Under review as submission to TMLR

Stochastic gradient updates yield deep equilibrium kernels

Anonymous authors
Paper under double-blind review

Abstract

Implicit deep learning allows one to compute with implicitly defined features, for exam-
ple features that solve optimisation problems. We consider the problem of computing
with implicitly defined features in a kernel regime. We call such a kernel a deep equi-
librium kernel (DEK). Specialising on a stochastic gradient descent (SGD) update rule
applied to features in a latent variable model, we find an exact corresponding deter-
ministic update rule for the DEK in a high dimensional limit. This derived update rule
resembles previously introduced infinitely wide neural network kernels. To perform our
analysis, we describe an alternative parameterisation of the link function of exponen-
tial families, a result that may be of independent interest. This new parameterisation
allows us to draw new connections between a statistician’s inverse link function and a
machine learner’s activation function. We describe an interesting property of SGD in
this high dimensional limit: even though individual iterates are random vectors, inner
products of any two iterates are deterministic, and can converge to a unique fixed point
as the number of iterates increases. We find that the DEK empirically outperforms
related neural network kernels on a series of benchmarks.

1 Kernel methods, deep learning and implicit deep learning

Kernel methods are a classical paradigm for analysing representational capacity, bias, generalisation
performance and practical algorithms for nonparametric prediction (Scholkopt et al., 2002). Many
classical nonparametric models can be seen as extensions of parametric models (Saunders, 1998; [Ras-
mussen & Williams|, 2006, § 2.2) that allow for increased representational capacity while retaining some
statistical model-based properties. Examples of model-based qualities may include the smoothness,
stationarity or periodicity of the predictor (Duvenaud, 2014} § 2) or the statistical interpretation of the
learning procedure (Sollich, 2002; |Rasmussen & Williams|§ 3), which may be understood by examining
the kernel or the loss function (Banerjee et al., 2005, Theorem 4).

Despite early successes of kernel methods, when data is plentiful and/or modelling is hard, over-
parameterised and under-regularised deep learning is now seen as the dominant paradigm for practical
nonparametric-style prediction (OpenAl et al., [2019; |Adiwardana et al., 2020; [Rombach et al., |2022]).
Unlike parametric and classical nonparametric approaches, the architecture and loss functions of many
explicit neural networks are driven purely from the perspective of representational power or predictive
performance (either empirical (Vaswani et all|2017) or mathematical (Raghu et al., 2017))) rather than
model-based qualities.

A fruitful direction is to analyse deep learning predictors through the reductionist lens of kernel methods
through sufficiently well-behaved neural networks in certain large parameter count regimes (Neal, |1995)).
However, to the best of our knowledge, no current theory describes architectural properties of neural
networks in the kernel regime such as choice of activation function, depth and skip connections, in
terms of model-based properties. It is desirable to motivate predictive deep learning architectures from
a more fundamental, statistical model-based perspective (Rudin, [2019; |[Efron [2020)) in a kernel regime.

Implicit neural networks are an emerging approach to model-based deep learning, where the layers are
defined to implicitly satisfy the solution to a given problem. For example, deep declarative networks

Under review as submission to TMLR

(DDNs) (Gould et al., 2021)) solve optimisation problems, deep equilibrium models (DEQs) (Bai et al.,
2019) solve fixed point (algebraic) problems and neural ODEs solve differential equations (Chen et al.
2018)). Such problems are usually computed numerically via the (approximate) fixed point of an iterative
procedure. This leads to the view that implicit layers are themselves a composition of infinitely many
functions. Owing to the complexity of deep learning algorithms, theory falls short of explaining the
empirically demonstrated successes of both implicit and explicit models. To the best of our knowledge,
no general notion of an implicit kernel is currently described in the literature.

1.1 Our contribution: an implicit kernel and an update rule in kernel space

Updates in feature space Solutions to optimisation, fixed point or differential equation problems are
in practice most often obtained via a possibly stochastic iterative update procedure. Let X; € X C R!
be an input to the problem and ¥x, € 9 C R™ be the solution to the problem. Note that ¢ x, is the
evaluation of an implicit function of X;. Let wgf’i be a representation of the solution obtained at iterate
t. That is, there exists some possibly stochastic function g (-; X) : 9p— b such that

77[}(t-i-l) (t) (wg;)ﬁ), and w;;ﬁ-l) — g()(¢(t) Xg) (1)

We call wgﬁi and wgg features and ¢ the update rule in feature space. We emphasise that we consider
the problem where features are updated, not weight parameters as in some other settings.

Deep equilibrium kernels We find helpful the notion of an implicitly defined kernel, which we call a
deep equilibrium kernel (DEK). This allows us to draw parallels between infinitely wide implicit neural
networks and implicitly defined kernel machines. We consider three kernel evaluations in terms of the
implicit updates in feature space,

t+1) a @) T (1 t+1) a —(t+1) Ao
1/1() 1/1&2) \1152) 2 blim Uy 7, and Uip 2 lim \IIETQ), (2)
m—o0 T—00
. —f_/
finite feature DEK (fDEK) DK limiting DEK (¢DEK)

where defined, where plim denotes convergence in probability. Note the order of the limits. We will
similarly write U1; and Wy to represent evaluations of such DEKs at (X1, X7) and (X2, X5) respectively.
We write W+ for the corresponding 2 x 2 PSD matrices containing \If(tH), \Ilgt;rl) and \I/ét;rl) (and
likewise for the fDEK and ¢/DEK). The dimensionality of features are allowed to grow to infinity,
but only after taking the inner product — resulting in a scalar value for examination — avoiding the
necessity of describing, analysing and building algorithms involving infinite dimensional feature spaces.

Updates in kernel space Let S5 = {K € R**? | K = 0} denote the space of 2 x 2 PSD
matrices. Our central questions are as follows. Firstly, as m — oo, does there exist a G such
that updates may be performed on 2 x 2 PSD DEK matrices instead of in 2m-dimensional feature
space? Secondly, can we write a closed form for G? Finally, does this iteration converge? That
is, does there exist a closed-form update rule in kernel space G(-; X1, X5) : Si — Si such that

v — Gu®; X X5)? (3)
And does W =G(V)= lim Go...0G (W9: X, X;)? (4)
T—00 S~

7 compositions

For convenience, we notationally decompose G into components via a function G satisfying for each
ij € {11,22,12}

G(P; X1, Xo) = (gi; g;z> , where

()
Gij é G((I)ll7(1)]]7¢)7,]7X X) é (G(d),Xl’Xg))

ij

Under review as submission to TMLR

Neal| (1995))
Lee et al|(2018)
Jacot et al.| (2018

Deep
learning

Kernel
methods

This paper

Chen et al.|(2018)
Bai et al.| (2019)
Gould et al.| (2021)

Figure 1: We establish links between kernel methods and implicit functions to design a neural network
kernel with corresponding statistical assumptions.

Contributions We study an important special case of a DEK where we answer (3] and ({4]) positively,
one in which the features are iteratively updated using SGD applied to a latent variable model. The
model is over-parameterised (the number of parameters grows much faster than the amount of data),
but shallow (the motivation for the model more closely resembles exponential family PCA than a deep
neural network). The objective to which we apply SGD is an under-reqularised variant of an
expected negative log posterior. Our main result (stated precisely in § is a constructive proof of the
existence of G.

Surprisingly, despite the feature space of the DEK having seemingly no direct relation with deep learning
predictors, deep learning structures emerge as part of our analysis. Our DEK may be understood as
an infinitely wide DEQ whose iterates are computed with stochastic approximation rather than as
a deterministic fixed point iteration. Further, the kernel iterates of our DEK resemble previously
introduced NNKs and NTKs and may be computed with deterministic fixed point solvers.

Theorem {4 and Corollary (5| (informal). When the features wgﬁi and wgg are point estimates
obtained by SGD applied to objective , we construct a deterministic update rule for the DEK, G.
Repeated applications of G converge to a fixed point, the {DEK. In other words, for a specific continuous
latent variable model, under mild assumptions, and hold for the kernel update rule G on 2 x 2
PSD matrices.

We further quantify the degree to which the (DEK is an invariant of SGD when treated as an fiDEK
(Theorem [g).

2 Background

Our analysis requires combining fixed point theory (optimisation), the exponential family (statistics),
and neural network kernels (machine learning). We briefly describe elements of these topics here.

2.1 Fixed points and infinite compositions

Let f : F — F for some set F equipped with a norm || - || and norm-induced metric. A fixed point of f
is any Z* € F satisfying f(Z*) = Z*. Banach’s fixed point theorem (BFPT) gives sufficient conditions
for the existence and uniqueness of such a fixed point.

Theorem 1 (BFPT). Let (F,| - ||) be a non-empty complete normed space. A mapping f : F — F is
called a contraction mapping if there exists some q € [0,1) such that || f(Z) — f(Z")|| < ¢||Z — Z'|| for
every Z,7' € F . Every contraction mapping [admits a unique fized point Z* € F . Furthermore, for
any initial element Z(Y € F, the sequence ZHD = f(ZW®) fort > 1 converges to Z* as t — co.

It is worth noting that BFPT not only provides a mathematical condition for well-posedness, but also
describes an algorithm for approximating fixed points of contraction mappings. We call this algorithm

Under review as submission to TMLR

the naive fixed point solver, which simply involves applying a 7-fold composition of f to some starting

value ZW) | with a linear rate of convergence immediate from the definition of contraction mapping, i.e.
t

|1Z* -z < llifq||Z(2) — ZW||. Other solvers for fixed point problems are available, many of which

are approximate Newton methods for root finding (Kelley, 1995).

Deep equilibrium models (DEQs) (Bai et al., 2019) are neural network predictors constructed of pa-
rameterised layers that output the solution to fixed point equations fy(Z*) = Z*. These layers draw
upon earlier works on recurrent backpropagation (Pineda} |1987; |Almeida, [1990), leveraging the modern

machinery of deep learning architectures, optimisers and heuristics. The unsupervised learning problem
for a DEQ is

N
m&n g L(Xi,Z;‘, U) subject to zr = fulZ;, X;),
i=1
Empirical risk minimisation for parameters U Fixed point solution for DEQ predictions Z}

where L is some loss function, U is a parameter object, and {X;}¥, is a collection of input examples.
(A supervised setting might also involve a set of output examples). Derivatives %ZU; of outputs of
these layers with respect to their parameters U can be computed without backpropagating through the
iterates of the fixed point solver using the implicit function theorem (Bai et al., [2019). This allows
first-order stochastic gradient methods that are popular with explicit deep learning architectures to be

applied to DEQs.

In general, it is not guaranteed that a function necessarily admits a unique fixed point; various works
discuss dealing with multiple fixed points or ensuring or encouraging that exactly or at least one fixed
point exists (Winston & Kolter} 2020; Revay et al., 2020 [E1 Ghaoui et al., 2021)). Interestingly, if a single
DEQ layer involves finding the fixed point of a contraction mapping, by Theorem [I]the output computed
by a DEQ has the interpretation of an infinitely deep neural network with shared parameters in each
layer. More generally, mappings computed by the naive fixed point solver have interpretations as very
deep neural networks with shared parameters in each layer. Since zeros of the gradient of sufficiently
well behaved objectives are stationary points of the objectives, DEQ layers share a connection with
optimisation-based implicit layers (Gould et al. 2021), as explored in various works (Revay et al.,
2020; Xie et al.} [2021} [Tsuchida et al., [2022; |Riccio et al., |2022; [Tsuchida & Ong} [2022)). Our current
investigation concerns a connection more specific than optimisation, since it considers the special case
of applying SGD.

2.2 Exponential families

Exponential families The feature mappings that we use to build our kernel are estimates obtained
using SGD applied to certain variants of exponential family likelihoods and Gaussian priors. We now
define minimal and regular exponential families in canonical form. Let h be a probability density (mass)
function supported on data space Y C R. Let T : Y — R be a function called the sufficient statistic.
Given some canonical parameter n belonging to an open set H C R, we may construct a probability
density (mass) function by normalising the nonnegative function h(-)exp (T'(-)n). The normalising
constant is called the partition function, and its strictly convex and infinitely differentiable logarithm
A is called the log partition function (Wainwright et al. 2008, Proposition 3.1). We write

p(y | n) = h(y)exp (T'(y)n — A(n)), A(n) = log /Y h(y) exp (T'(y)n) dy

for the evaluation of a probability density (mass) function of an exponential family. The log partition
function A acts as a cumulant generating function for the conditional distribution of the sufficient
statistic T. In particular the expected value of the sufficient statistic (often called the expectation
parameter (Nielsen & Garciay, 2009))) is the gradient of the log partition function A. That is,

E[T(y) | n] = A'(n). (6)

Under review as submission to TMLR

We consider factorised exponential families in the following sense. Let v, . .. yq be distributed according
to the same exponential family and define data vector Y = (y1,...,yq)" and canonical parameter vector
H = (n1,...,74). Then the joint distribution of data ¥ conditioned on canonical parameters H is the
product of the individual elements

d d
p | H) =TT ot | m) = (T o)) exp (T(V) T H = A(H) 1), (7)
=1 r=1

where we write T(Y) = (T(y1), ..., T(ya)) , AGH) = (A(m), ..., A(ng)) " and 1= (1,...,1)7,

Link functions and canonical link functions Exponential families are used in generalised linear
models (GLMs) (McCullagh & Nelder} [1989). In GLMs, the conditional expectation @ of an exponen-
tial family is set to be the result of applying an (invertible) inverse link function s~ to the result of a
linear transformation of features ¢ € R™ (classically called parameters). That is, for some linear basis
V € R¥*™ (classically called covariates),

A'(H)=E[T(Y)| H] = s"' (Vo). (8)

The conditional expectation is then mapped to the canonical parameter H through
H = (A")"1os71(V¢), noting that A’ is invertible because A is strictly convex. In the case
where s~! is chosen to be A’, s = (A’)~! is called the canonical link function, and we observe from
that the canonical parameter and conditional expectation satisfy

H=V¢, E[T(Y)]|Ve]=A(Vg)=s"(Ve). 9)

There are two main and sometimes conflicting reasons why one might be interested in using a non-
canonical link function. The first is computational; if the link function were canonical, for some dis-
tributions such as Gamma or exponential one would need a constrained optimisation method over the
open set H instead of R. If s~! were allowed to be non-canonical — that is, we are free to choose
s~1 different from A’ — we could map the conditional expectation to the appropriate constraint set
and unconstrained optimisation procedures could be applied. In a Bayesian context, sampling from the
posterior over ¢ can be made easier by convenient choices of s. For example, the probit model admits
an efficient Gibb’s sampler for the posterior (Albert & Chib) [1993). The second, and arguably more
important consideration is modelling; we might have reason to suspect that the conditional expectation
is constrained. For example, if the observations should have a positive expectation, the power family
of link functions might be used (McCullagh & Nelder| [1989] equation 2.9a). Alternative link functions
can lead to exploiting particular properties of interest; for example, [Wiemann et al.| (2021) use the
softplus function for positive conditional expectations to exploit its identity-like behaviour at large pos-
itive values. In weighing up the possibly conflicting aims of computational convenience and modelling
suitability, we highlight the view of [Efron & Hastie| (2021, page 68); while classical exponential families
and link functions may lead to closed-form expressions, modern computer technology allows us more
flexible models.

Point estimation When using a canonical inverse link function s = A’, the negative logarithm of
the likelihood is strictly convex in H, since A is strictly convex and linear functions are convex. If
H is chosen to be H = V¢, this translates to convexity in ¢, and maximum likelihood estimates can
be computed using first or (more typically, in a classical setting) second order optimisation methods.
When s~! is not a canonical inverse link function, convexity does not necessarily hold. Nevertheless,
local estimates are practically useful, so pre-implemented link functions and the option to implement
custom link functions is available in a number of software frameworks including R (R Core Team, [2021,
family) and Stata (Hardin & Hilbel [2018, glm).

2.3 Kernels arising from neural networks

Our main result describes the DEK update rule as a composite function involving evaluations of kernels
of a particular form. These are kernels that are constructed from neural network models. In this section,
we describe such kernels.

Under review as submission to TMLR

The neural network kernel was first investigated as the covariance function of a certain neural network
with random parameters and a single hidden fully connected layer . Under mild conditions,
as the width of the hidden layer goes to infinity the neural network converges to a Gaussian process.
This analysis has since been extended to handle multiple layers (Matthews et al) [2018} [Lee et al.
2018)), other layer types including convolutional layers (Mairal et al., 2014} |Garriga-Alonso et al., [2018
Novak et al., 2019; [Yang} 2019asb), and training under gradient flow via the neural tangent kernel
(NTK) (Jacot et all [2018) . Since our motivation is better described in terms of inner products of
the features, we favour the view of the neural network kernel as an inner product in an infinitely wide
hidden layer rather than a covariance function of a Gaussian process. We note that connections between
Bayesian Gaussian processes and kernel methods exist (Kanagawa et al., 2018) and apply to some but
not all infinitely wide neural networks.

Neural network kernel, single hidden layer Let W(1) € R4*” be the weights of a fully connected
hidden layer with activation function ¢ defined over the reals. Suppose each entry of W) is i.i.d. with
distribution N0, 1ﬂ Given an input feature ¢; € R™*! (we take the convention that vectors are
column vectors), the signal in the hidden layer is r & ¢ (W(l)d)l Here and throughout the paper
the symbol £ means that the object on the left hand side is defined to be the expression on the right
hand side. By a strong law of large numbers, a suitably normalised inner product in the hidden layer
converges almost surely as d — oo to an expectation,

IhTHED = LW 61)TAWDa) S By [COF T 61 (W T 6)],

assuming the right hand side is finite, since the inner product is a sum of i.i.d. random variables. Here
WT € RYX™ is a vector with i.i.d. entries drawn from N(0,1). We define

ke(d1,02) £ Ew [C(W T ¢1)¢(W T 62)], (10)

and call k¢ a single hidden layer neural network kernel (NNK) with activation function (. The PSD
kernel k¢ uniquely defines an RKHS by the Moore-Aronszajn theorem. Closed-form expressions of k¢
for different ¢ are available (Williams|, 1997; Le Roux & Bengio| 2007; /Cho & Saul, 2009; Tsuchida et al.
2018; [Pearce et al., 2019; Tsuchidaj, 2020; [Meronen et al., [2020; Tsuchida et al.,2021; Han et al., 2022).

Define (x1,x2) " = (WT¢1, WT(/)Q) T, which is a zero mean bivariate Gaussian with a covariance matrix
Y. Note that kc(¢1, ¢2) depends on the input features ¢1 and ¢ only through the covariance matrix
YW, Tt is helpful to explicate this dependence structure through a special notation. We have that
is equal to

T T
1 1 1
k¢ (2(11)72é2)72(12)) 2 k((¢1a¢2) = E(XLXZ)TN/\/(o,z(l)) [C(Xl)C(XQ)], PAONES <¢l|—¢1 ¢lr¢2> . (11)
P2 01 Dy P2
With an abuse of terminology, we refer to both ks and k¢ as PSD single hidden layer NNKs. For a
more detailed description of the NNK, see Appendix [C}

Neural network kernel, 7 hidden layers One may compose multiple times by applying a
sequence of kernels to a 3-dimensional state represented by a 2 x 2 PSD matrix £(*), in place of the
infinitely wide signals. This 3-dimensional state represents the two squared norms and inner product
in each hidden layer. For t =1,...,7 and ij € {11,22,12},

SETY 2 B o) eaozon [C06)C0G)] = ke (25,55, 25, (12)

where E(? denotes the ijth element of ¥(¥). This iteration appears in deep infinitely wide

NNKs (Matthews et all |2018; |Lee et all [2018]). We will refer to this kernel as the 7 layer NNK. Eval-

uations EETQH) of the PSD kernel are determined entirely by the activation function ¢, and uniquely
define an RKHS.

1The effect of non-unit weight variance may be obtained by scaling all inputs ¢; by a hyperparameter. Similarly,
arbitrary covariance structures inside rows of W(1) can be reflected as linear transformations of all inputs ¢1.

2The effect of zero mean Gaussian biases may be obtained by augmenting inputs with an additional coordinate. The
magnitude of this coordinate is equivalent to the quotient of the standard deviation of the weights to the biases.

Under review as submission to TMLR

Neural tangent kernel, 7 hidden layers This kernel describes the limiting behaviour of randomly
initialised neural networks that are trained under gradient flow (Jacot et al.,[2018). The kernel iterations
are similar to (12| . but also contain components involving the derivative ¢ of (. Let ® denote elementwise
product. In addition to the iteration ,let ©1) = ¥ and define

ot+l) & e(t) @D L nD - where (13)

ZSH) £ By ~n0,50) [C (i) S (x5)] = e (3, Eﬁ?» E(t))

to obtain the evaluation of the PSD NTK in the last iteration @g?). Once again, the kernel is
determined entirely by the ¢, and uniquely defines an RKHS.

2.4 Notation

Numerical subscripts are used to extract (groups of) indices of a vector or matrix. Parenthesised
superscripts indicate a layer or iteration of a naive fixed point solver, both of which turn out to be
the same in our constructions. We index objects by iteration by superscript (¢), so that 1(*) represents
a feature in the tth iteration. We use ¢ and ® for arbitrary vectors and inner products that are not
necessarily obtained by iterations of SGD. We will use ¢ and ¥ for feature mappings and inner products
of feature mappings that are obtained by iterations of SGD.

We assume that we are given access to a dataset X € RV*! of N examples of datapoints X; € X C R,
We denote by X; and X5 any two elements of this dataset.

There are two types of function signatures we associate with PSD kernels. The first is for a usual
PSD kernel k£ : X x X — R, so that an evaluation is written k(X, X’) for any two X, X’ € X. We
call this form a k-form kernel. The second is for a PSD kernel whose evaluation depends on ¢1, ¢o €
% only through evaluations ®1; = (¢1, d1), P12 = {(P1,d2), Paa = (P2, P2) of some suitably defined
inner product (-,-) : ¥ x ¥ — . We represent such a kernel through & : ¢*> — R with evaluations
n((gbl, 1), (P2, d2), (01, ¢2>). An example of this second form is the NNK (11). We call this form a
k-form kernel.

Our notation is summarised in Table [3]in Appendix [A]

3 Main results

Our results are most clearly described in terms of an alternative parameterisation of exponential fam-
ilies and link functions, which are perhaps of independent interest. We first describe this alternative
parameterisation in §[3.1] before moving onto the setup for our main analysis in §[3.2] We then in § [3-3]
provide a special case (Corollary |3) of our main and most general result (Theorem) in § Finally,
quantification of error between the DEK and ffIDEK is described in § 3.5] We give examples of our
resulting updates in Appendix

3.1 An alternative view of link functions in exponential families

Instead of computing via the conditional expectation resulting from the application of an inverse link
function , we follow [Tsuchida & Ongl (2022)) and learn the canonical parameter via a nonlinearity
H = R(V¢), for some once-differentiable R : R — H called the canonical nonlinearity. This means that
the conditional likelihood (7)) is now

p(Y | V,0) = prmm—(ﬂhyr)exp (T(Y)TR(Ve) — A(R(V9)) '1). (14)

Such a parameterisation is rich enough to recover the (non-canonical) inverse link function view of
the statistician (see Proposition . It can therefore be considered to be a change of notation, placing
emphasis on the canonical nonlinearity R instead of the inverse link function s~'. In our setting, one

Under review as submission to TMLR

Exponential family A(n) s a) R(a) pla) o(a
Gaussian n?/2 s~ 1(a) s71(a) (s~ (a) s7Ha) (s~ (a)
Gaussian n?/2 a a 1 a
Gaussian n?/2 erf(a/\/2) erf(a/v/2) 2p(a) erf(a/v2)2p(a)
Gaussian n?/2 ReLU(a) ReLU(a) u(a) ReLU(a)

—1y7
Poisson exp(n) s71(a) log s~ 1(a) (2,1)(1531) (571 (a)
Poisson exp(n) exp(a) a 1 exp(a)
Poisson exp(n) log(1 + expa) loglog(1 + expa) Wﬁ% exp(a,)/(l1 + exp(a))
; . —1 (s7(a) (s71)'(a)
Bernoulli log(1 + exp(n)) s (a) o (1= 1(@) 1=5"T(a)
Bernoulli log(1 + exp(n)) | exp(a)/(1 + exp(a)) a 1 exp(a)/ (1 + exp(a))
Bernoulli log(1 + exp(n)) P(a) log (151(3‘1(21)) % Pp((f{)l)

Table 1: These examples are obtained by plugging the desired log partition function A and inverse link
function s~! into expressions , and . Canonical link functions are shown in blue. General
inverse link function settings are shown in red. Here P and p respectively denote the cdf and pdf of the
univariate standard Gaussian and erf denotes the error function.

advantage of such a notation is that it avoids more complicated function compositions involving inverses
and derivatives. For example, instead of writing A o (A")™1 0 s71(V¢) we may write A o R(V¢). The
value of these simple compositions become more evident in Proposition

Nonlinearities and activation functions The derivatives of the log likelihood (a score func-
tion) play a central role in numerical procedures associated with estimation. In our setting, such
derivatives involve terms derived from A and R. These terms are expressed in terms of functions we
call factor activations p(a) £ R'(a) and chain activations o(a) = (A o R)'(a). The following identities
show how one may map between choices of (A4, s) and choices of (4, R), and additionally how these
induce activation functions o and p which appear in gradient-based optimisers and our later derivations.
Note that we may choose the inverse link function s~! to be non-canonical (not A’).

Proposition 2. Consider a regular and minimal exponential family with log partition function A :
H — R. Suppose the conditional expectation belongs to a set A’, that is, A'(n) € A’ for all canonical
parameters n € H. Let s~ : B — A’ be an inverse link function, for some B C R. That is, for every
n € H there exists some a € B such that A'(n) = s~'(a). Then equivalently, n = R(a), where R : B — H
is defined by R(a) £ ((A")~ o s7)(a). Furthermore,

o) 2R @ = il o (e = T

The proof is given in Appendix [B] In practice we will take B = R. We observe that R is the identity
if and only if s is a canonical link function (which is to say that s=!(a) = 4’(a)). For the special case
of a Gaussian with known variance, A’ is the identity and R is the inverse link function s~'. Further
cases are listed in Table [Il

Nonlinear parameterisation framed in terms of R instead of s~! are often used (McCullagh & Nelder}
1989, Chapter 11.4 and references therein), but their general relationship to s~ does not appear to be
discussed. As our setting is equivalent to using an arbitrary link function, we inherit the motivation
of using a non-identity R from the motivation for using a non-canonical link function. We also inherit
the usual difficulties in estimation and sample complexity due to using not necessarily canonical link
functions.

Recall that the choice of (A, s) should be informed by both modelling and numerical convenience (sam-
pling, optimisation) considerations. Motivated by neural network kernels, we find a different set of
(A4, s) pairs convenient to work with compared with the generalised linear model setting. Convenience
here translates to being able to compute certain Gaussian integrals of the form in closed form. For
example, we find it easy to work with a Gaussian with non-negative conditional expectation, parame-
terised by A(n) = n?/2 and s~ !(a) = ReLU(a), where ReLU is the popular rectified linear unit (Efron

Under review as submission to TMLR

& Hastiel 2021, page 362). Another convenient setting is a Gaussian likelihood and probit inverse link
function (in contrast with the often seen Bernoulli and probit inverse link function). Our theory holds
for general (A, s) pairs, but its practical efficiency is contingent upon the existence of efficient numerical
routines for computing the integral . Such numerical routines in the absence of closed-forms are
available in other works (Zandieh et al.l 2021; [Han et al. 2022)), but we do not study their application
here.

3.2 Setup

Stochastic gradient descent We apply SGD (Wright & Recht, 2022, Chapter 5) to a minimisation
objective L(¢; X) = IEVL(QS; X, V) with decision variable ¢, input X and random object V. Given two
inputs X7 and Xs, the t 4 1th iterates are

t+1 t ¢ 8 t t+1 t 8 t
U =0 = o TG L V) and Y =) - S L X V)19

2
X1 X2

with initial features 1/1&?1) and z/;&?z, a sequence {a(®}, of step sizes, and a sequence of {V(®)}, of iid

samples of V. We use the features 1/)&2 and wgg in to define the iDEK, DEK and /DEK via .
We stress that we are updating features, not weight parameters.

Continuous latent variable model We work with a data generating process which is a slight
nonlinear generalisation (Tsuchida & Ongl 2022) of exponential family PCA (Collins et al., |2001)),
allowing for nonlinear R (or equivalently, non-canonical link functions as in Proposition . This model
describes data Y as being drawn from an exponential family distribution with a canonical parameter
that is a function of a latent ¢.

More concretely, let X € X C R! be an input and suppose that data Y = I'(X) follows a factorised
exponential family for some realisation of a random mapping I' : X — Y¢. Let R : R — H be a
once-differentiable function. Choose the canonical parameter H = R(V¢) to be the composition of R
and a linear transformation V of a latent input variable ¢ € @ = R™. Place an i.i.d. N'(0,1) prior over
each entry of V € R¥™ independent of I'. Place an i.i.d. N(0,A\~!/m) prior over ¢. This results in
a pre-nonlinearity parameter V¢ having components with variance which stays in d and m. For some
constant C' not depending on ¢, we have

~logp(6 | T(X),V) = - <1ogp(r<X> | R(V9)) —m;uqsn?) +c.

——

Log likelihood —Log prior

As discussed in Proposition [2] the derivative of the negative log-posterior with log-partition function
A, which appears in our later optimisation procedure, induces two functions p(a) £ R'(a) and o(a) =

(Ao R)'(a) which we call factor activations and chain activations respectively.
Objective function The expected negative log posterior
_ —_ — 1 A
L(¢:X) 2EVI(¢:X.,V), where L(¢:X,V) 2 ~(~logp(D(X) | R(V®)) + m[6)?), (16)

is a commonly used minimisation objective to find point estimates of ¢. See Appendix for a
discussion on this objective. The division by d is introduced to account for the natural numerical
scaling of the likelihood term, which is a sum of d parts. Following recent deep learning trends, we
consider an over-parameterised and under-reqularised variant

L(¢;X) 2 EyL($; X,V), where L(¢;X,V) 2 é(—logp(T(X) | R(Vg)) + W%Hgb”z), (17)

where d < m. This expected negative log posterior may be obtained by choosing an overly broad i.i.d.
prior ./\/(07 AL/ md) over ¢. We will take d to be a well-behaved function of m such that d — oo as
m — oo (see Assumption [I).

Under review as submission to TMLR

Assumptions We now describe two assumptions common to both settings. Our first assumption says
that the dimensionality m of the feature space should become larger much faster than the dimensionality
d of the exponential family.
Assumption 1. Consider any limit path (m,d) — (00, 00) such that lim % =0.

m—r 00
Our second assumption describes how the step size o should depend on m, d, and the SGD iteration t.
Recall the nomenclature “fixed” and “decreasing” as qualifiers for step-size, which describe a dependency
on t (but not d). Recall that X is the regularisation parameter.

Assumption 2 (a). lim a\/Z =1.

m—r 00

Assumption [2 (a)|allows for fixed or decreasing step sizes, such as %ﬁ%dr(t) for increasing but finite r.

We will find that in our setup, the DEK is a composite function involving NNK building blocks.

3.3 Error function inverse link and Gaussian likelihood to match a random mapping

We will find that the update rule G of the DEK is a composite function involving NNK building blocks.
In order to clearly highlight the role of these NNK building blocks, we first present a special case of our
more general Theorem [This provides a clear link between the statistical likelihood model and closed
form expressions for the DEK update rule.

We choose an exponential family, Canonical nonlinearity and random mapping I'. This particular setup
leads to closed-form expressions for the NNKs involved in the update rule. As an activation function,
we choose the error function erf(z) = 2/y/7 [e=v" dv (closely related to the Probit function), and rely
on a closed-form NNK derived in [Williams| (1997)),

—1 E12
NVEDITES S

We show here the statistical modelling choices and their corresponding effect on the DEK update rule.
In this special case, our main result (Theorem implies Corollary as proven in Appendix Recall
from §[2:2 that the designer needs to choose a log partition function A, and a canonical nonlinearity
R. We map input X € R! to data Y € R? through a random mapping Y = erf(WX/v2) + Q,
where W € R¥! and Q € R? contain ii.d. standard Gaussian elements. The distribution of Y
given erf(WX/v/2) is conditionally Gaussian, with conditional expectation erf(W X /+/2) having elements
between —1 and 1. We therefore choose a matching inverse link function, to represent the conditional
expectation as a function of features vx. The inverse link function is s7!(a) = erf(a/v/2). The log
partition function is A(n) = n?/2 and the sufficient statistic is T(y) = y. Since the likelihood is
Gaussian, the canonical nonlinearity R and inverse link function s~! are the same, as shown in the first
row of Table [} In this particular case, the activations p and o are shown in the third row of Table [I]

Corollary 3. Suppose input X is mapped to data Y by Y = erf(WX/v/2) + Q, where erf is the
error function and W € R and Q € R? contain i.i.d. standard Gaussian elements. Choose the log
partition function A(n) = n%/2. Choose the canonical nonlinearity R(a) = erf(a/v/2), or equivalently,
choose the inverse link function to be s~ (a) = erf(a/v/2). This implies that p(a) = 2p(a) and o(a) =
2p(a) erf(a/\/2), where p is the pdf of the standard Gaussian. Then k, and k., are given by

2
/(14 @11)(1+ 030) — 3,
Ko (P11, Poz, Pr2) = kip(Pr1, Poo, Pr2)kgy) yz) (F11, Fa2, F12), where F = (o + |)_1.

2 .
Bert(./v3) (D11, Y22, X12) = —sin (18)

Kp(P11, Pa2, P12) =
Let C;; = Fert(./v/2 (XZ-TX,',X]-TXJ-,XZ-TXJ-). Suppose Assumptions |1 and hold. Then applying
SGD to objective , the update rule G exists and can be decomposed into G (b)) satisfying
1
G(@i, @jj, Pij3 X, Xj) = — (Oijﬁp(@m@jj,q’ij) + o (Pi, (I)jjy(bij)>~

A

10

Under review as submission to TMLR

Note that in this case the component G of the update rule G can be computed entirely in closed form.
The 2 x 2 matrix F = (¢ + 1)~ has a simple closed-form in terms of ® (see Appendix |G.1)). Recall that
the decomposition of G into G says that, by plugging into , for each ij € {11,22,12},

v = g(el, vl e X, X)), Thatis, WD =G Xy, X).

i g Yig
3.4 General case

We now consider the general setting, allowing for arbitrary (A, s) pairs and random mappings I'. In
order to analyse this generalised setting, we require one additional definition and two additional
assumptions [3| and [

In the most general setting, the DEK includes some non-symmetric (hence not PSD and not a kernel)
cross terms. Given two activations ¢; and (o,

Ker o (B11, 222, B12) 2 By ya) T (0,5 G (X1) G2 (x2)] - (19)

The third assumption says that if the inner products were empirical estimates of an expectation, the
resulting expectation is real valued and finite. Recall that T is the sufficient statistic of the exponential
family, T is the random mapping from input space to data space, and o(a) = (Ao R)'(a)
2

Assumption 3. The expectation K(a) = Ey [(T(F(X)) ®p(aZ) - U(aZ) } is finite for all X € X
and a € R, where Z is a standard Gaussian random variable.

The fourth assumption describes the properties of the random mapping I' : X — Y% as d — oo. In
order to understand what happens to the solutions found by SGD as d becomes large, we need the
inputs which are passed through I' to be well-behaved. It suffices that a kernel and average defined

by I' converges. We call the limiting kernel ¢ the explicit kernel, which contrasts with our implicitly
defined DEK. We give examples in Appendix [F]

Assumption 4. The PSD kernel ¢ defined by c(X;,X2) = lim éT(F(Xl))TT(F(XQ)) =
m— 00

ET(F(Xl))TT(F(Xg)) is finite. Similarly, the mean function defined by u(X1) = li_r)n IT(M(Xy)) 1=

ET(T(X1)) "1 is finite.

Our main result is a constructive proof for the existence of an update rule G, as posed in .

Theorem 4. Suppose Assumptz'ons @ and hold. Let C;j = c(X;, X;) and p; = p(X;) be as
defined in Assumption . Then applying SGD to objective , the update rule G exists and can be
decomposed into G (b)) satisfying

G(P4i, D55, ij; Xi, Xj)
1

=32 (Cij/’ip(‘l)ii, D, Pis) — Ko (Piis ©jj, Pij) i — Kpoo (Piis ©jj, Pij) iy + Ko (Pidy D55, (I)ij)> .

Here ko, Kp, Ko,p and K, o are as defined by , and Proposition @

The proof is given in Appendix [E] Recall again that the decomposition of G into G says that, by
plugging (B)) into (), for each ij € {11,22,12},

v = g(ul, vl e X, X;). Thatis, WD = GW; Xy, X).

B0 g 2y

Note the cross terms involving s, , and p which were not present in the special case of Corollary
These cross-terms arise from random mappings I' with an average element that is non-zero. In the case
of Corollary [3] these cross-terms cancel out.

Theorem M| implies a fixed point condition by Theorem [1} providing a positive answer for .

11

Under review as submission to TMLR

Corollary 5. Suppose the same setting as Theorem [} If G is a contraction mapping, then the DEK
converges to a unique fized point as t — co. That is, for each ij € {11,22,12},

1
U5 = 2 <C’ijf€p(\l’m Ui Vi) = Ko (Wi, Wi, Wii) i — Kpo (Wi, Vg, i) g + Ko (Wi, U5, Wij)

(20)

Whether G is a contraction can be determined by a derivative test and an identity given in Theorem
as we demonstrate in § Note that even if a unique fixed point does not exist (which may be the
case if G is not a contraction), one may still compute with finite-¢ iterates of SGD via Theorem

Remark 6. We may compute iterates of SGD in the limit via the update rule for any T to obtain \I'EJT-),

which is the naive fized point algorithm applied to . Alternatively, we may compute the LDEK by
solving for each ij € {11,22,12} using any other fixed point solver.

Notable special cases Some further examples arising from special choices of A, R and I (inducing
corresponding p, o, ¢ and) are discussed in Appendix We find that the linear Gaussian (A(n) =
n?/2, R(a) = a) results in a DEK that is a scale multiple of ¢ (Appendix. We can recover an NNK
with activation o when A and R are allowed to be general and C and p are set to zero (Appendix.
The setting we found useful for our experiments (§|4) is a nonlinearly parameterised Gaussian (A(n) =
n?/2 and R(a) = ReLU(a)) with a first-order arc-cosine kernel for ¢ and a corresponding mean function
w. This setting admits a closed-form update rule for G. See Appendices and for details.

3.5 Sensitivity

Assumption suffices for our limiting result to hold. In order to quantify the distance between
the limit and finite-dimensional kernels, we require the stronger Assumption |2 (b)} which in particular
requires a fixed step-size. Both variants [2 (a)| and [2 (b)| result in a limiting step size of 0, under
Assumption

Assumption 2 (b). We have a fized step-size at) = % %
Finally, in order to quantify the rate at which the infinite-dimensional, infinite-iteration DEK converges
with respect to the dimension, we need the feature mapping to be well-behaved. Lipschitzness and

boundedness allows concentration inequalities to be applied.

Assumption 5. Suppose p is bounded or Lipschitz. Suppose o is bounded or Lipschitz.

We may quantify the degree to which the infinite-dimensional, infinite-iteration DEK is an invariant of
SGD. We define specific values of finite dimensional ¢ and ¢’ using the infinite dimensional kernel fixed
point W1y, Wys and Wy5. This definition will serve as a good approximation of an invariant.

Definition 7. Define

rr =/ VY11 (1,0,...0)—r e R™, o =/ Woo (cosw,sinw,O,...O)T e R™,

\Il12

where cosw = ——12—
VW11 Wao

. Thenr{ry =Wy, rfry = Uy, and v ro = WUay.

We bound the residual of the finite dimensional kernel evaluated at an initial guess that is the solution
of the infinite (m,d) system. When this bound is small, intuitively speaking, the limiting solution is
“almost” an invariant of the finite-dimensional system.

Theorem 8. Suppose Assumptions @ and@ hold. Let initial guesses be 1/}§?1) = ry and

g?g = ry as in Definition |1 Then there exist constants Qz, Qs, c2,c3 > 0 such that for all § > 0, e >0

and €9,

—(1
JP’(!\I/Q — ‘1112’ <e +€2> >1—46; — oo,

12

Under review as submission to TMLR

where

_K+62

2 (261 + 6%)7 01 = 2exp (— cszz) + exp (— m52/2) and 09 = 2exp (- d03M3)

€1

2 2
and €, = \/% +9, My = min {5—2%, %} and M3 = min {5—%, &} and cg > 0 is some absolute constant.

The proof is given in Appendix [E]

4 Experiments

Recall that the fiDEK is defined for finite SGD iteration 7 as an inner product of finite m-dimensional
features. The DEK is defined for finite SGD iteration 7 as a limit as m — oo of an inner product of
m-dimensional features. The /DEK is defined as a limit as SGD iteration 7 — oo of the DEK. Although
the DEK and /DEK are defined in terms of infinite dimensional features, evaluations of the DEK and
(DEK are scalar values and can be used to form matrices with a finite number of rows and columns.
These matrices can be used in downstream kernel algorithms to build predictive algorithms.

4.1 Measuring finite-width effects

We empirically measure the similarity of (finite-7, finite-d) fDEK matrices and (infinite-7, infinite-d)
¢(DEK matrices using the centered variant (Cortes et al., 2012) of kernel alignment (Cristianini et al.,
2001)), abbreviated CKA, as d increases. We vary d between 5 and 500 in steps of 5 and choose m = d°/2.
For control, we also measure the CKA between the (finite-7, finite-d) fDEK and the squared exponential
kernel (SEK). See Figure [2, and Appendix for full details on the experimental setup. As expected
(Theorem 7 the CKA between the DEK matrices becomes larger as d and m increase, but not between
the SEK and finite DEK.

L0017y 1.00 /‘fW 1.00
0.75 0.75 0.75
5 £ 0.5 .

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400

d d d

Figure 2: CKA between kernel matrices consisting of entries ¥;; and k((it)(Xi,X ;) (Blue) and squared

exponential kernel for control and kfit) (Xi, X;) (Orange) for three choices of A and R. (Left) Gaussian
exponential family, A(n) = n?/2 and R(n) = n. (Middle) Bernoulli exponential family, A(n) = log(1 +
expn) and R(n) = 7. (Right) Rectified Gaussian exponential family, A(n) = n* and R(n) = ReLU(n).

4.2 Inference using the DEK

We use the DEK for kernel ridge regression (Saunders, 1998) (KRR) (¢f Gaussian process regres-
sion (Rasmussen & Williams| 2006)) on a suite of benchmarks. For each dataset, we first partition
the data into an 80 — 20 train-test split. Using the training set, we perform 5-fold cross-validation
for hyperparameter selection using the default settings of sci-kit learn’s GridSearchCV, which performs
model selection based on the coefficient of determination. The hyperparameter grid we search over is
described in Table [Appendix [J:2] We then compute the RMSE on the held out test set using all
training data. We repeat this procedure for 100 different random shuffles of dataset, and find the sample
average and standard deviation RMSE over the random shuffles. The results are reported in Table [2}
The input X is preprocessed by subtracting the sample average and dividing by the sample standard
deviation of each feature. Additionally, the target data y is mean-centered and scaled by the sample
standard deviation. The reported RMSE is after conversion of y back to original units.

13

Under review as submission to TMLR

Data DEK or /DEK NNK NTK SEK
yacht 0.65 + 0.21 2.13 £0.57 2.75+0.58 3.62 £ 0.67 0
diabetes | 54.51 4+ 3.29 | 54.58 +£3.30 | 55.05 +3.38 | 54.754+3.32 | 70
energyl 1.00 £0.11 1.01 +0.11 1.67+0.14 1.08 £0.13 | 78
energy?2 1.58 +£0.15 1.58 £ 0.15 2.10£0.18 1.58 £0.16 | 68
concrete | 4.94 +0.47 4.97 £0.47 5.05 1+ 0.48 5.65 £ 0.39 60
wine 0.57 +0.02 0.61 £0.02 0.54 4+ 0.02 0.62 £0.02 1

Table 2: RMSE of KRR models (£ one standard deviation over 100 random seeds). We use the DEK
described in § [G.2.5 which outperforms other kernels according to the sample average of the RMSE,
although often the difference in performance is small compared with the standard deviation over 100
seeds. The final column is the number of times the best DEK found using GridSearchCV was an NNK.

Since the DEK is a strict generalisation of the NNK, we expect the DEK to strictly out-perform the
NNK. We find that GridSearchCV sometimes picks out settings that correspond with an NNK, but often
does not. The number of times GridSearchCV collapses the DEK to the NNK is indicated in the last
column of Table [2l Our results are consistent with the previously established observation that “NNKs
frequently outperform NTKs” (Lee et al., |2020)). More interestingly, we find that for each dataset, the
DEK performs as well or better than every other kernel, including the NNK.

5 Conclusion

We introduced the DEK, a kernel analogue of implicit neural network models. The DEK is defined
as the limiting inner product between two features computed using a feature update procedure as the
dimensionality of the features goes to infinity.

We considered the problem of whether a deterministic update procedure for the DEK exists , and
whether this update rule converges . We focused on the special case where the features are latent
variables in an exponential family PCA model (with not necessarily canonical link function) learnt using
SGD. Leveraging the connection between infinitely wide explicit neural networks and kernel methods,
we showed how in such a setting an explicit update rule can be computed. The update rule is a
composition of functions involving NNK building blocks.

The DEK has a number of interesting properties. The DEK is able to recover instances of the NNK, and
also resembles the NTK. Importantly, unlike the NNK and NTK, the deep layer structure of the DEK
is motivated entirely from an optimisation perspective. The activation functions (and thus kernels)
involved in the computation of the DEK can be related back to statistical modelling assumptions on
the data through the exponential family. In particular, the activation functions share a connection to
the log partition function and inverse link function of the exponential family. On a series of benchmarks,
the DEK performs as well as or outperforms the NNK, NTK and SEK.

Our work admits several natural extensions. The matrix V which represents a linear transformation
or fully connected layer may be constrained to resemble a convolutional layer, and we expect a convo-
lutional variant of the DEK to be tractable (Novak et al., 2019)). Since our construction is naturally
probabilistic, the Laplace approximation about the MAP may yield a tractable means of obtaining prin-
cipled uncertainty estimates for kernel methods beyond the regular Gaussian process framework. Since
the DEK satisfies a fixed point equation, implicit differentiation may be used to compute derivatives
of the DEK with respect to its hyperparameters, mirroring the neural network counterpart (Bai et al.|
2019).

We hope that our optimisation view and deterministic kernel update rule stimulates new research in
both deep learning and kernel methods.

14

Under review as submission to TMLR

References

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan,
Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-
domain chatbot. arXiv preprint arXiv:2001.09977, 2020.

James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous response data.
Journal of the American statistical Association, 88(422):669-679, 1993.

Luis B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial envi-
ronment. 1990.

Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu. Harness-
ing the power of infinitely wide deep nets on small-data tasks. nternational Conference on Learning
Representations, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Clustering
with bregman divergences. Journal of machine learning research, 6(10), 2005.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
ential equations. Advances in neural information processing systems, 31, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems, pp. 342-350. 2009.

Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal components
analysis to the exponential family. Advances in neural information processing systems, 14, 2001.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on
centered alignment. The Journal of Machine Learning Research, 13:795-828, 2012.

Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz Kandola. On kernel-target alignment.
Advances in neural information processing systems, 14, 2001.

Ricky Der and Daniel Lee. Beyond gaussian processes: On the distributions of infinite networks. In
Advances in Neural Information Processing Systems, volume 18. MIT Press, 2005.

David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, University of
Cambridge, 2014.

Bradley Efron. Prediction, estimation, and attribution. International Statistical Review, 88:528-S59,
2020.

Bradley Efron and Trevor Hastie. Computer Age Statistical Inference, Student Edition: Algorithms,
FEvidence, and Data Science, volume 6. Cambridge University Press, 2021.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. STAM Journal on Mathematics of Data Science, 3(3):930-958, 2021.

Stefano Favaro, Sandra Fortini, and Stefano Peluchetti. Deep stable neural networks: large-width
asymptotics and convergence rates. arXiv preprint arXiv:2108.02316, 2021.

Stefano Favaro, Sandra Fortini, and Stefano Peluchetti. Neural tangent kernel analysis of shallow
alpha-stable relu neural networks. arXiv preprint arXiv:2206.08065, 2022.

15

Under review as submission to TMLR

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional networks
as shallow gaussian processes. In International Conference on Learning Representations, 2018.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(8):3988-4004, 2021.

Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, and Amin Karbasi. Fast neural
kernel embeddings for general activations. Advances in neural information processing systems, 2022.

James W Hardin and Joseph W M Hilbe. Generalized Linear Models and Eztensions. College Station
Tex: StataCorp Press, 4th edition, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in neural information processing systems, pp. 8571-8580,
2018.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaus-
sian processes and kernel methods: A review on connections and equivalences. arXiv preprint
arXiv:1807.02582, 2018.

C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied
Mathematics, 1995. doi: 10.1137/1.9781611970944.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence and Statis-
tics, pp. 404-411, 2007.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on Learning
Representations, 2018.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in Neural
Information Processing Systems, 33:15156-15172, 2020.

David JC MacKay. Introduction to Gaussian processes. 1998.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel networks.
Advances in neural information processing systems, 27, 2014.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. In The International Conference on
Learning Representations, 2018.

P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition. Monographs on Statistics
and Applied Probability Series. Chapman & Hall, 1989.

Lassi Meronen, Christabella Irwanto, and Arno Solin. Stationary activations for uncertainty calibration
in deep learning. Advances in Neural Information Processing Systems, 33:2338-2350, 2020.

Shakir Mohamed, Zoubin Ghahramani, and Katherine A Heller. Bayesian exponential family pca.
Advances in neural information processing systems, 21, 2008.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with flash cards. arXiv
preprint arXiv:0911.4863, 2009.

16

Under review as submission to TMLR

Roman Novak, Lechao Xiao, Jaechoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia,
Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many
channels are Gaussian processes. In The International Conference on Learning Representations,
2019.

OpenAl, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Jozefowicz, Scott
Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Ponde de Oliveira Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. 2019.

Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. Expressive priors
in Bayesian neural networks: Kernel combinations and periodic functions. In Uncertainty in Artificial
Intelligence, 2019.

Stefano Peluchetti, Stefano Favaro, and Sandra Fortini. Stable behaviour of infinitely wide deep neural
networks. In International Conference on Artificial Intelligence and Statistics, pp. 1137-1146. PMLR,
2020.

Fernando Pineda. Generalization of back propagation to recurrent and higher order neural networks.
In Neural information processing systems, 1987.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the expressive
power of deep neural networks. In international conference on machine learning, pp. 2847—2854.
PMLR, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006.

Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv
preprint arXiv:2010.01732, 2020.

Danilo Riccio, Matthias J Ehrhardt, and Martin Benning. Regularization of inverse problems: Deep
equilibrium models versus bilevel learning. arXiv preprint arXiv:2206.13193, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10684—-10695, 2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206-215, 2019.

C Saunders. Ridge regression learning algorithm in dual variables. In Proceedings of the 15th Interna-
tional Conference on Machine Learning, 1998.

Bernhard Schélkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

William Fleetwood Sheppard. On the application of the theory of error to cases of normal distribu-
tion and normal correlation. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, (192):140, 1899.

Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaechoon Lee. On the infinite width
limit of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301, 2020.

17

https://www.R-project.org/

Under review as submission to TMLR

Peter Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabili-
ties. Machine learning, 46(1):21-52, 2002.

Russell Tsuchida. Results on infinitely wide multi-layer perceptrons. PhD thesis, The University of
Queensland, 2020.

Russell Tsuchida and Cheng Soon Ong. Deep equilibrium models as estimators for continuous latent
variables. In arXiv preprint, 2022.

Russell Tsuchida, Fred Roosta, and Marcus Gallagher. Invariance of weight distributions in rectified
MLPs. In International Conference on Machine Learning, pp. 5002-5011, 2018.

Russell Tsuchida, Tim Pearce, Chris van der Heide, Fred Roosta, and Marcus Gallagher. Avoiding
kernel fixed points: Computing with elu and gelu infinite networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 9967-9977, 2021.

Russell Tsuchida, Suk Yee Yong, Mohammad Ali Armin, Lars Petersson, and Cheng Soon Ong. Declar-
ative nets that are equilibrium models. In International Conference on Learning Representations,

2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/
9781108627771.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1-2):1-305, 2008.

Paul FV Wiemann, Thomas Kneib, and Julien Hambuckers. Using the softplus function to construct
alternative link functions in generalized linear models and beyond. arXiv preprint arXiv:2111.14207,
2021.

Christopher KI Williams. Computing with infinite networks. In Advances in neural information pro-
cessing systems, pp. 295-301, 1997.

FEzra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in Neural Infor-
mation Processing Systems, 33:10718-10728, 2020.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Confer-
ence on Learning Theory, pp. 3635-3673. PMLR, 2020.

Stephen J. Wright and Benjamin Recht. Optimization for Data Analysis. Cambridge University Press,
2022. doi: 10.1017/9781009004282.

Xingyu Xie, Qiuhao Wang, Zenan Ling, Xia Li, Yisen Wang, Guangcan Liu, and Zhouchen Lin. Opti-
mization induced equilibrium networks. arXiv preprint arXiv:2105.13228, 2021.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are Gaussian processes.
In Advances in Neural Information Processing Systems, pp. 9947-9960. 2019a.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. In arXiv preprint arXiv:1902.04760,
2019b.

18

Under review as submission to TMLR

Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, and Jinwoo Shin. Scaling neural
tangent kernels via sketching and random features. Advances in Neural Information Processing
Systems, 34:1062-1073, 2021.

19

Under review as submission to TMLR

A Table of notations

Symbol ‘ Name ‘ Description
Features and feature updates

Vx, Implicit function of X; For example, the solution to an optimisation prob-
lem, differential equation or root finding problem
depending on Xj.

gﬁfl) Feature for input X; As in . The result of applying ¢ iterations of a
' numerical procedure that compute the implicit func-
tion ¥x;.

g® Feature update rule As in

P Feature space Features are an element of this space.

Kernels and kernel updates (component-wise)

U, (DEK evaluated at X; and X; | Asin (2).

\P§;+1) DEK evaluated at X; and X; | Asin (2).

Gij DEK update rule (component- | As in Theorem

wise)
T DEK evaluation space Evaluations of the DEK are an element of this space.
Kernels and kernel updates (matrix)
v (DEK matrix evaluated at [W € S7 and the ijth element of W is W,;.
(X1, X3)
W) DEK matrix evaluated at | W+ € S and the ijth element of W+ is \I/l(-;-ﬂ).
(X1, X2)
G DEK update rule (matrix ver- | As in (3).
sion)
S Convex cone of PSD matrices | S2 = {M € R**? | M = 0}.
Inputs and data

X Input space A space X C R! to which input belongs.

X; Input vector An element of X.

X Input matrix An N x| matrix, where each row represents a single
element of X.

r Random mapping I' : X = Y is a random mapping which translates
input X to data Y belonging to the support Y of an
exponential family.

Y =T(X) | Data The result of applying I' to input X

~i(X) Random mapping coordinate | The ith coordinate of I'(X).

evaluation
Exponential families

Y Exponential family support As in §[2.2] The space over which the exponential
family distribution has non-zero mass. We take Y C
R.

T Sufficient statistic As in §

n Canonical parameter Asin § The canonical parameter belongs to an
open set H C R.

A Log partition function The function that returns logarithm of the normalis-
ing constant of the exponential family as a function
of its canonical parameter. A : H — R. As in §

s7! Inverse link function The function that maps a parameter of the expo-

nential family to the expectation parameter of the
exponential family. As in .

20

Under review as submission to TMLR

R Canonical nonlinearity As in Proposition |2l R : R — H maps the result of
a linear transformation to a canonical parameter of
the exponential family.

Activation functions

¢, (1, G General activation function A generic activation function of a neural network.

P factor activation The derivative of the canonical nonlinearity. That
is, p(a) = R'(a).

o chain activation The derivative of the composition of the log parti-

tion function and the canonical nonlinearity. That
is, 0(a) = (Ao R)(a)

u Heaviside step function A special case of €. u(a) takes the value of 0 if a < 0,
1lifa >0, and 0.5 if a = 0.

ReLU Rectified linear unit A special case of (. ReLU(a) = u(a)a.

erf Error function erf(a) = % foa e~* dz. Asin §

Table 3: Summary of notation used throughout this paper.

21

Under review as submission to TMLR

B What is the relationship between s™!, R, o and p?

Nonlinearly parameterised exponential families are densities Any member of a given expo-
nential family is a density (mass) function. That is, for every v € H,

/p(y |v)dy=1 and p(y|v)>0. (21)

Given a nonlinearity R : R — H, it is immediate that any member of a given nonlinearly parameterised
exponential family is a density. That is, for any a € R, defining vy = R(a) € H, from we have

ol R@)dy= [o] o)dy=1 and ply | R(@) =ply| 70) 2 0.
Sl

cH

Identities relating s~', R, 0, and p The canonical link function is one which expresses the canonical
parameter 7 in terms of the expectation parameter E[T(Y) | n]. When R is the identity, we have that
A'(n) = E[T(Y) |] and so the canonical link function is (A’)~!. That A’(n) = E[T(Y) | n] follows
from the fact that A is a cumulant generating function for the sufficient statistic (Wainwright et al.|
2008, Proposition 3.1).

A (not necessarily canonical) link function is one which expresses a (not necessarily canonical) parameter
a in terms of the expectation parameter E[T(Y)]. We now discuss how given an exponential family and
a link function can be related to a choice of R.

In the general setting, since A is a cumulant generating function, the inverse link function s~! satisfies
A’(R(a)) =5 1(a) (22)

Noting that A’ is invertible because A is strictly convex, implies that for a desired link function s,
we must choose

R(a) = ((A) " os")(a)

(1
(At m), n=s"(a) (23)

Since p(a) = R'(a), we have that
_dRdp
= T da
= ()7 (7(@) (57 ()

YW@
A" o (A1 osHa)

pla)

(by the inverse function theorem). (24)

Since o(a) = (Ao R) (a) and p(a) = R'(a), we have that
a(a) = A’(R(a)) p(a)
1 (a)

_ s7Ya) (s7)(a)
Ao (A)los 1(a) (25)

As expected, when s a canonical link function (which is to say that s~!(a) = A’(a)), implies that
R is the identity, p takes a constant value of 1 and o is A’).

Some examples are given in Table

22

Under review as submission to TMLR

C Detailed neural network kernel description

Let W) € R¥" be the weights of a fully connected hidden layer with activation function o. Suppose
each entry of W) is i.i.d. with distribution A’(0,1). Given an input ¢; € R™*! (we take the convention

that vectors are column vectors), the signal in the hidden layer is h(ll) = U(W(l)(bl). Given any two

input features ¢ and ¢2, a normalised inner product of the features in the hidden layer is

—

d
Lot o 1 (1) (1) T T
2 by = So (W6 To(Whe,) = g; (W, ¢1)o(W," ¢2), (26)
where W," is the ith row of W), Note that since each row of W) is i.i.d., is an average of i.i.d.
random variables. A strong law of large numbers says that the average of a sequence of i.i.d. random
variables converges almost surely to the expectation if the expectation is finite. We therefore have
that converges almost surely to

ko (61, 02) 2 Ew [o(W T ¢1)a(W T ¢2)], (27)

as d — oo. Here WT € RY™" is a vector with i.i.d. entries drawn from A(0,1). We call k, a single
hidden layer neural network kernel (NNK) with activation function o.

Note that W is a row vector, and therefore WT¢1 is a scalar. This means that while is written
as an expectation over n-variate random vector W, it is actually only an expectation over the bivari-
ate random vector (x,x’) = (WT(,zbl WT¢2) Since Gaussian random vectors are closed under affine
transformations, (y, x’) is a Gaussian random vector. The mean of each component is zero. The 2-by-2
covariance matrix (1) has entries

2(112) =]E[(WT¢1)(WT¢2)] =E

Z Z Wp‘z)lqu‘z)q] = Z Z E [Wp¢1qu¢ Z E ¢1p¢2pa
p=1qg=1

p=1g¢=1

where the last equality is due to the fact that W, and W, are independent when p # ¢, and ¢, and
@24 are not random variables. Since IEIWP2 = 1, the right most term is ¢ ¢2. We may repeat a similar
procedure for 17 and Yos, giving us an expression for the covariance

(1) (1) T T
(1) 2 2 2y _ b1 b1 1 ¢2)
> (2(” 2§12>> (oo 2152)- @)

It is instructive to rewrite in two other forms. The first form explicitly shows the expectation with
respect to the bivariate Gaussian which has covariance given by ,

ko (61,62) = Eqy 7 anvo.s) [0 (X) 7 (X)] (29)

For the second form, we use notation to remind us that the kernel k, actually depends only on three
scalar values. From (28)), we observe that k,(¢1,$2) depends on ¢1 and ¢» only through the pairwise

inner products 252) = ¢{ ¢3. Observe that by symmetry 2(2) = E(). In other words, there exists a
function k, such that

1 1 1
ko(d1,) = "%(251)7 252)7 252))- (30)
In summary, there are three equivalent ways to write an NNK| k, (¢1, ¢2):
e As an expectation over random vectors W corresponding to neural network weights ,

+ As an expectation over a bivariate Gaussian with covariance (1) (2§),

e As a function of three arguments, explicitly showing the three parameters in the covariance of
the bivariate Gaussian .

23

Under review as submission to TMLR

Closed-form expressions of k, for different o are available (Williams| 1997; [Le Roux & Bengio, [2007

[Cho & Saull [2009; Tsuchida et all [2018} [Pearce et all [2019} [Tsuchidal, [2020; [Meronen et all [2020
Tsuchida et al.,[2021; [Han et al., 2022)). For example, when ¢ is the ReLU function, the resulting kernel
is known as the arc-cosine kernel of order 1 and is given by (Cho & Saull [2009))

¢ da

kreLu(o1, ¢2) = W(sma —(r—16) 0059), where cosf = —||¢1”“¢2”

24

Under review as submission to TMLR

D Tools for concentration inequalities

The main purpose of this appendix is to introduce Bernstein’s inequality and associated tools to apply
to our problem at hand. We first need to introduce sub-Gaussian and sub-exponential random variables,
and discuss special cases of how we may construct such random variables.

Definition 9. A centered random variable Y is sub-Gaussian if there exists an S > 0 such that
Eexp (Y2/52) < 2.
The sub-Gaussian norm of Y,
s £ inf {v >0:Eexp (YQ/U2> < 2},
is the smallest S.

Bounded random variables are sub-Gaussian, and as an immediate consequence, so are constant random
variables.

Lemma 10 ([Vershynin| (2018) Example 2.5.8). A bounded random variable Y is sub-Gaussian with
sub-Gaussian norm s satisfying
s < (10g2) Y [l

where ||Y || is the essential supremum of Y.

Lipschitz functions of Gaussian random variables are also sub-Gaussian.

Lemma 11 ([Vershynin| (2018) Theorem 5.2.2). Let Y be a Gaussian random variable with variance
a?. Let f : R — R be L-Lipschitz. Then f(Y) — Ef(Y) is sub-Gaussian with sub-Gaussian norm sg
satisfying

so < Cla|L,

for some absolute constant C > 0. Furthermore, by the triangle inequality and Lemma fY) is
sub-Gaussian and the sub-Gaussian norm s of f(Y) satisfies

s < Cla|L + (log2) ' Ef(Y)].

A class of random variables which includes sub-Gaussian random variables is the class of sub-exponential
random variables.

Definition 12. A random variable Y is sub-exponential if there exists an A > 0 such that
Eexp (|Y]/A) <2
The sub-exponential norm of Y,
a = inf {v >0:Eexp ((|Y\)/v) < 2}7
is the smallest A.

Centering a sub-exponential random variable results in another sub-exponential random variable.

Lemma 13 (Vershynin| (2018]) Exercise 2.7.10). IfY is sub-exponential with sub-exponential norm ag
then Y — EY is also sub-exponential, with sub-exponential norm a satisfying

a < Cag
for some absolute constant C' > 0.

A useful fact is that a product of sub-Gaussian random variables is sub-exponential.

25

Under review as submission to TMLR

Lemma 14 (Vershynin| (2018) Lemma 2.7.7). Let Y7 and Yy be sub-Gaussian random variables with sub-
Gaussian norms s1 and So respectively. Then their product Y1Ys is sub-exponential with sub-exponential
norm a satisfying a < s1So.

Finally, sub-exponential random variables obey a useful quantitative form of a law or large numbers,
which is a form of a Bernstein inequality.

Theorem 15 (Bernstein’s inequality, Corollary 2.8.3 of | Vershynin| (2018). Let Y7,...,Yy be a collection
of random variables and write p; = EY; fori=1,...,d. Suppose Y1 — p;, ..., Yy — pq are independent
sub-exponential random variables with sub-exponential norms ay,...aq. Then, for every r >0,

P(\;i(ﬁ—ﬂi)} Zr> SQeXp<—ch>7

=

2

where M = min{ } and ¢ > 0 is an absolute constant.

_r _ _r
max; a?’ max; a;

26

Under review as submission to TMLR

E Analysis

The stochastic gradient %L(@ X, V) evaluated at an arbitrary point ¢ €% for input X and random
V is after scaling the sum of the gradient of the negative log prior and the stochastic gradient of the
negative log likelihood,

(,%L((b; X,V) = \/Tm W) © pve) - o(ve)). (31)

Gradient of negative log prior Stochastic gradient of log likelihood

In order to prove Theorem [4] we will need to prove a series of lemmas. The intuition behind these
lemmas is as follows. Assumption [2[means that if the limit were allowed to be applied, the gradient
of the negative log prior term in multiplied by the step size would look like ¢. This means that
the update of SGD would just be the stochastic gradient of the log likelihood. We then examine the
inner product of the stochastic gradient of the log likelihood, which would be the kernel update rule.
The series of Lemmas is then as follows. We first convert the inner product of the stochastic gradient
of the log likelihood to an approximate form that is easier to deal with (Lemma . We then confirm
that the kernel update only involves the inner product of the stochastic gradients of the log likelihood
(Lemma . Finally, we show that the inner products of the approximate form converges to a closed
form update rule G (Lemma . Assembling these lemmas together yields Theorem

To this end, define the kernel
ﬁ(T(NXl)) © p(Ver) — o(Vér) ' WT(T(T(X2)) ® p(Vn) — o(Vebn)),

which is a scaled inner product of the gradient of the negative log likelihood evaluated at inputs X7
and X5 and arbitrary points ¢; and ¢s. The factor %VVT € R4¥4 is approximately the identity matrix

ka(X1, Xo; 01, 02) =

for large m under Assumption [1} leading to an easier to deal with approximation Ed (X1, Xo; ¢1, ¢2) for
kd(Xh X27 (bla (b?)a

ka(X1, Xo; ¢1, o) 2 - (T(T(X1)) © p(Vgr) — U(V¢1))T(T(F(X2)) ® p(Vo2) — o (Vea)).

a2
Lemma [16|says that this approximation is exact in the infinite d limit, and quantifies the quality of this
approximation when d is finite.

Lemma 16. Let ¢1 € R™ and ¢ € R™ be arbitrary and suppose Assumption[3 holds.

@A) Under Assumption kq(X1, Xo;¢1,d2) converges in probability to Ed(Xl,Xg; @1, 02).
@B) Under Assumption@ there exist constants Q > 0 and ¢ > 0 such that for all 6 > 0 and €3 > 0,

7 K +e
P(’kd(XIaX% 1, 02) — ka(X1, Xo; ¢1,¢2)| > ()\722)
where €1 = \/%4’5 and M = min{é—%,%}.
Proof. We use the shorthand I'; = T'(X;) and T'y = T'(X3). We have

|ka(X1, X5 61, 62) — ka(X1, X23 61, 62)]

(261 + ef)) < 2exp (- ch) + €7m52/2,

= #’(T(Fl) ® p(Ver) — J(qu)l))T(%VVT —1)(T(T) © p(Ve) — o(Veho))|
< L © p(ven) - otvon|| 2w — 1 7(ta) 0 p(vs) - v
< # max {|7(1) © p(Vén) ~ o(Ver)| *|Irs) © p(ves) - dv%)‘f}“%vw 1

1 1
max (K, —IE[KQA&})HEVVT 1 +IE[K¢;]HEVVT —1, (32)

A2 de{d1,02} ¢

27

Under review as submission to TMLR

. N2
where K; = ézgzl (T(’yz-(Xl)) ® p(V;" o) — U(V;T¢)) and VT is the ith row of V. The quantity
E[K ;] is finite by Assumption

Using a standard result (Wainwright|, [2019, Example 6.2), we have that

1 d
]P’(HI - —VVTH > 2¢, + e§> <em®2 o =% 1s (33)
m m

Combining and and taking d — oo under Assumption [1, we have (16]A).
We may apply a Bernstein concentration inequality to K i E[K és] as follows. The variables

T(%(Xl))p(ViTz/)) — o(V;T¢) for each i are mutually independent. The quantities Vl—'—iﬁ are zero-
mean Gaussian (since Gaussian random variables are closed under linear combinations). By Assump-
tion [5], each variable in the sum contains sub-Gaussian elements since bounded random variables are
sub-Gaussian (Lemma , and Lipschitz functions of Gaussian random variables are sub-Gaussian
(Lemma . The square of sub-Gaussian random variables is sub-exponential (Lemma . Sub-
exponential random variables that are centered by subtracting their mean are also sub-exponential
(Lemma [13]). Therefore, by Bernstein’s Theorem (Theorem7 there exist constants ¢, > 0 (depend-
ing on p, o, X1 and X5) such that for every €3 > 0,

]P’(_max |Kj
pe{d1,¢2}

~EK,| > 62) < 2exp (- ch), (34)
where M = min {5—%, %}
Finally, combining , and via a union bound, we have

(K + 62)

P(’kd(X17X2;¢1,¢2) _%d<X17X2§¢1>¢2)| < (261 +6§)) >1—2exp (—ch) — e /2,

O

We now confirm that the kernel update rule only involves the inner product of the stochastic gradient
of the log likelihood, and not the gradient of the log prior.

Lemma 17. Suppose Assumptions and@ hold. Then applying SGD to objective ,

WD = lim k(X0 X300, 080) = plim ka (X5, X550, 030
d— o0 K 7 d—o00 ’

)

Proof. Combining the SGD update and the stochastic gradient , we have that for input X, the
t + 1th iterate of SGD satisfies

S 0 O‘(t)\/TA) +a(t)$v(t)T(T(F(X)) © p(VOPD) — (VYD)
U — g 1= [23) = o ST ((R00) © pVOUY) — (V))

Evaluating at input X; and X, and taking inner products, we find

(667 o800 0) (0 0oy)

= (T(N(X0) © p(VOBE) = o (VOR) TVOVO T (T(P(X;)) © p(VOuld) — o (VOuE))

28

Under review as submission to TMLR

Invoking Assumption [2| we see that the left hand side satisfies

m T m
p (77 =000) (57 50 -0)

T T
Jim o g) (1l [T

N~———
—0
t+1 t t t+1
= (1= a® /23 (I 1 ey + 12 NS las)
\—,_/
—0

_ g (1)
= qjij

where a; and as are cosine angles belonging to [—1,1]. On the other hand, under Assumption [2| the
right hand side satisfies

. 21 T T
lim ol” 5 (T(D(X,)) © p(VOUR) o (VOUR)) VOV (T(D(X;) © p(VIUR) — o (VOu)))

d—o0

Jim s (T(0(X0)) © p(VOu) — o (VO) VOV (T(D(X,) © p(VOBE) — o (VOu))

i (X X ® o ®
di)nolokd((2]7¢Xi7 Xj)

By Lemma this limit is well defined and is given by plim Ed(XZ-, X w;z, gﬁj) O

d—o0

Finally, we show that the approximate form of inner products Ed converges to a closed form update rule
G.

Lemma 18. Suppose Assumptions[1],[3 and [hold. Then

plim ka(X;, X;; g), g)zg(\p(t) v . X, X)),

g i T gj i
where
®) @O §®
G(¥,; ,\Il]j ,\IJ” 1 X, X)

— 1<Cw p(\I/E:),\I/(t) \If(t)) —Hgyp(\IfEf),\I!(f) \I/(t)) npg(\ll(t) \I/(t) \I,(t))MJ _H%(\I,(t) \I/(t) \Ij(t)))

A2 337 3137 w7330 w7330

Proof. We have

plim ka(X;, X0, v3)

d— o0
= plim 15 (T(L(X)) © p(VO0) = (VO T (T(C0) © (V6 ~ a(vOu0)))

Expanding the quadratic, we find

¥ = plim —— (T (D(X)) © p(VOB) — o (VORI (T (D (X)) © p(VOBY) — o (VO Y))

d—o0 d)\
= plim d; ((r(r(x2) © pvO) (T (D(X,)) © p(V) -

(T(r(x2) © p(vV) o (VO -
(T(0(X))) © p(VOu)) o (VO +
o (VO T (VOyP))

29

Under review as submission to TMLR

The collection of d pairs {(V(t)dlgg,v(t)iﬁgg) P}z:1 is mutually independent and Gaussian given 1/)&2

and ngﬁz Letting VT € R™ be equal in distribution to a row of V()| a law of large numbers says that

WY = 5 (e X)By [Jim o)V o) -

p(Xi)Eyr | Jim p<va&2>a<vT O]-

—00
u(X)Ey | lim p(VTo)o (v i)+
. t t

Ey- [Jim o(VTol)e(vTv0))).

Now observe that conditional on 1 and ¥\, the random vector (x,y’)T = lim (VTz/)(t) I/Tqﬁ(t))T
X; X,) droo X, X

is bivariate Gaussian with mean 0 and covariance matrix

\1;(‘?) _p(ﬁ)
Therefore, the terms on the right hand side involve evaluations of the functions s, ,,kp.0, ke, and
Koo [

Chaining Lemmas [I7] and [I8 we obtain our main theorem.

Theorem 4. Suppose Assumptions[1][2 (a) [3 and[]] hold. Let Ci; = ¢(X;, X;) and p; = p(X;) be as
defined in Assumptzon. Then applying SGD to objective ., the update rule G | .) exists and can be
decomposed into G () satisfying

G(®ii, D5, 45, X, Xj)

1
=)\2<Cij"fp(q)uaq)]ja¢’)_Ho,p(q)nvq)]jaq)) Hp,o((bua(bjjvq)zj)ﬂj+Ho(¢)u>¢)]]7¢)))

Here ko, Kp, Ko,p and K, are as defined by , and Proposition @

Proof. By Lemma under Assumptions (1} [2 (a) and |3} we have

\Il(tﬂ) lun kd(X17X27¢(t) (t))_thkd(Xl’XQ’w ¢)

By Lemma [I8] under Assumptions [T} [and [4] we have

plim ka(X1, X2;080 , 0) = c(el, vl vl X, X;).

it 0) Fgg
d—o0 3 J

O

The effect of the finite approximation is not described in Theorem @l In order to describe the effect
of finite approximations, we combine the previously proven Lemma [I6B with the following Lemma [I9]
assembling them in Theorem [§]

We now turn to analysing the sensitivity of the fDEK when initialised around the /DEK. For this, we
combine Lemma [I6] with the following lemma.

Lemma 19. Suppose Assumptions|Il}2 (a) @ and@ hold. Then for all € > 0 there exists some Q > 0
(depending on p, o, X;, and X;) such that

P(|Ed(X1,X2;T,T/) —\1112| Z 6) S 2€Xp<—dCM),

M)

Qlm

where M = min{ s, } and ¢ > 0 is some absolute constant.

Q

30

Under review as submission to TMLR

Proof. We first write kq as a sum. Letting V;T € R™ denote the ith row of V and ~;(X) denote the ith
coordinate of T'(X),

FalX1, Xai o7 T((X0))p(V;Tr) = o (VT0) (T (X))o (Vi) = (V).

I\Mm.

In this form, we observe that Ek‘d(Xl,XQ;’/‘, ’/‘/) = G(\I’n,\l’gg,\ylg;Xl,Xg) = Wy5. We therefore seek
to concentrate kq(X7, Xo;7, ') about its mean.

The bivariate pairs (T(’yi(Xl))p(ViTr) —o(V;"r), T(7i(X2))p(V; 1) —O'(V;T’r'/)) are independent from
every other pair. The quantities V"7 and V,"7/ are zero-mean Gaussian (since Gaussian random vari-
ables are closed under linear combinations). Each pair contains sub-Gaussian elements since bounded
random variables are sub-Gaussian (Lemma , and Lipschitz functions of Gaussian random variables
are sub-Gaussian (Lemma . The product of two sub-Gaussian random variables is sub-exponential
(Lemma . Sub-exponential random variables that are centered by subtracting their mean are also
sub-exponential (Lemma . Therefore, by Bernstein’s Theorem (Theorem , there exist constants
¢, @ > 0 (depending on p, o, X;, and X;) such that for every e > 0,

P(|Ed(X1,X2;r, r) = Wyo| > e) < 2exp (_ ch),

where M = min { o 5} O

Theorem 8. Suppose Assumptions @ and@ hold. Let initial guesses be ,(/JA()?I) = ry and

wggj = ry as in Definition|7. Then there exist constants Q2, Q3, c2,c3 > 0 such that for all 6 > 0, e >0
and e,

P(ngg) - ‘1112’ <e +82> >1—061 — 6o,

where
K+ e

g1 =)\2

(2¢1 + E%% 01 = 2exp (— cszg) + exp (— m52/2) and 09 = 2exp (- d03M3)

2
and €] = \ o —|—5 My =min< 7%, 2 ¢ and M3 = min { =%, 2 ¢ and c3 > 0 is some absolute constant.
Q37 Q2 Q37 Qs

Proof. Under Assumption plugging the stochastic gradient into the SGD update rule ,

we have

—(t+1) 1 T T
Uy = 5ag (T(0XG) © p(VOuR)) — o (VOu)) 'VOVO (T (0(X) © p(VOuy)) = o (VO0)))
= ka(Xi, X058, 9%)
1
T = k(X0 X500 o).

By Lemmal|16| we may approximate kq(X;, X;; w(o) z/JE?)) by ka (X, X ¢(°) z/JE?)) with high probability.

By Lemma , we may approximate %d(X“ 1/)X , X) by W;; Wlth high probability. The proof then
follows by applying a triangle inequality and a union bound.

In more detail, the triangle inequality says

(1) 7= 7
Wy = Wo| < [ka(Xs, X508 %)) = ka(Xi, X508)| + [Ra(Xs, X508, 0 Q) — U] (36)

Let § > 0 and ex > 0 be arbitrary Define €; = 1/% + 6. Define g1 = K;fz (2¢1 +€2). Let A; denote the

event that |kd(X g?)7 X,) ka(X, X g?)7 (O))| > £1. Then by Lemma [16[there exists some
constants Qo > 0 and co >0 such that
P(A1) < é1, (37)

31

Under review as submission to TMLR

where §; = Qexp<f CQdMQ) +exp(fm52/2) and My = min{é—%,&}.
2

Let €5 > 0 be arbitrary. Let As denote the event that ‘Ed(Xi,Xj;¢§?37 E?J)) — \I/ij’ > €9. Then by
Lemma [T9] there exists some Q3 > 0 such that

P(As) < o, (38)

where §, = 2exp (— dc?,Mg)7 M3 = min{ %} and c3 > 0 is an absolute constant.

&
Q3’
Combining and by a union bound, we obtain
P(A; U As) <61 + 09
P(A[l;ﬂAg) >1—01 — 09

Finally, if Alf N Ag then by 7 |§§12) — ‘1112‘ <e1 +ea. O

32

Under review as submission to TMLR

F Random finite forms for the explicit kernel ¢ and mean function p
Suppose the sufficient statistic T is the identity.

Linear kernel. Let I'(X;) = QX, where each entry of Q € R4*! is sampled ii.d. from N(0,v?).
Then we obtain the linear kernel,

1
c(X1,X2) =% lim - X, Q"QX,
d—oo d
= 02X X,.
In this case, u(X1) = 0. since 3 3% | E[Q] X1] = LE[Q,]T X, = 0, where Q] is the ith row of Q.

Squared exponential kernel. We may obtain stationary nonlinear kernels via a random Fourier
feature type construction (Rahimi & Rechtl, [2007). Suppose d is even and Q € R%2*! is sampled i.i.d.
from N (0,1). Define

N(X)=A06 (Zj’;éSﬁé;) e R,

where elements of A = (ai1,...,aq4/2,b1,.. .7bd/2)—r € R¥™! are sampled i.i.d. from N(p,,v?). Then
E[a?] = v? + p? and

i

/2 /2
(X1, X) = Jim 53" a2 cos(QT X1) con(Q] Xa) + 5 D B2sin(Q] X1 sin(@] X2)
i=1 j=1
v? +p3 T T T AT
=3 E[cos(Q' X1)cos(Q' X2) +sin(Q' X1)sin(Q' X»)], Q ~N(0,1)
2, 2
_Y —;MUE[COS (QT(Xl - Xg))]
vty

1
= eXP(—‘iHXE—wxﬂ@)

An extension to arbitrary stationary kernels follows using Bochner’s theorem to define the probability
measure of Q via a Fourier transform (Rahimi & Recht), 2007). An extension to arbitrary covariance
structures can be obtained by introducing a dependency structure among elements of rows of Q.

The reason that A is introduced is to allow the mean to converge to zero, so that u(X) = 0 can be
realised. That is,

/2 /2
1
_ Cea(OT 1 an(OT
w(Xy) = dhm p ;:1 a; cos(Q; X1) + pi JEZl bjsin(Q; X1)

= %E[COS(QTXl)}
Ho 1
= oxp (— 210[2)

is zero whenever p, = 0.

F.1 A model we found to be practically useful

Let I'(X;) = A - ReLU(QX}), where elements of A are sampled i.i.d. from N'(p,,v?). Then c is the
arc-cosine kernel of degree 1 (Cho & Saul, [2009) (see ([47)),

X X,

o(X1,X2) = (v* +) A AR
[X [llXl

X4 ||| X
w(sme+(w—9)cosﬁ), ¢ = arccos
™

2

33

Under review as submission to TMLR

The mean function is given by

w(X1) = wE[ReLU(||X1]12)], Z ~N(0,1)

=ty 2 (39)

Again we may take pu, = 0 to realise u(X) = 0. However, in order to construct a model that is
statistically not mis-specified, when using ¢ = ReLU and p = u it is useful to consider the case
where p, is non-zero (say 1). Otherwise, the model tries to describe symmetric observations I'(X;) =
A - ReLU(QX7) that are equally likely negative or positive as a Gaussian distribution with a skewed

non-negative mean. In order to handle non-zero pu,, we require evaluating additional cross-terms, given
by

[ReLU (x) u (x')]
= Eqexnmnvio,m [xul0 u (x)]
= U E[6(x)ux)] + Y12E[u(x)d6(x’)] (multivariate Stein’s lemma)

= (\IIHE[\ \1111Z1 (\/‘1122 Zi1cosl + Zy 51n9))]
+ \I/lgE[u (\/ \I/ll(Zg cos + Zl sin 9))(5(\/ \I/QQZQ)]), (40)

where (Z1,Z>)" ~ N(0,1) and cosf = \/& We have that

[AV ‘1’1121 (\/ ‘1122 Zl COSG+Z2 sm@))]
=5 /exp (— 5(2’% + zg))é(\/\lluzl) u (\/\Ilgg(zl cos O + zo sin9)) dz1 dzy

1 1 .
= W /exp (— fzg) u (\/\112222 81110) dzo

K"Tvp(lplh \I’227 \1112) = E(X:X')TNN(Oa\I’)

1 2
- mm/ vam o (= g7 u) de

= — 41
2\/ 271'\/\1111 ()
Combining (39)), (40) and (41)), we have
Vi Uio
X))oy (U1, U, Uyy) = Ui(7) 42
p(X1)k ,p(11, Y22 12) o= 11+ NS (42)

The terms involving x, and x, are arc-cosine kernels and are given in and .

34

Under review as submission to TMLR

G Examples

G.1 Error function example

We consider a special case where inputs are mapped to a Gaussian with a conditional expectation
between —1 and 1 through the random mapping I'. We then use a Gaussian likelihood with a choice of
R that maps to values between —1 and 1. Equivalently, we use an inverse link function that maps to
values between —1 and 1.

Let p the pdf of a univariate standard Gaussian. Suppose input X is mapped to data Y = erf(WX/\/2)+
Q for some linear mapping W € R%*! and noise Q ~ N(0,1) each with elements drawn i.i.d. from a
standard Gaussian. An appropriate model is then to let A = 5?/2 and R(a) = erf(a/v/2). Then
p(a) = 2p(a) and o(a) = 2p(a) erf(a/v/2).

We now invoke the general Theorem[d] In the following, we compute the individual terms in the update
rule. Recall from , that for a particular activation function ¢, a neural network kernel (NNK) is
computed by taking the bivariate Gaussian expectation,

T T
ke (P11, Poz, P12) = By, o) Tanvo0) [C(X1)C(X2)], @2 (%rzi %ﬁi) .

It is helpful to write covariance matrices in terms of variances qSngbl =Py, QSQT ¢2 = Pog and covariances
qblT(,zSg = /P11 Py cosf, where 6 is the angle between ¢ and ¢5. That is,

O — CI)H \/@11@22 cos 6
vV @11@22 cos (I>22 '

The resulting determinant and inverse then satisfy

det ® = &1 Pos sin% 6

o1 = 1 Dy —/®11Pos cos O
@11@22 sin20 _\/(1)11(1)22 cos 0 (1)11 ’

The NNK for factor activations A more general result is given in [Tsuchidal (2020, Proposition
20). For completeness, we reproduce the result here. For activation function p(a) = 2p(a), we expand
the 2D integral corresponding to the expectation for the NNK &,

4 1 1 1

Dy, Do, P1a) = — — (@ +dd))———— - = o1 Nday d
fip(11, P22, 12) 27T/6X10(2(01 +a2))27r @11<I>2231n06Xp(2((11,@2) (a1,a2)) ap aaz
2 1

1
e — —(a1,a2) ("1 4+ (a1, a2) ") day das. 43
77/27r <I>11(I>zzsin06Xp(2(a1 a2)(1), az)) e (43)

We now complete the square inside the argument of exp, so that we may express the integrand of
as a product of a bivariate Gaussian pdf and a constant.

Letting F~! = ®~! + |, we compute F as

. 1 <(I>22(1+<I>11 sin?f) —/®1; P2 cos b >
D11 Pogsin?f \ —vVP11Pazcos Pyp(1+ Doy sin®6)
detF7 ! =14 det® ! + Traced*
1+ @11 + Pog + P11 Poo sin® 6
@11@22 sin29
F 1 (@11 (1 + Poasin?) V@11 Pgo cos b)
14Dy + Doy + Dy Pogsin? f V®11 P2 cos b Do (1 + Pyysin®6))

35

Under review as submission to TMLR

We then rewrite as
2v/det F 1 1

— —(a1,a9)F (ay, ag)T) da das

Kp(P11, Pog, P1a) = e
(P 02) = it) v P2

=1

2

7'&'\/1 + P11 + Doy + P11 P sin? 6
2

7/ (14 @11)(1 + Pg2) — 03,

The NNK for chain activations This result follows by a similar completing the square type deriva-
tion, but instead of the resulting integrand being a bivariate Gaussian density, the resulting integrand is
a product of a bivariate Gaussian density with probit activations. The result then follows from [Williams
(1997). Concretely, the NNK k, satisfies

4 /erf(al/\/i) erf(az/v/2) (

Eo (P11, Pao, P12) = — ex
(@11, D22, @12) 2D Bggsing ¥

1
o — *(al, ag)((bil + |)(a1, CLQ)T) da1 dag.

2

Completing the square, we have

2v/det F erf(ay /v/2) erf(as/\/2)
™ 4)11‘1)22 sin 6 27/ det F

1 _
Ko (P11, Pog, P12) = exp (— §(a1, az)F (a1, a2) ") day das

=Kepp(.va) (Fi1,F22,F12)

2 (. Fis)
= —| —sin
T/ (14 @11) (1 + Bgp) — D3, \ 7 \/(1—|—F11)(1+F22)
where the last line follows from equation (11) of [Williams| (1997).

The explicit kernel ¢ By a law of large numbers, we have that the explicit kernel is an NNK,

_ XIx: XX,
(X1, X0) = B[erf(Z/VR) exf(Zo/VD)] +1 (21, 22) ~ N (0, (XJXl N)
T
= zsin_1 Xy X2 +1,

ﬂ V(X X0) (14X X)

again invoking the result of |Williams| (1997)).

The explicit mean y By a law of large numbers, the average 217 erf(WX/1/2) converges to zero as
d — oo. We therefore have that p(X) = 0.

G.2 Other examples

We now investigate some other important examples. In each example, the central question is whether

or not a unique fixed point exists. By Theorem [I} G admits a unique fixed point if it is a contraction.

It is a contraction whenever its Jacobian determinant is less than 1. The Jacobian is lower triangular,

since 0 = G%G = B?PG = B%G = a{??c;’ so in order to compute the Jacobian determinant, it suffices to
22 12 12 11

compute the diagonal entries. These can be computed with the following identity.

Theorem 20 (Theorem 6 of Tsuchida et al| (2021). See also Theorem 3 of [Han et al. (2022)).).

Suppose the absolute value of ¢ : R — R is bounded by a polynomial. Let ¢ denote the distributional

(Schwartz) derivative of (. Then %‘sz’m = k¢(¢117¢’22,q’12) and %‘f:h% = E[(Z* -

D (V®112)]/(2®11), where Z ~ N(0,1).

36

Under review as submission to TMLR

Theorem allows one to compute the kernel k,/, where ¢’ is the derivative of o, by differentiating
the kernel k.. This is easier than computing k. from scratch. There are two immediate uses for such
a result. Firstly, the quantity &,/ is needed to compute the neural tangent kernel. Secondly, and the
reason the theorem is useful in our current context, is that it lets us have sufficient conditions for the
update G to be a contraction.

G.2.1 Gaussian A(n) = n?*/2, identity R(a) = a, general C, zero u

This important special case yields an /DEK that may be computed in closed form. Setting o(z) = z,
Theorem [f] and Corollary [f] say that the DEK converges to an /DEK with a closed-form,

1
VG = (Gt w) emd = (G) = = 5

ij
whenever A\ > 1, since A > 1 implies G is a contraction. In this particular case, the /DEK is simply a
rescaling of the kernel c.

G.2.2 General A, identity R(a) = a, general C, zero p

In the general setting of § Theorem [] and Corollary [f] yield fixed point equations for the /DEK
that do not in general admit a closed-form,
1
- (G O] S (Gl)
By Theorem the /DEK is the fixed point of a contraction whenever rs;/\? < 1, for which it is

sufficient that A” is less than \. Statistically speaking, since A acts as a cumulant generating function,
this is equivalent to the largest variance of the exponential family being less than .

G.2.3 General A, general R, zero C, zero p

A pathological but informative example is obtained when the PSD kernel ¢ and the cross terms p are
chosen to be the constant zero function. In this case, from Theorem [f] and Corollary [5] we obtain
1

(t+1) _ 1 O 3 g _
o FKU(\IJ”,%,@) and Wy = 15k, o (Wi, Wi, 35).

The ¢DEK is the fixed point of a contraction whenever xs/\? < 1, by Theorem

Note that the (infinite 7) /DEK does not depend on the input X7, Xs, but the (finite 7) DEK depends
on the initial guess. For a given initial guess of \Ilgll) = || X1]|%, \Ilglz) = || X2||?, \11(112) = X/ X, solving for
the /DEK using 7 iterations of naive fixed point iteration is exactly the same as a 7-layer NNK .

Therefore, the DEK is an NNK if for an arbitrary activation o there exist corresponding configurations
of A and R.

G.2.4 Gaussian A(n) =n?/2, ReLU R(a) = au(a), general C, zero u

Let u denote the Heaviside step function, which takes values 0, 1/2 and 1 when evaluated at < 0, 0 and
> 0 respectively. The rectified linear unit may be written ReLU(a) = au(a). Choosing A(n) = n?/2,
ReLU R(a) = au(a), we find that p is the Heaviside step function and o is the ReLU. The corresponding
kernels k, and k, are known as the arc-cosine kernels of order 0 and 1, and have closed-form expressions

(see Appendix ,

1
ku(B11, 802, B12) = %(77 - 0),
V 211222(

™

KReLU (211, D22, L12) = sinf + (m —) cos),

312
VEi11X22

where 6§ = arccos

37

Under review as submission to TMLR

Fixed points for U1; and gy can be computed in closed-form provided \? < 1/2,

Cii
202 —1°

L
2)2

g _ 1 (C“. + \p(.?)) and Wy =

However, ¥y, cannot be computed in closed-form. We leave the analysis for determining whether
G results in a contraction for future work. Nevertheless, we may still compute using the result in
Theorem [] without violating any assumptions.

Interestingly, in this setting, p = ¢ almost everywhere and the DEK iterates very closely resemble NTK
iterates. There are three differences in calculating the DEK and the NTK. Firstly, the DEK uses ¢
where the NTK uses ©®). Secondly, the DEK uses ¥(Y) as an input to £(¢+1) and Y0+ whereas
the NTK uses XV, Finally, the DEK may be initialised at any guess 1), whereas the NTK must be
initialised at X, Xo.

G.2.5 Gaussian A(n) =7?/2, ReLU R(a) = au(a), arc-cosine ¢ and corresponding

We now describe a setting that we found practically useful in our experiments (see §). We use
the setting described in §[G.2.4] but without the assumption that 4(X) = 0. For the features I'(X) of
the kernel ¢(X1, X2), we choose I'(X) = p, ReLU(QX), where p, € R is a hyperparameter and Q is a
d x | matrix with entries drawn independently from the standard Gaussian distribution, resulting in an
arc-cosine kernel for c¢. The mean function u and the cross terms k. , admit closed-form expressions,
as given in Appendix The resulting DEK can represent deep arc-cosine kernels when ., is zero,
and resembles (but is not the same as) an NTK with extra cross-terms otherwise.

38

Under review as submission to TMLR

H Other considerations

H.1 Why the expected negative log posterior?

We may frame our optimisation objective in terms of exponential family PCA (Collins et al., |2001;
Mohamed et al., 2008). Given a dataset {Y;}Y, of N examples, exponential family PCA models
observation Y, € Y? as following a factored exponential family with canonical parameter Vé,, for some
basis V and latent ¢5 € R™. The resulting graphical model is shown in Figure Ba A maximum a
posteriori estimate is

;& angmin —logp(0. | Y2) = argmin—log [p(Y. | V.6.)p(V)p(.) V. (44)

in which the basis V is marginalised before the evaluation of the logarithm.

Our objective differs from (44) in two respects. Firstly, we generalise the canonical parameter Vs
so that a nonlinearly parameterised canonical parameter R(V¢s) is used. Secondly and more critically,
the order of the logarithm and the expectation is swapped. This may be understood by examining a
variational lower bound (VLB) of the posterior. Note that the VLB has been used for MAP estimation
in similar contexts (Kingma & Welling} |2014]), and can be seen as a regularised or penalised variant of
the ELBO. Let ® = (¢1,...,¢n). For any density ¢(V) which ostensibly approximates p(V | Y, ®), the
log model evidence decomposes into a sum of a KL divergence and an ELBO,

p(V,Y | ®)
q(Vv)
—Eveglogp(® | V,Y) = KL(q(V)[[p(V | Y, ®)) —logp(® | Y) + Eyqlogp(V,Y) — Eyqlogq(V).

logp(Y | ®) = KL(q(V)|lp(V | Y, ®)) + Ey~gqlog so that

By minimising the left hand side with respect to ®, we are maximising the log model evidence minus
the KL divergence. By selecting hyperparameters 7 of the variational density ¢ over V, we alter our
approximate posterior.

Note a clashing nomenclature between EM-algorithm and variational inference — where the
marginalised variable V is called a latent variable — against an unsupervised dimensionality reduc-
tion setting — where the low dimensional representation ¢, is called a latent variable.

H.2 Scaling and parameterisation of weight distributions

It is widely appreciated that the prior over W in the Bayesian setting (MacKay} [1998] §11.1) and the
initialisation of W in the gradient-flow setting play an role in directing the limiting behaviour of the
neural network (Sohl-Dickstein et al.l2020). On the one hand, convenient parameterisations and choices
of prior and initial distributions lead to tractable large width limits. On the other hand, while limiting
models can outperform their finite width counterparts in small data regimes (Arora et al.||2020), GPs in
general are most often outperformed by deep learning models for many problems of interest. This might
suggest that the tractable limits are the “wrong” ones to analyse if one seeks to explain the success
stories of deep learning (Chizat et al.,[2019; [Woodworth et al., |2020]). Other works consider more general
heavy-tailed (Der & Lee| [2005; [Peluchetti et al.l |2020; Favaro et al., [2021; 2022) or differently scaled
priors, but it is not yet clear whether these models can more accurately emulate deep learning models.

In our work in particular, the scaling of the prior with precision v/md (less than the m that might often
be expected, since d < m) in was crucial for finding a tractable limit. Independently of whether
this limiting regime represents any meaningful feature representation, our analysis is valuable because
(1) DEKSs are better than or competitive with other neural network kernel models in the settings that
we tried, (2) we are the first to place deep neural network related kernels in a more fundamental footing
of statistical estimation and optimisation, and (3) our analysis describes a limiting invariant of SGD.

39

Under review as submission to TMLR

Figure 3: (a) Exponential family PCA, which may be viewed as an unsupervised problem, in which
observed data Y is a realisation from an exponential family with canonical parameter V¢, for some basis
V and latent ¢s. (b) Nonlinearly parameterised exponential family PCA, in which Y; is a realisation
from an exponential family with canonical parameter R(V¢,). We additionally choose Y; = I'(Xj), and
employ a variational approximation (indicated by the dashed lines) for the distribution p(V | Y, ®) =
q(V |), and take an infinite width limit.

H.3 Implicit differentiation

From Corollary |5, we have that the /DEK W satisfies ¥ = G(W). Suppose ¥ depends on v-dimensional
hyperparameter ¢ € R”, such as the weight and bias variance (see Footnotes [1f and , or a hyperpa-
rameter of R. If G is continuously differentiable, the implicit function theorem says

v _0G(W) | 9G(V) dV (I B 8G(\U))d\|l _G(v)

dac 0 oV d¢ ov Jdc — aC
U o
3xXv 3xXv 3x3 3Xv

which may be solved for % using a backslash operator. This derivative may be used for gradient-based
hyperparameter selection. For example, if the /DEK were to be used as the covariance function of a
Gaussian process, one could perform type II maximum marginal likelihood to compute point estimates
for ¢. This implicit differentiation mirrors the finite-width counterpart, the DEQ (Bai et al.l|2019)). We
leave its empirical investigation for future work.

40

Under review as submission to TMLR

I Arc-cosine kernels via derivatives

While the Dirac distribution is not a function and therefore cannot be used as an activation function
in finite-width networks, it does arise as the derivative of NNKs with Heaviside activations, by The-
orem 20l With an abuse of notation that extends the usual operation of integrating against a Dirca
delta distribution, we may understand an expectation involving Dirac delta distributions as a limiting
expectation involving nascent delta functions. We may evaluate the corresponding NNK as follows.

H&(Ell,zzmzu)
=E[5(0)d(xX)]
= E[a(ﬁzl)é(@(zlp+ Zon/1— PQ))L (Z1,Z2)T ~N(0,1), p=S12/v/S11/S20

1 1
=——— [§(vV2 V1= p? dza, is pdf of standard G i
\/2711\/%/ (2929 p)p(ZQ) 2o, pis pdf of standard Gaussian

B 1 1
VE11802(1 — p?) 27
1

(45)

N 27‘(’\/ 211222 — 2%2 '

Note the singularity whenever the Gaussian distribution is degenerate, i.e. X177 = Y95 = X179, which is
an instance of the more general undefinedness of a product of Dirac delta distributions.

The NNK corresponding with Heaviside activations u was first evaluated using a geometric argument
by |Sheppard| (1899)), and is given by
Fu (11, Doz, L12)
=E[u(x) u(x)]

1
= %(77 —6), 6 =arccos

Y12

Vi S

The NNK was generalised to activations of the form u(z)z? for positive integers p by |Cho & Saul
(2009). Of particular relevance is the case p = 1, in which case the activation function is ReLU and

(46)

kreLU (311, D22, T12)
= E[ReLU(x) ReLU(x')]

:%(Sinﬁ—l—(ﬂ'—ﬂ)cos@. (47)
7r

Note that f represent a sequence of derivatives, since the Dirac delta distribution, Heaviside
function and ReLU represent a sequence of distributional derivatives. More concretely, by Theorem
DPkreLu _ Oky

= = K y
82122 6212 g

as can be otherwise verified.

41

Under review as submission to TMLR

J Experiments

J.1 Measuring finite-width effects

We consider elements of an input space X which are 100 evenly spaced points over [—5,5]?. This results
in an input matrix of size 100 x 2. We compute two 100 x 100 kernel matrices with ijth element:
V;; (calculated to high tolerance using a fixed point solver) and kg)(Xi,X i) (calculated using SGD).
Finite features T' are chosen to be I' = TX, where T € R¥*"™ is a zero-mean Gaussian random matrix.
This results in a linear kernel c¢(X1, X2) = X' X5. We set ¢ = 400, A = 6 and use a step length of
a® = 1,/d/m. We vary d between 5 and 500 in steps of 5 and choose m = d*/2. We also provide the
CKA between the (finite-d, finite-7) fflDEK and a squared exponential kernel Aexp (— || X1 — X2||3/2)
for control, where the scaling parameter A is the largest value in the (infinite-d, infinite-7) (DEK matrix.

J.2 Inference using the DEK

The hyperparameter grid over which GridSearchCV operates is given in table

Hyperparameter Present in Values
Data scale (see footnote ll[) NTK, NNK, DEK, SEK {0.5,1,2,4}
KRR regularisation strength NTK, NNK, DEK, SEK {0.05,0.1,0.5}
Input augmented bias (see footnote) NTK, NNK, DEK {-1.0,-0.1,0.0,0.1,1.0}
Number of iterations / layers T NTK, NNK {2,3,4,5}
Number of iterations / layers T DEK {2,3,4,5,00}
Inner regularisation strength A DEK {1,2,4}
Cross-term strength p, DEK {0,0.1,0.5,1,2}
Lengthscale SEK {0.5,1,2,4,8,16}

Table 4: Search space for GridSearchCV. We use Anderson acceleration to compute the DEK when
T = oo and there are less than 500 points in the dataset.

42

	Kernel methods, deep learning and implicit deep learning
	Our contribution: an implicit kernel and an update rule in kernel space

	Background
	Fixed points and infinite compositions
	Exponential families
	Kernels arising from neural networks
	Notation

	Main results
	An alternative view of link functions in exponential families
	Setup
	Error function inverse link and Gaussian likelihood to match a random mapping
	General case
	Sensitivity

	Experiments
	Measuring finite-width effects
	Inference using the DEK

	Conclusion
	Table of notations
	What is the relationship between s-1, R, and ?
	Detailed neural network kernel description
	Tools for concentration inequalities
	Analysis
	Random finite forms for the explicit kernel c and mean function
	A model we found to be practically useful

	Examples
	Error function example
	Other examples
	Gaussian A() = 2/2, identity R(a) = a, general C, zero
	General A, identity R(a) = a, general C, zero
	General A, general R, zero C, zero
	Gaussian A() = 2/2, ReLU R(a) = a`3́9`42`"̇613A``45`47`"603Au(a), general C, zero
	Gaussian A() = 2/2, ReLU R(a) = a`3́9`42`"̇613A``45`47`"603Au(a), arc-cosine c and corresponding

	Other considerations
	Why the expected negative log posterior?
	Scaling and parameterisation of weight distributions
	Implicit differentiation

	Arc-cosine kernels via derivatives
	Experiments
	Measuring finite-width effects
	Inference using the DEK

