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Abstract
Multimodal Machine Learning systems, partic-
ularly those aligning text and image data like
CLIP/BLIP models, have become increasingly
prevalent, yet remain susceptible to adversarial
attacks. While substantial research has addressed
adversarial robustness in unimodal contexts, de-
fense strategies for multimodal systems are un-
derexplored. This work investigates the topologi-
cal signatures that arise between image and text
embeddings and shows how adversarial attacks
disrupt their alignment, introducing distinctive
signatures. We specifically leverage persistent
homology and introduce two novel Topological-
Contrastive losses based on Total Persistence and
Multi-scale kernel methods to analyze the topo-
logical signatures introduced by adversarial per-
turbations. We observe a pattern of monotonic
changes in the proposed topological losses emerg-
ing in a wide range of attacks on image-text align-
ments, as more adversarial samples are introduced
in the data. By designing an algorithm to back-
propagate these signatures to input samples, we
are able to integrate these signatures into Maxi-
mum Mean Discrepancy tests, creating a novel
class of tests that leverage topological signatures
for better adversarial detection.

1. Introduction
In recent years, the rapid advancement of artificial intel-
ligence (AI) has led to the development of increasingly
complex multimodal systems that integrate diverse streams
of data, including text, images, audio, and graphs. As these
technologies become more pervasive, they also face signif-
icant vulnerabilities, particularly from adversarial attacks.
Adversarial attacks exploit inherent weaknesses in machine
learning (ML) models by introducing subtle perturbations
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that can maliciously alter the system’s outputs (Goodfel-
low, 2014; Brendel et al., 2017). While substantial research
has focused on safeguarding AI models against adversarial
attacks in unimodal contexts, the challenges presented by
the multimodal landscape remain understudied. Notably,
although adversarial attacks in multimodal settings have
advanced rapidly (Zhang et al., 2022; Zhou et al., 2023),
defense strategies have yet to fully consider the unique char-
acteristics of multimodal systems, which are crucial for
enhancing their robustness against such threats.

In this study, we focus on multimodal alignments, typically
appearing in CLIP (Radford et al., 2021) and BLIP (Li
et al., 2022), where the image and text data embeddings
are aligned for downstream predictions. Based on the Man-
ifold Hypothesis (Goodfellow et al., 2016), in many in-
stances—such as natural images—the support of the data
distribution stays on a low-dimensional manifold embed-
ded within Euclidean space. Many interesting features and
patterns of those data can be captured through the topolog-
ical properties of that manifold as well as the manifold of
their neural network’s embeddings. Particularly, through
extensive experiments based on persistent homology, an
emerging technique in topological data analysis (TDA) to
study those manifolds, we show that adversarial attacks alter
the image-text topological alignment and introduce distinc-
tive topological signatures. We further demonstrate that the
presence of adversarial examples in an image batch can be
more effectively detected with those signatures.

The key results of this work are highlighted in Fig. 1.
Using the ImageNet (Deng et al., 2009) and CIFAR-
10 (Krizhevsky, 2009) datasets with CLIP-ViT-B/32 and
CLIP-ViT-L/14@336px, respectively, we demonstrate our
proposed Total Persistence (TP) loss Lα

TP and Multi-scale
Kernel (MK) loss Lσ

MK under varying proportions of ad-
versarial samples in the data batch. Intuitively, these losses
capture the mismatch in the corresponding topological sig-
natures between the image and text embeddings. The results
clearly show a proportional change in these losses as the per-
centage of adversarial data increases, emphasizing the sen-
sitivity of our topological measures to adversarial perturba-
tions. In the third and fourth columns, we demonstrate how
the Maximum Mean Discrepancy (MMD) (Grosse et al.,
2017; Gao et al., 2021) tests, based on topological features
derived from the TP and MK losses (TPSAMMD and MK-
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Figure 1. Highlights of our results in ImageNet (top) and CIFAR10 (bottom) in CLIP’s alignment: (1st and 2nd columns) The TP
and MK losses of the data batch monotonically change as the proportion of adversaries (AA for AutoAttack and PGD for Projected
Gradient Descent) in the batch increases. (3rd and 4th columns) Utilizing the topological signatures derived from TP and MK losses can
significantly improve the Test power of existing MMD solutions, e.g., TPSAMMD and MKSAMMD vs SAMMD, while keeping the
Type I errors under control (e.g., 5% error). The results are shown for Autoattack with L∞.

SAMMD), enhance the test power and control Type-I error
in existing MMD solutions, highlighting the effectiveness
of our topological approach in detecting multimodal adver-
sarial attacks. This work’s main contributions are:

• We introduce two novel Topological-Contrastive (TC)
losses, Lα

TP and Lσ
MK , based on Total Persistence (Di-

vol & Polonik, 2019) and Multi-scale Kernel (Rein-
inghaus et al., 2014), measuring the topological differ-
ences between image embeddings and text embeddings
in multimodal alignment. We provide extensive experi-
ments showing the presence of adversaries results in
a clear distinction in the TC losses, i.e., in most set-
tings, the TC losses monotonically change when more
adversarial data is in the data batch. We also provide
a theoretical justification for the increase of TP via
Poisson Cluster Process modeling.

• We integrate both TC losses into state-of-the-art
(SOTA) MMD tests that differentiate between clean
and adversarial data, creating a novel class of MMD
tests based on TC features. Specifically, we design an
algorithm to back-propagate the TC losses to the input
samples, resulting in the TC features capturing how
much each sample contributes to the global topological
distortion in the data batch. These features are then
used to enhance the MMD test.

• We conduct extensive experiments in 3 datasets
(CIFAR-10, CIFAR-100, and ImageNet), 5 CLIP em-
beddings (ResNet50, ResNet101, ViT-B/16, ViT-L/14,
and ViT-L/14@336px), 3 BLIP embeddings ( ViT-
B/14, ViT-B/129, and ViT-B/129-CapFilt-L), and 6

adversarial generation methods (FGSM, PGD, Au-
toAttack, APGD, BIM, and Carlini-Wagner (CW)) to
demonstrate the advantages of the two above findings.

Our paper is organized as follows. Sect. 2 provides the back-
ground and related work of this study. Sect. 3 formulates
our proposed TC losses and demonstrates their capabilities
in monitoring alignment of multimodal adversaries. Sect. 4
shows how we can leverage the TC losses for MMD-based
adversarial detection. Sect. 5 reports our experimental re-
sults, and Sect. 6 concludes this paper.

2. Related Work and Preliminaries
The Two-sample test and the MMD: Given samples from
two distributions P and Q, a two-sample test assesses
whether to reject the null hypothesis that P = Q based
on a test statistic that measures the distance between the
samples. One such test statistic is the MMD, which quan-
tifies the distance between the embeddings of the proba-
bility distributions into a reproducing kernel Hilbert space
(RKHS) (Gretton et al., 2012):

MMD(P,Q;Hk) := sup
f∈H,∥f∥≤1

|E[f(X)]− E[f(Y)]| (1)

Here, k is a bounded kernel associated with the RKHS
Hk (i.e., |k(·, ·)| < ∞), || · || := || · ||Hk

and X and Y
are random variables sampled from P and Q, respectively.
Gretton et al. demonstrated that the MMD equals zero if
and only if P = Q, indicating that the MMD can be used to
determine whether two distributions are identical.

Adversarial Detection in Unimodal/Multimodal ML: In
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the unimodal context, many defense methods have been pro-
posed to safeguard against adversaries (Costa et al., 2024).
For our scope, we focus on statistical methods detecting the
presence of adversaries based on MMD. Specifically, the
paper (Grosse et al., 2017) introducing a Gaussian kernel-
based two-sample test is one of the first works employ-
ing the MMD to detect adversaries. Later, Sutherland et
al. (Sutherland et al., 2016) and Liu et al. (Liu et al., 2020)
developed MMD tests with optimized Gaussian kernels and
deep kernels, respectively. Gao et al. (Gao et al., 2021)
further proposed applying the MMD test to the semantic
features (SAMMD) of the attacked models, which signif-
icantly improved test power. In addition to MMD-based
methods, numerous other detection techniques leverage re-
cent advancements in diffusion models (Zhang et al., 2023),
Bayesian uncertainty estimates (Feinman et al., 2017), man-
ifold learning (Ma et al., 2018; Park et al., 2022), Gaussian
discriminant analysis (Lee et al., 2018), unsupervised clus-
tering (Cohen et al., 2020; Mao et al., 2020), and neural
network classifiers (Li & Li, 2017).

Adapting adversarial detection techniques towards mul-
timodal systems has recently gained substantial inter-
est (Zhang et al., 2024a). Zhang et al. suggests utilizing
a variety of mutations to disturb adversarial perturbations.
Hsu et al. empirically identifies the model’s weights that
contribute to unwanted outputs and safeguards the model
by utilizing LORA (Hu et al., 2022). Prompt optimization
techniques have also been used to better inform the model
of possible attacks (Wang et al., 2024b). There also exists
recent evidence that hidden states of multimodal systems
contain signatures of adversarial text data and can be utilized
for detection (Zhao et al., 2024; Wang et al., 2024a).

Multimodal Alignment: CLIP (Radford et al., 2021) and
BLIP (Li et al., 2022) are multimodal systems developed
by OpenAI and Salesforce respectively that bridge the gap
between natural language and visual understanding. Unlike
traditional systems that are trained for specific tasks, they
are trained to understand a wide variety of visual concepts
in a zero-shot manner by leveraging large-scale image-text
pairs. Both systems consist of an image encoder, typically
a convolutional neural network (e.g., ResNet) or a Vision
Transformer (ViT) that processes input images and maps
them to a high-dimensional embedding space, and a text
encoder, usually a Transformer (e.g., GPT-like architecture)
that processes input text descriptions and maps them to the
same embedding space as the image encoder. Those image
and text embeddings are then aligned to perform a vari-
ety of tasks without additional computation. For instance,
CLIP and BLIP can conduct zero-shot image classification
by comparing the image embeddings to class labels’ em-
beddings. Thus, adversaries can be considered as specially
crafted inputs designed to disrupt the image-text alignment.

Topological data analysis (TDA): is an emerging field in
mathematics that applies the concepts of topology into prac-
tical, real-world applications. It has significant uses in areas
such as data science, robotics, and neuroscience. TDA em-
ploys advanced tools from algebraic topology to analyze the
inherent topological structures in data, uncovering insights
that traditional metric-based methods may overlook. The
most widely used technique in modern TDA is persistent
homology, developed in the early 2000s by Gunnar Carlsson
and his collaborators. We recommend consulting (Ghrist,
2014; Edelsbrunner & Harer, 2022) for a comprehensive
overview of persistent homology and TDA.

Given a point cloud X , this work considers the Vi-
etoris–Rips complex (VR) (Vietoris, 1927) of X at scale
ϵ (where 0 ≤ ϵ < ∞), denoted by Rϵ(X). This complex
includes all simplices (i.e., subsets) of X such that every
pair of points within a simplex satisfies dist(xi, xj) ≤ ϵ for
all xi, xj ∈ X . Since the VR complexes satisfy the relation
Rϵ(X) ⊆ Rϵ′(X) for ϵ ≤ ϵ′, they constitute a filtration and
can track the evolution of the homology groups (i.e., topolog-
ical invariants) as ϵ increases (Edelsbrunner & Harer, 2022).
Each topological feature is monitored by its birth time ϵ = b
when it appears and its death time ϵ = d when it disappears.
They are the central concepts to understand the persistence
of topological signatures within the data. For a given di-
mension i, the birth-death pairs (b, d) ∈ R2

≥0, (b < d) can
be encoded in a persistence diagram Di(X) corresponding
to the features in the i-th homology group. Intuitively, the
difference between death and birth indicates the significance
of a feature. Readers can refer to Fig. 2 for illustrations of
the VR filtration and the persistence diagrams.

3. Topological Signatures of Adversaries
against Multimodal Alignment

Our analysis of multimodal adversaries is based on the in-
tuition that the adversarial perturbations in one data stream
can potentially alter or destroy the alignment between that
data and another data stream. The problem is in how to
capture this behavior, analyze, and leverage it for better ad-
versarial detection. Measuring multimodal alignment is not
trivial because the data streams not only come from different
domains, have different representations, and semantic mean-
ings, but also lack index alignment. We tackle that question
through the lens of TDA: we first capture the topological
structures from the point clouds of representations of each
data stream. We then compare the extracted topological fea-
tures to measure the alignment. In particular, we rely on the
total persistence (Divol & Polonik, 2019; Edelsbrunner &
Harer, 2022) and the Multi-scale Kernel (Reininghaus et al.,
2014), two concepts of persistence homology, to quantify
topological information.

This section first describes our proposed topological con-
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Figure 2. The computations of the TC loss LTC ∈ {Lα
TP ,Lσ

MK} and the backward computations of the topological features.

trastive losses, i.e., the TP and the MK losses (Subsect. 3.1).
Then, results from extensive experiments on CLIP and BLIP
models will show that the presence of adversaries in the in-
put data batch introduces distinct topological signatures
captured by TP and ML losses (Subsect. 3.2). We further
attempt to explain the observed monotonic increasing be-
havior of TP by modeling the logits as a Poisson Cluster
Process (PCP) (Subsect. 3.3). With the assumption that the
adversaries’ logits are less tightly clustered to the predicted
classes, PCP modeling enables Monte Carlo simulation to
compute TP and demonstrate why adversarial logits gener-
ally result in higher 0-th order TP, providing insights into
how adversarial attacks affect the logits’ topology.

3.1. Topological Contrastive Losses

This study focuses on two homology signatures commonly
employed in TDA: while TP measures the cumulative impor-
tance of topological features across all dimensions, serving
as a holistic summary of a dataset’s topology, the MK fa-
cilitates comparisons between datasets by analyzing their
topological features at multiple scales. We choose these
two homologies for this study for their distinctive behav-
iors with adversaries (Subsect.3.2) and their capability to be
back-propagated for adversarial detection (Sect.4).

TP Loss: For a given dimension i, the α-total persistence
of dimension i is computed on the persistence diagram
Di(X) (Divol & Polonik, 2019):

Persαi (X) :=
∑

(b,d)∈Di(X)

(d− b)α (2)

The TP loss of order α between two point clouds is the
summation of the difference at all homology groups:

Lα
TP (X,Y ) =

∑
i

|Persαi (X)− Persαi (Y )| (3)

The TP (Eq.2) can be considered as a fundamental quantity
for persistence homology analysis as it is closely related to
the Wasserstein distance between point clouds. We would

refer readers to (Divol & Polonik, 2019) for more details on
how the loss can be used to capture topological information.

MK Loss: The loss is formulated based on the Multi-scale
kernel kσ : D ×D → R introduced by Reininghaus et al.,
acting on persistence diagrams of point clouds X and Y :

kσ(Di(X), Di(Y )) :=

1

8πσ

∑
p∈Di(X),q∈Di(Y )

e−
∥p−q∥22

8σ − e−
∥p−q̄∥22

8σ (4)

where p and q are the birth-death pairs from the correspond-
ing persistence diagrams, and q̄ = (d, b) denotes the mirror
of q = (b, d) through the diagonal. Notably, the MK is
proved to be 1-Wasserstein stable (Theorem 2. Reininghaus
et al.), and is a robust summary representation of data’s
topological features. For our purpose, we define the MK
loss of scale σ between two point clouds by:

Lσ
MK(X,Y ) =

∑
i

kσ(Di(X), Di(Y )) (5)

Topological Contrastive Losses for Multimodal Align-
ment: Fig. 2 describes how we use our TC losses LTC ∈
{Lα

TP ,Lσ
MK} to analyze multimodal alignment. The for-

ward left-to-right arrows indicate the computation of TP and
MK losses. In CLIP and BLIP, the images and text represen-
tations are aligned in a shared embedding space. We first
extract the those logit/embeddings before the alignment step,
treating these embeddings as point clouds. Next, the cor-
responding VR filtrations {Rϵ}ϵ are constructed, followed
by the generation of persistence diagrams {Di}i. The TC
losses are then computed using Eq. 3 for the TP and Eq. 5
for the MK losses, with X and Y representing the image
and text embeddings, respectively.

3.2. Monotonic Behaviors of Adversarial TC losses

We now present a key finding of this work. Through exten-
sive experiments utilizing the proposed TC losses conducted
across models, adversarial attacks, and datasets, we observe
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Figure 3. Normalized TP (row 1,3 and 5) and MK losses (row 2,
4 and 6) vs. the proportion of adversaries in the data batch (ϵ =
4/255) in CLIP-CIFAR10, CLIP-ImageNet and BLIP-ImageNet.

that the topological signatures of the logits exhibit a con-
sistent, monotonic change as the proportion of adversarial
examples in the data batch increases.

Experimental Setting: Our analysis of multimodal adver-
saries is conducted on 10000 test samples extracted from CI-
FAR10, CIFAR100, and ImageNet datasets. The analysis is
on 5 CLIP embedding models (ResNet50, ResNet101, ViT-
B/16, ViT-L/14, and ViT-L/14@336px), 3 BLIP embedding
models (ViT-B/14, ViT-B/129, and ViT-B/129-CapFilt-L)
and 5 adversarial generation methods (FGSM, PGD, Au-
toAttack, APGD, and BIM). Due to space constraints, the
complete description of the experiments, further results on
CIFAR100, other CLIP embeddings, more attack methods,
and attacking magnitudes are reported in Appx A.

Behaviors of Adversarial Signatures: For all test image
samples, we fix the text and the BLIP/CLIP’s alignment
modules and generate adversarial images that successfully
alter the zero-shot predictions. We then select only set
of clean samples SX = {xi}Ni=1 and the corresponding
adversarial SX̃ = {x̃i}Ni=1, where the prediction on xi and
x̃i are different. Starting from SX , we iteratively replace xi

by x̃i and obtain a mixture set Smix
j = {xi}ji=1∪{x̃i}Ni=j+1

of clean and adversarial samples. Fig. 3 reports the impact
of adversarial samples measured by the two proposed TP
and MK losses as functions of the proportion of adversarial
samples in a data batch, with an adversarial perturbation
magnitude of ϵ = 4/255. For better intuition, we report
the normalized TP and MK losses, which are the TP/MK
losses of Smix

j , normalized by their respective values at
Smix
j=0 = SX . Thus, all plots start at 1.

Table 1. Monotonic behaviors of TP and MK for different models
under adversarial attacks (ϵ = 4/255). (↑, ↓) and (⇑,⇓) indicate
monotonically increasing/decreasing trends in TP and MK, respec-
tively. The dash − indicates non-monotonic behavior.

Dataset Model PGD AA BIM APGD FGSM

CIFAR10

CLIP RN50 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑
CLIP RN101 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑
CLIP ViT-B/32 − /− ↑ / ⇑ − /− ↑ / ⇑ ↑ /−
CLIP ViT-L/14 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ /−
CLIP ViT-L/14-336 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ /−

ImageNet

CLIP RN50 ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ − / ⇓
CLIP RN101 ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓
CLIP ViT-B/32 ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ − / ⇓
CLIP ViT-L/14 ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓
CLIP ViT-L/14-336 ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓ ↑ / ⇓

ImageNet
BLIP ViT-B/14 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ − /−
BLIP ViT-B/129 ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ − /−
BLIP ViT-B/129-CL ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↑ / ⇑ ↓ / ⇓

Fig. 3 illustrates the relationship between TP and MK losses
as the proportion of adversarial samples in the data batch
(ϵ = 4/255) increases for CLIP-CIFAR10, CLIP-ImageNet,
and BLIP-ImageNet. The important finding is that both
losses generally exhibit monotonically changing behavior
when clean samples are replaced with adversarial ones.
Specifically, the TP loss steadily increases across nearly all
experiments, while the MK loss increases with a higher pro-
portion of adversarial samples in CLIP-CIFAR10 and BLIP-
ImageNet but decreases consistently in CLIP-ImageNet.
Despite these variations, both losses indicate that adversar-
ial samples significantly alter the topological structure of the
logits. In other words, although attacks make image sam-
ples align to different predicted texts, they do not preserve
the topological structure of the adversarial images. Table 1
summarizes the monotonic behaviors of TP and MK losses
across a wider range of attacks, offering an overview of the
prevalence of these monotonic dynamics in more scenarios.

Figure 4. Normalized TP and MK losses vs. the proportion of text
adversaries in the data batch in CLIP-ImageNet.

Behaviors of Signatures of Text Adversarial: Regarding
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text-based adversarial attacks, we conducted experiments
on Cross-class prompt-injection attacks in the text modal-
ity (Maus et al., 2023; Xu & Wang, 2024). Using three
CLIP vision backbones (RN50, ViT-B/32, and ViT-L/14) on
ImageNet, we gradually inject adversarial text prompts into
each batch, track the resulting changes in TP and MK losses
(Eqs. 3 and 5), and report the results in Fig. 4.

Similar to our image-based study, both the TP and MK
losses change monotonically when the ratio of adversarial
text increases, reinforcing the consistency of these topologi-
cal measures across modalities.

3.3. Modeling Total Persistence of Adversaries

The final part of this section presents a theoretical explana-
tion for the observed overall increase in TP of adversaries
(see Table 1). Our assumption is that, since the primary goal
of adversarial attacks is to change the top logit, they do not
maintain the structure of the new label cluster. This leads
to a more scattered and less organized representations. We
call this the adversarial scattering assumption. Under that
assumption, our hypothesis is that the scattering behavior
of adversarial logit leads to a higher TP.

PCP modeling: To test the above hypothesis, we start with
modeling the logits as points generated by a latent Poisson
Cluster Process (PCP) (Daley & Vere-Jones, 2003), with
clusters centered at the vertices of a K-dimensional simplex.
For the following discussion, it is sufficient to understand
that the PCP is governed by two parameters: αs and a bias
ratio r. Intuitively, a larger r encourages the centers of
clusters to be closer to the vertices of the simplex, and a
larger αs results in generated points being more concentrated
around these centers. This relationship is visualized in Fig. 5.
We provide a rigorous formulation of the PCP in Appx. B.

Figure 5. Points generated from PCP(αs, r) in 2D-simplex.

TP of PCP: We utilize the PCP to investigate how the
scattering of logits affects the TP. Due to the high com-
plexity, we focus on connected components (0-dimensional
homology), which are the most straightforward to analyze
Persα0 (X) =

∑
(b,d)∈D0(X) d

α, which is actually the length
of the minimum spanning tree (MST) for the graph on
X , and the edges corresponding to the birth-death pairs
in D0(X) constitutes a MST in X (Koyama et al., 2023).
Thus, to determine Persα0 (X), we can alternatively focus on
the MST and avoid the costly constructions of VR filtrations.

Although Persα0 (X) is the length of the MST, calculating
it theoretically is still very challenging (Aldous & Steele,
1992), and the impact of the scattering of the data on the
MST remain theoretically unclear. Consequently, we opt to
use Monte Carlo simulations to investigate how the scatter-
ing of the logit impact its 0-th order TP Persα0 (X).

Fig. 6 illustrates the simulated MST length for 500 and 1,000
points in a 10-dimensional simplex as the parameters αs and
the ratio r vary. In fact, when the PCP is more scattered (i.e.,
lower αs and r), the length of the MST increases. Thus, the
adversarial scattering assumption implies the adversaries
reduce the logits’ concentration and results in a higher
Persα0 (X). This is consistent with results in Sect. 3.2 and
facilitates the use of TP to detect adversaries.

Higher-dimensional topological features: During our re-
search, our experimental results show that higher-degree
summaries are less effective for the adversarial detection
examined in this work. Specifically, we observe that crit-
ical distinctions between adversarial and non-adversarial
logits primarily arise from lower-degree homology, par-
ticularly degree-0, rather than higher-degree topological
features such as loops (degree-1) or cavities (degree-2).

This limitation of degree-1 homology can be explained via
our PCP modeling. For example, as shown by the 3 con-
figurations on the right of Fig. 5, when the filtration radius
approaches half the distance between vertices of a simplex,
a prominent one-dimensional hole emerges across all cases.
As this degree-1 feature appears uniformly, it provides lim-
ited discriminative power among those configurations.

However, there are cases higher-order topological informa-
tion can be beneficial. For example, Table 1 shows that
FGSM exhibits different behaviors compared to more ad-
vanced attacks. We hypothesize that, because FGSM is
relatively simple, it produces adversarial logits that is fur-
ther from the target-class logits. Thus, instead of perturbing
logits toward existing clean-data clusters—as more complex
attacks do—FGSM creates entirely new clusters. Conse-
quently, the mixture of clean and FGSM logits can have

Figure 6. Monte Carlo simulations of the length of the MST
(Persα0 (X)) for different parameters of the PCP model.

6



Topological Signatures of Adversaries in Multimodal Alignments

twice as many clusters: one set from the clean data and
one from the adversarial. As the adversarial ratio grows,
the clean-data cloud first transforms into this double-cluster
configuration—yielding a high TP—and then, at higher ra-
tios, collapses into the adversarial cloud. This explains the
peak in TP observed at intermediate mixture levels (see
Fig. 11, 12 and 13, Appx. A). Although FGSM’s persis-
tence curve is not strictly monotonic, its distinctive, cluster-
doubling behavior can be revealed via higher-order homol-
ogy.

4. Maximum Mean Discrepancy with
Topological Features

In this section, we demonstrate how to utilize the topological
signatures identified in Sect. 3 for adversarial detection.
Following (Gao et al., 2021; Grosse et al., 2017), we aim to
address the Statistical adversarial detection (SAD) problem:

Let X ⊆ Rd and let P be a Borel probability measure on
X . Consider a dataset SX = {xi}ni=1 ∼ Pn composed of
i.i.d. samples drawn from P, and let f : Rd → C denote
the true labeling mapping for samples in P, where C is
the set of labels. Suppose that adversaries have access to a
classifier f̂ trained on SX and i.i.d. samples S′

X from P. The
objective is to determine whether a dataset SY = {yi}mi=1

is originated from the distribution P. We assume that SX

and S′
X are independent and no prior information about

the attackers is available. SY may consist of either i.i.d.
samples from P or non-i.i.d. samples generated by attackers.

In SAD, given a threshold α, when SY is drawn from P, we
want to accept the null hypothesis H0 (SX and SY are from
the same distribution) with probability 1− α. Conversely,
if SY includes adversarial samples, our objective is to reject
H0 with a probability approaching 1. It is important to
note that the classifier f̂ examined in our study is a zero-
shot classifier based on multimodal alignment, rather than
conventional feed-forward neural networks. We focus on
the zero-shot problem because it is closely related to the
alignment between modalities in multimodal systems.

Figure 7. Topological Features of adversarial and clean inputs.

Topological Features: Our approach utilizing LTC for
SAD is to compute sample-level features derived from
the topological loss LTC , i.e., the topological features
are the gradients of the TC loss to each input features

Ẏ = ∇Y LTC(Y, T ), where Y represents the image’s logits
and T denotes the text embedding. Intuitively, the gradients
capture how each image’s feature contributes to the changes
in the topological image-text alignment. The gradients are
computed by back-propagating Eq. 3 and 5 via Pytorch’s
implementations of the homologies (AidosLab, 2023).

To ensure the independence assumption in SAD, the topo-
logical features need to be computed independently. This
can be achieved by utilizing a hold-out dataset Z, i.e.,
ẏi = ∇yi

LTC({yi} ∪ Z, T ),∀yi ∈ SY . However, this
requires a VR filtration for each yi ∈ SY , which is compu-
tationally prohibitive. Instead, our implementation adopts a
batch-processing approach:

Ẏ = ∇Y LTC(Y ∪ Z, T ) (6)

While this approach does not ensure independence, it only
need to construct a single VR filtration. The introduced
error is acceptable when |Z| is significantly larger than |Y |.
The above process is illustrated by the backward arrows of
Fig. 2 and detailed in Appx. C (Alg. 1).

As an illustration, Fig. 7 displays histograms of the exact
gradients, computed for 500 different yi in the CIFAR10
dataset, where |Z| = 1000. It shows that distinct signatures
of adversaries are reflected in our extracted topological fea-
tures, suggesting high potential for more accurate detection.

Topological MMD: We now describe how to utilize the ex-
tracted topological features to improve the SOTA detection
method SAMMD (Gao et al., 2021). SAMMD employs
the semantic-aware deep kernel kω(xin, yin) to evaluate the
similarity between input images (Detailed in Appx. D). To
incorporate topological features, we modify SAMMD’s ker-
nel kω used for Eq. 1 and propose the following topological-
contrastive deep kernel kτ :

kτ (xlog, ylog) =
[
(1− ϵ0) τf̂ (xlog, ylog) + ϵ0

]
νf̂ (xlog, ylog)

Unlike kω, our kernel operates on the logits xlog and ylog,
instead of the input. The term νf̂ (xlog, ylog) = κ (xlog, ylog)
evaluates the similarity between xlog and ylog using the
image embeddings extracted from the layer before the
alignment with the text embedding. On the other hand,
τf̂ (xlog, ylog) = κTC(ẋ, ẏ) measures the similarity between
the topological features ẋ and ẏ obtained from Eq. 6. Here,
κ and κTC are Gaussian kernels with bandwidth σ and σTC.
Using TP or MK loss produces different features ẋ and ẏ,
resulting in the methods Total Persistence SAMMD (TP-
SAMMD) and Multi-scale Kernel SAMMD (MKSAMMD).

With kτ , the discrepancy between clean and adver-
sarial data is estimated using the U -statistic estimator

1
n(n−1)

∑n
i,j=1,i̸=j Hij where Hij = kτ (xlogi , xlogj ) +

kτ (ylogi , ylogj )−2 kτ (xlogi , ylogj ). Similar to SAMMD, the
parameters of TPSAMMD and MKSAMMD are optimized
via gradient descents.
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Figure 8. Test power and average Type-I error (last column) of adversarial detection methods in CIFAR10 with CLIP embedding.

Figure 9. Test power and average Type-I error (last column) of adversarial detection methods in ImageNet with CLIP embedding.

5. MMD Experimental Results
Settings and baselines: We validate the advantage of topo-
logical features for MMD in the settings stated in Sub-
sect. 3.2. We compare TPSAMMD and MKSAMMD
tests with 4 existing two-sample tests: 1) SAMMD (Gao
et al., 2021), 2) Mean Embedding (ME) test (Jitkrittum
et al., 2016); 3) Smooth Characteristic Functions (SCF)
test (Chwialkowski et al., 2015); and 4) Classifier two-
sample test (C2ST) (Liu et al., 2020).

Each MMD test is conducted on two disjoint subsets of
clean and adversarial samples, each containing 50 images
for CIFAR10 and CIFAR100, and 100 images for ImageNet.
The sizes of the holdout data Z for the topological features
computation (Eq. 6) are 1000 and 3000 for CIFAR10/100
and ImageNet, respectively. Those sizes of the holdout
are selected to ensure at least some samples per class are
represented in the point cloud. Notably, this chosen set-
ting is significantly more challenging than existing experi-
ments (Gao et al., 2021), which differentiate between sets of
500 samples. Our additional experiments in Fig. 17 Appx. E
illustrates the above claim by reporting the impact of the
number of MMD’s samples and |Z| on the performance
of our proposed methods. Each test was conducted over

100 trials with Type-I error controlled at α = 0.05. Due
to the page limit, results on CIFAR100 and more in-depth
experimental results are provided in Appx. E.

CIFAR10: Fig. 8 reports the test power of adversarial detec-
tion methods for CLIP alignment in CIFAR10. Overall, the
SAMMD-based methods achieve almost 100% test power
across many attack types, even at very small noise magni-
tudes. Nevertheless, TPSAMMD shows a slight advantage
in PGD and AA. Additionally, we average the Type-I errors
for all tests in the first 4 columns at ϵ = 4/255 and report
them in the last column. It shows that all methods keep the
error controlled at 5%.

ImageNet: Fig. 9 and 10 report the detection test power for
ImageNet with CLIP and BLIP, respectively. The results
demonstrate that, while MKSAMMD stays comparative to
SOTA, our proposed TPSAMMD outperforms existing base-
lines in terms of test power, showcasing the advantage of
integrating topological features in distinguishing adversarial
samples from clean ones. Notably, the difference in test
power between our approach and traditional methods be-
comes more pronounced as the adversarial perturbation is
small, highlighting the robustness of our detection mecha-
nism under more challenging attack scenarios. Similar to
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Figure 10. Test power and average Type-I error (last column) of adversarial detection methods in ImageNet with BLIP embedding.

CIFAR10, the Type-I errors of all methods in ImageNet,
except ME, remain strictly below 5%.

Table 2. Gain in accuracy of TPSAMMD vs SAMMD in PGD.
ϵ CLIP ViT B/32 CLIP ViT-L/14 BLIP ViT-B/14 BLIP ViT-B/129

1/255 3.6% 8.6% 1.5% 16.7%
4/255 14.3% 8.2% 0% 0%

Gain of Topological Feature: Table 2 highlights the accu-
racy gains of TPSAMMD compared to SAMMD under PGD
attacks. For BLIP at ϵ = 4/255, the gain is 0% because both
methods achieve 100% test power. Additionally, the inclu-
sion of topological features clearly enhances the MMD test.
This demonstrates that by incorporating information on how
adversarial logits disrupt the overall topological structure
of the data into the detection process, we can substantially
improve detection capabilities.

6. Conclusion and Future Work
This study studies the vulnerability of multimodal ML sys-
tems, such as CLIP and BLIP, to adversarial attacks by ex-
ploring the topological disruptions in text-image alignment.
We introduced two novel TC losses to identify distinctive
signatures of adversaries, and demonstrate that these losses
exhibit consistent monotonic changes across various attacks.
By integrating them into MMD tests, we developed new
adversarial detection methods that significantly enhance
detection accuracy. This approach not only deepens our
understanding of multimodal adversarial attacks but also
provides practical tools to strengthen their resilience.

Future work will explore these topological analysis to other
multimodal configurations, and demonstrate the potential
of topological methods in enhancing the robustness and
reliability of multimodal ML systems.
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how adversarial attacks disrupt text-image alignment but
also provides practical methods to detect such disruptions
with high accuracy. As Multimodal ML systems are in-
creasingly used in sensitive domains, enabling more precise
detection will enhance the security and resilience of sys-
tems that directly impact public safety, health, and trust in
technology. Furthermore, the monotonic properties of the
proposed losses provide interpretable insights into adversar-
ial behavior, promoting transparency and trustworthiness in
adversarial defense strategies.

While this work provides powerful tools to detect and miti-
gate adversarial threats, it also necessitates careful ethical
considerations. The methods developed here could poten-
tially be misused to generate more advanced adversarial
attacks, exacerbating the arms race between attackers and
defenders. To mitigate this risk, we advocate for responsible
dissemination of these techniques and call for collabora-
tion across the research community to ensure their ethical
application. Future directions include extending these topo-
logical methods to other multimodal configurations, such
as video-text and audio-text systems, further solidifying the
role of topological insights in enhancing the robustness of
multimodal ML systems. This research demonstrates the
transformative potential of topology-based approaches in se-
curing the next generation of ML systems and sets a strong
foundation for future advancements in the field.
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A. Experimental settings and results on Total Persistence and Multi-scale Kernel
Our experiments were conducted on a cluster with nodes featuring four NVIDIA Hopper (H100) GPUs each, paired with
NVIDIA Grace CPUs via NVLink-C2C for rapid data transfer essential for intensive computational tasks. Each GPU is
equipped with 96GB of HBM2 memory, ideal for handling large models and datasets.

We evaluated five CLIP models, six attack methods, and three datasets. We employed torch-attack (Kim, 2020) to generate
adversarial perturbations with magnitudes ϵ of 1

255 , 2
255 , 4

255 , and 8
255 . The Square attack for ImageNet was excluded due to

its high computational complexity, which hinders generating a sufficiently large dataset for reliable topological data analysis.
Comprehensive results are presented in Figs 11, 12, 13, 14, and 15. Specifically, we report the TP and MK losses as defined
in Eq.3 and Eq.5, respectively, against the adversary ratio. For each experiment, we processed all 10,000 test samples to
generate adversarial examples, retaining only those that successfully disrupted CLIP alignment. Starting with the full set of
clean samples, we randomly replaced samples with adversaries according to each adversarial ratio (x-axis), computed the
corresponding TC losses, and presented the results in the figures.

Unlike the main manuscript, which presents results only for an attack magnitude of ϵ = 4/255, we provide comprehensive
results across various models and attack magnitudes. Except for FGSM, the TC loss shows monotonic behavior across
different models, attack methods, and magnitudes. We hypothesize that FGSM’s simplicity leads to fewer successful
samples and larger distortions, resulting in unrealistic samples and disrupting the original point clouds differently than more
sophisticated attacks. This simplicity affects the statistical outcomes of our computations, distinguishing FGSM from more
refined attack methods. Additionally, we observe a trend that warrants future research: more sophisticated attack methods
and advanced models exhibit more pronounced monotonic behavior in TC losses. This is evident when comparing TC losses
of the ViT-L family to ViT-B, ResNet101 to ResNet50, and PGD/AA to FGSM.

B. Modeling Logits as Poisson Cluster Process
In Subsect. 3.3, we propose to use Poisson Cluster Process to model the logits resulting from the embedding modules in
multimodal alignments. We now provide the details formulation of our PCP modeling.

Poisson Cluster Process: Our PCP modeling is constructed from a Parent Simplex. Then, the actual point cloud is generated
by sampling the Children Clusters surrounding the vertices of that simplex. In particular, the process is described as follows:

• Parent Simplex: A K-dimensional simplex is the convex hull of K + 1 affinely independent points (called parents
points) in RK . Let those parents points of the simplex be V = {v0, v1, . . . , vK}, the simplex is given as:

S =

{
x ∈ RK

∣∣∣∣ x =

K∑
i=0

λivi, λi ≥ 0,

K∑
i=0

λi = 1

}

Any point x inside the simplex is a convex combination of its vertices.

• Children Clusters: The logits are modeled as points clustering around the simplex vertices. For vertex vi, Ni points are
generated using coefficients λi sampled from a Dirichlet distribution parameterized by αi = {αi,j}Kj=0:

fαi
(λ0, λ1, . . . , λK) =

1

B(αi)

K∏
j=0

λ
αi,j−1
k

where B(β) is the multivariate Beta function B(β) =
∏K

j=0 Γ(βj)/Γ
(∑K

j=0 βj

)
and Γ(·) is the gamma function.

Each generated point x is then computed as x =
∑K

i=0 λivi.

This construction captures the clustering behavior of logits of K + 1 labels and provides a basis for understanding how
adversarial perturbations might increase topological complexity by introducing distortions in the cluster distribution.
Intuitively, for each vertex i, a larger αi,i and smaller αi,j(j ̸= i) increases the probability that λi is close to 1 and
encourages points of cluster i stay nearer to vi. Additionally, a larger overall αi,j will increase the concentration of λ at the
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Figure 11. Normalized Total Persistence versus Adversarial data proportions in CIFAR10.
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Figure 12. Normalized Total Persistence versus Adversarial data proportions in CIFAR100.
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Figure 13. Normalized Total Persistence versus Adversarial data proportions in ImageNet.
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Figure 14. Normalized Multi-scale Kernel loss versus Adversarial data proportions in CIFAR10.
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Figure 15. Normalized Multi-scale Kernel loss versus Adversarial data proportions in ImageNet.
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cluster’s center. For the sake of brevity, we set αi,i = αlarge and αi,j(j ̸=i) = αsmall. This gives us the mean and variance of λ:

E[λi] =
αlarge

αtotal
, E[λj(j ̸=i)] =

αsmall

αtotal

Var[λi] =
α̃large(1− α̃large)

αtotal + 1
, Var[λj(j ̸=i)] =

α̃small(αtotal − α̃small)

αtotal + 1
(7)

where αtotal =
∑K

j=0 αi,j , α̃large = αlarge/αtotal and α̃small = αsmall/αtotal. The parameter αs and r in Fig. 5 and the main
manuscript are the αsmall and 1/α̃small mentioned in this appendix.

Modeling adversaries as PCP: Our adversarial scattering assumption (stated in the main manuscript) posits that adversarial
attacks primarily target the top logit component, causing logits to shift near different clusters without preserving the new
cluster’s structure. This leads to more scattered and disorganized point clouds. Consequently, we hypothesize that when label
clusters of clean and adversarial point clouds are modeled as PCPs, the PCP for clean data will exhibit greater concentration
and lower variance compared to that of adversarial data.

Figure 16. MLE of Dirichlet’s α coefficients for different logits: the MLE of clean logits results in the Dirichlet distribution with the
lowest variance.

We empirically validate the aforementioned assumption through the experiments presented in Fig. 16. Specifically, we
collect both clean and adversarial logits (generated using AA and PGD) for class index 0 from the CLIP-ViT-L/14@336px
model applied to the CIFAR-10 dataset with attacking levels ϵ ∈ {4/255, 8/255}. We then employ Maximum Likelihood
Estimation to fit the PCP’s α parameter. As expected, the α0 component attains the highest value. Notably, the fitted PCP
for clean samples exhibits the highest concentration, characterized by the largest α0 and overall αi=1,...,9. Additionally, we
report the corresponding variances of the PCP models fitted to these data, which indicate that adversarial data result in logits
with higher variance.

C. Computation of Topological Feature
Algorithm 1 outlines the pseudocode for computing the TP and MK losses. Given a point cloud Y and a reference point
cloud T , the algorithm calculates the topological feature Ẏ = ∇Y LTC(Y ∪ Z, T ) as defined in Eq. 6. In our MMD test, Y
and Z represent the logits or embeddings of the examined images (both clean and adversarial) and a hold-out image from
the clean data, respectively. On the other hand, T denotes the embeddings of the label classes for the corresponding datasets:
the 1000 class labels of ImageNet, 100 class labels of CIFAR100, or 10 class labels of CIFAR10.

D. Semantic-Aware Maximum Mean Discrepancy
Although MMD(P,Q;Hk) is a perfect statistic to check if P and Q are the same, its empirical test power depends
significantly on the used kernels (Sutherland et al., 2016; Liu et al., 2020). Semantic-Aware Maximum Mean Discrepancy is
a MMD test introduced by (Gao et al., 2021), which utilizes the following kernel acting on semantic features extracted by a
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Algorithm 1 Topological-Contrastive Feature Extraction
Input: Examined point cloud Y , and reference point cloud T
Params: method (Total persistence or Multi-kernel), hold-out data Z, order α, and homology dimension K
Output: Topological-Contrastive Features ∇Y LTC(Y ∪ Z, T )

1: Construct the Vietoris–Rips complexes {Rϵ(Y ∪ Z)}ϵ and {Rϵ(T )}ϵ
2: for i from 0 to K do
3: Construct Di(Y ∪ Z) from {Rϵ(Y ∪ Z)}ϵ
4: Construct Di(T ) from {Rϵ(T )}ϵ
5: if method == Total persistence then
6: Persαi (Y ∪ Z) :=

∑
(b,d)∈Di(Y ∪Z)(d− b)α

7: Persαi (T ) :=
∑

(b,d)∈Di(T )(d− b)α

8: else if method == Multi-kernel then
9: ki := kσ(Di(Y ∪ Z), Di(T ))

10: end if
11: end for
12: if method == Total persistence then
13: LTC(Y ∪ Z, T ) = ∥

∑K
i=0 Persαi (Y ∪ Z)− Persαi (T )∥α

14: else if method == Multi-kernel then
15: LTC(Y ∪ Z, T ) =

∑K
i ki

16: end if
17: Back-propagate TC Loss: Ẏ = ∇XLTC(Y ∪ Z, T )
18: return Ẏ

well-trained classifier on clean data:

kω(xinput, yinput) =
[
(1− ϵ0) sf̂ (xinput, yinput) + ϵ0

]
q(xinput, yinput),

where sf̂ (xinput, yinput) = κ
(
ϕf̂ (xinput), ϕf̂ (yinput)

)
is a deep kernel function that assesses the similarity between xinput and

yinput using features extracted from the last fully connected layer of the classifier f̂ . Here, κ denotes the Gaussian kernel
with bandwidth σϕf̂

, ϵ0 ∈ (0, 1), and q(xinput, yinput) represents the Gaussian kernel with bandwidth σq. Given that kernel,
the SAMMD is proposed to measure the discrepancy between natural and adversarial data:

SAMMD(P,Q) = E [kω(X,X ′) + kω(Y, Y
′)− 2kω(X,Y )] ,

where X,X ′ ∼ P and Y, Y ′ ∼ Q. The U-statistic estimator used to empirically approximate SAMMD(P,Q) is given by:

SAMMD2(SX , SY ; k) =
1

n(n− 1)

∑
i ̸=j

Hij ,

where
Hij = kω(xi, xj) + kω(yi, yj)− kω(xi, yj)− kω(yi, xj).

E. MMD Experimental Results
This appendix provides the complete results of our Maximum Mean Discrepancy (MMD) experiments on ImageNet (Fig. 18
and 19), CIFAR-10 (Fig. 20 and 21), and CIFAR-100 (Fig. 22 and 23). Specifically, we report the test power and Type-I
error rates of various methods for detecting adversarial samples in batches. Each test batch consists of 50 clean or adversarial
samples. Fig. 17 demonstrate the impact of the number of TST samples and the holdout size on the performance of our
proposed TPSAMMD method in CLIP-RN50 in ImageNet dataset. We can clearly see that our method can perform well
even with |Z| slightly more than 1000 samples.

Notably, this setting is significantly more challenging than existing works (Gao et al., 2021), which use test batches of size
500, at which TPSAMMD constantly achieve test power of 1.0 (Fig. 17). As a result, several methods, such as ME and SCF,
perform considerably worse than previously reported. We chose this more demanding setting because the state-of-the-art
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method, SAMMD, already achieves 100% test power with 500-sample batches. By reducing the batch size to 50, we
emphasize the advantages of our topological features in a more challenging scenario.

The results demonstrate that SAMMD-related methods achieve highly competitive test power across a wide range of
models and attack methods. This outcome aligns with previous findings in unimodal settings (Gao et al., 2021). This
consistency motivated us to integrate our topological features into SAMMD, showcasing the advantages of our approach in
practical scenarios. As shown, TPSAMMD consistently performs as well as or better than SAMMD in nearly all settings,
particularly against PGD and AA attacks and within more complex Vision Transformer models. On the other hand, although
MKSAMMD performs slightly worse than TPSAMMD, it still offers improvements over SAMMD in many configurations.

The code used in this study is currently under review for release by the organization. We are awaiting approval, and once
granted, the code will be made publicly available.

Figure 17. Test power of TPSAMMD in CLIP-RN50 with FGSM and PGD with different hold-out dataset sizes and different TST test
size.
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Figure 18. Test power of different methods in detecting ImageNet’s adversaries.

Figure 19. Type-I error of different methods in detecting ImageNet’s adversaries.

22



Topological Signatures of Adversaries in Multimodal Alignments

Figure 20. Test power of different methods in detecting CIFAR10’s adversaries.

Figure 21. Type-I error of different methods in detecting CIFAR10’s adversaries.

Figure 22. Test power of different methods in detecting CIFAR100’s adversaries.
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Figure 23. Type-I error of different methods in detecting CIFAR100’s adversaries.
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