For example, in RetinexDIP(Zhao et al.,
2021), two DIP(Ulyanov et al., 2018) networks are used to decompose I and R. Since DIP iterations
take many times to learn enough details, R needs a lot of iterations, while I can learn approximate
contours and illumination distributions in a few iterations, Therefore, the I and R decompositions
cannot be well controlled. In the end simply take R = S/L as the obtained reflectance, which
actually keeps R = R+N/L. Therefore, these methods always lead to noisy results and are sensitive
to noise, usually requiring an additional denoising process. Finally using R as the final enhancement
result will lead to over-enhancement and affect the look and feel of the image. In this case, we try
to assume full noise awareness. Noise has a negative impact on the visual quality of enhancement
results, and is also a factor that cannot be ignored in low-light enhancement. Most previous methods
suppress noise through preprocessing/postprocessing, which can easily lead to residual noise or
over-smoothed details in the results. Therefore, an ideal low-light enhancement method should fully
understand the noise and adaptively handle the noise throughout the enhancement process.

In RetinexNet(Wei et al., 2018), a decomposition network is used to decompose the illumination
and reflection components, and then the reflection and illumination components are processed. For
example, use BM3D(Burger et al., 2012) to denoise images. BM3D is one of the most classic
algorithms for image denoising. By matching with adjacent image blocks, several similar blocks
are integrated into a three-dimensional matrix, filtered in three-dimensional space, and then The
resulting inverse transform is fused to 2D to form a denoised image. With the development of
convolutional neural networks, more and more efficient and fast algorithms have been proposed.
DnCNN(Zhang et al., 2017) denoises the image by learning the image residual, that is, the difference
between the noisy image and the noiseless image, and estimating the noise by the residual learning.
FFDNet(Zhang et al., 2018a) highlights the importance of the noise level map in balancing noise
reduction and detail preservation. Additional noise level maps are added as input, which can handle
different noise levels and can also handle spatially correlated noise. CBDNet(Guo et al., 2019) is
divided into two parts, the first part is a five-layer fully convolutional network for noise estimation
noise level map, and the second part is different from FFDNet, which is UNet with residual for noise
reduction. On the basis of the above, Zheng et al. (2021) proposed the unfolding total variation
model, and expanded the sub-problems of the fidelity term and the regularization term, using the
network to predict the balance parameters, and approximate the noise level to estimate the noise
level map for denoising. Here, we estimate the noise level map of the image through a variational
model. At the same time, the illumination of the image is estimated. The illumination component of
the image is piecewise smooth and noise-free, so the noise is forced to exist in another decomposed
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component. , namely S = I · (R +N). Finally, R is denoised under the guidance of the estimated
noise level map.

3 PROPOSED METHOD

In this section, we build a total variational model to estimate the Retinex model’s illumination and
noise level maps for images. Then, a sequential solution for robust low-light image enhancement is
proposed. Figure 1 shows the framework of our method.

3.1 UNFOLDING TOTAL VARIATION MODEL

Most model-based denoising methods can be expressed as:

x̂ = argmin
x

1

2σ2
∥x− y∥2 + λΦ(x). (2)

where 1
2σ2 ∥x− y∥2 is the fidelity term, σ is the noise level, λ is the balance parameter, Φ(x) is the

regularization term, x̂ is the solution to the problem, and x and y are the clean and observed images,
respectively. In previous work FFDnet [32], when λ is combined with σ , setting the noise level also
achieves the effect of setting , that is, controlling the trade-off between noise reduction and detail
preservation. Inspired by this relationship, for some regularization terms, if we combine λ and σ as
a balance parameter, we can learn such a balance parameter to approximate the noise level through
the unrolling architecture.

The operator D is defined as D = [DT
xD

T
y ]

T , where Dx, Dy are the first-order forward finite differ-
ence operators along the horizontal and vertical directions, respectively. Therefore, the anisotropic
total variation regularization term can be written as ∥Dx∥1. At the same time, the balance parameter
λ can be incorporated into the regularization term, written as ∥λDx∥1 Since the noise of real scenes
exhibits different patterns,λ can be extended into a noise level map M̂ = [MT

x MT
y ]T . So the above

denoising model can be written as:

minimize
x

1

2
∥x− y∥2 + ∥M̂ · (Dx)∥1. (3)

We set Mx = My = M as the noise level map we need to approximate in the network. By introducing
the intermediate variable u = Dx, we obtain the augmented Lagrangian function of the equation:

L(x, u, z) =
1

2
∥x− y∥2 + ∥M̂ · u∥ − zT (u−Dx) +

ρr
2
∥u−Dx∥ (4)

where z is the Lagrange multiplier and r is the regularization parameter. Iteratively updates x, u,
and z through ADMM. The subproblem for x and the subproblem for u can be solved using the
Fast Fourier transform (Fast Fourier ransform FFT) and the shrink function, respectively. Therefore,
unrolled inferences can be obtained by solving the following subproblems(specific derivation can
refer to our previous work (Zheng et al., 2021)):{

xk = N (y, zk−1, ρk, D, uk−1),
uk = S(Mk, D, zk−1, xk, ρk),
zk = G(D, zk−1, ρk, uk, xk)

(5)

where the function N (·) is designed to solve the fidelity sub-problem and guarantees the similarity
of the smooth and noise-free layer ys and the original image y. The function G(·) is associated with
the constraint u = Dx, the Lagrangian multiplier z should be updated as the iteration progresses.
The function S(·) contains the approximate noise level map M. This function can be seen as a special
smoothing constraint for the low-frequency layer ys , which smoothes details and noise according to
the magnitude of the value corresponding to each pixel in the noise level map M. If M is too small,
there will still be a lot of noise in the output sub-image after iteration. If M is too large, the output
sub-image will be an overly smooth sub-image. From this, smooth noise-free ys and noise level M
are obtained.
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(a) Input (b) R (c) I

Figure 2: Illumination image I and reflection image R. We obtain illumination I by unfolding total
variation, and then divide the input image by I to obtain the initial reflection image R.

3.2 ILLUMINATION ESTIMATE

Assumed in Retinex theory. 1) The illustration I is spatially smooth; 2) The value of reflection R
ranges from 0 to 1, indicating that I ≤ S, S represents the original image; 3) The reflection R
contains high frequency parts, i.e. edge and texture information. Similar to LIME(Guo et al., 2016)
and RetinexDIP(Zhao et al., 2021), perform maxRGB on the initial image to obtain the maximum
value of the three color channels as the initial illumination I0, and then obtain the illumination
through the network model or optimization. Due to the unfolding total variational model, we denoise
and smooth the original image to obtain a noise-free and smooth layer ys. Similarly, we maximize
its three color channels to obtain our initial illumination map I , as above As shown in Figure 2(c),
we then divide the input low-light image by the illustration map I to obtain our desired reflection
image R, as shown in Figure 2(b). After obtaining the illumination map I, we put it into the light
adjustment network. In the previous optimization method and RetinexDIP, the illumination map is
usually processed by gamma transformation. Here we use a six-layer convolutional neural network
to The illumination is processed to obtain an illumination image Î after illumination adjustment. As
shown on the right in Figure 1.

3.3 REFLECTION DENOISING

After the appeal operation, we divide the input image by the estimated illumination image to obtain
the reflection image R, we can see that the reflection image contains a lot of noise, as shown in
Figure 2(b). In the noise suppression sub-network, as pointed out in CBDNet(Guo et al., 2019)
and FFDnet(Zhang et al., 2018a), taking the noise image and noise level map as input helps to
enhance the generalization ability of the model and improve the performance for blind denoising.
We adopt a method that takes as input the reflection image R and an approximate noise level map
M to perform noise suppression and detail recovery on the reflection image. We adopt the U-Net
architecture with four scales, and the number of channels in the convolutional layer at each scale is
32, 64, 128, and 256, respectively.Average pooling and fully connected layers are used to process
global features and connect them with previous layers.2×2 convolution and transposed convolution
are used to downscale and upscale feature layers, respectively. For all convolutional layers except
the last one, we use LeakyReLU as activation function.

3.4 END-TO-END TRAINING

The TV minimization problem is solved when the TV module is unfolded to approximate the noise
level, and the noise level map and the illumination map are obtained. The noise level map guides the
reflection map for denoising, and finally the reflection map and the adjusted illumination map are
multiplied to obtain Enhance image. Therefore, the network can be trained end-to-end. We optimize
the weights and biases by minimizing the L2 loss Ll2, perceptual loss Lper and structural similarity
loss Lssim to 1, 0.12 and 0.82, respectively.
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(a) 5.09 / 0.197 / 0.523
Input

(b) 10.94 / 0.717 / 0.300
Kind

(c) 17.71 / 0.882 / 0.144
Kind++

(d) 17.78 / 0.492 / 0.430
RetinexNet

(e) 30.74 / 0.907 / 0.091
MIRNet

(f) 19.33 / 0.917 / 0.086
LLFlow

(g) 33.76 / 0.933 / 0.054
Ours

(h) PSNR/SSIM/LPIPS
Reference

Figure 3: Visual Comparison with state-of-the-art low-light image enhancement methods on the
LOL dataset. Please zoom in for a better review.

Table 1: Quantitative comparison on the LOL dataset (Wei et al., 2018) in terms of PSNR, SSIM
and LPIPS. ↑ (↓) denotes that, larger (smaller) values lead to better quality. The best and second best
scores are highlighted and underlined, respectively.

Method PSNR↑ SSIM↑ LPIPS↓
Zero-DCE (Guo et al. 2020) 14.86 0.54 0.33
LIME (Guo, Li, and Ling 2016) 16.76 0.56 0.35
EnlightenGAN (Jiang et al. 2021) 17.48 0.65 0.32
RetinexNet (Wei et al. 2018) 16.77 0.56 0.47
RUAS (Risheng et al. 2021) 18.23 0.72 0.35
DRBN (Yang et al. 2020) 20.13 0.83 0.16
KinD (Zhang et al. 2019) 20.87 0.80 0.17
KinD++ (Zhang et al. 2021) 21.30 0.82 0.16
MIRNet (Zamir et al. 2020) 24.14 0.83 0.13
LLFlow (Wang et al. 2022) 25.12 0.93 0.11
RetinexUTV (Ours) 24.47 0.86 0.09

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

The proposed RetinexUTV is implemented in the PyTorch framework, and before training, we ini-
tialize the parameters of RetinexUTV. First, the parameters of RetinexUTV are optimized, using
ADAM optimizer for 2 × 103 epochs, the patch size is set to 256 × 256 and the batch size is set to
2. The initial learning rate is 5 × 104 and decrease to 1 × 106 by the consine annealing strategy. All
experiments are performed on an NVIDIA TITAN Xp GPU.

4.2 COMPARISON WITH STATE-OF-THE-ARTS ON THE REAL DATASETS

For a fair comparison, we use the published code for these methods without any modifications. Since
Zero-DCE(Guo et al., 2020) and EnlightenGAN(Jiang et al., 2021) are trained with unpaired data,
we use their published pretrained models for comparison. The LOL dataset(Wei et al., 2018) cap-
tures 500 pairs of real low/normal light images by varying the exposure time and ISO of the camera,
which includes 485 training images and 15 testing images. VE-LOL(Liu et al., 2021) contains two
subsets: paired VE-LOL-L is used to train and evaluate the LLIE method, and non-paired VE-LOL-
H is used to evaluate the effect of the LLIE method on face detection. Here we use VELOL-L.
There are 500 real scene images in VE-LOL-L, of which 400 are used for training and 100 are
used for testing. Three metrics were used for quantitative comparison, including peak signal-to-
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Table 2: Quantitative comparison on the VE-LOL dataset(Liu et al., 2021) in terms of PSNR, SSIM
and LPIPS. The models are trained on the training set of LOL. ↑ (↓) denotes that, larger (smaller)
values lead to better quality.

Method PSNR↑ SSIM↑ LPIPS↓
RetinexNet (Wei et al. 2018) 14.68 0.525 0.642
BIMEF(Ying et al. 2017) 15.95 0.639 0.457
DeepUPE(Ying et al. 2019a) 13.19 0.490 0.463
JED(Ren et al. 2018) 16.73 0.682 0.390
LIME (Guo, Li, and Ling 2016) 14.07 0.527 0.402
LLNet (RLore et al. 2017) 17.57 0.739 0.402
KinD (Zhang et al. 2019) 18.42 0.766 0.288
KinD++ (Zhang et al. 2021) 17.63 0.799 0.226
Zero-DCE (Guo et al. 2020) 21.12 0.771 0.248
EnlightenGAN (Jiang et al. 2021) 20.43 0.792 0.242
LLFlow (Wang et al. 2022) 23.85 0.899 0.146
RetinexUTV (Ours) 29.71 0.915 0.056

noise ratio(PSNR), structural similarity(SSIM)(Wang et al., 2004), and learned perceptual image
patch similarity(LPIPS)(Zhang et al., 2018b). We train our model on the LOL dataset and test it on
the LOL dataset and the VE-LOL dataset, and the numerical results between different methods are
shown in Table I and Table II. From Table I, we can find that our method roughly outperforms other
competitors, and in Table II, we can see that our method outperforms all other methods. Higher
PSNR values indicate that our method is better at suppressing artifacts and recovering color infor-
mation. Better SSIM values indicate that our method better preserves the structural information of
high-frequency details. Our method also achieves the best performance on LPIPS, a metric designed
for human perception, which shows that our method is better aligned with human perception. The
qualitative results on the LOL dataset are shown in Figure 3, and the qualitative comparison of the
real images on the VE-LOL dataset is shown in Figure 4. Our method produces results with less
noise and better color saturation.

(a) Input (b) Kind (c) Kind++ (d) RetinexNet

(e) EnlightenGAN (f) LLFlow (g) Ours (h) Reference

Figure 4: Visual comparison with state-of-the-art low-light image enhancement methods on the
real-captured set of VE-LOL dataset. Please zoom in for a better review.

4.3 ABLATION STUDY

In this section, we quantitatively evaluate the effectiveness of the loss function setting in our model
based on the LOL dataset. The results are shown in Table III.

Loss function setting: To explore the effectiveness of the loss function setting, we convert the MSE
loss to L1 loss, remove the perceptual loss and remove the structural similarity loss for experiments
respectively. Using MSE loss over L1 loss gives PSNR of 1.28dB (=24.47-23.19), SSIM of 0.007
(=0.860-0.853), and LPIPS of 0.008 (=0.098-0.090). Removing perceptual loss and structural sim-
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Table 3: Ablation study. This table reports the performance under each condition based on the LOL
dataset. In this table, ”w/o” means without.

Conditions PSNR↑ SSIM↑ LPIPS↓
default 24.47 0.860 0.090
MSE → L1 23.19 0.853 0.098
w/o perceptual loss 22.15 0.842 0.142
w/o SSIM loss 23.71 0.836 0.093

ilarity loss leads to performance degradation. After removing the perceptual loss, PSNR drops by
2.32db (=24.47-22.15), SSIM drops by 0.018 (0.860-0.842) and LPIPS drops by 0.052 (=0.142-
0.090). After removing the structural similarity loss, PSNR drops by 0.76db (=24.47-23.71), SSIM
drops by 0.024 (0.860-0.842), and LPIPS drops by 0.003 (=0.093-0.090). The experimental results
verify the rationality of our loss function settings.

5 CONCLUSION

In this study, we propose a new true low-to-true normal network for low-light image enhancement
based on Retinex theory, RetinexUTV, which consists of three sub-networks: unfolding total vari-
ational network, denoising network and relighting network. The enhanced results obtained by our
method have better visual quality. Results On publicly available datasets, our method can appropri-
ately improve image contrast and suppress noise, and achieve the highest PSNR and SSIM scores,
outperforming existing methods by a large margin.

In the future, since supervised learning-based methods face some challenges: 1) it is difficult to
collect large-scale paired datasets covering various real-world low-light conditions, 2) synthetic low-
light images cannot accurately represent real-world illumination conditions, and 3) training deep
models on paired data may lead to overfitting and limited generalization to real-world images with
different lighting properties(Li et al., 2021). Our previous work, RetinexDIP(Zhao et al., 2021), is
an unsupervised method that can enhance various low-light conditions, but cannot deal with noise.
We can see in Figure 5 that the supervised based methods do not perform well for augmentation
compared to unsupervised RetinexDIP and will introduce halos. Therefore, our next work will go in
the unsupervised direction, which is also the focus of low-light enhancement.

(a) Input (b) RetinexDIP (c) LLFlow (d) Ours

Figure 5: Visual comparison with state-of-the-art low-light image enhancement methods on the
real-captured set of DICM(Lee et al., 2013). Please zoom in for a better review.
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