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ABSTRACT

Image editing affords increased control over the aesthetics and content of generated
images. Pre-existing works focus predominantly on text-based instructions to
achieve desired image modifications, which limit edit precision and accuracy. In
this work, we propose an inference-time editing optimisation, designed to extend
beyond textual edits to accommodate multiple editing instruction types (e.g. spatial
layout-based; pose, scribbles, edge maps). We propose to disentangle the editing
task into two competing subtasks: successful local image modifications and global
content consistency preservation, where subtasks arc guided through two dedicated
loss functions. By allowing to adjust the influence of each loss function, we build a
flexible editing solution that can be adjusted to user preferences. We evaluate our
method using text, pose and scribble edit conditions, and highlight our ability to
achieve complex edits, through both qualitative and quantitative experiments.

1 INTRODUCTION

Large scale text-to-image generative diffusion models have revolutionised image generation capabili-
ties. Recent foundation models such as DALL-E (Ramesh et al., 2022), Stable Diffusion (Rombach
et al., 2022) and Imagen (Saharia et al., 2022) have achieved impressive results in terms of compo-
sition and image quality. While these models successfully leverage the power of text conditioning,
precise controllability of image outputs remain limited and achieving desired outcomes often re-
quires time-consuming and cumbersome prompt engineering (Sonkar et al., 2022). A natural way
of increasing control over image structure and simplifying this process is to introduce additional
conditioning in the form of image layout descriptions. Recent works have introduced additional
trainable modules that, when combined with a pre-trained foundation model, allow to condition
generated images according to specific layout instructions. Such conditioning has been realised
through object bounding boxes (Li et al., 2023), poses, edge maps, scribbles and segmentation
maps (Zhang & Agrawala, 2023; Mou et al., 2023). The increased controllability provided by these
modules have further highlighted a key missing component: editability of generated images. A small
modification to layout or text instructions can lead to large image modifications, in particular for
looser constraints (e.g. pose). Instead of iterative prompt updates with no guarantees of maintaining
a consistent image appearance, editing can afford to locally modify an image while consistently
preserving desired aesthetics.

In light of these potential benefits, text-driven image editing has been heavily explored recently. With
the exception of large models with intrinsic editing properties (Balaji et al., 2022; Chang et al., 2023),
editing solutions typically leverage a pre-trained foundational model and introduce a novel editing
mechanism. Methods can be separated in three categories: 1) training-based methods that fine-tune the
base models (Brooks et al., 2023; Zhang et al., 2023; Kawar et al., 2023), 2) training-free approaches
that keep the generative model frozen (Hertz et al., 2022; Couairon et al., 2022b; Tumanyan et al.,
2023) and 3) inference-time optimisation (Ma et al., 2023; Parmar et al., 2023; Epstein et al., 2023;
Dong et al., 2023). Training-based approaches achieve higher quality edits, at the cost of expensive
dataset construction, training and reduced generalisability. Training-free editing typically relies on
attention manipulation or inversion mechanisms. These methods are faster and more practical, but
also parameter sensitive and more restricted in editing ability. Alternatively, one can leverage ideas
from both lines of research by considering inference-time optimisation, i.e. optimise intermediate
image features directly instead of model weights. This strategy increases control over the edit process,
while maintaining the flexibility of training free methods. Inference-time optimisation has been
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leveraged to guide cross attention mechanisms (Ma et al., 2023; Parmar et al., 2023), move and
modify instances through features and attention updates (Epstein et al., 2023) and automatically tune
input prompts (Dong et al., 2023); increasing control over the structure of generated images.

Nonetheless, the aforementioned methods mainly rely on text-driven instructions to update image
content. As discussed above, this can limit the precision and accuracy of required edits, as well
as introduce high sensitivity and brittleness to the considered text instructions. In this work, we
propose a novel editing method that relies on inference-time optimisation of latent image features
that is intrinsically designed to work with a variety of conditioning signals, including text, pose or
scribble instructions. We disentangle the editing task into preservation and modification tasks via two
optimisation losses. The former is realised by imposing consistency between latent features of the
input and edited image, while the latter leverages an intermediate output (the guidance image) with
relaxed preservation constraints to guide the editing process in target modification areas. Our method
can make use of layout control modules, effectively allowing editing using a wide range of editing
queries. By disentangling preservation and modification tasks, we provide a flexible solution where
the influence of cach subtask can be adjusted to user preferences. We evaluate our method using
text, pose and scribble conditions, We highlight our ability to achieve complex edits, from multiple
conditions, and evaluate performance using both qualitative and quantitative experiments.

To summarise, our main contributions are the following:

* A novel image editing method for frozen diffusion models that goes beyond text editing,
additionally capable of handling image layout conditions.

« A disentangled inference-time optimisation-based editing strategy that separates background
preservation from foreground editing, affording flexibility to increase focus on one subtask.

 An adaptive solution that can adjust the editing process to task complexity.

2  RELATED WORK

In this section, we review closely related work on image editing, with an emphasis on text-guided
editing under text-to-image diffusion models. We identify three main methodologies: fine-tuning
based, training-free and inference-time optimisation editing methods.

Fine-tuning based image editing enables a pre-trained diffusion model to edit images by fine-
tuning model weights. InstructPix2Pix (Brooks et al., 2023) leverages a large language model to
build an extensive training dataset comprising image, edit-instruction pairs that are used to fine-tune
a diffusion model to achieve editing based on written instructions. Imagic (Kawar et al., 2023)
fine-tunes the textual-embedding and the generative model to ensure high reconstruction ability on
each specific image, then interpolates between the original and editing prompt in order to obtain the
edited image. Lastly, SINE (Zhang et al., 2023) fine-tunes a pre-trained models on each image to
edit, then combines predictions from the pre-trained and fine-tuned models, conditioned on the edit
and original image prompt respectively. These techniques generally require building a large training
dataset, or per image fine-tuning at inference time. Both constraints can be costly, and notably make
extensions to additional types of edit conditions (beyond text) more complex and expensive.

Training-free image editing achieves image modification using a frozen pre-trained model. These
approaches typically involve manipulation of the denoising diffusion process to introduce editing
functionality. Prompt-to-prompt (Hertz et al., 2022) enables image editing by manipulating cross-
attention maps between text and image features and exploiting their differences when considering
the original and edit prompts. Similarly, Plug and play (Tumanyan et al., 2023) leverages attention
mechanisms, injecting self attention features from the original image into the generation process
of the edited image. Ravi et al. (2023) propose an editing method, built on top of the DALL-E 2
model (Ramesh et al., 2022), that leverages CLIP (Radford et al., 2021) embeddings. An alternative
popular strategy involves inverting the input image to a noise vector, and using this noise vector
as input (instead of random noise) to the edit-conditioned generation process (Meng et al., 2021).
DiffEdit (Couairon et al., 2022b) extends the method with a deterministic inversion strategy and
automated edit mask estimation. EDICT (Wallace et al., 2023) further proposes an improved inversion
strategy inspired from affine coupling layers. While benefiting from higher flexibility and speed,
these methods typically have reduced ability to perform large or complex modifications due to their
entirely training-free nature.
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Figure 1: Multi-step overview of our proposed framework, a) guidance image generation block using
preservation loss only, b) final image generation block using both preservation and guidance losses.

Inference-time optimisation is an intermediate approach that leverages frozen pre-trained models,
but introduces an optimisation component at inference-time, typically to update image features. Initial
works leveraged CLIP text-image similarity losses to guide the editing process using GANs (Patashnik
et al., 2021) or diffusion models (Avrahami et al., 2022; Kim et al., 2022). Mokady et al. (2023)
introduce an extension to prompt-to-prompt for natural image editing using a pivotal inversion
technique and null-text optimisation. Parmar et al. (2023) aim to preserve edit-text irrelevant content
by imposing consistency between the text-image cross-attention maps before and after edit. The
method requires computing a textual embedding direction in advance using a thousand sentences,
which is expensive and makes extension to additional edit conditions challenging, and is limited by
the resolution of the cross-attention map for structure guidance.

These pre-existing approaches have focused on text-driven editing methods, requiring complex
strategies to achieve precise local modifications, notably by leveraging attention mechanisms. Epstein
et al. (2023) introduce an optimisation procedure to guide the positioning, size and appearance of
objects in an image using precise edit instructions (e.g. object desired pixel location) and dedicated
loss functions. These loss functions drive the update of intermediate image features and attention
maps. This approach requires expensive manipulation of attention layers, and explicit estimation
of local positioning of objects at all levels of the diffusion UNet. It is heavily dependent on the
accuracy of internal attention maps, leading to leakage when instances are not strongly salient. By
developing a method capable of leveraging explicit layout constraints, we are able to provide precise
edit instructions with much simpler optimisation constraints and remove dependency on internal
attention map representations. Furthermore, our disentangling strategy between preservation and
modification further affords additional controllability and flexibility, allowing to adjust the influence
of each subtask easily.

3 METHOD

Given an input image I and a semantic edit condition C, our objective is to locally modify I according
to C while accurately preserving image content not directly related to the desired edit. We assume
access to a text-based image caption .S, hand-crafted or generated by an image captioning model,
and a pre-trained text-to-image diffusion model capable of leveraging image-space layout conditions
(e.g. pose or scribble). The latter model can be instantiated using e.g. ControlNet modules (Zhang &
Agrawala, 2023). In contrast to pre-existing work that typically restricts edit condition inputs to text
form, we assume C' can be provided as either textual or image-space layout inputs.

An overview of our method is provided in Fig. 1. We propose a semantic image editing method
by leveraging the concept of inference time optimisation. Our strategy is uniquely designed to
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accommodate multiple types of edit instruction including text, pose, scribble and more complex image
layouts. We build on the concept of image-to-image editing where an input image is progressively
converted into a noise vector, then denoised across multiple timesteps using predictions from a pre-
trained latent diffusion model, according to edit condition C'. We introduce an optimisation procedure
over latent image features within this encoding-decoding process. We propose to decompose the edit
task into two competing subtasks, using distinct content preservation and local image modification
losses. Our preservation loss imposes consistency between the input and edited images, thus driving
the preservation of original details. The image modification loss provides appearance guidance for
the expected image edit area, using an intermediate edited image obtained with reduced content
preservation constraints. We additionally enhance our preservation loss with a binary mask that
defines a local edit area, thus enabling both content preservation and locally accurate editing.

We provide an overview of diffusion models and image-to-image editing Meng et al. (2021) in Sec. 3.1,
followed by description of our core method components in Sec. 3.2: preservation loss, guidance loss,
mask, and image guidance generation.

3.1 PRELIMINARIES

Denoising diffusion models learn to invert a multi-step diffusion process, where an input image xg
is progressively converted into a Gaussian noise vector x7, by iteratively adding noise € ~ N (0, )
across multiple timesteps, according to a specific variance schedule. Given 7 and a text prompt,
a model €y (e.g. a UNet (Ronneberger et al., 2015)) is trained to reconstruct the input image by
predicting the noise vector to remove at a given timestep ¢. At inference time, €y iteratively estimates
noise vectors across 7' timesteps to generate a new image from random noise. Using the DDIM
deterministic sampling procedure (Song ct al., 2020), we can estimate the updated intermediate
denoised image at timestep t—1 as:

a1
Ty = o Ty + /-1
V o

where C is the embedding of the text prompt condition, and «; is a measure of the noise level,
dependent on the variance scheduler.

(1

The forward-backward diffusion process can be viewed as an image encoding-decoding process.
The SDEdit algorithm (Meng et al., 2021), commonly referred to as image-to-image, leverages this
concept for the purpose of image editing. The key idea is to stop the forward diffusion process at an
intermediate timestep tg < 7', and reconstruct the image, from ¢ g, using a different text condition.
This strategy typically results in preservation of some of the original image attributes yet often leads
to unwanted global modifications (Couairon et al., 2022b). Leveraging the trained diffusion model €,
in conjunction with a deterministic reverse-DDIM process that encodes the input image (Couairon
ct al., 2022b), can substantially improve image fidelity, yet sometimes at the cost of edit flexibility.
Concretely, we carry out the same process as the backwards diffusion (decoding process), in the
Ty — T, direction, using the following inverse update:

a 1 1
Ty1 = 4| =@y + \/ —1—/=— —1]eo(zs,t). 2
Qg Q41 (677

This process is commonly referred to as DDIM inversion; a naive way to invert a natural image (i.e.
estimate the noise vector that will generate this exact image).

We highlight that in this work, we consider diffusion models that operate in a latent space (Rombach
etal.,2022), where zg = f([) is a latent representation of input image I, obtained using a pre-trained
Variational AutoEncoder (VAE) model.

3.2 OPTIMISATION-BASED IMAGE EDITING

Inference-Time Optimisation: Preservation loss. Our method builds on the SDEdit process,
outlined in Sec. 3.1, to perform image editing. We encode our input latent image z¢ with DDIM
inversion, up to an intermediate encoding level ¢ g, obtaining intermediate noised image latent x .
Using this noised latent as input, we decode our image by firstly defining an edit condition in order
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to obtain latent edited image 7. This edit condition can be a modified text prompt, or a modified
layout input (e.g. modified pose, scribble or edge map). We note that multiple edits can be considered
conjointly (e.g. modified pose and text prompt), without explicit methodology modifications.

To enforce appearance and structure consistency between the input and edited images, we introduce
our latent feature optimisation process. At timestep ¢ of the backwards diffusion process, we update
the latent image features y; to increase similarity with z;. To this end, we introduce a reconstruction
task that pushes y; towards the direction of x;. Formally, we update y, as:

yr =y — YV lye — 2|3, )

where 7y is the learning rate. This update is repeated for & gradient updates, pushing y, towards x;
whilst also avoiding the trivial solution y; = x; through limiting the number of gradient updates. We
then proceed with the standard diffusion process, using y; as input to the diffusion model at the next
timestep. Providing a binary mask m to identify image regions that our edit condition will impact
explicitly provides appropriate preservation of related original image content. Integration of mask m
into our reconstruction loss also leads to implicitly unconstrained flexibility in image regions that are
valid edit regions:

ﬁREc(ytaxtam) = [|moOy; — (1 - m)G‘fUtHg, )

i.e. the reconstruction loss is only computed within the masked area. State of the art
approaches typically invoke m, after computing y;—1 using Eq. 1, by updating latents as
Yy, = moOyi—1 + (1 — m)Oxi—1. We find that by introducing the mask constraint in an opti-
misation framework, our strategy is more robust to mask quality (e.g. underestimation of the edit
arca) and reduces the risks of introducing artefacts, whilst preserving non-edit regions.

Inference-Time Optimisation: Guidance loss. While our preservation loss (Eq. (4)) focuses on
faithfully maintaining image content, our complementary guidance loss seeks to improve controlla-
bility, enable precise local modification, and steer edited areas towards a desired appearance. We
assume availability of an image G, with latent representation go, that accurately depicts the desired
appearance of the target edit area. Our solution to obtain go will be discussed later in this section.
We first encode g to obtain g;,,, in similar fashion to the encoding process of (. At timestep t, we
update y; towards increasing the cosine similarity with the guidance image features:

Y G
[yellllgell

As larger differences are expected between y and g (c.f. between y and =), we make use of a more

conservative cosine similarity loss for this task, c.f. the previous reconstruction MSE loss. By

combining guidance and preservation losses, our complete disentangled ITO process can update
intermediate image features as:

yz/: =Yt — 'Yvyt((l - )\)Eu(ytygt) + )\Ckb‘c(yt,l’t))» (6)

where A is a hyperparameter balancing the influence of the editing subtasks. As such, adjusting A can
allow the user to balance between content preservation and edit instruction accuracy, according to
preference. We carry out feature updates for the first ¢,, steps of the backwards diffusion process.

v, =yt — Vg Lo(yt,9:)  where  Li=1 5)

Guidance Image Generation. The guidance image plays the crucial role of providing an accurate
depiction of the expected appearance of the edited region. This is information that we do not have
available beforchand, and need to generate via an intermediate step. We rely on the observation
that encoding our input image using random noise (as in (Meng et al., 2021)) facilitates image
modifications at the expense of reduced content preservation; while using DDIM inversion (as in
Couairon et al. (2022b)) only affords more conservative changes. In contrast with our final edited
output, which has to accurately preserve image background, our focus here is on accurately editing
the regions of interest. Based on this observation, we generate our guidance image using our ITO
process with A = 1 (preservation only), with one key difference: here, our input image is encoded
using random noise, instead of DDIM inversion to afford larger modifications of the input image.

Edit Mask Generation. We estimate the binary edit mask by leveraging the mask generation
approach proposed in Couairon et al. (2022b). The idea proposes to measure the differences between
noise estimates using (1) the original image text prompt and (2) the edit prompt as conditioning,
effectively inferring which image regions are affected most by the differing conditions. In contrast
with Couairon et al. (2022b), which only considers text conditions, we additionally estimate masks
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from layout conditions. After encoding our input z using random noise with seed s, we obtain x g (s)
and carry out the backward diffusion xg(s) — yo(C, s) for two different conditions: the original
condition C, (e.g. original prompt or pose), and the edit condition C,,;,;;. In settings where only a
layout condition is used, both images share the same text prompt and the layout input is integrated
in the diffusion process using conditioning modules such as ControlNet (Zhang & Agrawala, 2023)
or T21Adapter (Mou et al., 2023). We estimate our mask by comparing noise estimates at the last
timestep:

1
m('anCEDIT) = E Z |69(l‘17 1vcEDIT7 Si) - 69(1‘17 17607Si)|7 (7)
i€[1:n]

where m is then converted to a binary mask using threshold 7. The mask is averaged over n runs
with different seeds to increase the stability and accuracy of noise estimates.

Task Difficulty Driven Modular Process. Disentangling preservation from modification provides
a modular edit procedure, where a user can adapt constraints according to preferences and task
difficulty; by adjusting loss-weighting parameter A\. We illustrate our complete edit procedure
in Fig. 1, which comprises three steps: mask estimation, guidance image generation, and image
editing. The role of the guidance image is to ensure layout constraints are respected. This is typically
useful for difficult pose modifications, where the ControlNet conditioned image-to-image sctting
fails to achieve the desired modification. For simple edit tasks (e.g. small modifications such as a 90
degrees arm movement, uniform backgrounds), it is possible to set A = 1, effectively focusing solely
on the preservation task. This skips the guidance image generation step (depicted in yellow in Fig. 1),
simplifying the edit process. We demonstrate empirically how this simpler setting has very similar
behaviour to DiffEdit (Couairon et al., 2022b).

4 EXPERIMENTS

In this section, we describe our experimental setup, followed by experiments on different conditions.

Implementation. In our experiments we use ControlNet (Zhang & Agrawala, 2023) to control a
Stable Diffusion model v1.5 (Rombach et al., 2022) with layout edit conditions. We use 25 sampling
steps, and an encoding ratio of 1 (tg = 25) unless specified otherwise. Balancing parameter A is
sct to 0.6 unless specified otherwise. For mask generation, we follow the parameters of (Couairon
et al., 2022b), but introduce Gaussian smoothing of the mask, and use a threshold of 0.1. When using
a mixture of guidance and preservation loss, we optimise features for the first ¢, = 15 timesteps
for &k = 1 gradient step, for both guidance generation and final editing steps. We use the ADAM
optimiser with a learning rate v = 0.1.

Layout-conditioned image editing. As pre-existing image editing methods have not been developed
for layout conditioning, we use ControlNet as our simplest baseline. Additionally, we compare our
method to a combination of ControlNet and DiffEdit (Couairon et al., 2022b) using the edit mask
generated by our method. In this setting, we set the encoding ratio for DiffEdit to 1.0, as we have
observed better results, and use the binary mask estimated using our updated approach for layout
conditions. Figs. 2 and 3 show visual results for pose and scribble conditions, where we edit an
image originally generated using a ControlNet pose or scribble constraint. Fig. 2 shows visual results
under different pose conditions. We can see that our approach is the only one to consistently achieve
the correct pose modification while preserving image content. As expected, ControlNet successfully
generates images with the correct pose, but fails to preserve image content. In contrast, while DiffEdit
preserves image content thanks to its masking process, it often struggles to achieve the correct pose
change, especially for more difficult queries. We highlight in particular how DiffEdit often suffers
from local artefacts, often due to the strict mask blending constraint. Lastly, we highlight DiffEdit’s
performance is very close to our full preservation special case (A = 1), with ours having fewer
image artifacts (see the altered image quality for the dancer and bear images). This shows how our
preservation loss provides a robust alternative to DiffEdit’s mask merging, and the benefits of using
our guidance image. Our scribble-based editing results, shown in Fig. 3, show a similar behaviour.

Text-driven image editing. Quantitative evaluation protocols and metrics, as well as pre-existing
methods, only consider text-guided editing. As a result, we restrict our quantitative evaluation to
text conditioning only. We follow the evaluation protocol of DiffEdit (Couairon et al., 2022b) on the
ImageNet (Deng et al., 2009) dataset. The task is to edit an image belonging to one class, such that it
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(a) Original image (b) Target (c) ControlNet (d) DiffEdit + our (e) Ours (A =1) (f) Ours
pose mask

Figure 2: Visual results for pose based editing.

depicts an object belonging to another class. This is indicated by an edit text prompt comprising the
name of the new class. Given the nature of the ImageNet dataset, edits generally require modifying
the main object in the scene.

We compare to our results to state of the art methods with default parameters: Prompt-to-prompt Hertz
et al. (2022) and DiffEdit Couairon et al. (2022b) (encoding ratio=0.7). We evaluate performance from
four angles: 1) image preservation by computing the L1 distance between original and edited images,
2) image quality by computing the CSFID score (Couairon et al., 2022a), which is a class-conditional
FID metric (Heusel et al., 2017) measuring both image realism and consistency with respect to the
transformation prompt. 3) Quality of the semantic modification, by measuring classification accuracy
of the edited image using a) the new category as ground truth, and b) the original category as ground
truth, and finally 4) we measure relative image quality and prompt faithfulness using the Pickscore
(Kirstain et al., 2023). As shown in Table 1, our approach outperforms competing works for all
metrics, except the L1 consistency metric. This can be expected as edited regions often are the only
subject of the image, such that successful edits achieve more substantial image modifications.

Additionally, Fig. 4 shows visual results using text-based editing. Here, we edit images generated
with a Stable Diffusion v1.5 model (Rombach et al., 2022). We provide DiffEdit’s results for an
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Metric | DiffEdit | Prompt-to-prompt | Ours
L1 distance | 0.124 0.128 0.136
CSFID | 67.7 74.2 57.2
Classification accuracy after edit (as new category) T 37.8 34.2 60.1
Classification accuracy after edit (as original category) | | 45.9 45.5 20.0
Pickscore T 0.31 0.27 0.41

Table 1: Quantitative comparison of text-guided image editing on the ImageNet dataset.

encoding ratio of 0.7 and 1.0, highlighting the strong similarity between our method when only
using the preservation loss (A = 1). As evidenced with the zebra image, where DiffEdit shows
local artifacts, we are less sensitive to subpar editing masks. We note how our method can achieve
successful conversions, such as the bowl of grapes, where pre-existing works fail.

(a) Original image (b) Target scrib- (c) ControlNet (d) DiffEdit + our (e) Ours (A = 1) (f) Ours
ble mask

Figure 3: Visual results for scribble based editing.

Parameter Study. In Fig. 5, we illustrate the impact of adjusting balancing parameter A which
controls the relative influence of preservation and guidance losses. We can see that lower values of A
focus on foreground and accurate positioning. Larger A values increase background details at the cost
of additional artifacts when A is too high. Extreme values yield an output very close to the guidance
image (A = 0), or very similar to the DiffEdit performance (A = 1, high background fidelity, but
poorer pose edit quality). This behaviour highlights how, for simpler edit instructions (e.g. the bear
or dancer in Fig. 2, where DiffEdit successfully achieves the pose modification), one can discard the
guidance image component and edit the image with a simple preservation loss. More evidence of this
is available in the supplementary materials.
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(a) Original im-(b) Prompt to (c) DiffEdit (d) DiffEdit (e) Ours A =1 () Ours
age prompt ER=0.7 EFER=1.0
Figure 4: Visual results for text-conditioned image editing. From top to bottom, input/edit prompts

are: a cat/chicken riding a bicycle, a bowl full of strawberries/grapes, a squirrel/lion eating a burger, a
horse/zebra in a field.

A=0 A=0.2 A=0.4 A=0.6 A=0.8 A=1.0
(Guidance only) (Preservation only)

Figure 5: Influence of balancing parameter A. Top left: input image and input pose, middle: guidance
image, top right: output image and target pose.

5 CONCLUSION AND LIMITATIONS

We propose a novel method for diffusion model-driven image editing that is uniquely designed to
leverage layout-based edit conditions, in addition to text instructions. By disentangling preservation
and modification in two separately controllable functions, we build a flexible solution that allows the
user to adjust the editing output according to preference. Key limitations involve reduced preservation
ability in certain parameter settings, inconsistent mask quality, and the influence of the guidance
image to achieve the desired modification, where a poor quality image can alter output quality.
Future work will explore alternative mask and guidance generation methods, potentially investigating
different image inversion strategies.
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A SUPPLEMENTARY

A.1 INFERENCE-TIME OPTIMISATION: DEAILED ILLUSTRATION

In Fig. 6 we provide a detailed visualisation of our ITO process with guidance and preservation losses,
so as to facilitate user comprehension.

Input image I
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Figure 6: Overview of our inference time optimisation method with preservation and guidance losses.

A.2 PARAMETER STUDY: UPDATE STEPS

In Fig. 7, we visualise the influence of parameters ¢,, and k over both guidance image generation
and final edit. We provide visual results for two image edits using pose conditioning for ¢, €
{5,10,15,20,25} and k& = {1, 30}, choosing images with complex backgrounds to highlight the
impact of these parameters more clearly. We can see that ¢,, has a larger impact over the generated
images than k, especially with regards to the guidance image. Compared to the input image, we can
see that the best quality guidance images (in terms of content preservation, achieved modification, and
introduced artefacts) is obtained for t,, = 20, k = 30, while t,, = 15,k = 1 yields a better final edit.
For guidance images, better content preservation at t,, = 20 is notably evidenced by the woman’s
hair in Fig. 7e, and the symbol on the top left of the astronaut images in Fig. 7b. Increasing £ has
a minor impact, but yields slightly improved results (see the sleeve on the woman’s right shoulder
in Fig. 7e). For final edits (Figures 7c and 7f), t, = 15, k = 1 yields noticeably better results, with
reduced artefacts (see astronaut image, both images for ¢,, = 25 and all settings where £ = 30). In
particular, we can see that noticeable artefacts are introduced within the masked area for lower values
oft, and k > 1.

For the sake of consistency and speed, we use £, = 15,k = 1 in all settings in our experiments, but
note here results could be further improved by adjusting guidance image parameters to t,, = 20,k =
30. We further highlight that the optimal value of ¢,, is dependent on the number of sampling steps
used to generate the image (here we use 25 steps, as discussed in section 4 of the main paper).

A.3 VISUALISATION OF INTERMEDIATE EDIT STEPS
In Fig. 8, we provide detailed visualisations of results presented in the main paper, more specifically

showing intermediate outputs such as guidance images and estimated edit mask. We can see that
our mask successfully identifies regions modified by the layout change. We also highlight how the
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Figure 7: Impact of parameters ¢,, and k on guida?ge image and final edit generation for two example
images.
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(a) Original image (b) Target  (c) Edit mask (d) Guidance im- (e) Final edit
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Figure 8: Visualisation of intermediate edit outputs on multiple pose and scribble conditionned image
modifications.

guidance image has reduced content preservation, and how larger changes are observed when the
masked area is larger. This suggests that task difficulty could be estimated based on mask size.

A.4 IMAGENET EDITING: VISUAL EXAMPLES

In Fig. 9, we provide a visual comparison of edits carried out on the ImageNet dataset, i.e. our
text-editing quantitative experiments reported in the main paper. We highlight how our method’s
flexibility allows to achieve larger modifications (i.e. shaker to coffee mug, english springer to golden
retriever) when other methods fail, while preserving image structure. We further note how masks that
are too restrictive can negatively impact DiffEdit based editing (see e.g. coyote to red fox where the
mask is limited to the animal’s head). While we leverage the same mask as DiffEdit, its integration
into our optimisation procedure affords more flexibility.
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Figure 9: Visual results of the ImageNet editing task.

A.4.1 ADDITIONAL EDITING SETTINGS

In this section, we provide additional results depicting our model’s ability to perform editing with
different types of edit instructions. We demonstrate image editing using Hough line map conditions,
as well as multi-condition editing.
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Fig. 10 shows an example edit using Hough line maps as conditioning, compared to DiffEdit. As
with other forms of conditioning, we can see the DiffEdit output is very similar to our A = 1 output,
while our A = 0.6 output allows more larger modifications more aligned with the new conditioning.

Fig. 11 shows examples combining multiple types of editing conditions, namely text+scribble and
text+ pose. We compare our results to ControlNet and DiffEdit. We can see that both our approach
and DiffEdit are able to integrate two types of edit conditions, while ControlNet fails to maintain
visual consistency, as one would expect from the lack of preservation mechanisms.

(a) Original image (b) Target Hough map (c¢) DiffEdit + our
mask

Figure 10: Visual results of editing with Hough line map conditioning.

(a) Original image: a (b) Target scribble (c) ControlNet  (d) DiffEdit + our (e) Ours
dog at the beach —a mask
cat at the beach

(f) Original image: a (g) Target pose (h) ControlNet (i) DiffEdit + our mask
puppet dancing —a pi-
rate dancing

Figure 11: Visual results for multi-condition editing, combining pose/scribble with text edit instruc-
tions.

A.5 ADDRESSING FAILURE MODES WITH GUIDANCE IMAGE REFINEMENT

For certain images with complex background and large editing constraints, it can be difficult to
generate a guidance image that successfully preserves all image and background details. This can
lead to the introduction of local image artefacts. To address this limitation, we investigate whether
it is possible to refine our guidance image G using information from our original input image I,
cffectively re-injecting information from the source image. To do this, we leverage our inference
time optimisation with A = 0, leveraging only a guidance loss. In this setting, the input image to be
updated is G, and the reference image is I. We carry out this update using t,, = 6 and kK = 1. We
note that this approach can alter the quality of the guidance image, as it is encoded/decoded multiple
times, and therefore recommend integrating this step only if editing results are unsatisfactory with
our original architecture.
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(a) Original image (b) Target (¢) Guidance im-(d) Final edit with (¢) Refined guid-(f) Final edit with
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image

Figure 12: Tllustration of the impact of our additional guidance image refinement process, using a
pose editing condition.

We illustrate the failure mode and proposed guidance image refinement solution in Fig 12, showing
how this additional step can successfully eliminate artefacts introduced by our original guidance
image.
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