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ABSTRACT

In this work, we introduce a novel approach for optimizing neural network training
by adjusting learning rates across weights of different components in Transformer
models. Traditional methods often apply a uniform learning rate across all network
layers, potentially overlooking the unique dynamics of each part. Remarkably,
our introduced Relative Learning Rate Schedules (RLRS) method accelerates the
training process by 13.6%, particularly in complex models such as the Mixture
of Experts (MoE). Hyperparameters of RLRS can be efficiently tuned on smaller
models and then extrapolated to 27× larger ones. This simple and effective method
results in a substantial reduction in training time and computational resources,
offering a practical and scalable solution for optimizing large-scale neural networks.

1 INTRODUCTION

The learning rate is a crucial hyperparameter in Deep Learning, determining the size of the steps that
the optimization algorithm takes when updating model parameters during training. In the context of
Transformers, widely used for tasks in Natural Language Processing and other areas, the learning
rate significantly impacts the model’s convergence and overall performance. While higher learning
rates, with larger updates to the model, may generally converge faster, the training also becomes less
stable. Therefore, the learning rate must be carefully chosen to balance the speed and stability of the
training process.

At the same time, modern Deep Learning architectures are not homogeneous, with different parts
having distinct structures, serving varied purposes, and exhibiting unique behaviors. Importantly,
they also have individual training dynamics. As seen in Figure 1, gradient updates for different parts
follow different paths. This phenomenon also leads to components behaving differently depending
on the training phase, which can be problematic in some cases. For example, in Mixture of Experts
(MoE) models, the Router often stabilizes early in training, leading to deterministic routing to the
Experts (Xue et al., 2024).

Given the diversity of layers within a model, it is reasonable to expect that their requirements would
vary, particularly when balancing training speed and stability. Despite this, a uniform learning rate
is often applied across all modules. A common practice, for example, is to reduce the learning rate
for the whole model after the introduction of an MoE layer due to instabilities (Rajbhandari et al.,
2022). As a result, hyperparameters are typically tuned for the entire network, even if, plausibly, the
instabilities originate from a single layer. In this work, we relax the implicit assumption of a global
learning rate. Since each layer serves a different purpose at different stages of the training process,
can we improve it by tailoring the learning rate schedules accordingly?

To answer this question, we decouple learning rates in Transformers and tune them separately for
different model components, including Embedding and Unembedding, Attention, Feed-Forward, or,
in the case of Mixture of Experts architecture, Router and Experts. By tailoring the learning rate to
meet the specific needs of each component, we enhance the model’s overall performance and stability.

Furthermore, we propose a simple scheme to adjust relative learning rate values that can be effectively
scaled to models larger by orders of magnitude. This approach eliminates the need for extensive
hyperparameter searches for larger models, resulting in significant computational savings and en-
hancing its practical applicability. In essence, we propose the following approach: first, relative
LRs should be tuned on a small model; later, the same relative LRs can be reused when training
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Figure 1: Norms of weight updates after AdamW normalization for different components of the
Transformer with MoE.

the model’s significantly larger counterpart. Our method is easy to implement, with no additional
overhead required, apart from the relatively inexpensive hyperparameter search on the small model.
While tailored to our specific training setup, our relative values have proven robust across a range
of hyperparameters, making them an excellent starting point. Additionally, we provide an analysis
showing how these values, obtained using automated methods, align with our intuitive understanding
of Transformer training. In summary,

• We propose distinct, relative learning rate schedules (RLRS) tailored for different compo-
nents of a Transformer model, optimizing each part individually for better overall perfor-
mance.

• We show performance improvements of the introduced methods in the standard Transformers
with improvements growing in the Mixture of Experts (MoE) based model, highlighting the
importance of relative learning rates for more complex models.

• We demonstrate that the hyperparameters tuned on small models extrapolate to larger models,
showing that our approach generalizes effectively across different architecture sizes.

2 DECOUPLED RELATIVE LEARNING RATE SCHEDULES

We define a decoupled learning rate as a separate learning rate schedule for different layer types (also
called parts, modules, or components). Decoupled learning rate schedules enable the learning proce-
dure to focus on different components during different phases of a model’s pretraining, facilitating
more targeted and efficient optimization process.

We specify decoupled learning rates following the structure of the cosine learning rate sched-
uler (Loshchilov & Hutter, 2016), widely used for training Large Language Models (LLMs) (Touvron
et al., 2023; Hoffmann et al., 2024). The cosine scheduler adjusts the learning rate over time according
to a cosine function, starting with a high learning rate that gradually decays to a minimum value in a
smooth, nonlinear manner.

The parameters we introduce are:

• Base LR (ηbase) – the reference learning rate for the entire model. In a typical cosine schedule, it is
the initial (or maximum) learning rate, ηstart, representing the peak value during the training cycle
(after a possible period of warm-up).

• Base LR Final Fraction (λbase) – the fraction of the base learning rate that represents the final
learning rate at the end of training. The final (or minimum) learning rate is the lowest learning rate
value at the end of the training cycle and is given by ηend = λbase × ηbase.

The cosine scheduler adjusts the learning rate following a cosine curve over a specified number of
iterations. The learning rate ηt at step t is computed using the cosine function, ηt = ηend +

1
2 (ηstart −

ηend)
(
1 + cos

(
t
T π

))
, where t is the current step, and T is the total number of steps.
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For each component m of the model, we further define a learning rate scaling factor relative to the
base learning rate ηbase:

• Relative Start LR (λm
start) — the scaling factor of the base learning rate at the beginning of training.

• Relative End LR (λm
end) — the scaling factor of the final learning rate at the end of training.

Thus, the decoupled learning rates ηmstart and ηmend for a component m are defined as:

ηmstart = ηbase × λm
start (1)

ηmend = ηbase × λbase × λm
end (2)

These values are adjusted for each Transformer component. In this work, we distinguish the following
layer modules m: Embedding, Attention, Unembedding, and additionally for dense models, the
Feed-Forward layer, and for Mixture of Experts models, the Expert and Router layers.

Thus, for a given model, one needs to obtain the baseline learning rate ηbase and the relative learning
rates, λm

end, λm
end. In Section 3.2, we show how we find them in practice. However, in the next section,

we demonstrate that we do not need to tune the relative learning rates for every model separately, as
the same set of values remains robust across a range of model sizes.

2.1 PRESERVING RELATIVE VALUES

In this section, we show that decoupled learning rates remain stable across various models, with their
values staying approximately constant relative to the base learning rate.

Tuning relative learning rate values directly on large models may be impractical due to significant
computational costs. To address this, we propose a method that fine-tunes these values on a smaller
proxy model and then transfers them to a larger model. This approach significantly reduces the need
for costly tuning on large models, offering substantial computational savings.

Our method, described in Algorithm 1, involves conducting a search for optimal values on smaller
models under the assumption that these relative values extrapolate effectively to larger models. This
search consumes only a fraction of the training time required for large models.

Algorithm 1 Relative LR Adjustment Algorithm
1: Find ηbase for a small model.
2: For each module m, find relative values λm

start and λm
end on a small model.

3: Find base learning rate ηbase for the large model.
4: Apply relative learning rates λm

start and λm
end from the small model.

While we do not claim that λm
start and λm

end values are optimal for larger models, they are easy to
use and yield substantial improvements, as shown in the next section. We leave the investigation of
optimal extrapolation as future work.

Algorithm 1 presents a simple way to find relative learning rates independently of the base learning
rate and apply them to both the small model and the large model. This is particularly desirable if we
are given a model with a base learning rate that has already been tuned. However, if this is not the
case, alternatively to Algorithm 1, we propose Algorithm 2, where the base learning rate is adjusted
again after the relative learning rates.

Algorithm 2 Relative LR Adjustment Algorithm
1: For a small model, find ηbase and for each module m, find relative values λm

start and λm
end.

2: Apply relative learning rates λm
start and λm

end from the small model.
3: Adjust base learning rate ηbase for the large model.

Algorithm 2 may perform slightly better than Algorithm 1. However, for practical purposes, applying
relative rates to an already tuned base model offers substantial gains, and we focus on this setting in
the next section. Additionally, the implementation of Step 1 of Algorithm 2 can be further expanded.
We provide the details of our implementation in Section 3.2 and Algorithm 3.

3
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3 RESULTS

3.1 EXPERIMENTAL SETUP

All models used in this study are decoder-only Transformers trained on the C4 dataset (Raf-
fel et al., 2019). The GPT-2 tokenizer (Radford et al., 2018) is employed. We optimize using
AdamW (Loshchilov & Hutter, 2019) and apply cosine decay with a linear warmup for the first 1%
of training steps. For better stability, weight initialization follows a truncated normal distribution with
a reduced scale, as suggested by Fedus et al. (2022). Mixed precision training is used, with Attention
and Router calculated at high precision. The models use SwiGLU activation and Token Choice
routing with 8 Experts, of which 1 is activated. We use two auxiliary losses for the Router: z-loss
with a weight of 0.001 (Zoph et al., 2022) and load balancing with a weight of 0.01 (Fedus et al.,
2022). Compute-optimal training durations are based on Hoffmann et al. (2024), calculated for MoE
as 20× the number of active parameters excluding Embedding and Unembedding, as recommended
in Ludziejewski et al. (2024). Moreover, we provide one comparison on overtrained MoE8×113M,
with almost 130 token to active parameter ratio. For all extrapolations, we tune base learning rates
separately for RLRS and the baseline with the precision of a grid defined by {1e−n, 2e−n, 5e−n}.

For both dense and MoE models, the weight decay value has been optimized to 0.1, the initialization
scale to 0.15, and Base LR Final Fraction (λbase) to 0.04 for MoE and 0.06 for dense.

Type Active Params Total Params dmodel nlayers nexperts BS SL

MoE8×34M 33.6M 210M 512 8 8 256 512
Dense34M 33.6M 33.6M 512 8 8 256 512

MoE8×113M 113M 708M 768 12 8 256 512
Dense113M 113M 113M 768 12 8 256 512

MoE8×906M 906M 5.67B 1536 24 8 384 1024
Dense906M 906M 906M 1536 24 8 384 1024

Table 1: Models used in this paper. BS indicates batch size, and SL indicates sequence length.

In Tables 2 and 3, we report a speedup metric that measures how much faster a training process
becomes when relative rates are applied. It is calculated using ( Tbase

Trelative
− 1)× 100%, where Tbase is

the number of steps performed in the standard training with a base learning rate, and Trelative is the
number of steps incurred until the loss of the training with the relative learning rate schedule exceeds
baseline loss. It is important to note that using this metric likely underestimates the improvement
of our method since for relative learning rate training steps, when we compute the speedup, the
cosine schedule has not yet reached its end. We perform three runs for each configuration, except for
Dense906M, due to compute limitations. For each run, we measure the loss per S steps, where S is
1% of all training steps. The speedup is calculated over the means of 3 runs. To reduce variance from
random data seeds, we use 3 specified data seeds for each model type comparison.

3.2 FINDING DECOUPLED RELATIVE LEARNING RATES

Our method involves determining a set of relative learning rates. While these hyperparameters could
be optimized using a straightforward grid search, such a procedure requires carefully setting the
search boundaries and involves an exponential number of training runs. In our experiments, we opt
for a more scalable local search algorithm, which is described below.

Algorithm 3 Local Search
1: Iterate over the set of hyperparameters.
2: For a given hyperparameter, multiply its value by a factor from { 1

5 ,
2
3 ,

3
2 ,

5
1}

3: Run experiments, and if there is an improvement, adjust the hyperparameter value.
4: If any change has been made among all hyperparameters, return to Step 1.

4
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To ensure proper configuration, we optimized the weight decay and initialization scale along with all
RLRS values. For the baseline, the same algorithm was used to find the learning rate at the start and
at the end of the cosine schedule along with weight decay and initialization scale.

3.3 TUNING SMALL MODELS

A small model allows for a wider search of hyperparameters. Local search runs around 500 experi-
ments on MoE8×34M models before converging and 200 on Dense34M.

Adjusting relative rates according to the proposed schedule results in substantial gains in the form
of shortening the training by up to 23% for MoE and by up to 17% for a dense Transformer (see
Table 2).

Type LR Type Base LR Train Tokens Speed-Up

MoE8×34M baseline 3× 10−3 1.3B -
relative 3× 10−3 1.3B 22.8%

Dense34M baseline 2× 10−3 1.3B -
relative 2× 10−3 1.3B 17.2%

Table 2: Using RLRS results in faster model convergence.

3.4 EXTRAPOLATION

In this section, we show the results when relative values tuned on a small model are extrapolated to
larger models. We use models with 113M and 906M active parameters (in the case of MoE, 707M
and 5.7B total parameters respectively). As shown in Table 3, extrapolating the relative rates results
in up to 13.6% faster training in case of MoE and 7.7% in case of dense model. While in both cases
gain was higher on our small proxy model, it is reasonable to assume that some of it was due to
overfitting to the specific setting.

In Figure 4, we show that without fine-tuning on a large model, the transferred relative values are still
noticeably better than the baseline, and generally close to the optimal value. The only exception is
the Embedding layer. We elaborate on these findings in the next section.

Type LR Type Base LR Train Tokens Speed-Up

Dense113M baseline 1× 10−3 2.5B -
relative 1× 10−3 2.5B 17.5%

MoE8×113M baseline 2× 10−3 2.5B -
relative 1× 10−3 2.5B 19.0%

MoE8×113M baseline 1× 10−3 14B -
(overtrained) relative 1× 10−3 14B 14.6%

Dense906M baseline 5× 10−4 20B -
relative 5× 10−4 20B 7.7%

MoE8×906M baseline 2× 10−4 20B -
relative 2× 10−4 20B 13.6%

Table 3: Gains from extrapolating relative learning rates to larger models.

5
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4 ANALYSIS

4.1 INTERPRETING RELATIVE LEARNING RATES

In this section, we present the numerical results and trends for relative learning rates (RLRS) and
analyze them with respect to each layer module. We prioritize MoE models, as RLRS yields more
substantial gains in this setting. Although the values have been determined experimentally, they are
often interpretable and aligned to counteract the existing issues of each component.

Embedding. The relative learning rate λstart starts high (3.3 for MoE and 5 for dense) and decays
to 0.6. This aggressive early training helps the Embedding stabilize quickly, as it influences the entire
network. Later in the training process, the learning rate is reduced to prevent drastic changes in the
Embeddings, ensuring the rest of the model can adjust accordingly. As seen in Section 4.3, this is the
only layer that prefers adjustment of relative learning rate when increasing model size; that is, while
other relative learning rates transfer without change, the Embedding’s rate should also be increased.

Unembedding. Unembedding handles the conversion of the model output into a probability dis-
tribution over the tokens in its vocabulary. We observe that, similar to the Embedding, the relative
learning rate gradually decreases toward the end of training. This behavior aligns with observations
in the literature that weights in the Unembedding may diverge, potentially causing instabilities later
in the training process (Chowdhery et al., 2022; Zoph et al., 2022), which would require reducing
gradient values.

Router. Router (or gating network) plays a crucial role in determining which Expert networks are
trained during the learning process. However, it has been observed that the model often learns its
routing decisions early in the pre-training phase, and these decisions remain largely fixed throughout
training (Xue et al., 2024). Once a token is assigned to an Expert, it is rarely reassigned, making it
difficult for the model to adapt to new or unseen data during later stages of training. Moreover, the
Router tends to be unstable at the early stages of training. Starting the relative learning rate with a
lower value of 0.6 and then ending with 1 might help mitigate these problems.

Experts. The relative learning rate of an Expert layer increases from the smallest value of 0.3 to
aid stability when the Router is essentially random, and increases to the highest relative value at the
end, allowing the Experts to fine-tune while the Router remains largely fixed.

Attention. In Attention projection layers, the learning rate remains unchanged in the MoE model,
making it unique in not benefiting from relative rates.

We summarize the Decoupled Learning Rate for both dense and MoE models in Table 4.

Embedding Unembedding Router Experts Attention

start 5.0 0.6 0.6 0.3 1

end 0.6 0.4 1 1.125 1

Table 4: Relative learning rate values (λ) for MoE.

Embedding Unembedding Feed-Forward Attention

start 5 1 1 1

end 0.6 0.4 0.6 0.2

Table 5: Relative learning rate values (λ) for dense models.
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4.2 STABILITY

In this work, we demonstrate that applying relative learning rates enhances stability across models
of varying sizes. Training Transformers, particularly MoE architectures, often leads to instabilities
when using a uniform learning rate across the entire architecture. As seen in Figure 2, the baseline
exhibits loss spikes that were absent with the relative schedules. This is also intuitive, as MoE models
are considered unstable and require lower learning rates for optimal learning, which, however, affects
the speed of training. In our method, the learning rates for both the Router and the Experts start off
relatively lower, while they are higher for other parts of the model, resulting in both better stability
and convergence.
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Figure 2: Stabilizing training with RLRS
vs. baseline LR for large Mixture of Experts
(906M).
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Figure 3: Loss of RLRS and baseline for dif-
ferent ηbase on MoE8×113M models. RLRS
results in better loss across a range of learn-
ing rates.

We further argue that training a model with relative learning rates enhances stability across different
baseline learning rates, reducing sensitivity to parameter tuning and improving training stability,
especially in large models. Large Transformer-based models frequently encounter instabilities, even
when using hyperparameters that worked well for smaller models. Wortsman et al. (2023) demonstrate
that instabilities in small models with a higher than optimal learning rate can be a good proxy measure
for instabilities on a larger scale. Following that, we provide Figure 3 comparing the learning rate
sensitivity of RLRS and the baseline. We can see that training with relative learning rates outperforms
the baseline across various learning rates.

4.3 RELATIVE LEARNING RATES FIT FOR LARGE MODELS

In Figure 4, we show that the transferred rates λm
start and λm

end perform consistently well compared
to the surrounding values. This empirical result shows the relative rates not only result in gains as
shown in Section 3.4, but also are close to optimal for other models. An interesting exception is the
Embedding layer, which shows a clear preference to increase its relative learning rate when increasing
the model size. This aligns with Lingle (2024), which studies models with increasing width and finds
that Embedding is the only layer type whose learning rate should not be scaled down when increasing
the model’s layers.

4.4 ABLATIONS

Figure 4 also shows the importance of tuning the relative learning rates for individual modules. The
study indicates the particular importance of Embedding and Unembedding. It is important to note
that the improvement brought by the method comes largely from the interactions between the relative
rates for all the components, rather than any specific module.
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Figure 4: The performance of λsmall extrapolated to large models. The optimal λsmall (green) is
compared to larger and smaller relative rates (blue) and the baseline learning rate (red). In most cases,
the λsmall relative learning rates are close to optimal values in larger models. The Embedding layer
requires scaling relative values.

5 RELATED AND FUTURE WORK

The literature on learning rates in Machine Learning, particularly for Transformers, highlights the
importance of adaptive learning rate schedules. Stochastic Weight Averaging (SWA) (Izmailov et al.,
2018) utilizes a modified learning rate schedule that applies a decaying learning rate during the initial
phase of training, followed by a constant rate for the remainder. In Sun et al. (2019), the authors
introduce layer-wise learning rate decay, which applies higher learning rates to top layers and lower
rates to bottom layers. A related concept, discriminative fine-tuning, is discussed in Howard & Ruder
(2018). Additionally, Everett et al. (2024) explores how various parameterizations and optimizers
impact the learning process in large-scale models and proposes a per-layer learning rate strategy.

5.1 COMBINATION WITH TENSOR PROGRAMS

Our method explores the transfer of relative learning rates; however, the base learning rate must still
be independently tuned for the extrapolated model. Approaches such as Tensor Programs (Yang,
2020; Yang et al., 2022) propose parameterizations that facilitate the transfer of the base learning rate.
By combining these two approaches, it may be possible to achieve a zero-shot transfer of RLRS.

While our methods share similarities with Tensor Programs and draw inspiration from them, our
project has a distinct goal. We aim to identify implicit assumptions in the tuning process and decouple
parameters to devise a scheme that enables Large Language Models (LLMs) to converge in fewer
steps. Our extrapolations demonstrate that our optimization scheme depends on the architecture rather
than the model size. This scheme is defined relative to the base learning rate, which must be tuned
individually for each model size. Our method does not aim to facilitate learning rate transfer between
different model sizes and is supported by experimental evidence. We do not mathematically examine
the limits of parameter updates in a gradient descent step. A key difference is that our relative values
change dynamically during training, and our goal is to enable the model to focus on different aspects
during pretraining.
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5.2 FINE-TUNING

Fine-tuning allows users to adapt pre-trained Large Language Models (LLMs) to more specialized
tasks. In traditional fine-tuning, certain model components are often “frozen” (effectively setting
their relative learning rates to zero) to preserve learned knowledge while adapting other parts. Our
proposed method introduces a more flexible approach, serving as a continuous alternative to freezing
parameters. This enables fine-grained control over information transfer within specific components
of the model. Consequently, our method could be particularly applicable to fine-tuning scenarios
and complement existing methods that involve freezing parameters. Parameter-Efficient Fine-Tuning
(PEFT) techniques, such as LoRA (Hu et al., 2021), address this by updating only a subset of
parameters while freezing the rest. Our work aligns with more advanced methods like LoRA+ (Hayou
et al., 2024), which select different learning rates for the adapter matrices, and AdaLoRA (Zhang
et al., 2023), which adapts the rank of the LoRA matrices, providing enhanced flexibility in the
fine-tuning process.

6 CONCLUSION

We have presented a method for decoupling learning rate schedules across different neural network
components, removing the implicit assumption of homogeneity among them, and achieving better
training speed and stability as a result. This method applies to any Transformer-based model and
significantly enhances performance in Mixture of Experts (MoE) models. By tuning relative learning
rates on smaller models, this approach can be used to economically achieve significant improvements
in the training of order-of-magnitude larger models.
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REPRODUCIBILITY

Our method is straightforward to implement and clearly outlined in Section 2, making it easy for
others to replicate. For the camera-ready version, we will share the full code and configuration files
used in our experiments through a public repository, as the current code is hard to anonymize properly.
All hyperparameters are documented in detail within the main text.
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A ADDITIONAL FIGURES
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Figure 5: Varying λAttention
start and λAttention

end for MoE8×116M. For this component, our optimization
algorithm kept the relative value unchanged (λ = 1.0).
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