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ABSTRACT

Recently, electric vehicles (EVs) have gained popularity over internal-combustion
engine vehicles (ICEV) because of their convenience and ability to use clean-
energy sources. Fueling an EV is fundamentally different than an ICEV and thus,
the driving and charging patterns associated with EVs are novel and not well
understood. For example, where filling the tank of an IECV is a standard process,
charging an EV occurs at different speeds (L1, L2, and DC Fast Charging) and
intermittently while driving by regenerative braking. Understanding these usage
patterns for EVs is important because the performance and longevity of the battery
is dependent on the driving, charging, and idling patterns it is subjected to over its
lifetime. We propose a scalable cascaded clustering approach that leverages battery-
specific features to identify usage patterns that affect the battery across multiple
timescales. We analyze 3,100 EVs over the course of a year using multivariate time-
series data consisting of but not limited to state of charge (SOC) and mileage. First,
we apply clustering to weekly multivariate data segments and extract usage profiles
at that timescale. Then, we use these weekly cluster assignments to generate an
EV battery meta-sequence that is unique to every vehicle, which reveals longer-
term patterns. We apply a novel graph based clustering technique at the vehicle
meta-sequence level to associate groups of vehicles that are operated similarly.
Our approach reveals fine-grained usage patterns and helps identify salient themes
across a vehicle’s lifetime. While limited to a relatively small selection of vehicles,
our work reveals a unique representation of vehicles and their weekly usage pattern
that can potentially aid in battery lifecycle management.

1 INTRODUCTION

In the realm of electric vehicles (EVs), a significant knowledge gap exists regarding the comprehensive
understanding of EV and battery usage, with the first crucial step being an in-depth examination
of EV utilization, encompassing charging, discharging, power consumption, and idle patterns. The
incorporation of sensors and communication technologies in EVs has opened avenues for enhanced
insights into EV battery usage, enabled by time-series data analysis and clustering techniques.
Our goal is to cluster similar vehicles based on shared usage tendencies and also explore general
weekly EV usage patterns across different vehicles. Our in-house dataset consists of 3100 EVs with
approximately 1.5 years of data recorded. We build a cascaded clustering framework that involves
two different stages of clustering: the first stage gives us an insight into weekly usage patterns across
all vehicle-agnostic weeks, while the second stage of clustering is used to cluster entire vehicle usage
patterns using meta-sequences from stage-1 clustering. This approach enables a comprehensive
understanding of long-term themes and collective EV weekly behavior, potentially informing energy
optimization, demand forecasting (using our deep embedding), and grid management decisions in
the future, although this is out of the scope of our paper. The main contributions of our paper are
two-fold:

1. We derive domain specific features that produce insightful EV weekly-usage patterns

2. We propose a novel deep clustering network combining a Long Short-Term Memory architec-
ture (LSTM) and a Graph Convolutional Network (GCN) to analyze vehicle meta-sequences

The paper Nazari et al. (2023) presents an overview of the different clustering methods applied to
different types of EV data. Some of the most popular studied application areas are EV user behavior
in Helmus et al. (2020); Hu et al. (2022); Powell et al. (2022), EV driving cycle in Berzi et al. (2016);
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Zhao et al. (2019), the classification of used EV batteries in Li et al. (2022; 2019a); Liu (2019), and
clustering of EV charging stations in Momtazpour et al. (2012); Sánchez et al. (2022). In contrast
to the methods discussed in Nazari et al. (2023) pertaining to EV user behavior, we employ a novel
cascaded clustering approach on multivariate time-series data as mentioned in Section 2.2. Similarly,
the approach proposed by Xiong et al. (2018), which combined K-means clustering and a multilayer
perceptron to analyze historical electric vehicle charging station data with the goal of identifying
station usage patterns differs from ours. We aim to extract both driving and charging patterns directly
from individual vehicle data over an extended period. Moreover, our approach differs in that it
employs a cascaded clustering technique, eliminating the need for manual labeling by leveraging
the clustering labels generated in the initial step. A type of cascaded clustering was introduced by
Yildiz et al. (2021). It differs from our approach in two ways. It initially clusters data at hourly and
daily levels, followed by a re-clustering step to consolidate similar clusters and refine each one. Our
method, in contrast, starts with granular weekly patterns and progresses to higher-level clustering
based on vehicle-specific labels assigned weekly, resulting in a more generalized approach compared
to fine-grained clustering.

Our approach draws inspiration from Li et al. (2019b), but it distinguishes itself through significant
enhancements. In Li et al. (2019b), a two-stage clustering methodology is proposed, beginning with
the clustering of daily electric vehicle (EV) data to uncover common driving patterns on different
days. Subsequently, they use these daily patterns to calculate a distribution that quantifies their
occurrence relative to the total number of travel days for the EV. Finally, K-medoids clustering is
applied to group these diverse driving patterns. Our approach enhances the second-stage clustering
by incorporating an LSTM layer with a GCN for fine-grained temporal relationships, and adopts
weekly data segments in the first-stage clustering, contrasting with the daily segmentation in Li et al.
(2019b). This enhancement results in superior performance on our dataset.

Graph neural networks (GNN) have become very popular in recent years, recognized for their
ability to efficiently and accurately perform regression, classification, and even clustering tasks
on graph-structured data. Bianchi et al. (2020) details one of the most popular methods for graph
clustering, known as MinCutPool. Tsitsulin et al. (2020) improved upon this approach with their Deep
Modularity Network (DMoN), which made use of a differentiable form of the modularity equation to
directly learn cluster labels with a graph neural network in an unsupervised fashion. The application
of GNN’s to time series tasks has also been explored. Cini et al. (2023) leverages clustering and GNNs
to learn the hierarchical relationships between time series features, and applies this to a supervised
forecasting problem. Similarly, Wu et al. (2022) leverages k-shape clustering to determine usage
profiles before leveraging a GNN framework to learn a time-series forecasting problem. Zhu et al.
(2023) leverages GNN’s for multivariate time series clustering, modeling each variable as a node
and analyzing their relationship, claiming state-of-the art results on several time-series classification
datasets.

The remainder of this paper is organized as follows. In Section 2, our Cascaded clustering framework
is presented along with the data description and preprocessing. The experimental results of our
cascaded clustering, relevant usage patterns discussions are provided in Section 3. Limitations and
next steps are giving in Section 4. Lastly, the conclusions are given in Section 5 and the additional
materials in the Appendix A.

2 FRAMEWORK AND APPROACH

We build a scalable Cascaded Clustering framework as shown in Figure 1. This framework enables
us to group the EVs that overall exhibit the most similar patterns in charging and driving behavior.
All our experiments are executed on a 12-core CPU MAC M2.

2.1 DATA PREPROCESSING

The data used in this study is collected over-the-air from EVs in the United States. There are 3,100
individual vehicles included in the dataset, identified through anonymized VINs (vehicle identification
number). The number of measurements for each VIN varies, but in total there are over 3.8 million
measurements. Each measurement has 5 features of interest, including the timestamp, an anonymized
VIN, a boolean flag indicating whether the vehicle is at ‘home’ or not, the odometer reading, and
SOC%. The battery state of charge is expressed as a percentage of fully charged capacity. Figure 2
summarizes the dataset as well as some of the key features. The number of data samples per VIN
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Figure 1: cascaded clustering framework

varies greatly, so the total measurements per VIN are plotted as a histogram in plot 2a. Most vehicles
have fewer than 6,000 recordings, but some have as many as 16,000. Plot 2b shows the idle, charging,
and driving count of measurements for 100 selected vehicles. We plot mileage and SOC% for 5
vehicles and 1 vehicle respectively in Appendix A.1

(a) Histogram of Total Counts for Each Vin (b) Driving, Charging, and Idle Measurement
Breakdown for 100 Vins

Figure 2: Summary of raw data characteristics and visualization

Our data is a multivariate time series, where each datapoint comprises both a feature axis and a
time axis as shown in Figure 1. Notably, the time-steps across the datapoints do not align due to
varying or missing recording times for different vehicles, albeit within the same overall timeframe. To
standardize the time-scale and address missing data, we employ resampling and linear interpolation
techniques. First, we resample our data to a higher frequency (1 min) to capture intricate details
and then perform linear interpolation on all features . Next, we downsample our data to 10 min
frequency in order to save on computation. Considering that battery usage patterns unfold gradually
over extended time intervals, a lower sampling frequency, such as 10 min, suffices for our analysis.
To handle missing data, we identify and flag instances of missing values. Additionally, we remove
data chunks with missing values exceeding a duration of one day. Also, we exclude vehicles from the
analysis if they possess an insufficient number of recordings.

2.2 FEATURE ENGINEERING AND TIME SERIES SEGMENTATION

In addition to the signals included with the raw data, we derive domain-specific features that charac-
terize battery usage with respect to power, energy and driving/charging events. Some of the features
include ΔSOC, an event index, depth of discharge, charging energy, and charging power. We start
with ΔSOC which is simply the difference in subsequent measurements of SOC. This helps to
characterize both charge and discharge power on a continuous basis. We derive an event index to keep
track of different charge and discharge cycles. For example, a charging event followed by a discharge
(driving) event would be two events. We use a threshold of 2% as a minimum where any changes
less than that would not be counted as a new event. We use a 2% SOC change threshold within a
10-minute window to distinguish charging and driving events. This threshold serves two key purposes.
Firstly, it filters out small, irrelevant charging events like brief plug-and-unplug actions. Secondly,
regenerative braking occurs during driving, converting motion energy into electrical energy. To avoid
counting regenerative braking as charging, we use the SOC threshold. Regenerative braking’s SOC
increase in electric vehicles varies due to factors like design, battery capacity, and driving conditions.
We explored our dataset and opted for a 2% SOC threshold. Next, depth of discharge (DOD) is
calculated as the total change in SOC during a discharge cycle. For charging energy, we simply use
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the DOD for charging events and multiply by the rated nameplate capacity of the battery, Erated. This
is given by equation 1

Echarging(kWh) = DOD∗ Erated (1)

For power, we derive a three stage charging power classification that reflects the maximum charging
rate used during a charging session. These are categorical values ∈ {slow, fast, rapid} with the
following thresholds: slow < 0.054 ∗ SOC%

min ≤ fast < 0.417 ∗ SOC%
min ≤ rapid. These thresholds

have been converted to SOC/min for consistency with our datasets, but they can also be expressed in
kW, as 2.8kW and 21.5kW respectively. Apart from the above mentioned features, we also derive
velocity, overall event (charge/discharge) number, weekly event number, total weekly mileage, rate of
change in energy, rate of change in mileage. This helps in extracting patterns that might not come
through from the original data and aids in post processing cluster descriptions. In total, we have 11
features describing every vehicle at 10 min intervals over ∼ 1 year. We explain all the other features
not described in this section in Appendix A Section A.2 in order to aid reproducibility.

2.3 CASCADED CLUSTERING

In our academic investigation, we face a crucial decision at stage-one on how to cluster structured
weekly time-series data. While Dynamic Time Warping (DTW) with K-means Niennattrakul &
Ratanamahatana (2007) is effective for variable-length time series, our preprocessing steps, like inter-
polation and segmentation, impact DTW’s suitability. Preserving the temporal aspect is paramount,
especially for metrics like State of Charge (SOC%) in rapid charging scenarios. To avoid temporal
distortion, we exclude DTW due to its warping nature. Given our large dataset (21,000 weeks, 1,008
measurements per week, 11 features per measurement), raw clustering isn’t computationally feasible.
We briefly explore the viable strategy of dimensionality reduction (e.g., UMAP) before applying a
clustering algorithm. Another popular technique is to apply clustering on pre-computed distance
matrices (Holder et al., 2023). We run experiments using distance matrices with K-means Lloyd
(1982), K-medoids Park & Jun (2009), and Agglomerative clustering Patel et al. (2015). These
approaches aim to efficiently extract insights from our complex temporal data.

In the context of clustering noisy and outlier-rich data, the choice between Manhattan distance
(L1) and Euclidean distance (L2) becomes pivotal. Manhattan distance, computed by summing
absolute differences along each dimension, offers robustness to outliers as it considers the magnitude
of differences rather than their squared values. This makes it a preferred choice for clustering in
noisy environments. In contrast, Euclidean distance based on squared differences, is sensitive to
outliers, potentially leading to less reliable clustering outcomes in noisy data scenarios. In Kobylin &
Lyashenko (2020) a similar type of segmentation of heartbeat data is performed and the observed
results for K-means with Euclidean distance and Soft-DTW with K-means were almost identical. We
apply the K-means technique with Euclidean distance, but also consider K-medoids since K-medoids
is known to work better with noisy data since its algorithm centers around medians and not means.
Agglomerative clustering can be preferable for multivariate time series data due to its flexibility in
capturing variable cluster shapes, its ability to provide a hierarchical structure for exploration, and
its robustness to outliers and initialization compared to K-means or K-medoids. Since there is no
“universal” best option in clustering data, we choose to experiment with the three above mentioned
techniques. While performing experiments with K-means and K-medoids, we identify the optimal
number of clusters by using a combination of the elbow method, Silhouette score and Davies-Bouldin
index. This is done by varying the number of clusters for distance metrics such as Euclidean and
Manhattan respectively and recording the scores for each value of K as shown in the Appendix A,
Figure 2a. The Silhouette score in blue should be maximized, the inflection point of inertia in red
should be found, and Davies-Bouldin index in yellow should be minimized. For Agglomerative
clustering, we specify a distance threshold based on our choice of distance metric, and allow the
algorithm to converge at a specific Kstage1. We also use a dendogram for the same to aid in narrowing
the possibilities of optimal clusters K at stage-one, Kstage1.

In Stage-2 of our cascaded clustering framework, we introduce a novel technique for deep clustering
as shown in Figure 3. As the first step, we use a time series encoder. This layer serves to create the
node representation for each time series sequence of cluster labels. Since the LSTM is a learnable
layer, the model will be able to update the encodings throughout the training process, adapting
the node representation to contain the information most relevant to the separation of time series
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Figure 3: LSTM encoder + GCN technique for Stage-2 clustering

subsequences into clusters, while maintaining the time-ordered information. This layer will convert
the M meta-sequences intoan M × N matrix, where N is the number of features output from the
time series encoder. The time series encoder is comprised of an LSTM auto-encoder, which have
been proven to be very effective at analyzing and extracting data from time series. This model
architecture is shown above using vehicle time series sequences of stage 1 labels as an input. The
nodal feature adjacency matrix defines the initial edges between the node embeddings from the time
series encoder. The graph representation is constructed using a K-nearest neighbor graph based on
the embeddings output from the LSTM encoder. The graph convolution layer enables the analysis
this graph-structured data in a learnable neural network. While the initial graph representation acts
as a seed, this layer can learn to modify the node representations in order to create a more effective
representation for clustering.

Finally, the clustering layer takes the learned graph representation as an input, and outputs a cluster
label for each node (each meta-sequence). The loss function seeks to maximize modularity, which is
the same goal of many of the naïve community finding algorithms, such as the Louvain algorithm
first proposed in Blondel et al. (2008). Modularity is a metric of scoring community detection in
graphs, and graphs with high modularity feature dense connections within their community, with
fewer connection between communities. Community detection is similar to clustering, but on graph-
structured data, where a community of nodes is analogous to a cluster of data. Modularity is not
differentiable, however, implementing a spectral relaxation of modularity as a differentiable function,
as outlined in Tsitsulin et al. (2020), enables end-to-end learning, where both the time order-informed
LSTM embedding and cluster labels can be jointly learned to optimize the final clusters.

Our results from both stages of clustering are summarized in Section 3.1.

3 RESULTS AND DISCUSSION

3.1 EXPERIMENTAL RESULTS

We have summarized our key results after performing stage-one clustering on our multivariate data
into Table 1. For our dataset we find that both K-medoids and K-means have similar scores and
we run experiments through our pipeline on both methods. K-medoids works best for Kstage1 = 6
using Manhattan distance as it is able to provide cleaner usage profiles as shown in Figure 4. We
see a clear difference in usage-profiles when these results are compared to the ones produced by
K-means, as shown in Appendix A, Figure 5. Since a medoid is always a specific datapoint from
the dataset, it is less affected by outliers than the mean (K-means’ centroid) and seems to give our
usage profiles more structure. The poor performance of Agglomerative clustering could be due to
poor estimation of distance threshold, or badly interpolated values in the data. We have summarized
a set of relevant experiments (including random seed error report) for stage-one clustering in Section
A.3 in Appendix A. In order to show the robustness of our engineered features, we run a comparative
experiment showcasing Stage-One clustering with just a basic set of the collected features. We see
that our features improve validation metrics for both K-means and K-medoids. This is shown in
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Table 3. We observe that implementing dimensionality reduction using UMAP McInnes & Healy
(2018) results in improved time efficiency for clustering, along with higher Silhouette scores and
lower Davies-Bouldin indices. However, when visually inspecting the clustered projections in both
scenarios, it becomes evident that dimensionality reduction has failed to capture meaningful clusters
in our specific case. This is shown in Appendix A, Figure 7 where dimensionality reduction before
clustering simply splits the data into clusters without any meaningful grouping while this isn’t the
case when we cluster on raw data.

The paper Li et al. (2019b) proposes a two-stage clustering technique and we use it as a baseline
on our dataset (listed as Stats K-means). From Table 2, we see that our approach outperforms this
baseline method of using meta-sequence compositions as input at the second stage of clustering.
Additionally, we compare our approach to clustering on the raw meta-sequence labels as well as a
learned LSTM embedding. The LSTM embedding is generated using a simple LSTM autoencoder
architecture trained to minimize reconstruction loss. This differs from our LSTM + graph convolution
network approach, which is trained to minimze both the reconstruction loss and clustering loss. From
the results in Table 2, it is clear that our method outperforms the baseline methods, including the
LSTM embedding, likely due to the use of the clustering loss to improve the LSTM embedding.
Apart from using an LSTM, we also ran an experiment using a Transformer followed by a GCN, but
this model didn’t converge. We suspect that this is due to not having enough data after eliminating
idle weeks from the meta-sequences.

It should be noted that in the second stage of clustering the approaches are evaluated on 2 different
subsets of our original dataset. Due to a large number of idle weeks degrading model training, two
thresholds were set to elimnate vehicles with mostly idle weeks. The threshold was set to 10 (out of
63) weeks, yielding a dataset with 785 vehicles, and 20, yielding a dataset with 111 vehicles. The
results for both of these datasets, as well as the open source factory power consumption dataset, are
given in Table 2. The open source dataset we use is sourced from Braeuer (2020). It consists of the
grid power consumption for 30 different factories over the course of a year. In order to validate our
approach on an external (non-proprietary) set of data, we processed it in the same method described
above. Power consumption and its first derivative were used as features to generate weekly load
profiles (included in Appendix Figure 6), which were then used in the second stage cluster approaches
listed below. Due to a lack of available datasets featuring 2 stages of labels, the approach could not
be evaluated on any open source classification dataset, and is only evaluated using its unsupervised
performance metrics.

Table 1: Clustering stage-one results

CLUSTERING ALGORITHM SILHOUETTE SCORE D.B.INDEX DISTANCE METRIC OPTIMAL K

K-means 0.054 3.036 Euclidean 5
K-medoids 0.035 4.029 Manhattan 6
Agglomerative 0.023 3.738 Euclidean 7

Table 2: Clustering stage-two results

METHOD SILHOUETTE SCORE D.B.INDEX OPTIMAL K

Number of Vehicles = 111, data = ours, Stage1 Clusters = 6
Stats + K-means 0.369 0.976 4
Raw sequence + K-means 0.0957 2.757 4
LSTM AE embedding + K-means 0.425 0.819 10
LSTM + Graph Clustering (ours) 0.703 0.519 6

Number of Vehicles = 785, data= ours, Stage1 Clusters = 6
Stats + K-means 0.29 1.219 4
Raw sequence + K-means 0.066 3.297 5
LSTM AE embedding + K-means 0.626 0.611 4
LSTM + Graph Clustering (ours) 0.63 0.527 6

Number of factories = 30, data = Opensource dataset (Braeuer, 2020), Stage1 Clusters = 8
Stats + K-means 0.742 0.252 8
Raw sequence + K-means 0.4257 0.73 5
LSTM AE embedding + K-means 0.684663 0.3697 8
LSTM + Graph Clustering (ours) 0.76 0.324 4

3.2 CASCADED CLUSTERING DISCUSSION

Vehicle Usage Profiles: While the relative performance of the clustering algorithms was explored
in the previous section, we should also examine the battery specific features of each cluster. Figure 4
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Table 3: Comparing scores for clustering with and without our derived features on a smaller subset of
the data 200 vehicles having the maximum number of measurements

CLUSTERING ALGORITHM SILHOUETTE SCORE D.B.INDEX OPTIMAL K
K-medoids

Home, SOC, ΔSOC, weekly mile 0.07 2.74 5
All 11 features 0.082 2.688 4

K-means
Home, SOC, ΔSOC, weekly mile 0.076 2.52 6
All 11 features 0.124 2.39 5

shows usage profiles for each stage-one cluster in terms of the raw data signals, SOC, cumulative
distance, and home binary. For SOC and cumulative distance, the solid lines represent the median
of the cluster selected by the K-medoids algorithm and the translucent lines represent a band of the
200 weeks surrounding those medians. Visibly, all the clusters highlight different usage patterns,
though there is still a lot of variability even within the median 200 weeks. In clusters 0, 1, 2, and 5
there are clear trends in the charging pattern. Cluster 0 exemplifies daily usage of the top 60% of
SOC. In contrast, cluster 1 is a similar charging pattern with lower depth of discharge and more likely
to charge to 100% SOC every evening. Both clusters are indicative of a typical charge-every-night
scenario. Cluster 2 shows a different type of behavior where charging is deferred to Thursday nights
in particular. Likewise, cluster 5 is a similar but with a preference for Friday nights. In clusters 3 and
4, trends are less clear, however cluster 4 has higher depth of discharge. All clusters show different
likelihoods of being home, though no overarching trends are clear. Similarly with cumulative distance,
there is a broad distribution in the weekly mileage. While these usage profiles give an overall feel for
the median of each cluster, they do not represent the full breadth of the feature set that is used for
clustering.
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Figure 4: Weekly usage profiles of Clustering Stage 1 clusters for SOC %

Stage-1 Cluster Behavior and patterns: In order to better understand the differentiation of our
clusters, Figure 5 shows the additional features represented by kernel density estimation (KDE) plots.
Figures 5a and 5b show state of charge and depth of discharge (DoD), respectively. Here it is clear to
see different utilization of the battery for each cluster. Clusters 0, 1, and 2 show preference to lower
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DoD and each has a different likelihood of using an SOC cut off of 80, 90, or 100%. Clusters 3, 4, and
5 however utilize a larger depth of discharge and are more evenly distributed across the full capacity
of the battery. These plots show the ability of battery-specific features to separate different utilization
patterns. It is important to understand that because of the way KDE plots are calculated, they show
a distribution outside the range of possibility. For example, this is the reason why sub figure 5b
shows DOD above 100%. This should be ignored as it is not physically possible. Considering sub
plot 5c and Figure 6, the charging speed preferences of each cluster is further illustrated. Here the
charging duration is a function of the charging power and depth of discharge and we can see the
several distributions emerge. Furthermore, Figure 6 shows the relative proportions for Level 1, 2, and
3 charging. By considering all the feature plots, a clearer understanding of the unique characteristics
of each cluster emerges. We have included visualizations of meta-sequences tied together in the
Appendix A.4
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Figure 5: Selected features from Stage-1 clustering

Figure 6: Proportion of different power levels in each cluster with cluster 4 having the maximum
amount of fast, high power charging

Stage-2 Cluster Behavior and patterns: While the quantitative results for all second stage clus-
tering approaches are given in Table 2, Figure 7 offers a qualitative evaluation of the vehicle-level
clustering results generated using our proposed graphical method. Subplots 7a and 7b display
heatmaps representing a second stage cluster, with each row representing a different vehicle and each
column, a weekly subsequence of that vehicle’s life. Each color represents a different stage 1 cluster
label. Looking at the figures for clusters 4 and 5, it is clear that the overall composition of these
cluster vary greatly, with cluster 7a primarily composed of vehicles with weekly usage profiles 1-2,
while cluster 7b features more vehicles comprised of usage profiles 4-5. Additionally, the histograms
in subplots 7c and 7d display the overall proportions of each stage-one label in each stage-two cluster.

4 LIMITATIONS AND FUTURE STEPS

While the stage one clusters serve their purpose in illustrating our cascaded cluster approach and
weekly time segmentation, certain limitations are evident. Our dataset is insufficient in representing
all usage patterns, indicating that the “natural" number of clusters is likely greater than the six clusters
identified. Consequently, this leads to overlapping cluster metrics. With a more comprehensive
dataset encompassing a wider range of usage patterns, we anticipate the emergence of additional
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(a) (b)

(c) (d)

Figure 7: Level-2 cluster distribution insights and heatmaps

distinct clusters. This means that the features employed in the analysis may require further refinement.
While clusters 0, 1, and 2 in Figure 4 partially capture variations in preferred cut-off SOC values for
charging, there are instances of data overlap among these clusters. Exploring battery-specific features
in greater detail is expected to facilitate a better isolation of distinct usage patterns.

Furthermore, our data consists of large and small gaps. Linear interpolation for estimating missing
values may generate erroneous patterns in our model, particularly for features such as SOC that
require more accurate estimation through advanced modeling techniques. Additionally, applying
hard-clustering to our data may have limitations, as real-world EV operation varies over time and
clusters can overlap. Furthermore, representing weekly usage profiles by the median value of each
feature for a cluster provides a preliminary understanding, but fails to go deeper into explainability
and interpretability of the clusters. This is also an area for future work.

Additionally, it should be noted that all nodes need to be present in order to perform graph clustering.
Therefore, the proposed architecture must be run with a batch size of one. This may cause memory
issues when running on datasets containing a very large number of time series. For very large
datasets, it may be beneficial to decouple the time series encoder and graph clustering and instead
train them separately. Alternatively, methods of batching the input to the encoder and re-aggregating
the mini-batches before passing it through the graph neural network could be explored, and this may
be explored in future work.

5 CONCLUSION

Our cascaded clustering framework provides valuable insights into the usage patterns of electric
vehicles (EVs). At the first stage, we identify short-term usage profiles that reveal how EVs charge
and drive on a weekly basis. At the second stage, we cluster vehicle meta sequences to obtain groups
of vehicles that have similar cluster-one distributions. Overall, our robust framework enables the
processing and understanding of large-scale real-world EV data, which is crucial for facilitating the
transition to EVs and anticipating its impacts.
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