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Abstract
In Multi-Task Learning (MTL), tasks may com-
pete and limit the performance achieved on each
other, rather than guiding the optimization to a so-
lution, superior to all its single-task trained coun-
terparts. Since there is often not a unique solution
optimal for all tasks, practitioners have to bal-
ance tradeoffs between tasks’ performance, and
resort to optimality in the Pareto sense. Most
MTL methodologies either completely neglect
this aspect, and instead of aiming at learning a
Pareto Front, produce one solution predefined by
their optimization schemes, or produce diverse
but discrete solutions. Recent approaches param-
eterize the Pareto Front via neural networks, lead-
ing to complex mappings from tradeoff to ob-
jective space. In this paper, we conjecture that
the Pareto Front admits a linear parameteriza-
tion in parameter space, which leads us to pro-
pose Pareto Manifold Learning, an ensembling
method in weight space. Our approach produces
a continuous Pareto Front in a single training
run, that allows to modulate the performance on
each task during inference. Experiments on multi-
task learning benchmarks, ranging from image
classification to tabular datasets and scene under-
standing, show that Pareto Manifold Learning out-
performs state-of-the-art single-point algorithms,
while learning a better Pareto parameterization
than multi-point baselines.

1. Introduction
In Multi-Task Learning (MTL), multiple tasks are learned
concurrently within a single model, striving towards infus-
ing inductive bias that will help outperform the single-task
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baselines. Apart from the promise of superior performance
and some theoretical benefits (Ruder, 2017), such as gen-
eralization properties for the learned representation, mod-
eling multiple tasks jointly has practical benefits as well,
e.g., lower training and inference times and memory re-
quirements. However, building machine learning models
presents a multifaceted host of decisions for multiple and
often competing objectives, such as model complexity, run-
time and generalization. Conflicts arise since optimizing
for one metric often leads to the deterioration of other(s).
A single solution satisfying optimally all objectives rarely
exists and practitioners must balance the inherent trade-offs.

The notion of tradeoffs is formally defined as Pareto
optimality. In contrary to single-task learning, where one
metric governs the comparison between methods (e.g.,
top-1 accuracy in ImageNet), multiple models can be
optimal in MTL; e.g., model X yields superior performance
on task A compared to model Y, but the reverse holds true
for task B; thus, there is not a single better model among
the two. Intuitively, improvement on an individual task
performance can come only at the expense of another task.

In this paper, we develop a novel method, Pareto Manifold
Learning, which casts MTL problems as learning an
ensemble of single-task predictors by interpolating among
(ensemble) members during training. By operating in the
convex hull of the members’ weight space, each single-task
model infuses and benefits from representational knowledge
to and from the other members. During training, the
losses are weighted in tandem with the interpolation, i.e.,
a monotonic relationship is imposed between the degree
of a single-task predictor participation and the weight of the
corresponding task loss. Consequently, the ensemble as a
whole engenders a (weight) subspace that explicitly encodes
tradeoffs and results in a continuous parameterization of the
Pareto Front. We identify challenges in guiding the ensem-
ble to such subspaces, designated Pareto subspaces, and
propose solutions regarding balancing the loss contributions,
and regularizing the Pareto properties of the subspaces and
adapting the interpolation sampling distribution.

Our method is based on a novel geometrical perspective;
multiple Pareto stationary points lie in close proximity
and are connected by simple paths whose parameterization
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produces a monotonic mapping in objective space. This
is motivated by the recent advancements in single task
machine learning that have explored the geometry of the
loss landscape and shown experimentally that local optima
are connected by simple paths, even linear ones in some
cases (Wortsman et al., 2021; Garipov et al., 2018; Frankle
et al., 2020; Draxler et al., 2018). We assume that, when
the problem has multiple objectives, it acquires a new
dimension relating to the number of tasks. Concretely, there
are multiple loss landscapes and a solution that satisfies
users’ performance requirements must lie in the intersection
of low loss valleys (for all tasks).

Experimental results validate that the proposed method is
able to discover Pareto Subspaces, and outperforms base-
lines on multiple benchmarks. Our training scheme offers
two main advantages. First, enforcing low loss for all tasks
on a linear subspace implicitly penalizes curvature, which
has been linked to generalization (Chaudhari et al., 2017),
benefitting all tasks’ performance. Second, the algorithm
produces in a single training run and with minimal addi-
tional complexity a subspace of Pareto Optimal solutions,
rather than a single model, enabling practitioners to hand-
pick during inference the solution that offers the tradeoff
that best suits their needs. The source code is available at
https://github.com/nik-dim/pamal.

Overall, our main contributions are the following:

• we offer a geometrical view on the problem of Pareto
Front Learning and show that multiple functionally
diverse solutions can exist in a straight path in weight
space (Section 3),

• we propose a novel algorithm, Pareto Manifold Learn-
ing, that employs weight ensembles to infuse inductive
bias to the optimization trajectory regarding the mono-
tonicity dictated by Pareto optimality (Section 4),

• We validate our approach on several benchmarks and
show that it outperforms baselines, while producing
a more reliable mapping from desired preference to
objective space compared to other Pareto Front Ap-
proximation techniques (Section 5).

2. Related Work
Multi-Task Learning Learning multiple tasks in the
Deep Learning setting (Ruder, 2017; Crawshaw, 2020) is
usually approached by architectural methodologies (Misra
et al., 2016; Ruder et al., 2019), where the architectural
modules are combined in several layers to govern the joint
representation learning, or optimization approaches (Cipolla
et al., 2018; Chen et al., 2018), where the architecture is
standardized to be an encoder-decoder(s), for learning the
joint and task-specific representations, respectively, and the
focus shifts to the descent direction for the shared param-

eters. We focus on the more general track of optimization
methodologies fixing the architectural structure to Shared-
Bottom (Caruana, 1997). The various approaches focus on
finding a suitable descent direction for the shared parame-
ters. The optimization methods can be broadly categorized
into loss- and gradient-balancing (Liu et al., 2020). For
the former, the goal is to appropriately weigh the losses,
e.g., via task-dependent homoscedastic uncertainty (Cipolla
et al., 2018), by enforcing task gradient magnitudes to have
close norms (Chen et al., 2018). The latter class of method-
ologies manipulate the gradients so that they satisfy cer-
tain conditions; projecting the gradient of a (random) task
on the normal plane of another so that gradient conflict is
avoided (Yu et al., 2020), enforcing the common descent
direction to have equal projections for all task gradients (Liu
et al., 2020), casting the gradient combination as a bargain-
ing game (Navon et al., 2022). While the aforementioned
methodologies focus on the Single Input-Multiple Outputs
(SIMO) setting, Multi-Task Learning can also be studied
under the Multiple Input-Multiple Output prism (Long et al.,
2017; Shen et al., 2021). In this case, the challenge lies in
the dearth of training data and the goal also includes the
characterization of task relatedness.

Multi-Task Learning for Pareto Optimality Sener
& Koltun (2018) were the first to view the search for a
common descent direction under the Pareto optimality
prism and employ the Multiple Gradient Descent Algorithm
(MGDA) (Désidéri, 2012) in the Deep Learning context.
However, MGDA does not account for task preferences
(Lin et al., 2019), and biases solutions towards the task
with the smallest gradient magnitude (Liu et al., 2020). By
solving a slightly different formulation, Lin et al. (2019) are
able to systematically introduce task trade-offs and produce
a discrete Pareto Front. However, each point requires a dif-
ferent training run. Ma et al. (2020) propose an orthogonal
approach for Pareto stationary points; after a model is fitted
with any MTL method, a separate phase seeks other Pareto
stationary points in its vicinity. But training still needs to
occur for every seed point, the separate phase overhead
grows linearly with the number of additional models, and
the Pareto Front is not continuous across seed points in
parameter space. Navon et al. (2021) and Lin et al. (2021)
employ hypernetworks to continuously approximate the
Pareto Front in a single run, which introduces additional
design choices and suffers from limited scalability, due
to the hypernetwork requiring multiple times the number
of parameters of the target network. Ruchte & Grabocka
(2021) address the scalability issues by augmenting the
feature space with the desired trade-off, which sacrifices
either functional diversity or optimality. In both cases, the
connection between desired tradeoff and network weights
is obfuscated by the complex dynamics of a forward pass
by a full neural network, and may not comply to the
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1Figure 1: Illustrative example following (Yu et al., 2020; Navon et al., 2022). We present the optimization trajectories in
loss space starting from different initializations (black bullets) leading to final points (crosses). Color reflects the iteration
number when the corresponding value is achieved. To highlight that our method (PaMaL) deals in pairs of models, we use
blue and red to differentiate them. Dashed lines show intermediate results of the discovered subspace. While baselines may
not reach the Pareto Front or display bias towards specific solutions, PaMaL discovers the entire Pareto Front in a single run
and shows superior functional diversity.

monotonicity constraints of Pareto optimal sets of solutions.
For a fixed training budget, it may be more beneficial
to ignore the user preference and search for one weight
configuration to dominate all. Our approach is based on
weight ensembles which can be seen as a particular case
of linear hypernetworks; instead of generating weights, a
convex combination of stored parameters is performed. This
change of perspective infuses geometrical inductive bias and
allows for more reliable and scalable Pareto Front Learning.

Ensemble Learning and Mode Connectivity Apart
from MTL, our algorithm is methodologically tied to prior
work in the geometry of the single-task neural network
optimization landscapes. The authors in (Garipov et al.,
2018; Draxler et al., 2018) independently and concurrently
showed that for two local optima θ∗1 ,θ

∗
2 produced by

separate training runs (but same initializations) there exist
nonlinear paths, defined as connectors by Wortsman et al.
(2021), where the loss remains low. The connectivity paths
can be extended to include linear in the case of the training
runs sharing some part of the optimization trajectory (Fran-
kle et al., 2020). These findings can be leveraged to train
a neural network subspace by enforcing linear connectivity
among the subspace endpoints (Wortsman et al., 2021).
Linear mode connectivity encourages flatness and, therefore,
is linked with methods explicitly enforcing flat minima
(Chaudhari et al., 2017; Foret et al., 2021; Dinh et al., 2017;
Jiang et al., 2020). These approaches are applicable when
designing a single objective, e.g. average of losses in Multi-
Task Learning, but do not allow for the infusion of Pareto
properties and the inclusion of tradeoffs. Izmailov et al.
(2018) produce flat minima by averaging multiple weight
vectors discovered during the optimization trajectory, so
that the final model lies in the middle of the low-loss basin.
Wortsman et al. (2022) perform weight ensembling with
fine-tuned models produced via different hyperparameter

configurations. Apart from the recent weight ensembling
works, output ensembling has been one of the staples
of machine learning literature. Lakshminarayanan et al.
(2017) utilize deep ensembles for uncertainty prediction
but inference scales linearly with the number of ensemble
members. Wen et al. (2020) improve on the computational
complexity of output ensembles by sharing the bulk of the
parameters among members and differentiating them via
rank-1 matrices, while Havasi et al. (2021) employ a multi-
input multi-output network by accommodating independent
subnetworks for each ensemble and allowing a single-
forward pass ensemble prediction. However, this results in
subnetworks with incompatible architecture which does not
allow for a continuous approximation of the Pareto Front.

3. Problem Formulation
Notation We use bold font for vectors x, capital bold for
matricesX and regular font for scalars x. T is the number
of tasks and m is the number of ensemble members. Each
task t ∈ [T ] has a lossLt. The overall multi-task loss isL =[
L1, . . . ,LT

]>
. w ∈ ∆T ⊂ RT is the weighting scheme

for the tasks, i.e., the overall loss is calculated as L =
w>L =

∑T
t=1 wtLt. Each member k ∈ [m] is associated

with parameters θk ∈ RN and weighting w ∈ ∆T .

Preliminaries Our goal lies in solving an uncon-
strained vector optimization problem of minimizing
L(y, ŷ) = [L1(y1, ŷ1), . . . ,LT (yT , ŷT )]>, where Li
corresponds to the objective function for the ith task, e.g.,
cross-entropy loss in case of classification. Constructing
an optimal solution for all tasks is often unattainable due
to competing objectives. Hence, an alternative notion of
optimality is used, as described in Theorem 3.1.

Definition 3.1 (Pareto Optimality). Consider two points x
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Figure 2: A representation of parameter space for T = 3
tasks. Each node corresponds to a tuple of parameters and
weighting scheme (θv,wv) ∈ RN ×∆T . The blue dashed
frame shows the model, e.g., shared-bottom architecture,
implemented by the parameters θv of each node. For each
training step, we sample α ∈ ∆T and construct the weight
combination θ = α>Θ = 0.6 · θ1 + 0.2 · θ2 + 0.2 · θ3.

and y in the parameter space. A point x dominates a point y
if Lt (x) ≤ Lt (y) for all tasks t ∈ [T ] and L (x) 6= L (y).
Then, a point x is called Pareto optimal if there exists no
point y that dominates it. The set of Pareto optimal points
forms the Pareto front PL.

The vector loss function is scalarized by the vector w ∈
[0, 1]T to form the overall objective w>L. Without loss of
generality, we assume that w lies in the T -dimensional sim-
plex ∆T by imposing the constraint ‖w‖ =

∑T
t=1 wt = 1.

This formulation permits to think of the vector of weights as
an encoding of task preferences, e.g., for two tasks letting
w = [0.8, 0.2] results in attaching more importance to the
first task. Overall, the MTL problem can be formulated
within the Empirical Risk Minimization (ERM) framework
for preference vector w and dataset D = {(x,y)}i=1 as:

min
θ

E(x,y)∼D [L (f (x;θ) ,y)] (1)

Our overall goal is to discover a low-dimensional param-
eterization in weight space that yields a (continuous) Pareto
Front in functional space. This desideratum leads us to the
following definition:

Definition 3.2 (Pareto Subspace). Let T be the num-
ber of tasks, X the input space, Y the multi-task out-
put space, R ⊂ RN the parameter space, f : X ×
R → Y the function implemented by a neural network,
and L : Y × Y → RT>0 be the vector loss. Let
{θt ∈ R : t ∈ [T ]} be a collection of network pa-
rameters and S the corresponding convex envelope, i.e.,
S =

{∑T
t=1 αtθt :

∑T
t=1 αt = 1 and αt ≥ 0,∀t

}
. For the

dataset D = (DX ,DY), the subspace S is called Pareto if
its mapping to functional space via the network architecture
f forms a Pareto Front P = L(f(DX ;S),DY) = {l : l =
L(f(DX ;θ),DY), ∀θ ∈ S}.

4. Method
We seek to find a collection of m neural networks, of iden-
tical architecture, whose linear combination in weight space
forms a continuous Pareto Front in objective space. Model
i corresponds to a tuple of network parameters θi and task
weighting wi and implements the function f(·;θi). We im-
pose connectivity among models by modeling the subspace
in the convex hull of the ensemble members. Section 4.1
presents the core of the algorithm, and in Section 4.2 we
discuss various improvements that address MTL challenges.

4.1. Pareto Manifold Learning

Let Θ =
[
θ1,θ2, . . . ,θm

]>
be an m × N matrix storing

the parameters of all models, W =
[
w1, . . . ,wm

]>
be

a m × T matrix storing the task weighting of ensemble
members. By designing the subspace as a simplex, the
objective now becomes:

E(x,y)∼D
[
Eα∼P

[
α>WL (f (x;αΘ) ,y)

]]
(2)

where P is the sampling distribution placed upon the simplex.
In the case where the ensemble members are single-task
predictors (w is one-hot) and the number of tasks coincides
with the number of ensemble members (m = T ), the matrix
of task weightingsW is an identity matrix and Equation 2
simplifies to E(x,y)∼D

[
Eα∼P

[
α>L (f (x;αΘ) ,y)

]]
=

E(x,y)∼D
[
Eα∼P

[∑T
t=1 αtLt

(
f
(
x;
∑T
t=1 αtθt

)
,y
)]]

.
By using the same weighting for both the losses and the
ensemble interpolation, we explicitly associate models and
task losses with a one-to-one correspondence, infusing
preference towards one task rather than the other and
guiding the learning trajectory to a subspace that encodes
such tradeoffs.

Algorithm 1 presents the full training procedure for this
ensemble of neural networks, containing modifications dis-
cussed in subsequent sections. Figure 1 showcases the algo-
rithm in a toy example. Consider an ensemble parameterized
by Θ =

[
θ1 · · · θT

]>
. Concretely, at each training step

with inputs x and targets y a random α is sampled and
the corresponding convex combination of the networks is
constructed θ = α>Θ (line 7). This procedure is shown in
Figure 2. The batch is forwarded through the constructed
network and the vector loss is scalarized by α as well, as in
line 8. The procedure is repeatedW times at each batch (see
Section 4.2) and a regularization term penalizing non-Pareto
stationary points is added (line 11).
Claim 4.1. Let {θ∗t ∈ R : t ∈ [T ]} be the optimal
ensemble parameters retrieved at the end of training by
Algorithm 1 and let S be the their convex hull. Then S is
a Pareto Subspace.

Note that we have chosen a convex hull parameterization of
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Algorithm 1: ParetoManifoldLearning
Input: vector loss function L, train set D, matrix of

model parameters Θ =
[
θ1, · · · ,θT

]>
, distribution

parameters p, window W ∈ N, regularization
coefficient λ > 0, network f

1 Initialize each θv independently
2 for batch (x,y) ⊆ D do
3 V ← ∅
4 for i ∈ {1, 2, . . . ,W} do
5 sample αi ∼ Dir(p)
6 V ← V ∪αi
7 θi ← α>i Θ // construct network in convex

hull of ensemble members

8 L(αi) =
[
L1(αi) · · · LT (αi)

]
←

criterion (f(x;θi),y) // compute losses

9 end
10 construct multi-forward graphs Gt = (V, Et),∀t

11 R←
T∑
t=1

log
(

1
|Et|
∑

(αi,αj)∈Et e
[Lt(αi)−Lt(αj)]+

)

// multiforward regularization, Section 4.2

12 Ltotal ←
∑W
i=1α

>
i L(αi) + λ · R

13 Backpropagate Ltotal and Gradient descent on Θ

14 end

the weight space, but there are other options, such as Bezier
curves or other nonlinear paths (Wortsman et al., 2021;
Draxler et al., 2018). However, the universal approximation
theorem implies no loss of generality for our design choice
and Theorem 4.2 attests to the existence of such parameteri-
zations. In practice, Theorem 4.1 is validated by uniformly
sampling the discovered subspace and the definition of a
Pareto Subspace is relaxed to conform to the nonconvex set-
tings of Deep Learning, i.e., points are called Pareto optimal
if the characterization holds in an open neighborhood rather
than globally.

Theorem 4.2. Given a compact A ⊂ RD and a family of
continuous mappings fn : A → RD′

, n = 1, . . . , N , for
any ε > 0, there exists a ReLU multi-layer perceptron f
with two different weight parameterizations θ and θ′, such
that ∀n ∈ {1, . . . , N},∃α ∈ [0, 1],∀x ∈ A,

|fn(x)− f (x;αθ + (1− α)θ′)| ≤ ε.

The proof is given in Section A.3. Theorem 4.2 grounds the
geometrical intuition; due to overparameterization and the
universal approximation theorem the Pareto Front admits a
linear paramaterization.

4.2. Regularization and balancing

Loss and gradient balancing schemes A common chal-
lenge in MTL is the case where tasks have different loss

scales, e.g., consider datasets with regression and classifica-
tion tasks such as UTKFace (Zhang et al., 2017). Then, us-
ing the same weighting α for both the losses and the weight
ensembling, as presented in Equation 2, the easiest tasks
are favored and the important property of scale invariance
is neglected. To prevent this, the loss weighting needs to
be adjusted. Hence, we propose simple balancing schemes:
one loss and one gradient balancing scheme, whose effect
is to warp the space of loss weightings. While gradient bal-
ancing schemes are applied on the shared parameters, loss
balancing also affects the task-specific decoders, render-
ing the methodologies complementary. To avoid cluttering,
balancing schemes are not presented in Algorithm 1.

In terms of loss balancing, we use a lightweight scheme
of adding a normalization coefficient to each loss
term which depends on past values. Concretely, let
W ∈ Z+ be a positive integer and Lm(τ0) be the loss of
task m in step τ0. Then, the regularization coefficient is
L(τ0;W ) = 1

W

∑W
τ=1 Lm(τ0+1−τ) for τ0 ≥W resulting

in the overall loss Ltotal = α>τ0L̂ =
∑T
t=1 αt

Lt(τ0)

Lm(τ0;W )
.

For gradient balancing, let gt be the gradient of task
t ∈ [T ] w.r.t. the shared parameters. Previously,
the update rule occurred with the overall gradient
gtotal = α>G = α>

[
g1 . . . gT

]
. We impose a

unit `2-norm for gradients and perform the update with
g̃total = α>G̃ = α>

[
g̃1 . . . g̃T

]
where g̃t = gt

‖gt‖2 .

Improving stability by Multi-Forward batch regulariza-
tion Consider two different weightings α1 and α2 ∈
∆T−1. Without loss of generality [α1]0 = α1 > [α2]0 =
α2. Then, ideally, the interpolated model closer to the
ensemble member for task 1 has the lowest loss on that
task, i.e., we would want the ordering L1(α1) < L1(α2),
and, equivalently for the other tasks. Furthermore, if α =[
1− ε, ε/T−1, . . . , ε/T−1

]
, only one member essentially

reaps the benefits of the gradient update and moves the en-
semble towards weight configurations more suitable for one
task but, perhaps deleterious for the remaining ones. Thus,
we propose repeating the forward passW times for different
random weightings {αi}i∈[W ], allowing the advancement
of all ensemble members concurrently in a coordinated way
(line 10). By performing multiple forward passes for various
weightings, we achieve a lower discrepancy sequence and
reduce the variance of such pernicious updates.

We also include a regularization term, which penalizes
the wrong orderings and encourages the subspace to have
Pareto properties, as in line 12. Let V be the set of
interpolation weighs sampled in the current batch V =
{αw = (αw,1, αw,2, . . . , αw,T ) ∈ ∆T−1}w∈[W ]. Then
each task defines the directed graph Gt = (V, Et) where
Et = {(αi,αj) ∈ V × V : αi,t < αj,t}. The resulting
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Figure 3: Visual explanation of multiforward regularization, presented in Equation 3. The subfigures depict the loss values for
various weightingsαi = [αi,1, αi,2]. Optimal lies in the origin. We assume that α1,1 > · · · > α5,1. Green color corresponds
to Pareto optimality. (Left) all sampled weightings are in the Pareto Front and the regularization term is zero. (Right) The
red points are not optimal and, therefore, the regularization term penalizes the violations of the monotonicity constraints for
the appropriate task loss: α2 and α4 violate the L1 and L2 orderings w.r.t. α3, since α2,1 > α3,1 ; L1(α2) < L1(α3)
and α4,2 > α3,2 ; L2(α4) < L2(α3).

regularization is defined as:

Lreg =

T∑

t=1

log


 1

|Et|
∑

(αi,αj)∈Et
e[Lt(αi)−Lt(αj)]+


 (3)

The current formulation of the edge set penalizes heavily the
connections from vertices with low values. For this reason,
we only keep one outgoing edge per node, defined by the
task lexicographic order, resulting in the graph GLEX

t =
(V, ELEX

t ) and |ELEX
t | = W − 1,∀t ∈ [T ]. Note that the

regularization is convex as the sum of log-sum-exp terms. If
no violations occur, the regularization term is zero. Figure 3
offers a visual explanation of the proposed regularization.

The role of sampling Another component of Algorithm 1
is the sampling imposed on the convex hull parameteriza-
tion. During training, the sampling distribution dictates the
loss weighting used and, hence, modulates the degree of
task learning. A natural choice is the Dirichlet distribution
Dir(p) where p ∈ RT>0 are the concentration parameters,
since its support is the T -dimensional simplex ∆T . For
p = p1T , the distribution is symmetric; for p < 1 the
sampling is more concentrated near the ensemble members,
for p > 1 it is near the centre and for p = 1 it corresponds
to the uniform distribution. In contrast, for p1 6= p2
the distribution is skewed. In our experiments, we use
symmetric Dirichlet distributions with p ≥ 1 to guide the
ensemble to representations best suited for MTL.

5. Experiments
We evaluate our method on several datasets, such as
MultiMNIST, Census, MultiMNIST-3, UTKFace
and CityScapes, and various architectures, ranging from
MultiLayer Perceptrons (MLPs) to Convolutional Neural

Networks (CNNs) and Residual Networks (ResNets).
Each ensemble member is initialized independently. In all
experiments, the learning rate for our method is m-fold
the learning rate of the baselines to counteract the fact that
the backpropagation step scales the gradients by m−1 in
expectation. The detailed settings used for each dataset and
additional experiments are provided in the appendix. Our
overarching objective is to construct continuous weight sub-
spaces which map to Pareto Fronts in the functional space.
However, our method produces a continuum of results rather
than a single point, rendering tabular presentation cumber-
some. For this reason, (a) for tables we present the best-of-
(sampled)-subspace results, (b) we experiment on numerous
two-task datasets where plots convey the results succinctly,
(c) present qualitative results on three-task datasets.

Baselines We explore various algorithms from the
literature: 1. Single-Task Learning (STL), 2. Linear
Scalarization (LS) which minimizes the average loss
1
T

∑T
t=1 Lt, 3. Uncertainty Weighting (UW, Cipolla et al.

2018), 4. Multiple-gradient descent algorithm (MGDA,
Sener & Koltun 2018), 5. Dynamic Weight Averaging
(DWA, Liu et al. 2019), 6. Projecting Conflicting Gradients
(PCGrad, Yu et al. 2020), 7. Impartial MTL (IMTL, Liu
et al. 2020), 8. Just Pick a Sign (Graddrop, Chen et al.
2020), 9. Conflict-Averse Gradient Descent (CAGrad, Liu
et al. 2021), 10. Random Loss Weighting (RLW, Lin et al.
2022). 11. Bargaining MTL (Nash-MTL, Navon et al.
2022), 12. Auto-Lambda (Auto-λ, Liu et al. 2022) and
13. RotoGrad (Javaloy & Valera 2022). When applicable,
we also explore methodologies that perform Pareto Front
Approximation (PFA) in a single training run; as in 14.
Pareto HyperNetwork (PHN, Navon et al. 2021), 15.
Conditioned One-shot Multi-Objective Search (COSMOS,
Ruchte & Grabocka 2021).
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Figure 4: Experimental results on MultiMNIST and Census. Top right is optimal. Three random seeds per method.
Solid lines correspond to our method (PaMaL) and thick lines to the Pareto Front. We have used a different color for each
seed of PaMaL. Baselines are shown in shades of gray: scatter plot for MTL baselines, black lines for single task and
blue/red lines for multiple-solution methods. In both datasets, Pareto Manifold Learning discovers subspaces with diverse
and Pareto-optimal solutions and outperforms the baselines.

5.1. Classification on MultiMNIST and Census

We investigate the effectiveness of Pareto Manifold Learn-
ing on digit classification using a LeNet model with a shared-
bottom architecture and on the tabular dataset Census (Ko-
havi, 1996) for the task combination of predicting age and
education level using a Multi-Layer Perceptron. The ensem-
ble consists of two members with single task weightings.
To gauge the performance of the models lying in the linear
segment between the nodes, we test the performance on
the validation set on the ensemble members as well as for
m = 9 models uniformly distributed across the edge. We
use this evaluation/plotting scheme throughout the experi-
ments. We ablate the effect of multi-forward training on Sec-
tion B.1; we use a grid search on window W ∈ {2, 3, 4, 5}
and strength λ ∈ {0, 2, 5, 10} along with the base case of
(W,λ) = (1, 0) and present in the main text the setting
that achieves the highest mean (across seeds) HyperVolume
score on the validation set. Figure 4 shows the results on
both datasets using multi-forward regularization with win-
dow W = 4 and strength λ = 0 for MultiMNIST and
W = 2, λ = 5 for Census. We observe that most base-
lines exhibit limited functional diversity; their predefined
optimization schemes lead the differently seeded/initialized

training runs to final models with similar performance (same
markers are clustered in the plots). This lack of functional
diversity, as well as inability to consistently outperform the
Linear Scalarization baseline, are also noted by Kurin et al.
(2022); Xin et al. (2022). In contrast, all Pareto Manifold
Learning seeds find subspaces with diverse functional solu-
tions. This statement is quantitatively translated to higher
HyperVolume compared to the baselines, shown in Table 9
of the appendix, and can be attributed to the observation that
Equation 2 generalizes the Linear Scalarization method.

Analysis Task symmetry characterizes MultiMNIST;
both digits are drawn from the same distribution, resulting
in equal pace learning. However, for Census, tasks differ
in statistics and, yet, the proposed method recovers a Pareto
subspace with diverse solutions. For both datasets, we per-
form extensive tuning on the Pareto Front Approximation
methods, i.e., PHN and COSMOS, in Section C.1. For COS-
MOS, the mapping from user preference to network weights
is overall invalid in both datasets. Similarly, PHN produces
functionally limited solutions that do not conform to the
objective of Pareto optimality, while requiring ∼ 100×
more parameters. These results can be attributed to two
factors. First, the original papers experimented with an am-
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Figure 5: Application of Pareto Manifold Learning on datasets with 3 tasks. Each triangle depicts the performance on
a task, using color, as a function of the interpolation weighting, i.e. each hexagon corresponds to a different weighting
α = [α1, α2, α3] ∈ ∆3. The closer the interpolated member is to a single-task predictor, the higher the performance on the
corresponding task. The 3D plot, on the right, show the performance of the model in the multi-objective space.

ple budget of ≥ 100 epochs, disproportionate to the dataset
complexity, and reported loss curves instead of accuracy,
neglecting the generalization gap between them. Second,
the mapping from trade-off to target model via a Hypernet-
work in PHN or input augmentation in COSMOS result in
complex dynamics, since an ε-step in the user preference is
translated to different set of weights by the full forward pass
of neural network. In contrast, our approach is grounded in
geometrical insights and the connection is traced back to a
simple linear interpolation. In Figure 19 of the appendix,
we supplement the ablation study for PHN and COSMOS
by Spearman correlation as a proxy for monotonicity of
ranking in the Pareto prism and show that these baselines
must sacrifice performance in order to achieve the promise
of functional diversity.

5.2. Beyond Pairs of Classification Tasks:
MultiMNIST-3 and UTKFace

We expand the experimental validation to triplets of tasks,
consider regression and more complex architectures, grad-
uating from MLPs and CNNs to ResNets (He et al., 2016).
For three tasks, we create a 2D grid of equidistant points
spanning the three single-task predictors. If n is the number
of interpolated points between two (out of three) members,
the grid has

(
n+1
2

)
points. We use n = 11, resulting in 66

points. For visual purposes, neighboring points are con-

nected. For three tasks, it would be visually cluttering to
present the discovered subspaces with multiple seeds and
baselines. Hence, we opt for a more qualitative discussion
here and present quantitative findings in the appendix.

MultiMNIST-3 First, we construct an equivalent of
MultiMNIST for 3 tasks. Digits are placed on top-left,
top-right and bottom-centre. Figure 5a shows the results on
MultiMNIST-3. As argued previously, MNIST variants
are characterized by task symmetry and Figure 5a reflects
this. For this reason, we do not employ any balancing
scheme. The 3D plot in conjunction with the simplices re-
veal that the method has the effect of gradual transfer of
learned representation from one member to the other, and
offers a succinct visual confirmation of Theorem 4.1.

UTKFace The UTKFace dataset (Zhang et al., 2017) has
more than 20,000 face images and three tasks: predicting
age (modeled as regression using Huber loss - similar to
(Ma et al., 2020)), classifying gender and ethnicity. The
introduction of a regression task implies that losses have
vastly different scales, which dictates the use of balancing
schemes, as discussed in Section 4.2. We apply the pro-
posed gradient-balancing scheme and present the results in
Figure 5b. For visual unity and to remain in the theme of
“higher is better”, the negative Huber loss is plotted. Despite
the increased complexity, both in terms of network archi-
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tecture and dataset, and the existence of a regression task,
the proposed method discovers a Pareto Subspace. Addi-
tional experiments and qualitative results are provided in
Section B.3. Figure 5, and in more detail Section A.2, show
that (most of) the subspace engenders high performance
and, implicitly low loss, for each task separately. Hence,
the approach discovers flat regions which are linked to gen-
eralization (Foret et al., 2021). There is a also dynamic
transition in the weighted (multi-task) loss landscape w.r.t.
weight α, which leads to the desired Pareto properies.

5.3. Scene understanding

We also explore the applicability of Pareto Manifold Learn-
ing for CityScapes (Cordts et al., 2016), a scene under-
standing dataset containing high-resolution images of ur-
ban street scenes. Our experimental configuration is drawn
from (Liu et al., 2019; Yu et al., 2020; Liu et al., 2021;
Navon et al., 2022) with some modifications. Concretely,
we address two tasks: semantic segmentation and depth
regression. We use a SegNet architecture (Badrinarayanan
et al., 2017) trained for 100 epochs with Adam optimizer
(Kingma & Ba, 2015) of initial learning rate 10−4, which is
halved after 75 epochs. The images are resized to 128×256
pixels. We use 500 of the 2975 training images for valida-
tion, and report the test results in Table 1. We use gradient
balancing, window W = 3 and λ = 1, while the concentra-
tion parameter of the Dirichlet distribution is set to p = 7,
helping convergence. Additional results are presented in
Section C.4. In Depth Estimation and out of MTL methods,
Pareto Manifold Learning is optimal along with MGDA
(lower is better). In Semantic Segmentation (higher is bet-
ter), however, MGDA performs poorly and is clearly domi-
nated by all methods, while our approach is outperforming
most baselines and offers a balanced solution. Compared
to the multi-solution baselines, COSMOS showcases task
bias performing poorly on Depth Estimation, while PHN is
ommitted altogether due to not scaling to large networks. It
is remarkable that, despite our goal of discovering Pareto
subspaces, the proposed method is dominating most of the
state-of-the-art algorithms, attesting to the flexibility of the
weight ensembles in Multi-Task Learning.

6. Conclusion
In this paper, we proposed a weight-ensembling method
tailored to Multi-Task Learning; multiple single-task predic-
tors are trained in conjunction to produce a subspace formed
by their convex hull, and endowed with desirable Pareto
properties. We experimentally show on a diverse suite of
benchmarks that the proposed method is successful in dis-
covering Pareto subspaces and outperforms or is on par
with state-of-the-art MTL methods. An interesting future
direction is to perform a hierarchical weight ensembling,
sharing progressively more of the lower layers, given that

Table 1: Test performance on CityScapes. 3 random seeds
per method. For Pareto Manifold Learning, we report the
mean (across seeds) best results from the final subspace.
Methods are divided into single-task, single-solution MTL,
multi-solution MTL and proposed method.

Segmentation Depth

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 70.96 92.12 0.0141 38.644
LS 70.12 91.90 0.0192 124.061
UW 70.20 91.93 0.0189 125.943
MGDA 66.45 90.79 0.0141 53.138
DWA 70.10 91.89 0.0192 127.659
PCGrad 70.02 91.84 0.0188 126.255
IMTL 70.77 92.12 0.0151 74.230
Graddrop 70.07 91.93 0.0189 127.146
CAGrad 69.23 91.61 0.0168 110.139
RLW 68.79 91.52 0.0213 126.942
Nash-MTL 71.13 92.23 0.0157 78.499
RotoGrad 69.92 91.85 0.0193 127.281
Auto-λ 70.47 92.01 0.0177 116.959

COSMOS 69.78 91.79 0.0539 136.614

PaMaL(ours) 70.35 91.99 0.0141 54.520

the features learned at low depth are similar across tasks.
An alternative exploration venue is to connect our method
to the challenge of task affinity (Fifty et al., 2021; Standley
et al., 2020) via a geometrical lens of the loss landscape.
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Figure 6: Dirichlet distribution in the case of two tasks. Top row: p < 1 and the distribution is more concentrated towards
the ensemble members. Bottom row: p > 1 and the distribution focuses more on the midpoint which corresponds to all
tasks having the same weight. Right column: extreme choices p→ 0 or p→∞. Left column: milder choices.

A. Discussion
A.1. Effect of sampling on the Pareto properties of the discovered subspace

This appendix expands on Section 4.2 and, specifically, presents in greater detail the intuition behind the sampling
distribution’s parameters. Let p ∈ RT+ be the parameters of the Dirichlet distribution. Assuming no prior knowledge on the
tasks, e.g., task difficulties or affinities, a symmetric distribution is used by setting p = p1T . This design choice results in
three cases:

• p = 1: the distribution is uniform on the simplex. Intuitively this means that all tasks are equally important and we care
about the diversity of solutions for all tradeoffs (reflected in the linear scalarization weights).

• p ∈ (0, 1): the distribution is more concentrated towards the ensemble members, as in the top row of Figure 6. Assume
an extreme case of two tasks and p = 0. Then the distribution degenerates to a Bernoulli distribution. Effectively, at
each iteration one of the ensemble members is selected and its weights are updated, which will result in two separate
and independent single-task predictors with no common representation infused about the other task. Then, linearly
interpolating in weight space will result in models with random predictions for both tasks, since the training procedure
has not focused in retrieving a Pareto Subspace.

For milder cases (e.g. p = 0.7) , we observed that the models in the middle of the linear interpolation suffered in
performance which can be attributed to the fact that the sampling focused more on single-task rather than multi-task
representations and performance.

• p > 1. Then the distribution is more concentrated towards the midpoint of the simplex, as in the bottom row of
Figure 6. Assume an extreme case of two tasks and p→∞. Then, the distribution becomes deterministic and outputs
equal weights for all tasks. The randomly and independently initialized ensemble members will collapse to each other,
resulting in duplicate ensemble members. Similarly, for very large values (e.g. p = 100), the functional diversity of the
ensemble will suffer since the weights produced by the distribution will be almost equal for all tasks, resulting in a
milder version of the aforementioned phenomenon. In contrast, we found that small values such as p = 2 or p = 3 can

14



Pareto Manifold Learning: Tackling multiple tasks via ensembles of single-task models

0.2 0.4 0.6 0.8 1.0

top-left accuracy

0.2

0.4

0.6

0.8

b
ot

to
m

-r
ig

ht
ac

cu
ra

cy

p = 100

p = 0.1

p = 0

(a) MultiMNIST: Experimental results using three random
seeds per method.

0 2 4 6 8 10

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6 p = 100

p = 0.1

p = 0

(b) MultiMNIST: Cosine similarities of ensemble members.

0.820 0.822 0.824 0.826 0.828 0.830 0.832

age accuracy

0.781

0.782

0.783

0.784

0.785

0.786

0.787

0.788

0.789

ed
uc

at
io

n
ac

cu
ra

cy

p = 100

p = 0.1

(c) Census: Experimental results using three random seeds
per method.

0 2 4 6 8 10

Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p = 100

p = 0.1

(d) Census: Cosine similarities of ensemble members.

Figure 7: Experimental results on MultiMNIST and Census varying the concentration parameters p = p1T of the
sampling distribution. Three seeds depicted in shades of the same colors for the various p.

help convergence since they put more emphasis towards common representation (compared to p = 1), but may limit
functional diversity.

Figure 7 presents experimental results on MultiMNIST and Census for various concentration parameters p ∈
{0, 0.1, 100} of the Dirichlet distribution. Let θ1 and θ2 be the parameters of the ensemble members. For p = 0,
the ensemble consists of two single-task predictors with no multitask learning representational knowledge, since their
interpolation meets a low accuracy/high loss barrier. We omit the case of p = 0 for Census for visual clarity. This lack
of common representation is evident in the cosine similarities as well, where for p = 0 cos(θ1,θ2) ≈ 0. On the other
hand, for p = 0.1, common representations are infused into the ensemble and the experimental results show that the test
performance is characterized by diversity. However, this comes at the expense of the interpolated models at the middle
of the line segment, where the performance is suboptimal compared to p = 100 for MultiMNIST. This behavior is also
illustrated in the cosine similarities, where for p = 100 the ensemble weights α are in an ε-ball around the midpoint causing
the independently initialized models to progressively collapse. For Census, we also observe that this collapsing leads to
very high cosine similarity cos(θ1,θ2) > 0.9 and the ensemble is suboptimal compared to p = 0.1.

A.2. Connection between Pareto Optimality and multiple valley intersections

In this section, we investigate the connection between the intersection of multiple loss landscapes, pareto optimality and the
effect of the proposed algorithm Pareto Manifold Learning. We use the illustrative example, presented in Figure 1. Let Θ be
the parameter space of the model and Lt : Θ→ R, t ∈ {1, 2}, be the losses of the problem. For α ∈ [0, 1] and θ ∈ Θ, the
overall objective is L(θ, α) = αL1(θ) + (1− α)L2(θ).
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Figure 8 presents the overall loss objective as α varies from 0 to 1. For the extreme values of the range, the loss landscape
is inherently single-task. The subspace discovered by the method is depicted in blue, while a black ‘x’ is used for the
corresponding interpolated model, i.e., it corresponds to L(αθ1 + (1−α)θ2, α). In other words, the proposed method tracks
the optimum in parameter space as the overall objective evolves and the various loss landscapes are weighted accordingly.
While an acceptable multi-task solution lies in the intersection of low loss landscapes, Pareto Manifold Learning focuses on
the aforementioned dynamic scenario of loss weighting.

α = 0.0 α = 0.125 α = 0.25

α = 0.375 α = 0.5 α = 0.625

α = 0.75 α = 0.875 α = 1.0

1Figure 8: Illustrative example: (Overall) loss surface as a function of the model’s weights. The overall objective is
L(θ, α) = αL1(θ) + (1− α)L2(θ) and is shown for various values of α. The Pareto subspace discovered by the proposed
method is depicted in blue. ‘X’ shows the solution of the method for the corresponding α.
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A.3. Proof of Theorem 4.2

The theorem below shows that given a family of mappings, we can approximate them [arbitrarily accurately] with linear
interpolation of two perceptrons in parameter space.

Theorem Given a compact A ⊂ RD and a family of continuous mappings fn : A→ RD′
, n = 1, . . . , N , for any ε > 0,

there exists a ReLU multi-layer perceptron f with two different weight parameterizations θ and θ′, such that

∀n ∈ {1, . . . , N},∃α ∈ [0, 1],∀x ∈ A, |fn(x)− f (x;αθ + (1− α)θ′)| ≤ ε

Proof. Let σ be the ReLU non-linearity x 7→ max(0, x).

From the universal representation theorem, there exists Q ∈ N,M ∈ R(D+1)×Q,B ∈ RQ,M ′ ∈ RQ×D′
such that with

the one hidden layer perceptron

g : A× [0, 1]→ RD
′

z 7→M ′σ(Mz +B),

we have

∀x ∈ A,∀n ∈ {1, . . . , N},
∣∣∣∣fn(x)− g

(
x1, . . . , xD,

n− 1

N − 1

)∣∣∣∣ ≤ ε.

Let

R =




1 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 −1 0 0 . . . 0
0 0 1 0 0
0 0 −1 0 0

...
...

0 0 0 0 1
0 0 0 0 . . . −1
0 0 0 0 0




and S =




1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 . . . 0 0 0
0 0 0 0 1 −1 0 0 0

...
...

0 0 0 0 0 0 . . . 1 −1 0
0 0 0 0 0 0 0 0 1



,

and let Uk = (0, . . . , 0︸ ︷︷ ︸
×2D

, k).

Then, with x ∈ RD, we have

∀α ≥ 0, Sσ(Rx+ αU1 + (1− α)U0) = (x1, . . . , xD, α).

So with θ = (R,U1,MS,B,M ′) and θ′ = (R,U0,MS,B,M ′) and

f(x; r, u,m, b,m′) = m′σ(mσ(rx+ u) + b),

then

f(x;αθ + (1− α)θ′) = f(x;R, αU1 + (1− α)U0,MS,B,M ′)

= M ′σ(MSσ(Rx+ αU1 + (1− α)U0) +B)

= g(Sσ(Rx+ αU1 + (1− α)U0))

= g(x1, . . . , xD, α)
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Figure 9: Multi-Forward Graph: case of two tasks. We assume a window of W = 5. The nodes lie in the line segment
α2 + α1 = 1, α1, α2 ∈ [0, 1]. (Left) Full graph and dashed edges will be removed. (Right) Final graph.
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Figure 10: Multi-Forward Graph for three tasks. Left, middle and right present the case of the first, second and third task,
respectively. Each node is noted by its weighting, summing up to 1. Edges are drawn if the two nodes obey the total ordering
imposed by the task. Dashed edges are omitted from the final graph.

B. Ablation Studies
B.1. Ablation on Multi-Forward Regularization

Multi-Forward regularization, introduced in Section 4.2, penalizes the ensemble if the interpolated models’ losses (sampled
within a batch) are not in accordance with the tradeoff imposed by the corresponding interpolation weights. Simply put,
the closer we sample to the member corresponding to task 1, the lower the loss should be on task 1. The same applies to
the other tasks. Figure 3 presents the case of two tasks, where the idea of the regularization is outlined in loss space. For
completeness, we present the underlying graph construction for the cases of two and three tasks in Figure 9 and Figure 10,
respectively. The nodes of the graphs are associated with the sampled weightings and the edges for the graph Gt of task t are
drawn w.r.t. the corresponding partial ordering. If the loss ordering is violated for a given edge, a penalty term is added.

We ablate the effect multi-forward training and the corresponding regularization have on performance. We explore the
MultiMNIST and Census datasets using the same experimental configurations as in the main text. We are interested in:

• W : number of α re-samplings per batch. This parameter is also referred as window.
• λ: the regularization strength as presented in Algorithm 1. For λ = 0, no regularization is applied but the subspace is

still sampled W times and the total loss takes into account all the respective interpolated models.

Figure 11 and Table 2 present the results for MultiMNIST. Figure 12 and Table 3 present the results for Census. It
is important to note that MultiMNIST is symmetric, while Census is not. As a result, the features learned for each
single-task predictor are helpful to one another and the case of λ = 0, i.e., no regularization and only multi-forward training,
is beneficial for MultiMNIST but not for Census. Intuitively, both digit classification tasks have the same difficulty
and posterior distribution, which produces few violations of monotonicity constraints and renders the regularization less
applicable. On the other hand, severe regularization such as λ = 10 can be harmful and hinder training. More details in
table and figure captions.
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Table 2: MultiMNIST: Ablation on multi-forward training and regularization, presented in Section 4.2. Validation
performance in terms of HyperVolume (HV) metric. Higher is better, except for standard deviation (std). The visual
complement of the table appears in Figure 11. For each configuration, we track the Hypervolume across three random seeds
and present Mean HV, max HV and standard deviation. We annotate with bold the best per column. In the main text, we
report the best result in terms of mean HV, i.e., W = 4 and λ = 0.

Seed - 0 Seed - 1 Seed - 2 Mean HV Max HV std

W = 2 λ = 0 0.9205 0.9083 0.9100 0.9129 0.9205 0.0054
λ = 2 0.9121 0.9105 0.9037 0.9088 0.9121 0.0036
λ = 5 0.9132 0.9016 0.8979 0.9043 0.9132 0.0065
λ = 10 0.8766 0.8932 0.8470 0.8723 0.8932 0.0191

W = 3 λ = 0 0.9215 0.9141 0.9111 0.9156 0.9215 0.0044
λ = 2 0.9176 0.9150 0.9122 0.9149 0.9176 0.0022
λ = 5 0.9155 0.9138 0.9140 0.9144 0.9155 0.0008
λ = 10 0.9122 0.9050 0.8962 0.9045 0.9122 0.0066

W = 4 λ = 0 0.9220 0.9187 0.9143 0.9184 0.9220 0.0032
λ = 2 0.9213 0.9149 0.9157 0.9173 0.9213 0.0028
λ = 5 0.9158 0.9139 0.9132 0.9143 0.9158 0.0011
λ = 10 0.9177 0.9022 0.9102 0.9100 0.9177 0.0063

W = 5 λ = 0 0.9131 0.9180 0.9156 0.9156 0.9180 0.0020
λ = 2 0.9158 0.9203 0.9146 0.9169 0.9203 0.0024
λ = 5 0.9138 0.9082 0.9140 0.9120 0.9140 0.0027
λ = 10 0.9165 0.9158 0.9121 0.9148 0.9165 0.0019

Table 3: Census: Ablation on multi-forward training and regularization, presented in Section 4.2. Validation performance
in terms of HyperVolume (HV) metric. Higher is better, except for standard deviation (std). The visual complement of the
table appears in Figure 12. For each configuration, we track the Hypervolume across three random seeds and present Mean
HV, max HV and standard deviation. We annotate with bold the best per column. In the main text, we report the best result
in terms of mean HV, i.e., W = 2 and λ = 5.

Seed - 0 Seed - 1 Seed - 2 Mean HV Max HV std

W = 2 λ = 0 0.6517 0.6530 0.6532 0.6526 0.6532 0.0006
λ = 2 0.6575 0.6564 0.6560 0.6566 0.6575 0.0006
λ = 5 0.6577 0.6574 0.6590 0.6581 0.6590 0.0007
λ = 10 0.6548 0.6557 0.6554 0.6553 0.6557 0.0004

W = 3 λ = 0 0.6517 0.6496 0.6501 0.6505 0.6517 0.0009
λ = 2 0.6540 0.6523 0.6544 0.6536 0.6544 0.0009
λ = 5 0.6552 0.6539 0.6536 0.6542 0.6552 0.0007
λ = 10 0.6574 0.6567 0.6566 0.6569 0.6574 0.0004

W = 4 λ = 0 0.6488 0.6516 0.6504 0.6503 0.6516 0.0011
λ = 2 0.6492 0.6522 0.6504 0.6506 0.6522 0.0012
λ = 5 0.6499 0.6514 0.6525 0.6513 0.6525 0.0011
λ = 10 0.6529 0.6549 0.6558 0.6545 0.6558 0.0012

W = 5 λ = 0 0.6497 0.6502 0.6484 0.6494 0.6502 0.0008
λ = 2 0.6478 0.6497 0.6495 0.6490 0.6497 0.0009
λ = 5 0.6492 0.6509 0.6489 0.6497 0.6509 0.0009
λ = 10 0.6507 0.6538 0.6508 0.6518 0.6538 0.0014
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(d) W = 2 and λ = 5
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(i) W = 3 and λ = 10
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(j) W = 4 and λ = 0
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(k) W = 4 and λ = 2
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(l) W = 4 and λ = 5
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Figure 11: MultiMNIST: Effect of multi-forward on the window W and the regularization coefficient λ on the validation
dataset. The case of no multi-forward (W = 1) is presented in the first row. Multi-forward regularization for higher
W values is beneficial. Intuitively, attaching serious weight on the regularization λ ∈ {5, 10} while sampling few times
W ∈ {2, 3} leads to suboptimal performance since the update step focuses on an uninformed regularization term. The
accompanying quantitative analysis appears in Table 2.
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(d) W = 2 and λ = 10
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0.820 0.822 0.824 0.826 0.828 0.830 0.832

age accuracy

0.778

0.780

0.782

0.784

0.786

0.788

0.790

0.792

ed
u

ca
ti

on
ac

cu
ra

cy

Single Task

PaMaL (ours)-0

PaMaL (ours)-1

PaMaL (ours)-2

LS

UW

MGDA

DWA

PCGrad

IMTL

CAGrad

Nash-MTL

RLW

Graddrop

Auto-λ

RotoGrad

(f) W = 3 and λ = 2
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(g) W = 3 and λ = 5
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(h) W = 3 and λ = 10
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(i) W = 4 and λ = 0
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(j) W = 4 and λ = 2
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(k) W = 4 and λ = 5
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(l) W = 4 and λ = 10
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(m) W = 5 and λ = 0
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Figure 12: Census: Effect of multiforward on the window W and the regularization coefficient λ. The axes are shared
across plots. Compared to MultiMNIST, applying multiforward on the asymmetric Census dataset can improve accuracies
and help significantly outperform the baselines. However, widening the window W (e.g., last row for W = 5) can be
hindering, since larger regularization coefficients are needed. The accompanying quantitative analysis appears in Table 3.
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1Figure 13: Optimization trajectories in objective space in the case different loss scales. Similar to Figure 1, 5 initializations
are shown for baselines and a pair of initializations for Pareto Manifold Learning (PaMaL), in color for clarity. Dashed
lines show the evolution of the mapping in loss space for the subspace at the current step. We also show the initial subspace
(step= 0). All baselines, except Nash-MTL, and MGDA to a lesser degree, are characterized by trajectories focused on a
subset of the Pareto Front, namely minimizing the task with high loss magnitude. The same observation applies to naı̈vely
applying the proposed algorithm PaMaL, because using the same weighting for both the interpolation and the losses attaches
too much importance on the task with large loss magnitude. However, simple balancing schemes palliate this issue; gradient
balancing (PaMaL-gb) discovers a superset of the Pareto Front and loss balancing (PaMaL-lb) discovers the exact Pareto
Front.

B.2. Illustrative example: ablation on loss/gradient balancing schemes

The details of the illustrative example are provided in this section. We use the configuration presented by Navon et al. (2022),
which was introduced with slight modifications by Liu et al. (2021) and Yu et al. (2020). Specifically, let θ = (θ1, θ2) ∈ R2

be the parameter vector and L = (˜̀
1, ˜̀

2) be the vector objective defined as follows:

˜̀
1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ) and ˜̀

2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ)

where

f1(θ) = log (max (|0.5 (−θ1 − 7)− tanh (−θ2)| , 5e− 6)) + 6,

f2(θ) = log (max (|0.5 (−θ1 + 3)− tanh (−θ2) + 2| , 5e− 6)) + 6,

g1(θ) =
(

(−θ1 + 7)
2

+ 0.1 · (−θ2 − 8)
2
)
/10− 20,

g2(θ) =
(

(−θ1 − 7)
2

+ 0.1 · (−θ2 − 8)
2
)
/10− 20,

c1(θ) = max (tanh (0.5θ2) , 0) and c2(θ) = max (tanh (−0.5θ2) , 0)

We use the experimental setting outlined by Navon et al. (2022) with minor modifications, i.e., Adam optimizer with a
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learning rate of 2e− 3 and training lasts for 50K iterations. The overall objectives are `1 = c · ˜̀1 and `2 = ˜̀
2 where we

explore two configurations for the scalar c, namely c ∈ {0.1, 1}. For c = 1, the two tasks have losses at the same scale. For
c = 0.1, the difference in loss scales makes the problem more challenging and the algorithm used should be characterized
by scale invariance in order to find diverse solutions spanning the entirety of the Pareto Front. The initialization points are
drawn from the following set {(−8.5, 7.5), (0.0, 0.0), (9.0, 9.0), (−7.5,−0.5), (9,−1.0)}. In the case of Pareto Manifold
Learning with two ensemble members there are 52 = 25 initialization pairs. In the main text we use the initialization pair
with the worst initial objective values.

Figure 13 presents the results for the case of different loss scales, i.e., c = 0.1. We plot various baselines and three versions
of the proposed algorithm, Pareto Manifold Learning or PaMaL in short. We focus on the effect of the balancing schemes,
introduced in Section 4.2, resulting in the use of no balancing scheme (denoted as PaMaL), the use of gradient balancing
(denoted as PaMaL-gb) and the use of loss balancing (denoted as PaMaL-lb). We dedicate two figures for each version of
the algorithm and we present all 25 initialization pairs for completeness. Figure 14 corresponds to no balancing scheme in
the case of equal loss scales c = 1.0, i.e., they complement Figure 1 of the main text. The subsequent figures focus on the
case of unequal loss scales where c = 0.1; Figure 15 corresponds to no balancing scheme, Figure 16 corresponds to the use
of gradient balancing, Figure 17 corresponds to the use of loss balancing. The first figures of each pair show the trajectories
for each initialization pair, with markers for initial and final positions. The other figures of each pair dispense of the visual
clutter and focus on the subspace discovered in the final step of training, which is plotted with dashed lines along with the
analytical Pareto Front in solid light blue. Hence, they provide a succinct overview of whether the method was able or not to
discover the (entire) Pareto Front.

For c = 1.0, the proposed method is able to retrieve the exact Pareto Front with no balancing scheme for most initialization
pairs. In three cases (out of 25), the method fails. In our experiments, we found that allowing longer training times or higher
learning rates resolve the remaining cases. For c = 0.1, the problem is more challenging and the vanilla version of the
algorithm results in a subset of the analytical Pareto Front. This subset is consistent across initialization pairs, excluding the
ones the method fails, and focuses on the task with higher loss magnitude. Applying gradient balancing, shown in Figure 16,
allows the method to retrieve (a superset of) the Pareto Front for all initialization pairs. Similarly, loss balancing, shown
in Figure 17, results in the exact Pareto Front. Hence, the inclusion of balancing schemes endows scale invariance in the
proposed algorithm. Balancing schemes are used for the more challenging datasets, such as CityScapes.
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Figure 14: Illustrative example. Optimization trajectories in objective space for all initialization pairs in the case of equal
loss scales (c = 1.0) and application of the proposed method with no balancing scheme. Blue and red markers show each
ensemble member’s loss value, dots and “X”s correspond to the initial and final step, accordingly. In all but four cases,
Pareto Manifold Learning retrieves the entirety of the Pareto Front. Allowing longer training times or higher learning rates
solves the remaining initialization pairs.
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Figure 15: Illustrative example. Optimization trajectories in objective space for all initialization pairs in the case of unequal
loss scales (c = 0.1) and application of the proposed method with no balancing scheme. Blue and red markers show each
ensemble member’s loss value, dots and “X”s correspond to the initial and final step, accordingly. For the vast majority of
initialization pairs, the lack of balancing scheme guides the ensemble to a subset of the Pareto Front, influenced by the task
with higher loss magnitude.
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Figure 16: Illustrative example. Optimization trajectories in objective space for all initialization pairs in the case of unequal
loss scales (c = 0.1) and application of the proposed method with gradient balancing scheme. Blue and red markers show
each ensemble member’s loss value, dots and “X”s correspond to the initial and final step, accordingly. The proposed
method discovers a subspace whose mapping in objective space results in a superset of the Pareto Front.
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Figure 17: Illustrative example. Optimization trajectories in objective space for all initialization pairs in the case of unequal
loss scales (c = 0.1) and application of the proposed method with loss balancing scheme. Blue and red markers show each
ensemble member’s loss value, dots and “X”s correspond to the initial and final step, accordingly. For all but five cases, the
proposed method discovers a subspace whose mapping in objective space results in the exact Pareto Front.
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Table 4: UTKFace: Mean Accuracy and standard deviation of accuracy (over 3 random seeds). For the proposed method
(PaMaL), we report the mean and standard deviation of the best performance from the interpolated models in the sampled
subspace. No multi-forward training is applied. We present Pareto Manifold Learning with no balancing scheme, with
gradient balancing (g) and loss balancing (l).

Age ↓ Gender ↑ Ethnicity ↑
STL 0.091± 0.001 89.80± 0.38 81.23± 0.22

LS 0.100± 0.008 90.43± 0.76 80.49± 1.64
UW 0.092± 0.003 91.39± 0.08 81.63± 0.22
MGDA 0.091± 0.006 90.71± 0.22 77.29± 0.44
PCGrad 0.102± 0.008 90.36± 1.56 79.96± 2.94
IMTL 0.110± 0.029 91.16± 0.19 80.47± 0.96
Graddrop 0.140± 0.059 89.43± 2.59 77.59± 5.75
CAGrad 0.089± 0.001 90.84± 0.38 81.28± 0.53
RLW 0.097± 0.002 90.81± 0.12 81.50± 0.19
Nash-MTL 0.106± 0.019 90.36± 0.60 78.98± 2.14
Auto-λ 0.091± 0.003 90.84± 0.35 81.58± 0.06

COSMOS 0.107± 0.003 89.68± 0.40 79.39± 0.59
PHN 0.106± 0.001 90.49± 0.34 79.99± 0.23

PAMAL-g(W=1, p=1) 0.094± 0.001 90.65± 0.20 80.03± 0.27
PAMAL-l(W=3, p=2) 0.099± 0.003 90.62± 0.27 80.82± 0.97
PAMAL-g(W=3, p=2) 0.083± 0.001 90.93± 0.25 80.78± 0.29

B.3. UTKFace: ablation on the effect of loss/gradient balancing schemes

This section serves as supplementary to Section 5.2. Table 4 compares the performance of the baselines and the proposed
method. We experiment without balancing schemes and with gradient-balancing, and present the results in Figure 18.
Together with the quantitative results, we observe that for datasets with varying task difficulties, scales, etc. the lack of
balancing can be impeding. On the other hand, its inclusion makes the subspace functionally diverse and boosts overall
performance. For instance, Huber loss on the task of age prediction is significantly improved.

B.4. Hyperparameter optimization for PHN and COSMOS

PHN - Pareto HyperNetwork (Navon et al., 2021) The method has one hyperparameter: p for the sampling of the
Dirichlet distribution and two solvers: Linear and EPO (Mahapatra & Rajan, 2020). The method also requires the definition
of the architecture of the HyperNetwork. Following the authors’ implementation we use a MLP with 2 hidden layers of
w = 100 dimensions each. The output layer of the MLP has as many neurons as the target network, e.g. a LeNet for
MultiMNIST experiments or a ResNet18 for UTKFace. Essentially, this means that the HyperNetwork requires at least
w times the number of the target network parameters. The models for UTKFace and CityScapes have approximately
11M and 17M parameters, leading to the HyperNetwork to have 1.1B and 1.7B parameters. Hence, due to computational
reasons, the PHN baseline for these benchmarks applies chunking (Ha et al., 2017). For CityScapes we were unable to
retrieve good results for PHN using chunking and, hence we omit it from the main text and from additional experiments in
the appendix.

For the concentration parameter p we ablate over the values {0.001, 0.1, 0.2(used in the original paper), 0.5, 1, 2} and over
the two solvers, i.e., Linear and EPO. For MultiMNIST, the original paper used 100 epochs and complex schedulers
with a lower learning rate of 10−4. We limit the training budget to 10 epochs for all baselines and omit scheduling for
MultiMNIST. However, we also consider the lower learning rate in the ablation. The full hyperparameter sweep is
presented in Table 7 for MultiMNIST and Table 6 for Census.

For each hyperparameter configuration, three seeds are considered and the best configuration is selected by the best average
(across seeds) HyperVolume score that also satisfies the criterion that the average (across seeds) Spearman correlation over
the two task performances is lower than a threshold. Consider the case of two classification tasks, where performance is
gauged by validation accuracy. Then, a solution is examined over the different tradeoffs A = {(α, 1− α) : α ∈ [0, 1]}, and,
performance of one task should monotonically increase as α is increased and vice versa for the other task. In this optimal
scenario, the Spearman correlation would be −1. The reason for this additional criterion is that the optimal hyperparameter
configurations produced degenerate solutions, as explained visually in Figure 19. The aforementioned ablation applies to
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(a) Linear Scalarization
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(b) Gradient Balancing

Figure 18: UTKFace results with Gradient-Balancing Scheme for all three seeds. Each triangle shows the 66 points in the
convex hull and color is used for the performance on the associated task. The 3d plot shows the mapping of the subspace to
the multi-objective space. For datasets with tasks of varying loss scales, applying gradient balancing improves functional
diversity and performance, as shown in Table 4.
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Table 5: Hyperparameter search for COSMOS on MultiMNIST. Results refer to the validation set. Higher HyperVolume is
better. Lower Spearman correlation is better. The accuracy columns refer to the maximum accuracy sampled by conditioning
the network with ten different user preferences.

α λ lr acc top-left acc bottom-right HV Spearman

0.1

1.0 0.001 0.9440 0.9249 0.8731 -0.9838
2.0 0.001 0.9406 0.9219 0.8666 -0.9960
5.0 0.001 0.9400 0.9236 0.8667 -0.9919
8.0 0.001 0.9402 0.9219 0.8647 -0.9950

1.0

1.0 0.001 0.9339 0.9194 0.8587 -0.8121
2.0 0.001 0.9294 0.9173 0.8515 -0.8061
5.0 0.001 0.9279 0.9055 0.8380 -0.8828
8.0 0.001 0.9293 0.9059 0.8395 -0.9636

2.0

1.0 0.001 0.9422 0.9277 0.8741 -0.1328
2.0 0.001 0.9304 0.9179 0.8530 -0.8424
5.0 0.001 0.9285 0.9159 0.8487 -0.9434
8.0 0.001 0.9240 0.9120 0.8412 -0.9030

5.0

1.0 0.001 0.9378 0.9326 0.8746 0.0866
2.0 0.001 0.9280 0.9209 0.8544 -0.9279
5.0 0.001 0.9230 0.9162 0.8443 -0.8797
8.0 0.001 0.9242 0.9028 0.8338 -0.7078

MultiMNIST and Census.

COSMOS - Conditioned One-shot Multi-Objective Search (Ruchte & Grabocka, 2021) The method has two hyper-
parameters: p for the sampling of the Dirichlet distribution and λ as the coefficient for the proposed regularization. We
use the PHN search space for α, consider λ ∈ {0.1, 1, 2, 5, 8} and learning rate ∈ {10−3, 10−4}. The full hyperparameter
sweep is presented in Table 5 for MultiMNIST and Table 8 for Census.
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Table 6: Hyperparameter search for PHN on Census. Results refer to the validation set. Higher HyperVolume is better.
Lower Spearman correlation is better. The accuracy columns refer to the maximum accuracy sampled by conditioning the
network with ten different user preferences.

α solver lr acc age acc education HV Spearman

0.001
EPO 1e-4 0.8277 0.7883 0.6524 0.2294

1e-3 0.8250 0.7869 0.6492 0.9753

linear 1e-4 0.8283 0.7883 0.6530 0.0226
1e-3 0.8271 0.7861 0.6502 0.0000

0.010
EPO 1e-4 0.8264 0.7860 0.6495 0.1478

linear 1e-4 0.8274 0.7879 0.6519 -0.7723
1e-3 0.8268 0.7874 0.6510 -0.5617

0.100
EPO 1e-4 0.8277 0.7898 0.6537 0.1538

linear 1e-4 0.8272 0.7895 0.6530 0.2244
1e-3 0.8274 0.7883 0.6523 0.1743

0.200 EPO 1e-4 0.8292 0.7840 0.6501 -0.1337
linear 1e-4 0.8282 0.7833 0.6487 0.1567

0.500 EPO 1e-4 0.8287 0.7867 0.6520 -0.0834
1e-3 0.8274 0.7856 0.6501 -0.1058

linear 1e-4 0.8270 0.7854 0.6495 0.1374

1.000 EPO 1e-4 0.8291 0.7877 0.6531 -0.0442
1e-3 0.8270 0.7848 0.6490 -0.3510

linear 1e-4 0.8279 0.7870 0.6515 -0.0356

2.000 EPO 1e-4 0.8297 0.7876 0.6535 -0.5062
linear 1e-4 0.8266 0.7872 0.6507 0.6878

Table 7: Hyperparameter search for PHN on MultiMNIST. Results refer to the validation set. Higher HyperVolume is
better. Lower Spearman correlation is better. The accuracy columns refer to the maximum accuracy sampled by conditioning
the network with ten different user preferences.

α λ lr acc top-left acc bottom-right HV Spearman

0.001 EPO 0.001 0.9570 0.9290 0.8890 -0.9464
linear 0.001 0.9555 0.9440 0.9019 -0.9838

0.010 EPO 0.001 0.9615 0.8874 0.8532 -0.2705
linear 0.001 0.9587 0.9381 0.8978 -1.0000

0.100 EPO 0.001 0.9446 0.9257 0.8743 -0.9636
linear 0.001 0.9547 0.9406 0.8978 -0.9960

0.200 EPO 0.001 0.9502 0.9411 0.8941 -0.9394
linear 0.001 0.9468 0.9256 0.8763 -0.9919

0.500 EPO 0.001 0.9552 0.9436 0.9012 -0.9818
linear 0.001 0.9585 0.9495 0.9101 -0.7858

1.000 EPO 0.001 0.9500 0.9369 0.8900 -0.8858
linear 0.001 0.9579 0.9429 0.9032 -0.0016

2.000 EPO 0.001 0.9548 0.9438 0.9011 -0.7765
linear 0.001 0.9570 0.9384 0.8981 -0.6209
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Figure 19: Effect of the Spearman correlation (S) as a secondary criterion on the PHN and COSMOS baselines. The other
methods are fixed per row. Zoom for details. (Left) no additional constraint, (Middle) S < −0.5, (Right) S < −0.6. (First
row) MultiMNIST accuracy, (Second row) MultiMNIST loss, (Third row) Census accuracy, (Fourth row) Census
loss. The exclusion of the Spearman threshold criterion leads to degenerate solutions (left column) that are not in the spirit
of the original method; either a single point lies in the Pareto Front or the mapping from desired trade-off to network weights
is obfuscated. Additionally, loss curves are generally ”smoother” than accuracy curves, attesting to the generalization gap.
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Table 8: Hyperparameter search for COSMOS on Census. Results refer to the validation set. Higher HyperVolume is
better. Lower Spearman correlation is better. The accuracy columns refer to the maximum accuracy sampled by conditioning
the network with ten different user preferences.

lr=1e-3 lr=1e-4

α λ acc age acc education HV Spearman acc age acc education HV Spearman

0.01

0.1 0.8284 0.7902 0.6546 0.3204 0.8281 0.7891 0.6535 0.5075
1.0 0.8258 0.7872 0.6500 -0.2898 0.8254 0.7892 0.6514 0.4072
2.0 0.8118 0.7874 0.6370 -0.9960 0.8190 0.7884 0.6447 -0.9919
5.0 0.8105 0.7871 0.6298 -1.0000 0.8075 0.7878 0.6301 -1.0000

0.10

0.1 0.8287 0.7892 0.6540 -0.0411 0.8285 0.7887 0.6534 0.0948
1.0 0.8257 0.7891 0.6516 -0.9667 0.8254 0.7894 0.6515 0.0287
2.0 0.8196 0.7883 0.6448 -0.9960 0.8181 0.7883 0.6441 -0.9677
5.0 0.8201 0.7892 0.6405 -0.9838 0.8083 0.7879 0.6314 -0.9960

0.20

0.1 0.8286 0.7887 0.6535 -0.0451 0.8284 0.7889 0.6536 -0.0185
1.0 0.8276 0.7886 0.6526 -0.5289 0.8267 0.7895 0.6527 -0.0051
2.0 0.8238 0.7902 0.6502 -0.9677 0.8206 0.7881 0.6461 -0.9475
5.0 0.8247 0.7907 0.6492 -0.9394 0.8137 0.7876 0.6356 -0.9950

0.50

0.1 0.8291 0.7880 0.6533 0.3141 0.8293 0.7892 0.6545 0.3629
1.0 0.8283 0.7877 0.6524 -0.2757 0.8267 0.7897 0.6528 -0.4077
2.0 0.8255 0.7892 0.6508 -0.9596 0.8223 0.7882 0.6476 -0.9717
5.0 0.8277 0.7900 0.6505 -0.9556 0.8180 0.7879 0.6387 -0.9798

1.00

0.1 0.8285 0.7891 0.6537 0.5783 0.8293 0.7891 0.6544 0.3761
1.0 0.8279 0.7878 0.6522 -0.6916 0.8272 0.7897 0.6532 -0.1814
2.0 0.8290 0.7886 0.6537 -0.3253 0.8239 0.7885 0.6496 -0.3459
5.0 0.8283 0.7898 0.6533 -0.8384 0.8218 0.7874 0.6422 -0.8909

2.00

0.1 0.8280 0.7888 0.6532 -0.2172 0.8294 0.7896 0.6549 -0.0839
1.0 0.8290 0.7875 0.6528 -0.8392 0.8271 0.7900 0.6534 -0.3673
2.0 0.8276 0.7891 0.6530 -0.8489 0.8248 0.7888 0.6506 0.3466
5.0 0.8286 0.7896 0.6531 -0.7423 0.8234 0.7870 0.6441 -0.8061
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C. Additional Experiments
C.1. Details on experimental configurations

MultiMNIST MultiMNIST is a synthetic dataset derived form the samples of MNIST. Since there is no publicly
available version, we create our own by the following procedure. For each MultiMNIST image, we sample (with
replacement) two MNIST images (of size 28× 28) and place them top-left and bottom-right on a 36× 36 grid. This grid is
then resized to 28× 28 pixels. The procedure is repeated 60000 times, 10000 and 10000 times for training, validation and
test datasets. We use a LeNet shared-bottom architecture. Specifically, the encoder has two convolutional layers with 10 and
20 channels and kernel size of 5 followed by Maxpool and a ReLU nonlinearity each. The final layer of the encoder is fully
connected producing an embedding with 50 features. The decoders are fully connected with two layers, one with 50 features
and the output layer has 10. We use Adam optimizer (Kingma & Ba, 2015) with learning rate 10−3, no scheduler and the
batch size is set to 256. Training lasts 10 epochs.

Census The original version of the Census (Kohavi, 1996) dataset has one task: predicting whether a person’s income
exceeds $50000. The dataset becomes suitable for Multi-Task Learning by turning one or several features to tasks (Lin
et al., 2019). We focus on the task combination of predicting age and education level, similar to Ma et al. (2020). The
model has a Multi-Layer Perceptron shared-bottom architecture. The encoder has one layer with 256 neurons, followed by a
ReLU nonlinearity, and two decoders with 2 output neurons each (since the tasks are binary classification). Training lasts 10
epochs. We use Adam optimizer learning rate of 10−3.

MultiMNIST-3 The configuration of MultiMNIST is used. The model has three decoders. Training lasts 20 epochs.

UTKFace The UTKFace dataset has more than 20,000 face images of dimensions 200× 200 pixels and 3 color channels.
The dataset has three tasks: predicting age (modeled as regression using Huber loss - similar to (Ma et al., 2020)), classifying
gender and ethnicity (modeled as classification tasks using Cross-Entropy loss). Images are resized to 64× 64 pixels, age is
normalized and a 80/20 train/test split is used. We use a shared-bottom architecture; the encoder is a ResNet18 (He et al.,
2016) model without the last fully connected layer. The decoders (task-specific layers) consist of one fully-connected layer,
where the output dimensions are 1, 2 and 5 for age (modeled as regression), gender (binary classification) and ethnicity
(classification with 5 classes). Training lasts 100 epochs, batch size is 256 and we use Adam optimizer with a learning rate
of 10−3. No scheduler is used.

CityScapes Our experimental configuration is very similar to prior work, namely (Liu et al., 2019; Yu et al., 2020; Liu
et al., 2021; Navon et al., 2022). All images are resized to 128× 256. The tasks used are coarse semantic segmentation
and depth regression. The task of semantic segmentation has 7 classes, whereas the original has 19. We use a SegNet
architecture (Badrinarayanan et al., 2017) and train the model for 100 epochs with Adam optimizer (Kingma & Ba, 2015) of
an initial learning rate 10−4. We employ a scheduler that halves the learning rate after 75 epochs.
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Figure 20: Visual Explanation of Hypervolume. The metric captures the union of axis-aligned rectangles defined by the
reference point (star) and the corresponding sample points (red circles). This example showcases loss and the perfect oracle
lies in the origin. The point (1, 1) is used for reference. Hence, higher hypervolume implies that the objective space is better
explored/covered.

C.2. HyperVolume analysis on MultiMNIST and Census

HyperVolume is a metric widely used in multi-objective optimization that captures the quality of exploration. A visual
explanation of the metric is given in Figure 20. Table 9 presents the results of Figure 4 of the main text in a tabular form. We
present the best three results per column (higher is better) to succinctly and visually show that all Pareto Manifold Learning
seeds outperform the baselines.

Table 9: Tabular complement to Figure 4. Classification accuracy for both tasks and HyperVolume (HV) metric (higher is
better). Three random seeds per method. For baselines, we show the mean accuracy and HV (across seeds). For PaMaL, we
show the results per seed; HV and max accuracies for the subspace yielded by that seed. We use underlined bold, solely bold
and solely underlined font for the best, second best and third best results. We observe that the best results are concentrated
in the rows concerning the proposed method (PaMaL). Note that the use of three decimals leads to ties.

MultiMNIST Census

Task 1 Task 2 HV Task 1 Task 2 HV

LS 0.955 0.944 0.907 0.827 0.785 0.651
UW 0.957 0.945 0.913 0.827 0.785 0.65
MGDA 0.956 0.943 0.904 0.828 0.785 0.651
DWA 0.955 0.945 0.907 0.828 0.785 0.651
PCGrad 0.955 0.946 0.908 0.828 0.785 0.65
IMTL 0.958 0.944 0.908 0.828 0.786 0.651
Nash-MTL 0.958 0.948 0.913 0.827 0.785 0.65
RLW 0.954 0.941 0.903 0.827 0.786 0.651
Graddrop 0.954 0.942 0.903 0.829 0.786 0.652
Auto-λ 0.959 0.946 0.918 0.827 0.786 0.651
RotoGrad 0.959 0.945 0.913 0.827 0.786 0.651

PML - 0 0.968 0.951 0.92 0.83 0.789 0.655
PML - 1 0.961 0.953 0.916 0.83 0.789 0.655
PML - 2 0.964 0.953 0.919 0.829 0.788 0.653
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Figure 21: Examples of samples and corresponding labels for the MultiMNIST-3 dataset.

C.3. MultiMNIST-3 quantitative results

This section serves as supplementary to Section 5.2 of the main text. MultiMNIST-3 is a synthetic dataset generated by
MNIST samples in a manner similar to the creation of the MultiMNIST dataset, which is ubiquitous in the Multi-Task
Learning literature. Specifically, each MultiMNIST-3 sample is created with the following procedure. Three randomly
sampled digits of size 28× 28 are placed in the top-left, top-right and bottom middle pixels of a 42× 42 grid. For the pixels
where the initial digits overlap, the maximum value is selected. Finally, the image is resized to 28× 28 pixels. Figure 21
shows some examples of the dataset, which consists of three digit classification tasks.

Table 10 compares the performance of baselines and the proposed method while Figure 22 presents visually the performance
achieved on the discovered subspace.

Table 10: MultiMNIST-3: Mean Accuracy and standard deviation of accuracy (over 3 random seeds). For the proposed
method (PaMaL), we report the mean and standard deviation of the best performance from the interpolated models in the
sampled subspace. No balancing schemes and regularization are applied. Bold is used for the best performing multi-task
method.

Task 1 Task 2 Task 3

STL 96.97 ± 0.06 96.10 ± 0.17 96.40 ± 0.22

LS 96.26± 0.20 95.48± 0.14 95.87± 0.37
UW 96.48± 0.08 95.42± 0.30 95.77± 0.06
MGDA 96.50± 0.20 94.80± 0.22 95.71± 0.08
PCGrad 96.45± 0.06 95.39± 0.15 95.88± 0.01
IMTL 96.58± 0.22 95.18± 0.12 96.08± 0.31
Graddrop 96.25± 0.36 95.32± 0.24 95.61± 0.15
CAGrad 96.70± 0.13 95.20± 0.26 95.66± 0.06
RLW 96.06± 0.40 94.89± 0.18 95.68± 0.26
Nash-MTL 96.85± 0.08 95.25 ± 0.23 96.18 ± 0.13
Auto-λ 96.60± 0.17 95.16± 0.14 96.04± 0.18
RotoGrad 94.80± 0.75 92.79± 0.87 94.77± 0.38

PaMaL (ours) 96.85± 0.43 95.72± 0.22 96.27± 0.32
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Figure 22: MultiMNIST-3 results for all three seeds. Each triangle shows the 66 points in the convex hull and color is
used for the performance on the associated task. The 3d plot shows the mapping of the subspace to the multi-objective space.
No balancing scheme is used.
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Table 11: Test performance on CityScapes. See text for description of Settings I and II. 3 random seeds per method. For
Pareto Manifold Learning, we report the mean (across seeds) best results from the final subspace. Methods are divided into
single-task, single-solution MTL, multi-solution MTL and proposed method.

Setting I Setting II

Segmentation Depth Segmentation Depth

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 71.79 92.60 0.0135 32.786 70.96 92.12 0.0141 38.644

LS 70.94 92.29 0.0192 117.658 70.12 91.90 0.0192 124.061
UW 70.97 92.24 0.0188 118.168 70.20 91.93 0.0189 125.943
MGDA 69.23 91.77 0.0138 51.986 66.45 90.79 0.0141 53.138
DWA 70.87 92.23 0.0190 113.565 70.10 91.89 0.0192 127.659
PCGrad 71.14 92.32 0.0185 117.797 70.02 91.84 0.0188 126.255
IMTL 71.54 92.47 0.0151 65.058 70.77 92.12 0.0151 74.230
Graddrop 71.28 92.41 0.0182 124.645 70.07 91.93 0.0189 127.146
CAGrad 70.23 92.06 0.0173 100.162 69.23 91.61 0.0168 110.139
RLW 69.94 91.94 0.0195 119.667 68.79 91.52 0.0213 126.942
Nash-MTL 72.07 92.61 0.0147 62.980 71.13 92.23 0.0157 78.499
RotoGrad 70.41 92.03 0.0134 48.366 69.92 91.85 0.0193 127.281
Auto-λ 71.08 92.24 0.0173 118.959 70.47 92.01 0.0177 116.959

COSMOS 70.37 92.07 0.0317 107.575 69.78 91.79 0.0539 136.614

PaMaL(W=3, p0=7) 71.13 92.31 0.0138 50.985 70.35 91.99 0.0141 54.520

C.4. CityScapes additional results

The CityScapes dataset has 2975 training images and no publicly available test set. The validation set is used for test. We
refer to the original validation set as test set to avoid confusion. As far as we understand, prior works in Multi-Task Learning
do not discuss any splitting of the training set to accommodate a validation set. Hence, it is unclear how hyperparameters are
set. For this reason, we evaluate on two settings:

• Setting I: no validation set. All 2975 images are used for training.

• Setting II: Use 500 out of 2975 images for validation. The validation set is used to tune hyperparameters.

The test set is the same in both settings. In the main text, we report the results for Setting II. Table 11 presents the results for
both settings. For clarity, PaMaL (ours) uses the same hyperparameters for both settings. While the increase in number of
training samples leads to a quantitative boost in performance, the results are qualitatively similar. Specifically, MGDA still
performs optimally (out of MTL methods) in Depth Estimation but performs poorly for Segmentation. COSMOS exhibits
task bias towards Segmentation. On the other hand, the proposed method produces balanced solutions.
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