
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENT RATES FOR DIFFERENT WEIGHTS:
DECOUPLED RELATIVE LEARNING RATE SCHEDULES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we introduce a novel approach for optimizing neural network training
by adjusting learning rates across weights of different components in Transformer
models. Traditional methods often apply a uniform learning rate across all network
layers, potentially overlooking the unique dynamics of each part. Remarkably,
our introduced Relative Learning Rate Schedules (RLRS) method accelerates the
training process by 13.6%, particularly in complex models such as the Mixture
of Experts (MoE). Hyperparameters of RLRS can be efficiently tuned on smaller
models and then extrapolated to 27× larger ones. This simple and effective method
results in a substantial reduction in training time and computational resources,
offering a practical and scalable solution for optimizing large-scale neural networks.

1 INTRODUCTION

The learning rate is a crucial hyperparameter in Deep Learning, determining the size of the steps that
the optimization algorithm takes when updating model parameters during training. In the context of
Transformers, widely used for tasks in Natural Language Processing and other areas, the learning
rate significantly impacts the model’s convergence and overall performance. While higher learning
rates, with larger updates to the model, may generally converge faster, the training also becomes less
stable. Therefore, the learning rate must be carefully chosen to balance the speed and stability of the
training process.

At the same time, modern Deep Learning architectures are not homogeneous, with different parts
having distinct structures, serving varied purposes, and exhibiting unique behaviors. Importantly,
they also have individual training dynamics. As seen in Figure 1, gradient updates for different parts
follow different paths. This phenomenon also leads to components behaving differently depending
on the training phase, which can be problematic in some cases. For example, in Mixture of Experts
(MoE) models, the Router often stabilizes early in training, leading to deterministic routing to the
Experts (Xue et al., 2024).

Given the diversity of layers within a model, it is reasonable to expect that their requirements would
vary, particularly when balancing training speed and stability. Despite this, a uniform learning rate
is often applied across all modules. A common practice, for example, is to reduce the learning rate
for the whole model after the introduction of an MoE layer due to instabilities (Rajbhandari et al.,
2022). As a result, hyperparameters are typically tuned for the entire network, even if, plausibly, the
instabilities originate from a single layer. In this work, we relax the implicit assumption of a global
learning rate. Since each layer serves a different purpose at different stages of the training process,
can we improve it by tailoring the learning rate schedules accordingly?

To answer this question, we decouple learning rates in Transformers and tune them separately for
different model components, including Embedding and Unembedding, Attention, Feed-Forward, or,
in the case of Mixture of Experts architecture, Router and Experts. By tailoring the learning rate to
meet the specific needs of each component, we enhance the model’s overall performance and stability.

Furthermore, we propose a simple scheme to adjust relative learning rate values that can be effectively
scaled to models larger by orders of magnitude. This approach eliminates the need for extensive
hyperparameter searches for larger models, resulting in significant computational savings and en-
hancing its practical applicability. In essence, we propose the following approach: first, relative
LRs should be tuned on a small model; later, the same relative LRs can be reused when training

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 14kTraining Step
0.6

0.8

1.0

1.2

1.4

1.6

Embedding

0 14kTraining Step

Unembedding

0 14kTraining Step

Router

0 14kTraining Step

Expert

0 14kTraining Step

Attention

No
rm

al
ize

d
Gr

ad
ie

nt
 N

or
m

Figure 1: Norms of weight updates after AdamW normalization for different components of the
Transformer with MoE.

the model’s significantly larger counterpart. Our method is easy to implement, with no additional
overhead required, apart from the relatively inexpensive hyperparameter search on the small model.
While tailored to our specific training setup, our relative values have proven robust across a range
of hyperparameters, making them an excellent starting point. Additionally, we provide an analysis
showing how these values, obtained using automated methods, align with our intuitive understanding
of Transformer training. In summary,

• We propose distinct, relative learning rate schedules (RLRS) tailored for different compo-
nents of a Transformer model, optimizing each part individually for better overall perfor-
mance.

• We show performance improvements of the introduced methods in the standard Transformers
with improvements growing in the Mixture of Experts (MoE) based model, highlighting the
importance of relative learning rates for more complex models.

• We demonstrate that the hyperparameters tuned on small models extrapolate to larger models,
showing that our approach generalizes effectively across different architecture sizes.

2 DECOUPLED RELATIVE LEARNING RATE SCHEDULES

We define a decoupled learning rate as a separate learning rate schedule for different layer types (also
called parts, modules, or components). Decoupled learning rate schedules enable the learning proce-
dure to focus on different components during different phases of a model’s pretraining, facilitating
more targeted and efficient optimization process.

We specify decoupled learning rates following the structure of the cosine learning rate sched-
uler (Loshchilov & Hutter, 2016), widely used for training Large Language Models (LLMs) (Touvron
et al., 2023; Hoffmann et al., 2024). The cosine scheduler adjusts the learning rate over time according
to a cosine function, starting with a high learning rate that gradually decays to a minimum value in a
smooth, nonlinear manner.

The parameters we introduce are:

• Base LR (ηbase) – the reference learning rate for the entire model. In a typical cosine schedule, it is
the initial (or maximum) learning rate, ηstart, representing the peak value during the training cycle
(after a possible period of warm-up).

• Base LR Final Fraction (λbase) – the fraction of the base learning rate that represents the final
learning rate at the end of training. The final (or minimum) learning rate is the lowest learning rate
value at the end of the training cycle and is given by ηend = λbase × ηbase.

The cosine scheduler adjusts the learning rate following a cosine curve over a specified number of
iterations. The learning rate ηt at step t is computed using the cosine function, ηt = ηend +

1
2 (ηstart −

ηend)
(
1 + cos

(
t
T π

))
, where t is the current step, and T is the total number of steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For each component m of the model, we further define a learning rate scaling factor relative to the
base learning rate ηbase:

• Relative Start LR (λm
start) — the scaling factor of the base learning rate at the beginning of training.

• Relative End LR (λm
end) — the scaling factor of the final learning rate at the end of training.

Thus, the decoupled learning rates ηmstart and ηmend for a component m are defined as:

ηmstart = ηbase × λm
start (1)

ηmend = ηbase × λbase × λm
end (2)

These values are adjusted for each Transformer component. In this work, we distinguish the following
layer modules m: Embedding, Attention, Unembedding, and additionally for dense models, the
Feed-Forward layer, and for Mixture of Experts models, the Expert and Router layers.

Thus, for a given model, one needs to obtain the baseline learning rate ηbase and the relative learning
rates, λm

end, λm
end. In Section 3.2, we show how we find them in practice. However, in the next section,

we demonstrate that we do not need to tune the relative learning rates for every model separately, as
the same set of values remains robust across a range of model sizes.

2.1 PRESERVING RELATIVE VALUES

In this section, we show that decoupled learning rates remain stable across various models, with their
values staying approximately constant relative to the base learning rate.

Tuning relative learning rate values directly on large models may be impractical due to significant
computational costs. To address this, we propose a method that fine-tunes these values on a smaller
proxy model and then transfers them to a larger model. This approach significantly reduces the need
for costly tuning on large models, offering substantial computational savings.

Our method, described in Algorithm 1, involves conducting a search for optimal values on smaller
models under the assumption that these relative values extrapolate effectively to larger models. This
search consumes only a fraction of the training time required for large models.

Algorithm 1 Relative LR Adjustment Algorithm
1: Find ηbase for a small model.
2: For each module m, find relative values λm

start and λm
end on a small model.

3: Find base learning rate ηbase for the large model.
4: Apply relative learning rates λm

start and λm
end from the small model.

While we do not claim that λm
start and λm

end values are optimal for larger models, they are easy to
use and yield substantial improvements, as shown in the next section. We leave the investigation of
optimal extrapolation as future work.

Algorithm 1 presents a simple way to find relative learning rates independently of the base learning
rate and apply them to both the small model and the large model. This is particularly desirable if we
are given a model with a base learning rate that has already been tuned. However, if this is not the
case, alternatively to Algorithm 1, we propose Algorithm 2, where the base learning rate is adjusted
again after the relative learning rates.

Algorithm 2 Relative LR Adjustment Algorithm
1: For a small model, find ηbase and for each module m, find relative values λm

start and λm
end.

2: Apply relative learning rates λm
start and λm

end from the small model.
3: Adjust base learning rate ηbase for the large model.

Algorithm 2 may perform slightly better than Algorithm 1. However, for practical purposes, applying
relative rates to an already tuned base model offers substantial gains, and we focus on this setting in
the next section. Additionally, the implementation of Step 1 of Algorithm 2 can be further expanded.
We provide the details of our implementation in Section 3.2 and Algorithm 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 RESULTS

3.1 EXPERIMENTAL SETUP

All models used in this study are decoder-only Transformers trained on the C4 dataset (Raf-
fel et al., 2019). The GPT-2 tokenizer (Radford et al., 2018) is employed. We optimize using
AdamW (Loshchilov & Hutter, 2019) and apply cosine decay with a linear warmup for the first 1%
of training steps. For better stability, weight initialization follows a truncated normal distribution with
a reduced scale, as suggested by Fedus et al. (2022). Mixed precision training is used, with Attention
and Router calculated at high precision. The models use SwiGLU activation and Token Choice
routing with 8 Experts, of which 1 is activated. We use two auxiliary losses for the Router: z-loss
with a weight of 0.001 (Zoph et al., 2022) and load balancing with a weight of 0.01 (Fedus et al.,
2022). Compute-optimal training durations are based on Hoffmann et al. (2024), calculated for MoE
as 20× the number of active parameters excluding Embedding and Unembedding, as recommended
in Ludziejewski et al. (2024). Moreover, we provide one comparison on overtrained MoE8×113M,
with almost 130 token to active parameter ratio. For all extrapolations, we tune base learning rates
separately for RLRS and the baseline with the precision of a grid defined by {1e−n, 2e−n, 5e−n}.

For both dense and MoE models, the weight decay value has been optimized to 0.1, the initialization
scale to 0.15, and Base LR Final Fraction (λbase) to 0.04 for MoE and 0.06 for dense.

Type Active Params Total Params dmodel nlayers nexperts BS SL

MoE8×34M 33.6M 210M 512 8 8 256 512
Dense34M 33.6M 33.6M 512 8 8 256 512

MoE8×113M 113M 708M 768 12 8 256 512
Dense113M 113M 113M 768 12 8 256 512

MoE8×906M 906M 5.67B 1536 24 8 384 1024
Dense906M 906M 906M 1536 24 8 384 1024

Table 1: Models used in this paper. BS indicates batch size, and SL indicates sequence length.

In Tables 2 and 3, we report a speedup metric that measures how much faster a training process
becomes when relative rates are applied. It is calculated using (Tbase

Trelative
− 1)× 100%, where Tbase is

the number of steps performed in the standard training with a base learning rate, and Trelative is the
number of steps incurred until the loss of the training with the relative learning rate schedule exceeds
baseline loss. It is important to note that using this metric likely underestimates the improvement
of our method since for relative learning rate training steps, when we compute the speedup, the
cosine schedule has not yet reached its end. We perform three runs for each configuration, except for
Dense906M, due to compute limitations. For each run, we measure the loss per S steps, where S is
1% of all training steps. The speedup is calculated over the means of 3 runs. To reduce variance from
random data seeds, we use 3 specified data seeds for each model type comparison.

3.2 FINDING DECOUPLED RELATIVE LEARNING RATES

Our method involves determining a set of relative learning rates. While these hyperparameters could
be optimized using a straightforward grid search, such a procedure requires carefully setting the
search boundaries and involves an exponential number of training runs. In our experiments, we opt
for a more scalable local search algorithm, which is described below.

Algorithm 3 Local Search
1: Iterate over the set of hyperparameters.
2: For a given hyperparameter, multiply its value by a factor from { 1

5 ,
2
3 ,

3
2 ,

5
1}

3: Run experiments, and if there is an improvement, adjust the hyperparameter value.
4: If any change has been made among all hyperparameters, return to Step 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To ensure proper configuration, we optimized the weight decay and initialization scale along with all
RLRS values. For the baseline, the same algorithm was used to find the learning rate at the start and
at the end of the cosine schedule along with weight decay and initialization scale.

3.3 TUNING SMALL MODELS

A small model allows for a wider search of hyperparameters. Local search runs around 500 experi-
ments on MoE8×34M models before converging and 200 on Dense34M.

Adjusting relative rates according to the proposed schedule results in substantial gains in the form
of shortening the training by up to 23% for MoE and by up to 17% for a dense Transformer (see
Table 2).

Type LR Type Base LR Train Tokens Speed-Up

MoE8×34M baseline 3× 10−3 1.3B -
relative 3× 10−3 1.3B 22.8%

Dense34M baseline 2× 10−3 1.3B -
relative 2× 10−3 1.3B 17.2%

Table 2: Using RLRS results in faster model convergence.

3.4 EXTRAPOLATION

In this section, we show the results when relative values tuned on a small model are extrapolated to
larger models. We use models with 113M and 906M active parameters (in the case of MoE, 707M
and 5.7B total parameters respectively). As shown in Table 3, extrapolating the relative rates results
in up to 13.6% faster training in case of MoE and 7.7% in case of dense model. While in both cases
gain was higher on our small proxy model, it is reasonable to assume that some of it was due to
overfitting to the specific setting.

In Figure 4, we show that without fine-tuning on a large model, the transferred relative values are still
noticeably better than the baseline, and generally close to the optimal value. The only exception is
the Embedding layer. We elaborate on these findings in the next section.

Type LR Type Base LR Train Tokens Speed-Up

Dense113M baseline 1× 10−3 2.5B -
relative 1× 10−3 2.5B 17.5%

MoE8×113M baseline 2× 10−3 2.5B -
relative 1× 10−3 2.5B 19.0%

MoE8×113M baseline 1× 10−3 14B -
(overtrained) relative 1× 10−3 14B 14.6%

Dense906M baseline 5× 10−4 20B -
relative 5× 10−4 20B 7.7%

MoE8×906M baseline 2× 10−4 20B -
relative 2× 10−4 20B 13.6%

Table 3: Gains from extrapolating relative learning rates to larger models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 ANALYSIS

4.1 INTERPRETING RELATIVE LEARNING RATES

In this section, we present the numerical results and trends for relative learning rates (RLRS) and
analyze them with respect to each layer module. We prioritize MoE models, as RLRS yields more
substantial gains in this setting. Although the values have been determined experimentally, they are
often interpretable and aligned to counteract the existing issues of each component.

Embedding. The relative learning rate λstart starts high (3.3 for MoE and 5 for dense) and decays
to 0.6. This aggressive early training helps the Embedding stabilize quickly, as it influences the entire
network. Later in the training process, the learning rate is reduced to prevent drastic changes in the
Embeddings, ensuring the rest of the model can adjust accordingly. As seen in Section 4.3, this is the
only layer that prefers adjustment of relative learning rate when increasing model size; that is, while
other relative learning rates transfer without change, the Embedding’s rate should also be increased.

Unembedding. Unembedding handles the conversion of the model output into a probability dis-
tribution over the tokens in its vocabulary. We observe that, similar to the Embedding, the relative
learning rate gradually decreases toward the end of training. This behavior aligns with observations
in the literature that weights in the Unembedding may diverge, potentially causing instabilities later
in the training process (Chowdhery et al., 2022; Zoph et al., 2022), which would require reducing
gradient values.

Router. Router (or gating network) plays a crucial role in determining which Expert networks are
trained during the learning process. However, it has been observed that the model often learns its
routing decisions early in the pre-training phase, and these decisions remain largely fixed throughout
training (Xue et al., 2024). Once a token is assigned to an Expert, it is rarely reassigned, making it
difficult for the model to adapt to new or unseen data during later stages of training. Moreover, the
Router tends to be unstable at the early stages of training. Starting the relative learning rate with a
lower value of 0.6 and then ending with 1 might help mitigate these problems.

Experts. The relative learning rate of an Expert layer increases from the smallest value of 0.3 to
aid stability when the Router is essentially random, and increases to the highest relative value at the
end, allowing the Experts to fine-tune while the Router remains largely fixed.

Attention. In Attention projection layers, the learning rate remains unchanged in the MoE model,
making it unique in not benefiting from relative rates.

We summarize the Decoupled Learning Rate for both dense and MoE models in Table 4.

Embedding Unembedding Router Experts Attention

start 5.0 0.6 0.6 0.3 1

end 0.6 0.4 1 1.125 1

Table 4: Relative learning rate values (λ) for MoE.

Embedding Unembedding Feed-Forward Attention

start 5 1 1 1

end 0.6 0.4 0.6 0.2

Table 5: Relative learning rate values (λ) for dense models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 STABILITY

In this work, we demonstrate that applying relative learning rates enhances stability across models
of varying sizes. Training Transformers, particularly MoE architectures, often leads to instabilities
when using a uniform learning rate across the entire architecture. As seen in Figure 2, the baseline
exhibits loss spikes that were absent with the relative schedules. This is also intuitive, as MoE models
are considered unstable and require lower learning rates for optimal learning, which, however, affects
the speed of training. In our method, the learning rates for both the Router and the Experts start off
relatively lower, while they are higher for other parts of the model, resulting in both better stability
and convergence.

0B 5B 10B 15B 20B
Tokens

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Lo
ss

Baseline
RLRS

Figure 2: Stabilizing training with RLRS
vs. baseline LR for large Mixture of Experts
(906M).

10 3 10 2

Learning rate

3.0

3.2

3.4

3.6

3.8

4.0

Fin
al

 e
va

l l
os

s

Baseline
RLRS

Figure 3: Loss of RLRS and baseline for dif-
ferent ηbase on MoE8×113M models. RLRS
results in better loss across a range of learn-
ing rates.

We further argue that training a model with relative learning rates enhances stability across different
baseline learning rates, reducing sensitivity to parameter tuning and improving training stability,
especially in large models. Large Transformer-based models frequently encounter instabilities, even
when using hyperparameters that worked well for smaller models. Wortsman et al. (2023) demonstrate
that instabilities in small models with a higher than optimal learning rate can be a good proxy measure
for instabilities on a larger scale. Following that, we provide Figure 3 comparing the learning rate
sensitivity of RLRS and the baseline. We can see that training with relative learning rates outperforms
the baseline across various learning rates.

4.3 RELATIVE LEARNING RATES FIT FOR LARGE MODELS

In Figure 4, we show that the transferred rates λm
start and λm

end perform consistently well compared
to the surrounding values. This empirical result shows the relative rates not only result in gains as
shown in Section 3.4, but also are close to optimal for other models. An interesting exception is the
Embedding layer, which shows a clear preference to increase its relative learning rate when increasing
the model size. This aligns with Lingle (2024), which studies models with increasing width and finds
that Embedding is the only layer type whose learning rate should not be scaled down when increasing
the model’s layers.

4.4 ABLATIONS

Figure 4 also shows the importance of tuning the relative learning rates for individual modules. The
study indicates the particular importance of Embedding and Unembedding. It is important to note
that the improvement brought by the method comes largely from the interactions between the relative
rates for all the components, rather than any specific module.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.6
2

1.2
5 2.5 5.0 10

.0
20

.0
40

.0

Embedding
start

3.25

3.30

3.35
Lo

ss
Embedding

0.0
8

0.1
7

0.3
3

0.6
7

1.3
3

2.6
6

5.3
3

Unembedding
start

Unembedding

0.0
8

0.1
7

0.3
3

0.6
7

1.3
3

2.6
6

5.3
3

Router
start

Router

0.0
4

0.0
8

0.1
5 0.3 0.6 1.2 2.4

Expert
start

Expert

0.0
8

0.1
7

0.3
3

0.6
7

1.3
3

2.6
6

5.3
3

Embedding
end

3.25

3.30

3.35

Lo
ss

0.0
6

0.1
1

0.2
2

0.4
4

0.8
9

1.7
8

3.5
5

Unembedding
end

0.1
2

0.2
5 0.5 1.0 2.0 4.0 8.0

Router
end

0.1
4

0.2
8

0.5
6

1.1
2

2.2
5 4.5 9.0

Expert
end

Varying RLRS = 1

Figure 4: The performance of λsmall extrapolated to large models. The optimal λsmall (green) is
compared to larger and smaller relative rates (blue) and the baseline learning rate (red). In most cases,
the λsmall relative learning rates are close to optimal values in larger models. The Embedding layer
requires scaling relative values.

5 RELATED AND FUTURE WORK

The literature on learning rates in Machine Learning, particularly for Transformers, highlights the
importance of adaptive learning rate schedules. Stochastic Weight Averaging (SWA) (Izmailov et al.,
2018) utilizes a modified learning rate schedule that applies a decaying learning rate during the initial
phase of training, followed by a constant rate for the remainder. In Sun et al. (2019), the authors
introduce layer-wise learning rate decay, which applies higher learning rates to top layers and lower
rates to bottom layers. A related concept, discriminative fine-tuning, is discussed in Howard & Ruder
(2018). Additionally, Everett et al. (2024) explores how various parameterizations and optimizers
impact the learning process in large-scale models and proposes a per-layer learning rate strategy.

5.1 COMBINATION WITH TENSOR PROGRAMS

Our method explores the transfer of relative learning rates; however, the base learning rate must still
be independently tuned for the extrapolated model. Approaches such as Tensor Programs (Yang,
2020; Yang et al., 2022) propose parameterizations that facilitate the transfer of the base learning rate.
By combining these two approaches, it may be possible to achieve a zero-shot transfer of RLRS.

While our methods share similarities with Tensor Programs and draw inspiration from them, our
project has a distinct goal. We aim to identify implicit assumptions in the tuning process and decouple
parameters to devise a scheme that enables Large Language Models (LLMs) to converge in fewer
steps. Our extrapolations demonstrate that our optimization scheme depends on the architecture rather
than the model size. This scheme is defined relative to the base learning rate, which must be tuned
individually for each model size. Our method does not aim to facilitate learning rate transfer between
different model sizes and is supported by experimental evidence. We do not mathematically examine
the limits of parameter updates in a gradient descent step. A key difference is that our relative values
change dynamically during training, and our goal is to enable the model to focus on different aspects
during pretraining.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 FINE-TUNING

Fine-tuning allows users to adapt pre-trained Large Language Models (LLMs) to more specialized
tasks. In traditional fine-tuning, certain model components are often “frozen” (effectively setting
their relative learning rates to zero) to preserve learned knowledge while adapting other parts. Our
proposed method introduces a more flexible approach, serving as a continuous alternative to freezing
parameters. This enables fine-grained control over information transfer within specific components
of the model. Consequently, our method could be particularly applicable to fine-tuning scenarios
and complement existing methods that involve freezing parameters. Parameter-Efficient Fine-Tuning
(PEFT) techniques, such as LoRA (Hu et al., 2021), address this by updating only a subset of
parameters while freezing the rest. Our work aligns with more advanced methods like LoRA+ (Hayou
et al., 2024), which select different learning rates for the adapter matrices, and AdaLoRA (Zhang
et al., 2023), which adapts the rank of the LoRA matrices, providing enhanced flexibility in the
fine-tuning process.

6 CONCLUSION

We have presented a method for decoupling learning rate schedules across different neural network
components, removing the implicit assumption of homogeneity among them, and achieving better
training speed and stability as a result. This method applies to any Transformer-based model and
significantly enhances performance in Mixture of Experts (MoE) models. By tuning relative learning
rates on smaller models, this approach can be used to economically achieve significant improvements
in the training of order-of-magnitude larger models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

Our method is straightforward to implement and clearly outlined in Section 2, making it easy for
others to replicate. For the camera-ready version, we will share the full code and configuration files
used in our experiments through a public repository, as the current code is hard to anonymize properly.
All hyperparameters are documented in detail within the main text.

REFERENCES

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak, Peter J. Liu,
Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, and Jeffrey Pennington.
Scaling exponents across parameterizations and optimizers. arXiv preprint arXiv:2407.05872,
2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent
Sifre. Training compute-optimal large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NeurIPS ’22, 2024.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long
Papers), 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Lucas Lingle. A large-scale exploration of µ-transfer. arXiv preprint arXiv:2404.05728, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. ICLR 2017
(5th International Conference on Learning Representations), 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, Marek Cygan,
and Sebastian Jaszczur. Scaling laws for fine-grained mixture of experts. In Forty-first International
Conference on Machine Learning, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2019.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-experts
inference and training to power next-generation AI scale. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 18332–18346. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/rajbhandari22a.html.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classification? In
Chinese computational linguistics: 18th China national conference, CCL 2019, Kunming, China,
October 18–20, 2019, proceedings 18, pp. 194–206. Springer, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. In International Conference on Learning Representations (ICLR), 2023.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

11

https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A ADDITIONAL FIGURES

0.1
2

0.2
5 0.5 1.0 2.0 4.0 8.0

Attention
start

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

Lo
ss

Attention (start)

0.1
2

0.2
5 0.5 1.0 2.0 4.0 8.0

Attention
end

Attention (end)

Varying RLRS

Figure 5: Varying λAttention
start and λAttention

end for MoE8×116M. For this component, our optimization
algorithm kept the relative value unchanged (λ = 1.0).

12

	Introduction
	Decoupled Relative Learning Rate Schedules
	Preserving Relative Values

	Results
	Experimental Setup
	Finding Decoupled Relative Learning Rates
	Tuning Small Models
	Extrapolation

	Analysis
	Interpreting Relative Learning Rates
	Stability
	Relative Learning Rates Fit for Large Models
	Ablations

	Related and Future Work
	Combination with Tensor Programs
	Fine-Tuning

	Conclusion
	Additional Figures

