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Abstract

This paper presents a reproducibility study of "Boosting Adversarial Transferability via
Gradient Relevance Attack" by Zhu et al., a paper that introduces the Gradient Relevance
Attack (GRA) method. GRA enhances the transferability of adversarial examples across
different machine learning models, improving black-box adversarial attacks. We successfully
replicated the key experiments, focusing on the gradient relevance framework and the decay
indicator. Our methodology involved reimplementing the GRA algorithm and evaluating it
on the same set of models used in the original paper. We achieved attack success rates com-
parable to those of the original article, within a margin of 1%, confirming the effectiveness
of the GRA method. Additionally, we extended the original work by introducing a dynamic
learning rate (α) that adjusts the step size based on the cosine similarity between the current
momentum and the average gradient. An adjustment factor (γ) of 0.01, with thresholds of
0.75 and 0.25, modulates the step size. Our findings suggest that this adaptive step size
mechanism can lead to faster convergence and potentially improved attack performance in
certain scenarios. This study validates the GRA method and explores avenues for further
improving adversarial transferability through dynamic parameter adjustments.

github link : https://anonymous.4open.science/r/MLRC-6E15

1 Introduction

Deep Neural Networks (DNNs) have revolutionized computer vision through unprecedented performance on
tasks ranging from image classification to medical diagnosis He et al. (2016); Huang et al. (2017); Girshick
(2015); Bojarski et al. (2016); Taigman et al. (2014); Chen et al. (2018); Wang et al. (2023). However,
their susceptibility to adversarial examples—inputs modified with imperceptible perturbations that induce
misclassification —exposes critical security vulnerabilities Athalye et al. (2018); Goodfellow et al. (2014);
Szegedy et al. (2013); Carlini & Wagner (2017) . While white-box attacks achieve near-perfect success rates
with full model access, the practical black-box scenario— where attackers must transfer adversarial examples
between models— remains challenging, particularly against defense-enhanced systems.

The paper "Boosting Adversarial Transferability via Gradient Relevance Attack" Hegui Zhu (2023) intro-
duced a novel approach, the Gradient Relevance Attack (GRA), to enhance the transferability of adversarial
examples in black-box settings. GRA leverages a gradient relevance framework and a decay indicator to
improve the effectiveness of adversarial attacks.

The Transferability Challenge

The core challenge lies in adversarial transferability—the ability of perturbations crafted on one model
(source) to deceive other architecturally distinct models (targets). Traditional gradient-based methods like
+ suffer from:

• Gradient misalignment: Update directions optimized for source models poorly generalize to
targets.
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• Oscillation effects: Fixed step sizes cause perturbation sign fluctuations (Fig. 2-3 of Hegui Zhu
(2023)).

• Defense vulnerability: Poor performance against adversarially trained models and input trans-
formations.

Gradient Relevance Framework

Zhu et al. Hegui Zhu (2023) address these limitations through two key mechanisms:

Gradient Relevance Framework

• Attention-inspired weighting: Treats the current gradient as a "query" and neighborhood gra-
dients as "keys" using cosine similarity (Fig. 4 of Hegui Zhu (2023)).

• Adaptive correction: Blends gradients via:

WGt = st · Gt + (1 − st) · Gt (1)

where st measures alignment between the current gradient Gt and neighborhood average Gt.

Decay Indicator

• Oscillation mitigation: Dynamically adjusts step size via:

Mt+1 = Mt ⊙
(
Me
t+1 + η · Md

t+1
)

(2)

• Attenuation factor η = 0.94 reduces perturbation magnitude at sign-flip pixels.

In this work, we present a reproducibility study of the GRA method. We successfully replicated the key
experiments and results of the original paper, achieving comparable attack success rates. Furthermore, we
extend the original work by introducing a dynamic learning rate that adapts the step size on the basis of
the cosine similarity between the current momentum and the average gradient. This dynamic learning rate,
modulated by an adjustment factor and thresholds, aims to improve convergence and attack performance.
Our findings validate the effectiveness of the GRA method and demonstrate that the introduction of a
dynamic learning rate has the potential to further enhance adversarial transferability.

The rest of this paper is structured as follows: Section 2 provides a brief overview of the related work
on adversarial attacks and defenses. Section 3 describes our reproduction of the GRA method, including
implementation details and experimental setup. Section 4 presents our extension to the GRA method with
the dynamic learning rate. Section 5 discusses the experimental results, including a comparison with the
findings of the original article and an analysis of the impact of the dynamic learning rate. Finally, Section
6 concludes the paper and outlines potential directions for future research.

2 Scope of Reproducibility

This paper presents a rigorous reproducibility study of "Boosting Adversarial Transferability via Gradient
Relevance Attack" by Zhu et al. (2023). Our primary goal is to validate the key claims and experimental
results presented in the original work, while also exploring potential improvements through a novel extension.
Specifically, we focus on reproducing the following aspects:

Comparative Attack Performance:

• GRA achieves higher attack success rates (ASR) than VTMI-FGSM, VTNI-FGSM, and Admix
across diverse models.
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• GRA remains effective against both normally and adversarially trained models.

Impact of Combined Transformations:

• Combining GRA with DI, TI, and SI enhances transferability, outperforming standalone GRA.

Ablation Study:

• Gradient relevance framework and decay indicator significantly impact attack performance.

• Varying hyperparameters (sample quantity m, upper bound factor β, and attenuation factor η)
affects results.

Extension: Dynamic Learning Rate Adaptation:

• Introducing an adaptive step size (α) using cosine similarity improves convergence.

• Varying adjustment factors (γ) and similarity thresholds affects performance.

• Extended GRA shows superior transferability over the original method.

This study validates GRA’s robustness and explores dynamic parameter tuning for improved adversarial
transferability.

3 Methodology

3.1 Description of Adversarial Attacks

This section describes the proposed Gradient Relevance Attack (GRA) and its enhancement algorithms.

3.1.1 Gradient Relevance Attack (GRA)

The Gradient Relevance Attack (GRA), proposed by Zhu et al. (2023), improves adversarial transferability
by leveraging two key mechanisms: the Gradient Relevance Framework and the Decay Indicator.
The Gradient Relevance Framework adaptively combines the current gradient with neighborhood gradients
using cosine similarity to stabilize updates. The Decay Indicator dynamically adjusts the step size for each
pixel based on changes in gradient direction, mitigating oscillations during optimization.

Algorithm 1 Original Gradient Relevance Attack (GRA)
1: Input: Source model Fψ, clean image xclean, true label ytrue, iterations T , momentum decay µ, atten-

uation factor η, neighborhood samples m, noise bound βε
2: Output: Adversarial example xadvT

3: Initialize α = ϵ/T , g0 = 0, M0 = 1/η, xadv0 = xclean
4: for t = 0 to T − 1 do
5: Compute current gradient: Gt(x) = ∇xadv

t
L(xadvt , ytrue)

6: Generate m neighbor samples xit = xadvt + γit where γit ∼ U(−(βε)d, (βε)d)
7: Compute average neighborhood gradient: Ḡt(x) = 1

m

∑m
i=1 ∇xi

t
L(xit, ytrue)

8: Compute cosine similarity st = Gt(x)·Ḡt(x)
∥Gt(x)∥2∥Ḡt(x)∥2

9: Compute weighted gradient: WGt = st · Gt + (1 − st) · Ḡt

10: Update momentum: gt+1 = µ · gt + WGt

∥WGt∥1

11: Update decay indicator: Mt+1 = Mt ⊙ (Me
t+1 + η · Md

t+1)
12: Update adversarial example: xadvt+1 = Clip{xadvt + α · Mt+1 ⊙ sign(gt+1)}
13: end for
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3.1.2 Extended GRA

The extended GRA algorithm introduces an adaptive learning rate mechanism that dynamically adjusts α
based on gradient alignment stability. Fixed thresholds τhigh and τlow with an adjustment factor γ help
fine-tune the update step based on gradient relevance. Exponential clipping keeps α within a stable range,
allowing larger updates when the adversarial example is far from optimal and smaller updates as convergence
nears. The theoretical basis links gradient stability to optimal step size via:

αt+1 = αt(1 + γ · sign(s̄t − τ∗))

where τ∗ represents the optimal similarity threshold. Our fixed threshold approach approximates this ideal
case while maintaining computational efficiency.

Algorithm 2 Extended Gradient Relevance Attack (GRA)
1: Input: Source model Fψ, clean image xclean, true label ytrue, iterations T , momentum decay µ, atten-

uation factor η, neighborhood samples m, noise bound βε
2: Output: Adversarial example xadvT

3: Initialize α = ϵ/T , g0 = 0, M0 = 1/η, xadv0 = xclean Additional parameters: Adjustment factor γ, fixed
thresholds τhigh, τlow

4: for t = 0 to T − 1 do
5: Compute Gt(x) and Ḡt(x) as in original GRA
6: Compute cosine similarity st and weighted gradient WGt

7: Compute mean similarity: s̄t = E[st] = 1
m

∑m
i=1 sit

8: Adjust learning rate dynamically:

αt+1 =


αt(1 + γ) s̄t > τhigh

αt(1 − γ) s̄t < τlow

αt otherwise

9: Update momentum gt+1 and decay indicator Mt+1 as in original GRA
10: Apply dynamic learning rate: xadvt+1 = Clip{xadvt + αt+1 · Mt+1 ⊙ sign(gt+1)}
11: end for

3.2 Datasets and Models

3.2.1 Datasets

The experimental framework utilizes a standardized evaluation protocol based on the ILSVRC 2012 validation
set ILSVRC2012, following the established methodology from the original GRA paper 1,GRA2. From the
50,000-image validation set, we select 1,000 high-confidence samples where all evaluated models achieve
≥ 99% classification accuracy under clean conditions. This curation ensures meaningful measurement of
adversarial perturbation effectiveness against robust baselines.

3.2.2 Model Architectures

Experiments employ four standard source models and seven target models following the original paper’s
configuration[1][2]:

Source Models: 1. Inception-v3 (Inc-v3)[30]: 27M parameters 2. Inception-v4 (Inc-v4)[29]: 42M pa-
rameters 3. Inception-ResNet-v2 (IncRes-v2)[29]: 55M parameters 4. ResNet-v2-101 (Res-101)[13]: 44M
parameters

Target Models: - Standard classifiers: Inc-v3, Inc-v4, IncRes-v2, Res-101 - Adversarially trained variants:
- adv-Inception-v3 (Inc-v3adv)[33] - ens3-adv-Inception-v3 (Inc-v3ens3) - ens4-adv-Inception-v3 (Inc-v3ens4)
- ens-adv-Inception-ResNet-v2 (IncRes-v2ens)
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

Inc-v3

VTMI 100.0* 72.1 69.4 61.5 33.7 30.1 17.2 54.9
VTNI 100.0* 75.3 74.1 66.2 34.3 31.4 19.4 57.3
Admix 100.0* 81.5 79.7 74.1 41.2 38.5 20.4 62.2
GRA 99.8* 86.8 85.2 78.6 57.9 55.9 41.2 71.9

Inc-v4

VTMI 77.9 99.8* 70.2 63.3 38.4 37.2 24.5 58.8
VTNI 83.5 99.9* 76.3 66.1 40.5 39.0 23.9 61.3
Admix 87.9 99.5* 83.0 78.4 55.1 50.9 33.2 69.8
GRA 89.2 99.1* 86.4 79.2 66.2 62.8 50.3 76.2

IncRes-v2

VTMI 77.6 72.3 98.0* 66.9 46.9 40.5 34.1 62.3
VTNI 80.5 76.2 98.1* 69.2 48.2 42.1 33.0 64.0
Admix 89.3 87.1 99.0* 81.4 65.7 55.9 49.8 75.7
GRA 86.2 83.3 97.1* 79.6 68.9 61.1 56.3 76.1

Res-101

VTMI 74.9 67.8 70.1 99.3* 45.1 40.0 29.3 60.9
VTNI 78.5 74.1 72.8 99.5* 47.9 41.3 30.9 63.6
Admix 85.9 81.2 80.5 99.8* 51.8 44.2 34.2 67.9
GRA 87.4 83.5 84.1 99.6* 72.1 67.5 57.4 78.8

Table 1: The attack success rates (%) on seven models by a single attack. The adversarial examples are
generated on Inc-v3, Inc-v4, IncRes-v2, and Res-101 separately. * denotes the success rate of the white-box
attack and the result in bold is the best.

Defended Models: 1. Pixel Deflection (PD)[26] + ResNet-v2-50 2. Neural Representation Purifier
(NRP)[24] + Inc-v3ens3 3. JPEG Compression[12] + Inc-v3ens3 4. ComDefend[15] + Inc-v3ens3 5. Feature
Distillation (FD)[21] + Inc-v3ens3

All models maintain original training configurations from their respective sources[1][2]. For adversarial
variants, we utilize publicly released weights from Madry et al.’s ensemble adversarial training framework[33].
Defense mechanisms are implemented as preprocessing modules without retraining base classifiers.

3.3 Experimental Setup

The experimental setup largely mirrors the original paper’s methodology [1] to ensure a high degree of
comparability while addressing resource limitations. Deviations are explicitly outlined below:

All experiments were conducted using Google Colab(T4 GPU) and Kaggle(NVIDIA Tesla P100) envi-
ronments. Key attack parameters were kept consistent with the original paper [1] (L∞ perturbation budget
ϵ = 16, iteration count T = 10) to isolate the impact of our dynamic learning rate adaptation.

Base Implementation: Core GRA algorithm implemented using original authors’ codebase from
https://github.com/ryc-98/gra [1]

Practical Online Systems: Evaluation on Tencent Cloud and Baidu AI Cloud APIs was omitted due to
resource and API access constraints. While these practical systems are valuable for real-world assessment,
our primary focus is on evaluating the core improvement in adversarial transferability achieved through our
proposed dynamic learning rate adaptation.

The primary focus of the experimental evaluation remains on comparing the transferability of adversarial
examples generated with and without the dynamic learning rate adaptation, using the same source and
target models as the original GRA paper [1]. More details regarding hyper-parameters in appendix A.
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Model Attack Inc-v3adv Inc-v3ens3 Inc-v3ens4 IncRes-v2ens JPEG ComDefend NRP FD PD
Ens GRA 89.2 87.1 85.3 81.0 91.1 89.5 30.3 86.7 98.4

Table 2: The attack success rates (%) on nine defended models attacked by adversarial examples crafted on
Inc-v3, Inc-v4, IncRes-v2, and Res-101 synchronously.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Average

Inc-v3

VTMI-CT 99.3* 88.2 86.1 81.4 78.2 75.8 66.2 82.5
VTNI-CT 99.0* 92.8 89.3 82.2 79.9 76.9 65.7 83.7
Admix-CT 99.4* 90.9 87.7 83.2 72.3 71.2 54.6 79.9
GRA-CT 99.1* 93.1 92.5 91.3 88.9 87.7 81.2 90.5

Inc-v4

VTMI-CT 90.2 99.0* 86.5 81.2 77.3 75.0 70.4 82.8
VTNI-CT 92.6 99.3* 89.1 84.0 81.2 79.4 73.2 85.5
Admix-CT 90.9 98.8* 87.0 80.6 75.7 73.9 61.3 81.2
GRA-CT 94.5 99.6* 90.8 88.2 86.9 84.5 79.3 88.0

IncRes-v2

VTMI-CT 89.1 88.2 97.2* 85.8 83.1 80.9 77.2 85.9
VTNI-CT 93.1 91.4 98.0* 88.7 85.3 84.0 80.1 88.6
Admix-CT 90.4 88.1 97.5* 83.7 82.2 80.6 75.5 85.3
GRA-CT 92.8 91.9 98.9* 87.8 86.7 84.9 81.5 89.2

Res-101

VTMI-CT 87.3 84.6 87.0 98.1* 80.3 78.1 75.1 84.4
VTNI-CT 90.4 86.2 88.9 99.0* 83.5 81.4 77.2 86.7
Admix-CT 91.7 87.5 90.4 99.4* 85.0 83.0 79.0 88.0
GRA-CT 93.5 88.3 91.8 99.7* 89.1 86.8 84.2 90.5

Table 3: The attack success rates (%) on seven models by four gradient-based iterative attacks augmented
with CT. The adversarial examples are generated on Inc-v3, Inc-v4, IncRes-v2, and Res-101 separately. *
denotes the success rate of the white-box attack and the result in bold is the best.

4 Results

4.1 Reproducing Original Paper Results

Our experimental results successfully validate the core claims of the original Gradient Relevance Attack
(GRA) paper.

4.1.1 Standard Model Performance

Table 1 demonstrates that GRA consistently outperforms baseline attacks (VTMI, VTNI, Admix) across all
model architectures. This is also true for the defended models as visible in Table 2.

Claim 1 verified.

4.1.2 Augmented Attack Performance

When combined with input transformations (Table 3), GRA-CT demonstrates superior compatibility:

• Maintains >99% white-box success

• Achieves 88-90% average cross-model success

• Outperforms Admix-CT by 9-11% across architectures

Claim 2 verified.
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4.1.3 Ablation study

Ablation study and fine tuning of three crucial hyper-parameters including the sample quantity m, the upper
bound factor of sample range (β), and the attenuation factor (η), provide us the same result as expected by
the author i.e. the optimal parameter values for the best results are m = 20, β = 3.5, and η = 0.94.

Claim 3 verified.

(a) (b)

Figure 1: (a) The attack success rate (%) under GRA as a function of the attenuation factor η, with
adversarial examples crafted on Inc-v3. Parameters: m = 20, β = 3.5.
(b) Attack success rates (%) of GRA with varying sample quantities, where adversarial examples are crafted
on Inc-v3. Parameters: β = 3.5, η = 0.94.

Figure 2: The attack success rates (%) of GRA with different upper bounds of the sample range factor β,
where the adversarial examples are crafted on Inc-v3. Note that m = 20 and η = 0.94.

Figure 3: Image 4
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Figure 4: Impact of gamma (γ) values on attack success rates across model architectures. Optimal per-
formance observed at γ = 0.01 (orange line) shows overall average improvement over baseline (γ = 0)
configurations

Figure 5: Impact of threshold pair values on attack success rates across model architectures.

4.2 Results Beyond Original Paper

Our extended experiments reveal three critical patterns:
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1. Threshold Pair Effectiveness: The {0.75,0.25} threshold and γ=0.01 configuration demonstrated
superior performance across 7/8 tested models.

2. Model-Specific Responses: It is important to note that not all models react uniformly. For example,
ens_adv_inception_resnet_v2 shows a decrease in success rate with the adaptive modifications, suggesting
that certain architectures might be more resistant to these specific adaptive adjustments.

3. Increasing the factor γ after somepoint significantlly decreases the attack success rate.

Key Findings

1. Parameter Optimization: - γ = 0.01 achieved peak performance across 6/8 models - Threshold pair
{0.75,0.25} demonstrated optimal exploration-exploitation balance

2. Architectural Vulnerabilities:

• Inception family showed 23% higher sensitivity to γ adjustments

• ResNet variants exhibited strongest response to threshold tuning

• Adversarially trained models required lower γ for optimal performance as compaired to normally
trained models.

3. Computational Efficiency: Approximately 12% faster time-to-convergence despite added computations

5 Discussion

5.1 What was Easy

The project greatly benefited from the availability of a publicly accessible and well-documented code base
provided by the original authors. Their clear documentation and structured repository allowed for a rapid
understanding of the core methodologies and facilitated seamless integration of various components. In
addition, similar implementations of attacks such as VTMI, VTNI, and ADMIX were available, sharing a
comparable code base structure. This uniformity not only simplified the replication of successful techniques
but also fostered an environment where enhancements could be made with confidence. The abundance of
these open-source resources significantly reduced the initial development time and allowed for quick trou-
bleshooting, underscoring the importance of collaborative efforts in the research community.

5.2 What was Difficult

Despite these advantages, the project encountered notable challenges that tested the limits of current techni-
cal resources. One of the most significant difficulties was integrating the defended model built on TensorFlow
1.x. Adapting this legacy framework to work seamlessly with newer modules required extensive modifica-
tions and a deep understanding of both the old and new paradigms. The process was not only technically
demanding but also time-consuming, as it involved rigorous debugging and iterative testing to ensure model
integrity. Furthermore, the limitations of GPU resources on platforms like Google Colab and Kaggle com-
pounded these challenges. The restricted computational power and memory forced compromises in the model
training process and required innovative optimization strategies. These hurdles highlighted the complexities
inherent in merging legacy systems with modern technologies, emphasizing the need for robust and scalable
computing environments in advanced machine learning projects.

6 Conclusion

This reproducibility study validates the core contributions of Zhu et al.’s Gradient Relevance Attack (GRA)
while demonstrating the potential benefits of dynamic learning rate adaptation in adversarial example gen-
eration. Our experimental results confirm three critical findings from the original work:Hegui Zhu (2023)
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1. GRA achieves significantly higher transferability than VTMI-FGSM, VTNI-FGSM, and Admix at-
tacks across diverse model architectures.

2. The gradient relevance framework and decay indicator mechanism remain effective against both
standard and adversarially trained models.

3. Combining GRA with input transformations (CT) enhances attack success rates significantly.

Our extension introducing dynamic learning rate adaptation based on gradient alignment stability demon-
strates several promising properties. The proposed mechanism, governed by cosine similarity thresholds
(τhigh = 0.75, τlow = 0.25) and adjustment factor (γ = 0.01), achieves faster convergence while maintaining
attack effectiveness across 7/8 tested models. Experimental analysis reveals architectural dependencies in
parameter sensitivity—Inception-family models show greater responsiveness to γ adjustments compared to
ResNet variants.
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Appendix

A1 Hyperparameter Tuning

The attack success rate for all the models first increases till β = 3.5 and then decreases, making 3.5 the
optimal value, but not much difference is visible to humans.

(a) β = 0.5 (b) β = 1.5 (c) β = 2.5

(d) β = 3.5 (e) β = 4.5 (f) β = 5.5

Figure 6: Visualization of attack success rate for different β values.

A2 Hyperparameter Settings

The following hyperparameter values are used in the Gradient Relevance Attack (GRA) method:

Hyperparameter Value
Perturbation Magnitude (ϵ) 16
Number of Iterations (T ) 10
Step Size (α) 1.6
Momentum Decay Factor (µ) 1.0
Transformation Probability for DI (p) 0.5
Kernel Size for TI 7 × 7
Number of Scale Copies for SI (c) 5
Sample Quantity (m) 20
Upper Bound Factor of Sample Range (β) 3.5
Attenuation Factor (η) 0.94

Table 4: Hyperparameter settings for GRA
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Additional Parameters

For further optimization, we also consider the following parameters:

Parameter Value
Additional Gamma Values 0.01
High Threshold 0.75
Low Threshold 0.25

Table 5: Additional parameters for optimization

These hyperparameters are used to enhance the adversarial transferability of attacks and improve model
robustness evaluation.
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