
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PACA: PARTIAL CONNECTION ADAPTATION
FOR EFFICIENT FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prior parameter-efficient fine-tuning (PEFT) algorithms reduce memory usage and
computational costs of fine-tuning large neural network models by training only
a few additional adapter parameters, rather than the entire model. However, the
reduction in computational costs due to PEFT does not necessarily translate to a
reduction in training time; although the computational costs of the adapter lay-
ers are much smaller than the pretrained layers, it is well known that those two
types of layers are processed sequentially on GPUs, resulting in significant la-
tency overhead. LoRA and its variants avoid this latency overhead by merging
the low-rank adapter matrices with the pretrained weights during inference. How-
ever, those layers cannot be merged during training since the pretrained weights
must remain frozen while the low-rank adapter matrices are updated continuously
over the course of training. Furthermore, LoRA and its variants do not reduce
activation memory, as the first low-rank adapter matrix still requires the input
activations to the pretrained weights to compute weight gradients. To mitigate
this issue, we propose Partial Connection Adaptation (PaCA), which fine-tunes
randomly selected partial connections within the pretrained weights instead of in-
troducing adapter layers in the model. PaCA not only enhances training speed
by eliminating the time overhead due to the sequential processing of the adapter
and pretrained layers but also reduces activation memory since only partial acti-
vations, rather than full activations, need to be stored for gradient computation.
Compared to LoRA, PaCA reduces training time by 22% and total memory us-
age by 16%, while maintaining comparable accuracy across various fine-tuning
scenarios, such as fine-tuning on the MMLU dataset and instruction tuning on
the Oasst1 dataset. PaCA can also be combined with quantization, enabling the
fine-tuning of large models such as LLaMA3.1-70B. In addition, PaCA enables
training on 23% longer sequence data and improves throughput by 16% on both
NVIDIA A100 and INTEL Gaudi 2 GPUs compared to LoRA. The code is avail-
able at https://anonymous.4open.science/r/paca-366F.

1 INTRODUCTION

Following the scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), the size of language models
based on the transformer architecture (Vaswani et al., 2017) has grown significantly in recent years.
Large Language Models (LLMs) such as GPT4 (OpenAI, 2023) and LLaMA 3 (Dubey et al., 2024)
have achieved remarkable abilities across a wide range of general tasks. Furthermore, the capabili-
ties of LLMs can be refined for specific purposes, either by creating models specialized for specific
tasks through fine-tuning (Singhal et al., 2023) or by developing chatbots that better understand user
queries through instruction tuning (Wei et al., 2022; Taori et al., 2023). However, fine-tuning LLMs
consumes significant computational power and memory, making it impossible to perform without a
large number of expensive GPUs.

Parameter-efficient fine-tuning (PEFT) (Li & Liang, 2021; Houlsby et al., 2019; He et al., 2022) is a
set of methods to relieve the high costs of fine-tuning large models. Prior PEFT schemes introduce
new adapter layers with significantly fewer parameters to a pretrained model and only train these
newly introduced adapter layers, substantially reducing the memory needed to store gradients and
optimizer states. Furthermore, PEFT can reduce the computational overhead of fine-tuning, as it

1

https://anonymous.4open.science/r/paca-366F

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of Partial Connections Adaptation (PaCA) algorithm.

needs to calculate the parameter gradients only for the adapter weights, rather than for all model
parameters.

However, we observed that the reduction in computational cost due to PEFT does not translate into
a significant decrease in actual training time. This issue arises from the fact that the adapter layers
are typically processed sequentially with the pretrained layers since GPUs are generally optimized
for processing one kernel at a time. This sequential processing limits the full utilization of hardware
resources and incurs significant latency overhead, even though the number of FLOPs of the adapter
layers is significantly smaller than that of the pretrained layers. While some software tools such as
CUDA streams could be used to process the adapter layers in parallel by executing multiple kernels
simultaneously, it suffers from the overhead of managing and synchronizing the streams (Wang
et al., 2016; Dai et al., 2018; Han et al., 2022).

LoRA (Hu et al., 2022) and its variants (Kopiczko et al., 2024; Liu et al., 2024; Wu et al., 2024)
avoid this latency overhead by merging the low-rank adapter matrices and the pretrained weights
to eliminate the need for sequential processing during inference. However, this approach cannot be
applied to fine-tuning since the low-rank adapter matrices need to be trained separately from the
frozen pretrained weights, making the overhead from sequential processing unavoidable. Further-
more, LoRA and its variants do not reduce activation memory compared to Full-FT, since the input
activations of the pretrained weights still need to be stored in memory to calculate the gradients for
the first low-rank adapter matrix.

In this paper, we propose PaCA (Partial Connection Adaptation), which fine-tunes randomly se-
lected partial connections in the pretrained weights without relying on adapter layers, as depicted in
Fig. 1. Unlike prior PEFT schemes, PaCA successfully reduces training time since the forward and
backward operations for the pretrained weights also include those for the partial connections, elimi-
nating the need for additional sequential processing. Furthermore, since calculating the gradients for
the partial weights only requires the corresponding activations, PaCA significantly reduces activa-
tion memory usage as well. We first theoretically show that PaCA can effectively converge the loss
in general neural networks. In experiments with various scenarios, PaCA demonstrates substantial
reductions in both training time and memory compared to prior PEFT schemes while maintaining
comparable accuracy on NVIDIA A100 (Choquette et al., 2021) and Intel Gaudi 2 GPUs (Intel
Corporation, 2023). In summary, our contributions are as follows:

• We propose PaCA, a memory-efficient PEFT algorithm that fine-tunes randomly selected
partial connections within pretrianed weights without using additional adapter layers.

• We theoretically prove that PaCA can converge the loss in general neural networks.

• We experimentally show that PaCA effectively reduces memory consumption and improves
training speed compared to prior PEFT algorithms across various fine-tuning scenarios on
different types of GPUs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND & MOTIVATION

In general, training deep neural networks involves backpropagation (Rumelhart et al., 1986), which
facilitates the adaptation of the model in the direction that minimizes the loss function. The equations
below show the backpropagation algorithm for a linear layer:

Forward: Xout = WXin (1)

Backward: ∇Xin = WT∇Xout (2)

∇W = ∇Xout XT
in (3)

where W ∈ Rdout×din , Xin ∈ Rdin , and Xout ∈ Rdout denote the weights, input activations, and
output activations, respectively, with din and dout denoting the input and output dimensions of the
layer. ∇W and ∇Xin represent the weight gradients and input gradients. The forward propagation
computes the output activations following Eq. 1, while the backward propagation computes the
input gradients (Eq. 2) and the weight gradients (Eq. 3).

Full-FT trains all layers using backpropagation, performing the operations described in Eqs. 1-3 for
each layer. Consequently, Full-FT incurs significant memory overhead due to storing the gradients
and optimizer states for all parameters. To lower this overhead, various PEFT schemes have been
introduced. For instance, the training scheme of LoRA (Hu et al., 2022), a representative PEFT
algorithm, is represented as the equations below:

Forward: Xout = WXin + B(AXin) (4)

Backward: ∇Xin = WT∇Xout + AT (BT∇Xout) (5)

∇B = ∇Xout XT
mid , ∇A = ∇Xmid XT

in (6)

where B ∈ Rdout×r and A ∈ Rr×din represent the low-rank adapter matrices in LoRA, with r
denoting the rank of the adapter. Xmid ∈ Rr represents the output activations after propagating
through the LoRA A layer (i.e., Xmid = AXin). In Eqs. 4-6, we have highlighted the computations
involving adapter weights in blue. Compared to Full-FT, prior PEFT schemes introduce two key
changes: 1) computations for the adapters are added in forward and backward propagations (Eqs.
4-5), and 2) only the adapters are trained, excluding the pretrained weights (Eq. 6). Since the
computational cost of the adapters in PEFT is typically negligible compared to that of the pretrained
layers (Li & Liang, 2021; Houlsby et al., 2019; He et al., 2022; Hu et al., 2022), PEFT can reduce
the overall computational cost of training by eliminating the need to compute parameter gradients
for the pretrained weights.

For more detailed analysis, we calculate FLOPs and measure training time when fine-tuning the
LLaMA3-8B model using Full-FT and LoRA. Experimental results show that the operation count
of LoRA is approximately 33% lower than Full-FT (Fig. 2a). However, the saving in actual training
time is only 0.6%, as displayed in Fig. 2b, which is far below the expected 33% decrease. To
investigate this discrepancy, we analyzed the computational cost for both forward and backward
propagation, as well as the actual training time.

One interesting finding is that the time required for forward propagation in LoRA increased by 33%
compared to Full-FT, despite requiring a similar number of operations, as shown in Fig. 2b. This
latency overhead is due to the inefficient sequential processing of the pretrained and adapter layers,
as reported by Hu et al. (2022). More specifically, the operations associated with the adapter layers
are conventionally executed in a sequential manner, rather than in parallel with the pretrained layers,
as GPUs are typically designed to execute a single kernel at a time. Although parallel execution of
the adapter layers may be feasible using CUDA streams, which allow multiple kernels to run con-
currently, these methods introduce additional overhead of resource allocation and synchronization
between streams (Wang et al., 2016; Dai et al., 2018; Han et al., 2022).

This sequential processing of the adapter and pretrained layers negatively impacts hardware utiliza-
tion and incurs latency overhead, despite the fact that the computational cost of the adapter layers

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Operations per iteration. (b) Training time per iteration.

Figure 2: The number of operations (TFLOPs) and training time (ms) per iteration when training
LLaMA3-8B with full-fine tuning (Full-FT) and LoRA.

accounts for only approximately 1% of that of the pretrained layers. This latency overhead could
be mitigated by merging the low-rank adapter matrices into the pretrained weights during inference
(Hu et al., 2022). However, during fine-tuning, where the pretrained weights must remain frozen
and only the adapter weights are updated separately, such merging is not possible and the latency
overhead from sequential processing remains.

Furthermore, LoRA and its variants are unable to reduce the activation memory. In Full-FT, all
input activations (Xin) must be stored in memory during forward propagation in order to calculate
the gradients of the pretrained weights (∇W) in backward propagation, as shown in Eq. 3. Although
LoRA does not require the computation of gradients for the pretrained weights, the input activations
(Xin) must still be stored in memory to calculate the gradients for the LoRA A layer (∇A), as
indicated in Eq. 6. Additionally, the output activations of the LoRA A layer (Xmid) must be stored
in memory to calculate the gradients for the LoRA B layer (∇B) following Eq. 6. This issue with
activation memory becomes more critical when training on long sequence data or increasing batch
size to improve training throughput (Chen et al., 2023; Korthikanti et al., 2023; Woo et al., 2024).

3 METHODOLOGY

3.1 PACA: PARTIAL CONNECTION ADAPTATION

Motivated by the observation that the newly introduced adapter layers lead to training inefficiencies,
we propose Partial Connection Adaptation (PaCA). PaCA fine-tunes randomly selected partial con-
nections within the pretrained weights rather than introducing new adapter layers, as depicted in Fig.
1. More specifically, PaCA employs the training algorithm below:

Forward: Xout = WXin (7)

Backward: ∇Xin = WT∇Xout (8)

∇P = ∇Xout
pXT

in (9)

where P ∈ Rdout×r and pXin ∈ Rr denote the partial connections randomly selected from the
pretrained weights (i.e., P ⊂ W) and the corresponding partial activations selected from the in-
put activations (i.e., pXin ⊂ Xin), respectively. r represents the number of the randomly selected
columns within the pretrained weights, which we refer to rank when PaCA is applied. The opera-
tions involving partial connections are highlighted in red.

PaCA randomly selects the partial connections to fine-tune from the pretrained weights before train-
ing and then fine-tunes only the selected connections. Since these partial connections are part of
the pretrained weights, no additional computations are required in forward and backward computa-
tions (Eqs. 7-8), completely avoiding inefficient sequential processing due to the adapter layers in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LoRA. In addition, while LoRA requires both the input activations (Xin) and the output activations
of the LoRA A layer (Xmid) to calculate gradients for the low-rank adapter matrices (Eq. 6), PaCA
only needs to store the partial activations (pXin) to calculate the gradients of the partial connections
(∇P), significantly reducing the amount of activation to be temporarily stored in memory.

We calculated the FLOPs and measured the training time required for fine-tuning the LLaMA3-8B
model using PaCA to demonstrate its effectiveness (see Table 8 in Appendix C for experiment de-
tails), and the results are summarized in Fig. 2. Experimental results indicate that PaCA provides
a 19% reduction in total training time compared to LoRA, by reducing forward propagation time
by 18% and backward propagation time by 20%, achieved through avoiding additional sequential
processing. One interesting observation is that while the FLOPs required for forward and backward
propagation in PaCA are nearly identical, the actual runtime for backward propagation is 17% longer
than forward propagation. We hypothesize that, even though the computation of weight gradients
for partial connections (Eq. 9) is significantly smaller than that for the pretrained weights, it occurs
sequentially with the input gradient computation (Eq. 8) during backward propagation. This sequen-
tial processing introduces additional latency compared to forward propagation, which only involves
the computation of output activations (Eq. 1). It should be noted that this latency overhead is not
a specific overhead introduced by PaCA, but rather an inherent issue in all backpropagation-based
training algorithms including Full-FT and prior PEFT algorithms, which must compute both input
gradients and weight gradients.

Intuitively, training only a subset of connections can be interpreted as learning within a subspace
composed of the selected connections. Prior studies revealed that overparameterized models can be
efficiently trained even when weights are projected onto a small subspace (Li et al., 2018; Agha-
janyan et al., 2021). Similarly, LoRA Hu et al. (2022) was suggested based on the assumption that
weight updates can be projected onto a small low-rank subspace. Inspired by these observations, we
hypothesized that weight updates could also be projected onto a small subspace composed of a sub-
set of weight columns. In other words, we assumed that the critical factor is learning within a small
subspace, not the method of selecting the subspace itself. Here we prove that training only a subset
of connections is sufficient to ensure the convergence of loss in neural networks, as demonstrated in
Section 3.2.

3.2 CONVERGENCE ANALYSIS OF PACA

In Section 3.1, we proposed PaCA and demonstrated its effectiveness. Now we theoretically prove
that PaCA converges for general neural networks. We first define the input at the k-th iteration
as Xk and the full set of weights as Wk = [Wk

1 ,Wk
2 , . . . ,Wk

n], where n denotes the number of
layers. The loss of the model is defined as f(Xk,Wk). The weight of the l-th layer Wk

l can be
represented as a collection of column vectors (i.e., Wk

l = [1wk
l , 2wk

l , . . . , dl
wk

l]). In PaCA, we
only fine-tune randomly selected columns Pk

l = [i1wk
l , i2wk

l , . . . , irWk
l] where i1, . . . , ir denote the

selected column indices for PaCA. The weights are then updated as follows:

Full-FT: Wk+1
l = Wk

l − η∇Wk
l = Wk

l − η[∇1wk
l ,∇2wk

l , . . . ,∇dl
wk

l] (10)

PaCA: Wk+1
l = Wk

l − η∆Wk
l = Wk

l − η[0,∇i1wk
l , . . . ,∇irwk

l , . . . 0] (11)

where η denotes learning rate and ∆Wk
l denotes weight updates. In this scenario, we define the

full set of partial connections within the model as Pk = [Pk
1 ,Pk

2 , . . . ,Pk
n]. Then, PaCA satisfies the

following theorem:
Theorem 1. If the gradient of the loss function f(W,X) is Lipschitz continuous and the only partial
connections are updated, then

f(Wk+1,Xk+1) ≤ f(Wk,Xk)− η(1− ηL

2
)||∇Pk||2

We prove Theorem 1 by applying Eq. 11 to the quadratic upper bound using Lipschitz continuity
condition (i.e., f(Wk+1,Xk+1) ≤ f(Wk,Xk) +∇Wkf(Wk,Xk)(Wk+1 − Wk)T + L/2||Wk+1 −
Wk||2) where L denotes the Lipschitz constant. The detailed proof can be found in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 1 implies that as long as the learning rate η is chosen to satisfy the condition 0 < η < 2/L,
the loss function f(W,X) will decrease after each iteration, ensuring convergence of the neural
network.

4 EXPERIMENTS

To verify the effectiveness of PaCA, here we evaluate its performance in various fine-tuning scenar-
ios. Section 4.1 first compares the accuracy and performance of PaCA with other PEFT algorithms,
such as LoRA (Hu et al., 2022), DoRA (Liu et al., 2024), and MosLoRA (Wu et al., 2024), when fine-
tuning the LLaMA2-7B/13B (Touvron et al., 2023) and LLaMA3-8B (Dubey et al., 2024) models
on the MMLU dataset (Hendrycks et al., 2021). In Section 4.2, we observe the instruction-following
ability on the MT-Bench dataset (Zheng et al., 2023) after fine-tuning the LLaMA3-8B model with
PaCA and the LoRA family on the Oasst1 dataset (Köpf et al., 2023). In Section 4.3, we compare
the performance and score of our quantized PaCA (QPaCA) with QLoRA (Dettmers et al., 2023)
on the MT-Bench (Zheng et al., 2023) dataset while fine-tuning the LLaMA3.1-70B (Dubey et al.,
2024) model on the Oasst1 dataset. Section 4.4 analyzes the ability of PaCA and the LoRA family
to handle long sequence data and the training throughput when increasing the batch size, using both
a single NVIDIA A100 (Choquette et al., 2021) and Intel Gaudi 2 GPU (Intel Corporation, 2023).
In addition, we tested PaCA on different model architectures such as the vision transformer (ViT
(Dosovitskiy et al., 2021)) and convolutional neural network (EfficientNet-V2 (Tan & Le, 2021)) for
demonstrating generalizability of PaCA in Appendix B

4.1 FINE-TUNING FOR SPECIFIC TASKS

We first compared PaCA against LoRA, DoRA, and MosLoRA using the MMLU dataset, which
consists of 57 tasks designed to assess the ability of a model to understand and reason across a wide
range of academic subjects (Hendrycks et al., 2021). The evaluation was conducted on the LLaMA2-
7B/13B and LLaMA3-8B models, with the rank of the prior PEFT methods set to 8. We employ
PaCA with a rank of 8 and 16, each representing the case where the rank is equal to that of prior
PEFT methods and where the number of trainable parameters is identical. Aside from adjusting the
learning rate for each PEFT model, all other experimental settings remained identical, as detailed in
Table 9 in Appendix C. All experiments were conducted on a single NVIDIA A100 GPU.

Table 1: Comparisons of memory usage (Mem), training time (Time), and 5-shot accuracy on
MMLU dataset when fine-tuning LLaMA2-7B/13B and LLaMA3-8B models using various PEFT
algorithms. Param indicates the number of trainable parameters.

Model Method Rank Param Mem Time
Accuracy (%)

Hums. STEM Social. Other Avg.

LLaMA2-7B

No tuning - - - - 44.0 37.0 51.5 53.1 45.9
LoRA 8 20M 23G 4.1h 48.5 41.2 57.3 56.5 50.6
DoRA 8 21M 29G 8.7h 48.7 42.3 58.3 57.6 51.3

MosLoRA 8 20M 23G 4.3h 46.6 42.2 60.8 57.4 51.1
8 11M 20G 3.2h 46.8 41.1 58.4 57.3 50.4PaCA (Ours)

16 22M 20G 3.2h 48.7 41.7 58.7 57.6 51.2

LLaMA2-13B

No tuning - - - - 53.1 44.2 62.8 60.8 54.9
LoRA 8 31M 40G 6.3h 53.9 46.2 66.8 62.9 57.0
DoRA 8 33M 49G 14.7h 55.6 46.8 66.7 64.8 58.1

MosLoRA 8 31M 40G 6.5h 56.5 47.3 66.1 62.8 57.9
8 17M 35G 5.2h 52.7 46.2 67.1 63.4 56.8PaCA (Ours)

16 34M 35G 5.2h 56.0 46.7 66.3 64.0 58.0

LLaMA3-8B

No tuning - - - - 59.3 55.3 75.7 72.7 64.9
LoRA 8 21M 27G 4.4h 59.4 56.3 75.4 71.9 65.0
DoRA 8 22M 33G 9.4h 59.4 56.3 75.7 72.2 65.2

MosLoRA 8 21M 27G 4.6h 59.8 55.9 75.7 72.0 65.1
8 11M 23G 3.5h 59.7 55.7 76.0 72.3 65.2PaCA (Ours)

16 22M 23G 3.5h 60.2 55.9 75.8 72.6 65.4

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The experimental results in Table 1 demonstrate that PaCA significantly reduces both memory usage
and training time across all models, while maintaining accuracy comparable to the other PEFT
algorithms. For the LLaMA2-7B model, PaCA achieves accuracy similar to LoRA when the rank
is set to 8, despite using only half the number of trainable parameters, reducing memory usage by
13% and training time by 26% simultaneously. In this configuration, the accuracy of PaCA drops by
up to 0.9% compared to LoRA variants such as DoRA and MosLoRA. However, when the rank of
PaCA is increased to 16, matching the number of trainable parameters with DoRA and MosLoRA,
PaCA achieves almost identical accuracy to DoRA and MosLoRA while still offering considerable
reductions in memory usage and training time. Specifically, PaCA reduces memory usage by 31%
and training time by 63% compared to DoRA, while offering a 13% reduction in memory usage and
a 26% reduction in training time compared to MosLoRA.

A similar trend is observed in both LLaMA2-13B and LLaMA3-8B, where PaCA continues to
show substantial reductions in memory usage and training time. On LLaMA2-13B, PaCA achieves
comparable accuracy to the LoRA variants while reducing memory usage by 13%, 29%, and 13%,
and training time by 17%, 64%, and 20%, compared to LoRA, DoRA, and MosLoRA, respectively.
In LLaMA3-8B, PaCA consumes the least memory and training time among LoRA and its variants,
while achieving the highest accuracy. In summary, PaCA successfully improves training speed by
eliminating unnecessary sequential processes and reduces memory usage by storing only partial
activations, while maintaining comparable accuracy in fine-tuning scenarios on specific tasks.

4.2 INSTRUCTION TUNING

We next evaluate PaCA on the MT-Bench dataset, which consists of 80 queries designed to measure
the instruction-following capabilities of a model across multiple tasks, providing a detailed assess-
ment of its performance in real-world scenarios (Zheng et al., 2023). Specifically, we fine-tuned
LLaMA3-8B using a single NVIDIA A100 GPU on the Oasst1 dataset, which is an instruction-
following dataset, and then evaluated the score on the MT-Bench dataset using GPT4o-mini as the
judge. The detailed setup can be found in Table 10 in Appendix C.

Table 2: Comparisons of memory usage (Mem), training time (Time), and score on MT-Bench
dataset when fine-tuning LLaMA3-8B on Oasst1 dataset using various PEFT algorithms.

Method Rank Mem Time Human. STEM Role. Extract. Writing Reason. Coding Math Avg.

No tuning - - - 6.25 5.70 5.45 4.85 5.20 4.40 3.20 1.95 4.62
LoRA 64 56G 26m 7.00 6.40 5.70 5.80 5.30 4.55 3.25 2.95 5.12
DoRA 64 65G 50m 6.95 6.00 5.90 5.80 6.20 4.50 3.50 3.40 5.28

MosLoRA 64 56G 27m 6.90 6.50 5.80 5.70 5.55 4.90 3.10 2.75 5.15
64 47G 21m 6.50 6.30 5.90 5.95 5.65 4.80 3.70 3.05 5.23PaCA (Ours)

128 51G 21m 6.80 6.15 6.05 5.95 5.85 4.65 3.45 3.15 5.26

Table 2 confirms that PaCA significantly reduces memory usage and training time compared to other
PEFT methods while maintaining comparable scores, consistent with the results observed when
fine-tuning it on the MMLU dataset. Specifically, our PaCA outperforms LoRA and MosLoRA
with 16% less memory usage and 19% shorter training time. Furthermore, PaCA reduces memory
usage by 28% and training time by 58% compared to DoRA, while achieving comparable scores.
One interesting observation is that the memory usage of PaCA increases by approximately 4GB
when the rank is raised from 64 to 128, whereas the memory usage remains almost unchanged when
increasing the rank from 8 to 16 in Section 4.1. This is because a higher rank requires more optimizer
state memory and activation memory for fine-tuning the partial connections.

4.3 QPACA: ENHANCEMENTS TO QLORA

While PEFT significantly reduces the memory required for gradients and optimizer states, the model
weights must be loaded onto the GPU, which consumes a significant amount of memory, especially
when training large models. For example, loading the weights of LLaMA3.1-70B requires 140GB of
memory, making it impossible to fine-tune using a single NVIDIA A100 GPU. To address this issue,
QLoRA (Dettmers et al., 2023) quantizes the pretrained weights to 4 bits to further reduce memory
usage and trains only the 16-bit adapter layers, enabling the fine-tuning of LLaMA3.1-70B on a
single NVIDIA A100 GPU. This approach can be extended to PaCA by quantizing the unselected

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparisons of memory usage (Mem), training time (Time), and score on MT-Bench
dataset when fine-tuning LLaMA3-8B and LLaMA3.1-70B on Oasst1 dataset using QLoRA and
QPaCA. No tuning and Quantized in the table refer to the models in 16-bit precision without quan-
tization and with 4-bit NormalFloat Quantization (NF), respectively, without fine-tuning.

Model Method Mem Time Hums. STEM Role. Extract. Writing Reason. Coding Math Avg.

LLaMA3
-8B

No tuning - - 6.25 5.70 5.45 4.85 5.20 4.40 3.20 1.95 4.62
Quantized - - 4.70 4.80 4.60 5.00 4.65 4.05 3.60 1.85 4.16
QLoRA 18G 42m 6.85 5.75 5.85 6.00 5.15 4.70 3.35 2.35 5.00
QPaCA 16G 37m 6.85 5.95 5.65 5.60 5.15 4.05 3.65 3.25 5.02

LLaMA3.1
-70B

Quantized - - 7.40 7.05 5.85 6.50 6.85 5.30 4.60 3.80 5.92
QLoRA 80G 5.1h 7.40 6.85 6.55 7.20 6.55 5.65 4.75 3.80 6.09
QPaCA 69G 4.7h 7.70 7.40 6.40 6.80 6.50 5.40 4.75 3.70 6.08

connections within the pretrained weights to 4 bits, while fine-tuning only the 16-bit randomly
selected partial connections. We named this algorithm Quantized Partial Connection Adaptation
(QPaCA) and compared it with QLoRA when fine-tuning LLaMA3-8B and LLaMA3.1-70B on the
Oasst1 dataset using a single NVIDIA A100 GPU. Following Section 4.2, we evaluated the score
on the MT-Bench dataset, using GPT4o-mini as the judge. Further details can be found in Table 11
in Appendix C.

Experimental results demonstrate that QPaCA reduces both memory usage and training time com-
pared to QLoRA, as displayed in Table 3. Specifically, on the LLaMA3-8B model, QPaCA not only
achieved higher scores than the model quantized in the NF4 format, but also outperformed the 16-bit
baseline, similar to QLoRA. Furthermore, QLoRA achieved an 11% reduction in memory usage and
a 12% reduction in training time compared to QPaCA.

In addition, even on a larger scale model, LLaMA3.1-70B, QPaCA successfully reduces memory
usage by 14% and training time by 8% with almost no drop in score compared to QLoRA and higher
scores than the NF4 quantized model without fine-tuning on the MT-Bench dataset. This training
time reduction is relatively smaller than when comparing PaCA with LoRA in previous sections,
and this is due to the time overheads of additional quantization and dequantization processes, which
cannot be reduced by training only partial connections, unlike the forward and backward propaga-
tions.

4.4 USABILITY OF PACA

Table 4: Max sequence length for fine-tuning LLaMA3-8B using vaious PEFT algorithms on a
single NVIDIA A100 GPU.

Method LoRA DoRA MosLoRA PaCA (Ours)

Max Length 8.0K 4.7K 8.0K 9.8K

In this section, we evaluate the usability of PaCA by measuring its training performance in different
scenarios. We first increase the sequence length of the data while fine-tuning the LLaMA3-8B model
with each PEFT method until an out-of-memory (OOM) error occurs, and the maximum sequence
length is displayed in Table 4. For a fair comparison, all other conditions, such as batch size and
rank, were kept constant, except for the sequence length, as detailed in Table 12 in Appendix C. We
found that PaCA increased the maximum sequence length by 23%, 108%, and 23% compared to
LoRA, DoRA, and MosLoRA, respectively, by storing only partial activations instead of all input
activations.

Next, we evaluate the training throughput improvements achieved by PaCA compared to LoRA
and its variants as the batch size increases when fine-tuning LLaMA3-8B using a single NVIDIA
A100 GPU and Intel Gaudi 2 GPU. Specifically, we kept all configurations identical except for the
batch size as presented in Table 13 in Appendix C, and measured the throughput as the batch size
increased for each PEFT method until an OOM error occurred. As shown in Fig. 3, PaCA demon-
strated the ability to increase the batch size by 33% on the NVIDIA A100 GPU and 21% on the
Intel Gaudi 2 GPU compared to LoRA and its variants, primarily due to its reduction of activation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Throughput in a single A100 GPU. (b) Throughput in a single Gaudi-v2 GPU.

Figure 3: Training throughput (sentences/s) on a single NVIDIA A100 GPU and INTEL Gaudi 2
GPU when fine-tuning LLaMA3-8B with a sequence length of 512.

memory. This reduction allows PaCA to handle larger batch sizes, which directly leads to better
resource utilization and improves scalability. In addition, at the same batch size, PaCA consistently
achieved higher training throughput compared to LoRA and its variants, as PaCA eliminates inef-
ficient sequential processing introduced by adapter layers, allowing for higher hardware utilization.
Consequently, PaCA outperformed LoRA, achieving a throughput of 10.36 sentences/s on A100 and
15.5 sentences/s on Gaudi 2, representing a 16% improvement for both GPUs.

5 EFFECT OF SELECTION STRATEGY

In this section, we explore alternative strategies for selecting connections in PaCA and evaluate their
effectiveness beyond the random selection approach. We tested two selection schemes that consider
the importance of each column. A weight-based strategy selects the columns with the highest L2-
Norm from the initial pretrained weights, whereas a gradient-based strategy accumulates gradients
during the first 100 iterations without updating weights (i.e., Gi =

∑
t ∥gti∥2, where i is the number

of layers and t is the accumulation step) and selects columns with the largest accumulated gradients.
Experimental results are displayed in the table below.

Table 5: Test score on MT-Bench dataset when fine-tuning LLaMA3-8B with PaCA using various
connection selecting strategy on Oasst1 dataset.

Method Human. STEM Role. Extract. Writing Reason. Coding Math Avg.

No tuning 6.25 5.70 5.45 4.85 5.20 4.40 3.20 1.95 4.62
Random (Seed #1) 6.50 6.30 5.90 5.95 5.65 4.8 3.7 3.05 5.23
Random (Seed #2) 6.50 6.00 6.30 5.90 5.70 4.90 3.80 3.00 5.26

Weight-based 7.00 5.70 6.05 5.80 5.70 4.55 3.90 2.70 5.18
Gradient-based 6.95 6.40 6.25 5.35 5.95 4.55 3.80 2.70 5.24

Table 5 demonstrates that random selection achieves similar performance to importance-based selec-
tion schemes. In other words, the choice of selection strategy does not noticeably affect fine-tuning
accuracy. Therefore, we chose to select connections randomly in PaCA, as this strategy eliminates
the need for complex processes to measure the importance of connections, thereby minimizing train-
ing time or memory overhead without performance degradation.

6 RELATED WORK

Parameter-efficient fine-tuning (PEFT) Fine-tuning LLMs requires significant memory re-
sources to store parameter gradients and optimizer states. PEFT algorithms address this challenge
by introducing adapter layers with far fewer parameters than the pretrained models, significantly
reducing the memory required for parameter gradients and optimizer states by fine-tuning only the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

adapter layers. PEFT methods can generally be categorized into three groups: Adapter-based meth-
ods (Li & Liang, 2021; Houlsby et al., 2019; He et al., 2022), Prompt-based methods (Lester et al.,
2021; Razdaibiedina et al., 2023; Wang et al., 2023; Zhang et al., 2024; Gao et al., 2023), and LoRA
and its variants (Hu et al., 2022; Kopiczko et al., 2024; Liu et al., 2024; Wu et al., 2024). Adapter-
based methods introduce new trainable adapter weights to the pretrained models. For example,
Houlsby et al. (2019) adds adapter layers as linear modules in series with the existing model, while
He et al. (2022) inserts adapter modules in parallel with the pretrained model. Secondly, Prompt-
based methods inject new trainable prompt vectors into the model. Specifically, LLaMA-Adapter
(Zhang et al., 2024; Gao et al., 2023) introduces prompts into the upper layers of the transformer,
enabling the model to incorporate diverse knowledge. Although these approaches enable efficient
fine-tuning with smaller trainable parameters, they introduce latency overhead during inference due
to the sequential processing of the adapter layers and the pretrained model.

The third category of PEFT methods is LoRA and its variants. LoRA (Hu et al., 2022) introduces
low-rank matrices as adapters to approximate weight gradients during fine-tuning, then merges these
low-rank matrices with the pretrained weights, effectively eliminating inference overhead. VeRA
(Kopiczko et al., 2024) takes this approach further by freezing the low-rank matrices and shar-
ing them across layers, while only learning the scaling vectors for each layer, which significantly
reduces the number of trainable parameters. DoRA (Liu et al., 2024) improves upon LoRA by con-
sidering both the magnitude and direction of gradients through weight decomposition, leading to
higher accuracy compared to LoRA. MosLoRA (Wu et al., 2024) enhances LoRA by introducing a
learnable mixer between the two low-rank matrices, improving its capabilities. Even though LoRA
and its variants can remove latency overhead by merging the adapter weights with the pretrained
weights during inference, latency overhead persists during fine-tuning, as merging the weights is not
feasible at this stage.

PEFT with Quantization Quantization (Dettmers et al., 2022; Frantar et al., 2022; Lin et al.,
2024; Frantar et al., 2023) is a technique that reduces memory usage and computational complexity
by representing weights or activations in low precision. This method can also be combined with
PEFT to reduce memory usage during fine-tuning (Kwon et al., 2022; Dettmers et al., 2023; Xu
et al., 2024). For instance, QLoRA (Dettmers et al., 2023) compresses pretrained weights to 4
bits and trains only the low-rank adapter matrices represented in 16 bits, significantly reducing the
memory required to load the model. Additionally, QA-LoRA (Xu et al., 2024) integrates the low-
rank adapter matrices with the zero point in quantization, enabling the direct generation of a 4-bit
quantized model after fine-tuning. While those quantized-PEFT approaches reduce memory usage
for fine-tuning, the sequential processes introduced by the adapter layers still cause training time
overhead.

7 CONCLUSION

In this work, we propose PaCA, a memory-efficient PEFT algorithm that fine-tunes randomly se-
lected partial connections within the pretrained weights without employing additional adapter lay-
ers. By removing the sequential processing overhead associated with the adapters in prior PEFT
schemes, PaCA significantly improves hardware utilization and training speed. In addition, PaCA
reduces activation memory by only storing partial activations instead of all input activations. We the-
oretically prove that PaCA can successfully converge in general deep neural networks. Moreover, in
experiments, PaCA consistently outperforms LoRA and its variants in training performance while
maintaining comparable accuracy across various fine-tuning scenarios. We also show that PaCA can
be applied simultaneously with quantization. Finally, we demonstrate the effectiveness of PaCA in
scenarios involving long sequence data or when maximizing throughput in resource-constrained en-
vironments. For future work, we aim to develop methods for identifying optimal partial connections
in PaCA, rather than relying on random selection, to further enhance fine-tuning accuracy.

REPRODUCIBILITY

We introduce PaCA and provide a detailed explanation of its concept and potential in Section 3.1,
and prove its theoretical convergence in Section 3.2. In addition, the setup and hyperparameters
are thoroughly explained in Section 4 and Appendix C. Furthermore, we have implemented PaCA

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

using PyTorch (Paszke et al., 2019), a widely used deep learning framework, and integrated it into
the PEFT library in Huggingface (Wolf et al., 2019) to ensure easy reproducibility.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and
Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp. 7319–7328.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.ACL-LONG.568. URL
https://doi.org/10.18653/v1/2021.acl-long.568.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 736–
745. PMLR, 2020. URL http://proceedings.mlr.press/v119/belilovsky20a.
html.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W. Mahoney,
and Joseph Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation com-
pressed training. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 1803–1813. PMLR, 2021. URL
http://proceedings.mlr.press/v139/chen21z.html.

Joya Chen, Kai Xu, Yuhui Wang, Yifei Cheng, and Angela Yao. Dropit: Dropping intermediate
tensors for memory-efficient DNN training. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=Kn6i2BZW69w.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. NVIDIA
A100 tensor core GPU: performance and innovation. IEEE Micro, 41(2):29–35, 2021. doi:
10.1109/MM.2021.3061394. URL https://doi.org/10.1109/MM.2021.3061394.

Hongwen Dai, Zhen Lin, Chao Li, Chen Zhao, Fei Wang, Nanning Zheng, and Huiyang Zhou. Ac-
celerate gpu concurrent kernel execution by mitigating memory pipeline stalls. In 2018 IEEE in-
ternational symposium on high performance computer architecture (HPCA), pp. 208–220. IEEE,
2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix mul-
tiplication for transformers at scale. CoRR, abs/2208.07339, 2022. doi: 10.48550/ARXIV.2208.
07339. URL https://doi.org/10.48550/arXiv.2208.07339.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Ef-
ficient finetuning of quantized llms. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony

11

https://doi.org/10.18653/v1/2021.acl-long.568
http://proceedings.mlr.press/v119/belilovsky20a.html
http://proceedings.mlr.press/v119/belilovsky20a.html
http://proceedings.mlr.press/v139/chen21z.html
https://openreview.net/forum?id=Kn6i2BZW69w
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.48550/arXiv.2208.07339
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
https://doi.org/10.48550/arXiv.2407.21783.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.
48550/ARXIV.2210.17323. URL https://doi.org/10.48550/arXiv.2210.17323.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=tcbBPnfwxS.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, Hongsheng Li, and Yu Qiao. Llama-adapter V2: parameter-efficient
visual instruction model. CoRR, abs/2304.15010, 2023. doi: 10.48550/ARXIV.2304.15010. URL
https://doi.org/10.48550/arXiv.2304.15010.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale preemption for
concurrent {GPU-accelerated}{DNN} inferences. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pp. 539–558, 2022.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=0RDcd5Axok.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. doi: 10.48550/
ARXIV.2203.15556. URL https://doi.org/10.48550/arXiv.2203.15556.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 2019.
URL http://proceedings.mlr.press/v97/houlsby19a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

12

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2210.17323
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.48550/arXiv.2304.15010
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.48550/arXiv.2203.15556
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Intel Corporation. Intel gaudi2 ai accelerators white paper. Technical report, Intel Corporation,
2023. Accessed: 2024-09-28.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer
Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen,
and Alexander Mattick. Openassistant conversations - democratizing large language model align-
ment. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, De-
cember 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_
and_Benchmarks.html.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=NjNfLdxr3A.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large trans-
former models. In Dawn Song, Michael Carbin, and Tianqi Chen (eds.), Proceedings of the Sixth
Conference on Machine Learning and Systems, MLSys 2023, Miami, FL, USA, June 4-8, 2023.
mlsys.org, 2023. URL https://proceedings.mlsys.org/paper_files/paper/
2023/hash/80083951326cf5b35e5100260d64ed81-Abstract-mlsys2023.
html.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong
Park, Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning:
Quantization-aware parameter-efficient adaptation of large-scale pre-trained language mod-
els. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Associa-
tion for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pp. 3288–3305. Association for Computational Linguistics, 2022. doi:
10.18653/V1/2022.FINDINGS-EMNLP.240. URL https://doi.org/10.18653/v1/
2022.findings-emnlp.240.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 3045–
3059. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.
243. URL https://doi.org/10.18653/v1/2021.emnlp-main.243.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimen-
sion of objective landscapes. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/forum?id=ryup8-WCW.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Pa-
pers), Virtual Event, August 1-6, 2021, pp. 4582–4597. Association for Computational Linguis-
tics, 2021. doi: 10.18653/V1/2021.ACL-LONG.353. URL https://doi.org/10.18653/
v1/2021.acl-long.353.

13

https://arxiv.org/abs/2001.08361
http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/949f0f8f32267d297c2d4e3ee10a2e7e-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://proceedings.mlsys.org/paper_files/paper/2023/hash/80083951326cf5b35e5100260d64ed81-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/80083951326cf5b35e5100260d64ed81-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/80083951326cf5b35e5100260d64ed81-Abstract-mlsys2023.html
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2022.findings-emnlp.240
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://openreview.net/forum?id=ryup8-WCW
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantiza-
tion for on-device LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhi-
menko, and Christopher De Sa (eds.), Proceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=3d5CIRG1n2.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael W. Mahoney, and Alvin Cheung. GACT: activa-
tion compressed training for generic network architectures. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-
ume 162 of Proceedings of Machine Learning Research, pp. 14139–14152. PMLR, 2022. URL
https://proceedings.mlr.press/v162/liu22v.html.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
ber of classes. Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing, pp. 722–729, 2008.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3498–3505, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Anastasia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and Am-
jad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparameteriza-
tion. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 6740–6757.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.421.
URL https://doi.org/10.18653/v1/2023.findings-acl.421.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin,
Sami Lachgar, Philip Andrew Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska,
Blaise Agüera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara
Mahdavi, Joelle K. Barral, Dale R. Webster, Gregory S. Corrado, Yossi Matias, Shekoofeh Azizi,
Alan Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering
with large language models. CoRR, abs/2305.09617, 2023. doi: 10.48550/ARXIV.2305.09617.
URL https://doi.org/10.48550/arXiv.2305.09617.

Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster training. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine

14

https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://openreview.net/forum?id=3d5CIRG1n2
https://proceedings.mlr.press/v162/liu22v.html
https://doi.org/10.48550/arXiv.2303.08774
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/2023.findings-acl.421
https://doi.org/10.48550/arXiv.2305.09617

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Learning Research, pp. 10096–10106. PMLR, 2021. URL http://proceedings.mlr.
press/v139/tan21a.html.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yaqing Wang, Jialin Wu, Tanmaya Dabral, Jiageng Zhang, Geoff Brown, Chun-Ta Lu, Fred-
erick Liu, Yi Liang, Bo Pang, Michael Bendersky, et al. Non-intrusive adaptation: Input-
centric parameter-efficient fine-tuning for versatile multimodal modeling. arXiv preprint
arXiv:2310.12100, 2023.

Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and Minyi Guo. Si-
multaneous multikernel gpu: Multi-tasking throughput processors via fine-grained sharing. In
2016 IEEE international symposium on high performance computer architecture (HPCA), pp.
358–369. IEEE, 2016.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In ICLR,
virtual, April 25-29, 2022. OpenReview.net, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL
http://arxiv.org/abs/1910.03771.

Sunghyeon Woo and Dongsuk Jeon. Learning with auxiliary activation for memory-efficient train-
ing. In The Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=YgC62m4CY3r.

Sunghyeon Woo, Sunwoo Lee, and Dongsuk Jeon. ALAM: averaged low-precision activation for
memory-efficient training of transformer models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=OfXqQ5TRwp.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adap-
tation. CoRR, abs/2406.11909, 2024. doi: 10.48550/ARXIV.2406.11909. URL https:
//doi.org/10.48550/arXiv.2406.11909.

15

http://proceedings.mlr.press/v139/tan21a.html
http://proceedings.mlr.press/v139/tan21a.html
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=YgC62m4CY3r
https://openreview.net/forum?id=YgC62m4CY3r
https://openreview.net/forum?id=OfXqQ5TRwp
https://doi.org/10.48550/arXiv.2406.11909
https://doi.org/10.48550/arXiv.2406.11909

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vi-
enna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=WvFoJccpo8.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao.
Llama-adapter: Efficient fine-tuning of large language models with zero-initialized attention. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
d4UiXAHN2W.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_
Benchmarks.html.

16

https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=WvFoJccpo8
https://openreview.net/forum?id=d4UiXAHN2W
https://openreview.net/forum?id=d4UiXAHN2W
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDICES

A PROOF FOR CONVERGENCE OF PACA

Theorem 1. If the gradient of the loss function f(W,X) is Lipschitz continuous and the only partial
connections are updated, then

f(Wk+1,Xk+1) ≤ f(Wk,Xk)− η(1− ηL

2
)||∇Pk||2

Proof. As the gradient of the loss function f(W,X) is Lipschitz continuous, we obtain

f(Wk+1,Xk+1) ≤ f(Wk,Xk) +∇Wkf(Wk,Xk)T (Wk+1 − Wk) +
L

2
||Wk+1 − Wk||2

By substituting Eq. 11 which represents partial connection updates, we obtain

f(Wk+1,Xk+1) ≤ f(Wk,Xk) +∇Wkf(Wk,Xk)(Wk+1 − Wk)T +
L

2
||Wk+1 − Wk||2

= f(Wk,Xk) +∇Wkf(Wk,Xk)(−η∆Wk)T +
L

2
|| − η∆Wk||2

= f(Wk,Xk)− η(∇Wkf(Wk,Xk)− ηL

2
∆Wk)(∆Wk)T

= f(Wk,Xk)−
n∑

l=1

η(∇Wk
l
f(Wk,Xk)− ηL

2
∆Wk

l)(∆Wk
l)

T

= f(Wk,Xk)−
n∑

l=1

η(∇Wk
l
f(Wk,Xk)− ηL

2
∆Wk

l)(∆Wk
l)

T

Also, ∇Wk
l
f(Wk,Xk) and ∆Wk

l can be expressed as

∇Wk
l
f(Wk,Xk) =

[
m∇wk

l

]dl

m=1

∆Wk
l =

[
m∇wk

l if m ∈ I = {i1, i2, . . . , ir}, else 0
]dl

m=1

where I represents the set of indices corresponding to the selected columns. By applying
∇Wk

l
f(Wk,Xk) and ∆Wk

l above, we obtain

f(Wk+1,Xk+1) ≤ f(Wk,Xk)−
n∑

l=1

η(∇Wk
l
f(Wk,Xk)− ηL

2
∆Wk

l)(∆Wk
l)

T

= f(Wk,Xk)−
n∑

l=1

η

[
(1− ηL

2
)m∇wk

l if m ∈ I, else m∇wk
l

]dl

m=1

(∆Wk
l)

T

= f(Wk,Xk)−
n∑

l=1

∑
m∈I

η(1− ηL

2
)||m∇wk

l ||2

= f(Wk,Xk)−
n∑

l=1

η(1− ηL

2
)||∇Pk

l ||2 = f(Wk,Xk)− η(1− ηL

2
)||∇Pk||2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

we assumed the Lipschitz continuity of gradients to theoretically prove the convergence of PaCA.
However, we acknowledge the inherent limitations of the Lipschitz continuity assumption. In prac-
tice, this assumption may not hold for certain neural networks, particularly in scenarios where gra-
dient magnitudes vary significantly due to sharp activation functions, high model complexity, or
specific architectural designs. It is well known that it is very challenging to theoretically analyze
the convergence of general deep neural networks. Therefore, prior studies (Belilovsky et al., 2020;
Chen et al., 2021; Liu et al., 2022; Woo & Jeon, 2023) first proved the convergence of the proposed
algorithm under weak constraints, such as the Lipschitz continuity of gradients, and then validated
convergence empirically in real-world scenarios.

Following a similar approach, we assumed the Lipschitz continuity of gradients to theoretically
prove the convergence of PaCA. Then, we experimentally demonstrated that PaCA successfully
trains real-world large-scale neural networks such as LLaMA Models, where the Lipschitz continu-
ity assumption may not strictly hold, as shown in Tables 1-3 in Section 4.

B APPLICABILITY OF PACA TO OTHER ARCHITECTURES AND TASKS

In this section, we fine-tune ViT-B/16 (Dosovitskiy et al., 2021) and EfficientNetV2-L (Tan &
Le, 2021) using various datasets such as CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100
(Krizhevsky & Hinton, 2009), Oxford-IIIT Pets (Parkhi et al., 2012), and Oxford-Flowers 102 (Nils-
back & Zisserman, 2008) to evaluate the generalizability of PaCA.

Table 6: Comparisons of memory usage (Mem), training time (Time), and accuracy when fine-
tuning ViT-B/16 on CIFAR-10, CIFAR-100, Oxford-III Pets, and Oxford-Flowers 102.

Method Mem Time Accuracy (%)

CIFAR10 CIFAR100 IIIT Pets Flowers102 Avg.

LoRA 11.0G 45m 98.9 92.5 93.6 99.2 96.1
PaCA (Ours) 6.7G 32m 98.9 92.8 93.9 99.1 96.2

Table 7: Comparisons of memory usage (Mem), training time (Time), and accuracy when fine-
tuning EfficientNetV2-L on CIFAR-10 and CIFAR-100.

Method Mem Time Accuracy (%)

CIFAR10 CIFAR100 Avg.

Full-FT 18.3 GB 70m 98.5 90.1 94.3
PaCA (Ours) 13.2 GB 59m 98.0 89.3 93.7

Table 6 shows that our PaCA achieves comparable accuracy to LoRA while reducing training mem-
ory and time by 39% and 29%, respectively, on the ViT-B/16 model. Similarly, in Table 7, PaCA
demonstrated its effectiveness on EfficientNetV2-L, achieving comparable accuracy while saving
28% in training memory and 16% in training time compared to full fine-tuning.

It should be noted that conventional PEFT algorithms such as LoRA face critical limitations when
applied to convolutional neural networks since the additional adapters in LoRA are implemented as
linear layers, which makes it impossible to directly merge them into a pretrained layer in a different
type (e.g., convolutional layer) during inference. In contrast, PaCA fine-tunes a subset of the existing
pretrained weights, enabling seamless applications to diverse types of layers including convolutional
layers, ensuring its generalizability.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

Table 8: Hyperparameters used for analyzing the number of operations and the average training time
per iteration, averaged over 100 iterations, for fine-tuning LLaMA3-8B.

Hyperparameters Full-FT LoRA PaCA

Training Precision 16 bits
Rank 8

Batch Size per Step 2
Sequence Length 512
Target Modules Q, K, V, O, Up, Down, Gate

Table 9: Hyperparameters when fine-tuning LLaMA2-7B/13B and LLaMA3-8B using PEFT algo-
rithms on the MMLU dataset.

Hyperparameters LoRA DoRA MosLoRA PaCA

Rank 8 8 8 8/ 16
α 32 32 32 32/ 64

DropOut 0.1 0.1 0.1 -
Training Precision 16-bit mixed precision

Optimizer AdamW
LR (LLaMA2-7B/13B) 1e-4, 2e-4, 3e-4

LR (LLaMA3-8B) 5e-6, 1e-5
LR Scheduler cosine

Batch Size 8
Gradient Accumulation Steps 4

Sequence Length 512
Warmup Steps 100

Epochs 1
Target Modules Q, K, V, O, Up, Down, Gate

Table 10: Hyperparameters used when fine-tuning LLaMA3-8B using PEFT algorithms on the
Oasst1 dataset.

Hyperparameters LoRA DoRA MosLoRA PaCA

Rank 64 64 64 64/ 128
α 1 1 1 1

DropOut -
Training Precision 16-bit mixed precision

Optimizer AdamW
LR 5e-4, 1e-3, 5e-3

LR Scheduler linear
Batch Size 16

Gradient Accumulation Steps 4
Sequence Length 768

Warmup Ratio 0.1
Epochs 1

Target Modules Q, K, V, O, Up, Down, Gate

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Hyperparameters used when fine-tuning LLaMA3.1-70B using QLoRA and QPaCA on
the Oasst1 dataset.

Hyperparameters LLaMA-8B LLaMA3.1-70B

Gradient Accumulation Steps 4 2
Rank 64
α 1

DropOut -
Training Precision 16-bit mixed precision

Optimizer AdamW
LR 5e-4, 1e-3, 5e-3

LR Scheduler linear
Batch Size 16

Sequence Length 768
Warmup Ratio 0.1

Epochs 1
Target Modules Q, K, V, O, Up, Down, Gate

Table 12: Hyperparameters used for verifying the maximum sequence length on a single GPU for
fine-tuning LLaMA3-8B.

Hyperparameters Full-FT LoRA DoRA MosLoRA PaCA

Rank 8
Training Precision 16-bit mixed precision
Batch Size per Step 1

Target Modules Q, K, V, O, Up, Down, Gate

Table 13: Hyperparameters for comparing training throughput when increasing batch size on a single
GPU for fine-tuning LLaMA3-8B.

Hyperparameters Full-FT LoRA DoRA MosLoRA PaCA

Rank 8
Training Precision 16-bit
Sequence Length 512
Target Modules Q, K, V, O, Up, Down, Gate

20

	Introduction
	Background & Motivation
	Methodology
	PaCA: Partial Connection Adaptation
	Convergence Analysis of PaCA

	Experiments
	Fine-Tuning for Specific Tasks
	Instruction Tuning
	QPaCA: Enhancements to QLoRA
	Usability of PaCA

	Effect of Selection Strategy
	Related Work
	Conclusion
	Proof for Convergence of PaCA
	Applicability of PaCA to Other Architectures and Tasks
	Experimental Details

