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Abstract

Denoising diffusion models are a class of gen-
erative models that have recently achieved state-
of-the-art results across many domains. Gradual
noise is added to the data using a diffusion process,
which transforms the data distribution into a Gaus-
sian. Samples from the generative model are then
obtained by simulating an approximation of the
time reversal of this diffusion initialized by Gaus-
sian samples. Recent research has explored the
sampling error achieved by diffusion models under
the assumption of an absolute error ϵ achieved via
a neural approximation of the score. To the best
of our knowledge, no work formally quantifies the
error of such neural approximation to the score. In
this paper, we close the gap and present quantita-
tive error bounds for approximating the score of
denoising diffusion models using neural networks
leveraging ideas from stochastic control. Finally,
through simulation, we explore some of the in-
sights that arise from our results confirming that
diffusion models based on the Ornstein-Uhlenbeck
(OU) process require fewer parameters to better ap-
proximate the score than those based on the Fölmer
drift / Pinned Brownian Motion.

1 INTRODUCTION

Let π be a probability density on Rd of the form

π(x) =
γ(x)

Z
, Z =

∫
Rd

γ(x)dx, (1)

where γ : Rd → R+ can be evaluated pointwise but the
normalizing constant Z is intractable. In both the sampling
problem and generative modelling, one is interested in ob-
taining approximate samples from π. In sampling, one has

∗Equal contribution.

access to γ whilst in generative modelling we only have
access to samples from xi ∼ π(x).

While superficially similar, methodologies for these two
different tasks initially evolved quite separately. Due to the
ability to take gradient sampling, a variety of Markov Chain
Monte Carlo (MCMC) [Neal, 2011], as well as variational
[Wainwright et al., 2008, Blei et al., 2017] techniques have
been developed to tackle the sampling problem. In varia-
tional techniques, one considers a flexible family of easy-to-
sample distributions qθ whose parameters are optimized by
minimizing a suitable cost, such as reverse Kullback–Leibler
discrepancy KL(qθ||π).

Complementary, generative modelling is interested in being
able to sample from the underlying density π when only a
set of finite samples is available. As a result, most method-
ologies were initially based on forward KL (i.e. Maximum
Likelihood) like approaches, where one trains a tractable
model qθ via minimizing KL(π||qθ) [Papamakarios et al.,
2021] which can be achieved as we can estimate gradients
∇θKL(π||qθ) using samples from π.

Recent score-based techniques for generative modelling
[Song et al., 2021b] constitute of nice cross-pollination
between the standard techniques used in sampling (e.g.
MCMC) ported over to generative modelling and in some
cases feeding back into the sampling community [Doucet
et al., 2022, Vargas et al., 2023].

In recent years we have seen the rise of Denoising Diffusion
Probabilistic Models (DDPM), a powerful class of gener-
ative models [Sohl-Dickstein et al., 2015, Ho et al., 2020,
Song et al., 2021b] to sample from unnormalized densities.
In this context, one adds noise progressively to data using
diffusion to transform the complex target distribution into
a Gaussian distribution. The time reversal of this diffusion
can then be used to transform a Gaussian sample into a
sample from the target. As with many theoretical works
pertaining to diffusion models [Chen et al., 2022, Lee et al.,
2023], we will assume the target distribution admits a den-
sity for our analysis; this is a common assumption in the
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analysis of sampling algorithms [Ma et al., 2019, Vempala
and Wibisono, 2019] and is not restrictive.

It is important to highlight that diffusion models have also
recently made it into sampling [Vargas et al., 2023, Berner
et al., 2022], in particular, these works establish connections
between DDPM and well-established field of stochastic
control [Kappen et al., 2012, Nüsken and Richter, 2021].

In this work, we delve into the connection to stochastic
control highlighted among denoising diffusion models [Ho
et al., 2020, Song et al., 2021b] in Vargas et al. [2023].
We leverage this connection to show how the score of VP-
SDEs [Song et al., 2021b] can be approximated with neural
networks up to an arbitrarily small error, and we quantify
the induced sampling error.

Our contributions in this paper can be summarized as fol-
lows:

• Establishing a connection between the VP-SDE score
and OU-semigroup (Section 3.2).

• Exploring novel regularity properties for OU-
semigroup (Section 3.3), via leveraging connections to
stochastic control [Tzen and Raginsky, 2019b].

• Demonstrating neural network and sampling approxi-
mation results for a simplified VP-SDE (Proposition
3.1, Remark 3.2) with minimal assumptions on the
data/target distribution π.

• Leveraging some of the insights/conjectures motivated
by our theoretical results we carry out a set of em-
pirical explorations contrasting two different types of
approaches of SDEs for score-based generative mod-
elling (Föllmer Drift vs VP-SDE).

Upon comparing our approach with related works, notable
differences in assumptions emerge. For instance, Chen et al.
[2023] make manifold assumptions regarding data repre-
sentation, diverging substantially from our less restrictive
assumptions. Additionally, their methodology employs cov-
ers based on score networks rather than the OU-semigroup,
which contrasts with ours. Similarly, in Oko et al. [2023],
Cole and Lu [2024], assumptions about data distribution and
analysis methods differ notably from ours, with their anal-
ysis focusing on score loss rather than the OU-semigroup.
We highlight that whilst the concurrent work in Cole and
Lu [2024] has similar assumptions on the target distribution,
their focus is strictly on the data-driven case, and whilst
some overlap in the spirit of the sketch, they obtain different
bounds.

2 BACKGROUND - DENOISING
DIFFUSION MODELS AND
STOCHASTIC CONTROL

For this work, we will introduce Denoising Diffusions in
continuous time. Let C = C([0, T ],Rd) be the space of
continuous functions from [0, T ] to Rd and B(C) the Borel
sets on C. We consider path measures, which are probability
measures on (C,B(C)) [Léonard, 2014]. To relate denoising
diffusion models to the methodology in Tzen and Raginsky
[2019b], we will introduce connections presented in Vargas
et al. [2023], which relate score matching in VP-SDEs to
stochastic control, thus enabling our main results.

2.1 BACKWARDS DIFFUSION AND ITS
TIME-REVERSAL

Consider the forward noising diffusion given by a time-
reversed Ornstein–Uhlenbeck (OU) process (Song et al.
[2021b] refer to this SDE as the VP-SDE):

dxt = −βtxtdt+ σ
√

2βtdBt, x0 ∼ π, (2)

where (Bt)t∈[0,T ] is a d-dimension Brownian motion and
t → βt is a non-decreasing positive function. This dif-
fusion induces the path-measure P on the time inter-
val [0, T ], and the marginal density of xt is denoted
pt. The transition density of this diffusion is given by
pt|0(xt|x0) = N (xt;

√
1− λtx0, σ

2λtI), where λt =

1− exp(−2
∫ t
0
βsds). We will always consider a scenario

where
∫ T
0
βsds≫ 1 so that pT (x) ≈ N (x; 0, σ2I).

From [Haussmann and Pardoux, 1986], its time-reversal
(yt)t∈[0,T ] = (xT−t)t∈[0,T ], where equality is here in distri-
bution, yields the forward time diffusion:

dyt= βT−t{yt + 2σ2∇ ln pT−t(yt)}dt

+σ
√

2βT−tdWt, y0 ∼ pT , (3)

where (Wt)t∈[0,T ] is another d-dimensional Brownian mo-
tion. By definition this time-reversal starts from y0 ∼ pT =
Law(xt) ≈ N (0, σ2I) and is such that yT ∼ π. This sug-
gests that approximate simulation of diffusion (3) would
result in approximate samples from π. However, putting
this idea into practice requires being able to approximate
the intractable scores (∇ ln pt(x))t∈[0,T ]. Unlike DDPM,
score matching techniques are not feasible, as sampling
from (2) requires sampling x0 ∼ π, which is impossible by
assumption.

2.2 REFERENCE DIFFUSION AND VALUE
FUNCTION

To introduce the value function, it is first useful to intro-
duce a reference process defined by the diffusion following



(a) (b)

Figure 1: a) Noise-adding process for exact reversal. The distribution N (0, I) is drawn for comparison to pT . b)Exact and
approximate time reversal starting from N (0, I) the former exhibits only the mixing error whilst the latter incorporates the
network’s approximation error.

(2), but initialized at pref
0 (x) = N (x; 0, σ2I) rather than

π(x) thus ensuring that the marginals of the resulting path
measure P ref all satisfy pref

t (x) = N (x; 0, σ2I). Following
Vargas et al. [2023] we can identify P as the path measure
minimizing the half bridge P = argminQ{KL(Q||P ref) :
qT = π} [Bernton et al., 2019, Vargas et al., 2021b, De Bor-
toli et al., 2021]. where representation of P ref is given by

dyt = −βT−tytdt+ σ
√
2βT−tdWt, y0 ∼ pref

0 . (4)

Noting that βT−t(yt + 2σ2∇ ln pref
t (yt)) = −βT−tyt, Var-

gas et al. [2023] rewrites the time-reversal (3) of P as

dyt = −βT−t{yt − 2σ2∇ lnϕT−t(yt)}dt

+ σ
√

2βT−tdWt, y0 ∼ pT , (5)

where vt(x) = − lnϕt(x) = − ln pt(x)/p
ref
t (x) is known

as the value function [Fleming and Rishel, 2012, Pham,
2009, Nüsken and Richter, 2021, Tzen and Raginsky,
2019b]. We point the reader to Figure 1 for a pictorial illus-
tration of the aforementioned reversal and value function.

2.3 LEARNING THE FORWARD DIFFUSION -
REVERSE KL / STOCHASTIC CONTROL
FORMULATION

To approximate (3), consider a path measure Qθ which is
induced by

dyt = βT−t{yt + 2σ2sθ(t, yt)}dt

+ σ
√

2βT−tdWt, y0 ∼ N (0, σ2I), (6)

so that yt ∼ qθt . To obtain sθ(t, x) ≈ ∇ ln pt(x), we param-
eterize sθ(t, x) by a neural network whose parameters are
obtained by minimizing

KL(Qθ||P) = KL(N (0, σ2I)||pT )

+σ2EQθ

[∫ T

0

βT−t||sθ(T−t, yt)−∇ ln pT−t(yt)||2dt

]
.

This expression closely resembles the expression obtained
in Theorem 1 of Song et al. [2021a]. Note, in the DDPM
Ho et al. [2020] setting as we have samples from P via
simulating the forward SDE then one can recover the score-
matching objective from Song et al. [2021b],

KL(P||Qθ) = KL(N (0, σ2I)||pT )

+σ2EP

[∫ T

0

βT−t||sθ(T−t, yt)−∇ ln pT−t(yt)||2dt

]
.



To fully make the connection to stochastic control [Tzen
and Raginsky, 2019b, Dai Pra, 1991], following Vargas et al.
[2023] we equivalently reparameterize Qθ via the value
function formulation of the backward SDE (Equation 5),

dyt = −βT−t{yt − 2σ2fθ(T − t, yt)}dt

+ σ
√

2βT−tdWt, y0 ∼ N (0, σ2I), (7)

unlike Equation 6 fθ approximates ∇ lnϕt rather than the
score ∇ ln pt. Then under this reparameterization Vargas
et al. [2023] use standard results on half bridges [Bernton
et al., 2019] we can re-express KL(Qθ||P) in the following
form:

KL(Qθ||P) = EQθ

[
σ2
∫ T

0

βT−t||fθ(T − t, yt)||2dt

+ ln

(
N (yT ; 0, σ

2I)

π(yT )

)]
, (8)

where qθ
∗

0 = pT ≈ N (0, σ2I) 1. Then θ minimizing (8), ap-
proximate samples from π can be obtained by simulating (7)
and returning yT ∼qθT . Note concurrent work [Berner et al.,
2022] also optimizes an equivalent reverse KL to Equation
8. Equation 8 is an instance of stochastic control [Kappen
et al., 2012, Tzen and Raginsky, 2019b, Nüsken and Richter,
2021, Berner et al., 2022] akin to the objective studied in
[Tzen and Raginsky, 2019b], these re-formulations as a
stochastic control problem, in particular, the connection to
the value function (see Remark 3.5) will allow us to provide
expresiveness remarks for VP-SDE based diffusions.

2.4 PINNED BROWNIAN MOTION GENERATIVE
MODELS AND SAMPLERS

In this section, we reintroduce the class of generative models
and samplers studied in [Tzen and Raginsky, 2019b] and
highlight the similarities and differences in contrast to the
OU-based diffusion models.

The pinned Brownian motion SDE is arrived at by using the
h-transform to condition the scaled Brownian motion

dxt =

√
dαt
dt

dBt, x0 ∼ π, (9)

to hit the value 0 at time T , resulting in the forward SDE:

dxt = −dαt
dt

xt
αT − αt

dt+

√
dαt
dt

dBt, x0 ∼ π, (10)

where xT = 0, furthermore the SDE in Equation 10 has the
following transition density (full derivation in Appendix F):

p(xt|x0) = N

(
xt

∣∣∣∣∣αT − αt
αT − α0

x0,
(αT − αt)(αt − α0)

αT − α0

)
,

1qθ
∗

0 denotes the optimal distribution at t = 0 minimising (8)

which we can use to learn the score [Song et al., 2021b].
Once we have the score the time reversal of Equation 10,
yields an SDE which we can use for generative modelling

dyt =
dαT−t

dt

{ yt
αT − αT−t

+∇ ln pT−t(yt)
}
dt

+

√
dαT−t

dt
dWt, y0 = 0. (11)

We will refer to this SDE as the backward pinned brownian
motion (BPBM). As we will discuss the BPBM SDE is
a Generalisation of the Föllmer process [Dai Pra, 1991],
which is a well-studied SDE in stochastic control [Dai Pra,
1991, Kappen et al., 2012, Tzen and Raginsky, 2019b, Fedus
et al., 2018, Vargas et al., 2021a].

Prior work, such as aligned Schrodinger bridges [Somnath
et al., 2023, Liu et al., 2023], have discussed this SDE in
the context of dataset alignment and conditional generative
modelling. Additionally, First Hitting Diffusion models [Ye
et al., 2022] have explored a variant of PBM where instead
of a Brownian motion Equation 9 is replaced with a VP-
SDE. However, to our knowledge, PBM has not yet been
compared carefully to VP-SDE within the context of genera-
tive modelling (some comparison has been done empirically
for sampling [Vargas et al., 2023, Berner et al., 2022]).

3 EXPRESSIVENESS AND REGULARITY
RESULTS

In this section, we present our main result. We demonstrate
that ∇ lnϕt and thus the score of the OU-SDE can be ap-
proximated by a multi-layer neural network efficiently.

Theorem 3.1 in Tzen and Raginsky [2019b] provides neural
network approximation and sampling guarantees for a differ-
ent class of SDEs than DDPM (i.e. Equations 3 or 5). Thus
in this section, we will adapt such results to denoising diffu-
sion samplers [Vargas et al., 2023] and via directly relating
the approximations to the score of the VP-SDE (Equation
2) we motivate how these results extend to DDPM based
methods [Song et al., 2021b, Ho et al., 2020, Huang et al.,
2021a].

Tzen and Raginsky [2019b] guarantee approximate sam-
pling from a target distribution using a multilayer feed-
forward neural net drift, assuming the smoothness, Lips-
chitzness, and boundedness of f(x) = dπ

dN (0,σ2I) (x), (As-
sumption B.2), as well as the smoothness of the activations
(Assumption B.3) and uniform approximability of f and
its gradient by a neural network (Assumption B.4). In the
following proposition and remark, we present our adaption
of their results to DDS.

Proposition 3.1. Suppose Assumptions in Appendix B are in
force. Let L denote the maximum of the Lipschitz constants
of f and ∇f . Then for all 0 < ϵ < 16L2/c2, there exists



a neural net v̂ : Rd × [0, 1] → Rd with size polynomial
in 1/ϵ, d, L, c, 1/c such that the activation function of each
neuron in the set of {σ, σ′, ReLU}, and the following hold:
If {x̂t}t∈[0,1] is the diffusion process governed by the Itô
SDE:

dx̂t = b̂(x̂t, t)dt+
√
2dWt, (12)

with x0 ∼ p1 = Law(y1) ≈ N (0, I) with the drift
b̂(x, t) = −(x − 2v̂(x, 1 − t)), then µ̂ := Law(x̂1), sat-
isfies D(µ||µ̂) ≤ ϵ.

Remark 3.2. Assuming π satisfies a logarithmic Sobolev
inequality, extending the time domain to t ∈ [0, T ] and
sampling x̂0 ∼ N (0, I) approximately, it follows that
D(µ||µ̂) ≤ e−TKL(π||N (0, 1)) + Tϵ.

The proof will closely follow Tzen and Raginsky [2019b]
however key steps must be slightly modified to show that
the value function satisfies the required regularity properties
to exploit the core results in Tzen and Raginsky [2019a].

3.1 PRIOR WORK - HEAT SEMIGROUP AND
FÖLLMER DRIFT

Here we will introduce the heat semigroup and Föllmer
drifts to highlight the previous work done in [Tzen and
Raginsky, 2019b].

Definition 3.3. The heat semi-group is defined as

Qσt f(y) = EZ∼N (0,I)

[
f
(
y + σt1/2Z

)]
, (13)

and thus the Föllmer drift [Tzen and Raginsky, 2019b] can
be expressed as

v∗t (y) = ∇ lnQσT−tf(y). (14)

Where v∗ can be used to sample exactly from the desired
target distribution by simulating the Föllmer drift SDE in
[Tzen and Raginsky, 2019b], which coincides exactly with
the backwards pinned Brownian motion when setting αt =
σ2t:

dyt =

v∗t (yt)︷ ︸︸ ︷{yt
t
+ σ2∇ ln pT−t(yt)

}
dt+ σdWt, y0 = 0.

This process is commonly referred to as the Schödinger
Föllmer. The prior seminal work of Tzen and Raginsky
[2019b] focuses on proving regularity properties of the heat
semigroup as well as expressiveness remarks for the Föllmer
drift. In this work, we port over these results to denoising
diffusion models (i.e. VP-SDE based models).

3.2 OU SEMIGROUP AND TIME REVERSAL

This section introduces the OU semigroup [Metafune et al.,
2002] whose logarithmic gradient can be directly connected

to the score [Song et al., 2021b] in Equation 2. Based on this
reformulation of the score we can extend the results from
Tzen and Raginsky [2019b] to denoising diffusion via VP-
SDEs. In the remainder of this section, we will introduce
new results pertaining to the regularity properties of this
operator that will enable us to prove Proposition 3.1.

Definition 3.4. We define the VP-SDE semigroup as,

Uβt

t f(y) = EZ∼N (0,I)

[
f
(
e−

∫ t
0
βsdsy

+σ(1− e−2
∫ t
0
βsds)1/2Z

)]
. (15)

Then the OU-semigroup [Metafune et al., 2002] (typically
defined with βt = β = 1) is a simpler instance of the above

Uβt f(y) = EZ∼N (0,I)

[
f
(
e−βty + σ(1− e−2βt)1/2Z

)]
.

For simplicity we will be working with the OU semi-group
when β = 1 (denoted Ut), however, these results can be
extended to the more general case. In the following remark,
we highlight the connection between the OU semi-group,
the value function, and the score in DDPM.

Remark 3.5. The drift of the time reversal of the VP-SDE
(i.e. b∗(y, t) = −βT−t(y − 2σ2∇ lnϕT−t(y))) can be ex-
pressed in terms of the OU semigroup via:

∇ lnϕT−t(y) = ∇y lnU
βt

T−tf(y). (16)

When f(x) = dπ
dN (0,σ2I) (x). This in turn can be related to

the score

∇ ln pT−t(y) = −
( y

2σ2
−∇ lnϕT−t(y)

)
= −

( y

2σ2
−∇y lnU

βt

T−tf(y)
)
. (17)

From this stage on we consider the case where σ = β = 1.
Notice how the formulation in Remark 3.5 is reminiscent
of the Föllmer drift [Föllmer, 1984, Dai Pra, 1991, Tzen
and Raginsky, 2019b, Huang et al., 2021b]. Finally, we
highlight that it is this very simple remark that facilitates
porting over the general proof strategy from [Tzen and Ra-
ginsky, 2019b] to diffusion-based models. Furthermore, we
remind the reader that the results in Tzen and Raginsky
[2019b] only apply to the Föllmer drift and the heat semi-
group (i.e.∇y lnϕt(y) = ∇y lnQtf(y) with Qtf(y) =
EZ∼N (0,I)

[
f
(
y +

√
tZ
)]

), thus requiring new results.

3.3 REGULARITY PROPERTIES

In this section, we will prove regularity properties pertaining
to the OU semigroup which will allow us to extend the
theoretical guarantees in Tzen and Raginsky [2019b] to
denoising diffusion models and samplers [Song et al., 2021b,
Ho et al., 2020, Vargas et al., 2023]. Moving forward we



prove a basic auxiliary result regarding the commutativity of
the OU-semigroup with partial derivatives. From this result,
by using Corollary E.1, we could bound the OU-semigroup
norm when differentiated. Proofs for the following results
can be found in Appendix C, and Appendix D.

Lemma 3.6. OU semigroup is commutative with the gradi-
ent operator that is for f : Rd → R we have ∂yiUtf(y) =
Ut∂yif(y).

3.3.1 Terminal Cost

Contrary to Tzen and Raginsky [2019a] gx,t(z) = g(e−tx+
(1 − e−2t)1/2z) (where x ∈ Bd(R), z ∈ Rd)is not Lip-
schitz in a Euclidean sense. As a result the standard Eu-
clidean covering-number properties used in Tzen and Ra-
ginsky [2019a] no longer apply and thus we have to derive
bounds for these quantities from scratch.

Across this section will refer to gx,t(z) as the terminal cost,
due to its role in stochastic control. We want to underline to
the reader that this quantity is of high importance as the opti-
mal drift can be expressed in terms of the OU-semigroup is
applied to the terminal cost (∇ lnϕt(x) = ∇ lnUtgx,t(z))
when g = f .

• First we prove that a centered version of the terminal
cost is L 2(Q) Lipchitz with respect to a newly defined
metric. This will allow us to obtain a bound for the
covering number of a function class induced by the
terminal cost.

• We then derive an envelope for the terminal cost. This
in conjunction with further results on covering numbers
allows us to control Dudley’s entropy integral [Dudley,
1967]. This in turn enables results from empirical pro-
cess theory [Giné and Nickl, 2021] that quantify the
error for an empirical estimate of the OU semigroup.

Lemma 3.7. (L 2 Lipchitz condition) Let ḡt,x(z) =
g(e−tx+ (1− e−2t)1/2z)− g(0) then it follows that:

||ḡt,x(z)− ḡt′,x′(z)||L 2(Q) ≤

L
(
1 +

√
2||z||L 2(Q)

)
ρOU ((t, x), (t

′, x′)),

such that ρOU ((t, x), (t′, x′))=||e−tx−x′e−t
′ ||+ |t−t|1/2.

Lemma 3.8. Let g : Rd → R be L-Lipschitz with respect to
the Euclidean norm. Then for F (z) := L((R∨1)+

√
2||z||)

we have:∣∣∣g (e−tx+ (1− e−2t)1/2z
)
− g(0)

∣∣∣ ≤ F (z). (18)

3.3.2 Covering Number

We must first obtain a notion of approximation "difficulty"
in approximating the OU-semigroup to obtain estimation

errors on the score. To do so, we must obtain bounds quanti-
fying how many "tiles" (closed balls) are required to cover
the space G. The formal mechanism to do so is known as a
covering number.

The L 2(Q) covering number of the function space G is
defined by:

N
(
G,L 2(Q), ε

)
:= min

{
K : ∃f1, . . . ,∃fK ∈ L 2(Q)

s.t. sup
q∈G

min
k≤K

∥g − fk∥L2(P ) ≤ ε

}
.

In general, the covering number N (A, ρ, ε) is the small-
est number of balls of size ϵ wrt to the metric ρ that
cover the set A. Once we obtain the appropriate bound
on N

(
G,L 2(Q), ε

)
the results from [Tzen and Raginsky,

2019b] follow with minor modifications and thus Corol-
lary 3.1 will follow. In this section we will be bound-
ing the L 2(Q) covering number of the function space
G :=

{
ḡx,t : x ∈ Bd(R), t ∈ [0, 1]

}
.

Lemma 3.9. Given the metric space
(
[0, T ]×Bd(R), ρOU

)
where:

ρOU ((t, x), (t
′, x′)) = ||e−tx− x′e−t

′
||+ |t− t′|1/2,

and ||(t, x)||OU = ρOU ((t, x), (0, 0)) = ||e−tx|| + |t|1/2.
It follows that:

N(G,L 2(Q), ϵ||F ||L 2(Q)) ≤ N([0, T ]×Bd(R), ρOU , ϵ).

Lemma 3.10. Given the metric space
(
[0, T ] ×

Bd(R), ρOU
)

it follows that:

N([0, T ]×Bd(R), ρOU , ϵ) ≤
N([0, T ], | · |, ϵ2/4)N(Bd(R), || · ||, ϵ/2). (19)

From Lemmas 3.9, 3.10 it follows that:

N(G,L 2(Q), ϵ||F ||L 2(Q)) ≤
N([0, T ], | · |, ϵ2/4)N(Bd(R), || · ||, ϵ/2) (20)

Establishing the existence of such bounds will facilitate
our ability to subsequently demonstrate the approximation
results. We will move forward in presenting two tighter
bounds for the error. Proofs for Lemmas 3.9 and 3.10 can
be found in Appendix D.

3.3.3 Sharper Bounds for OU Semigroup Covers

In this section, we will present two bounds concerning the
metric space

(
[0, T ]×Bd(R), ρOU

)
. The first bound is an

extension of the heat semigroup results presented in Tzen
and Raginsky [2019b] in [0, 1] to [0, T ]:
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Figure 2: Comparison of distances between π and pmodel
θ at time T over 50-dimensional Funnel and GMM-10 datasets.

Corollary 3.11. Given the metric space
(
[0, T ] ×

Bd(R), ρOU
)

it follows that:

N(Bd(R), || · ||, ϵ/2)N([0, T ], | · |, ϵ2/4) ≤

(
2
√
3RT

ϵ

)2d

.

The second bound is obtained from the properties of the
OU process, establishing a tighter bound for this particular
metric space.

Proposition 3.12. Given the metric space
(
[0, T ] ×

Bd(R), ρOU
)

it follows that:

N([0, T ]×Bd(R), ρOU , ϵ) ≤

(
2e−ϵ

2/2
√
3TR

ϵ

)d
.

3.4 SCORE ESTIMATION RESULTS

The following result constitutes an important piece in prov-
ing Proposition 3.1, since the way N is picked depends on
the previously mentioned Lemmas.

Corollary 3.13. For any ε > 0 and any R > 0, there exist
N = poly(1/ε, d, L,R, T ) points z1, . . . , zN ∈ Rd, and
for p(x, t, zn) = e−tx + (1 − e−2t)1/2zn, for which the

following holds:

max
n≤N

∥zn∥ ≤ 8
√

(d+ 6) lnN,

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣
N∑
n=1

∇f (p(x, t, zn))
N

− Utf(x)

∣∣∣∣∣ ≤ ε,

sup
x∈Bd(R)

sup
t∈[0,1]

∥∥∥∥∥
N∑
n=1

∇f (p(x, t, zn))
N

−∇Utf(x)

∥∥∥∥∥ ≤ ε.

Following the steps from Tzen and Raginsky [2019b],
Lemma 3.11 and Corollary 3.13, we arrive at one of the
main results that will help prove Proposition 3.1.

Fortunately, the first bound derived in Lemma 3.11 arrives
at a computable integral over the Koltchinskii-Pollard ϵ-
entropy, which is needed for the completion of the proof of
Corollary 3.13, which then is used in proving Proposition 3.1
(see Appendix E). However, for the second bound, despite
being tighter, the integral is not tractable. A more detailed
description of this can be found in the Appendix proof of
Lemma D.2, and the following remark.

Following results in Proposition 3.11 and Corollary 3.12 we
can observe the presence of a e−

dϵ2

2 term in the cover for
the OU semi-group, thus its cover is smaller than that of the
heat semigroup, this motivates the following observation:

Observation 1. The Koltchinskii-Pollard ϵ-entropy that cor-
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Figure 3: Comparison of distances between π and pmodel
θ at time T over Funnel and Mixed Gaussians varying in dimensions.

responds to the OU semigroup lower bounds that of the heat
semi-group.

We believe Observation 1 motivates how the score for VP-
SDEs forms a simpler function class than the score for the
PBM, which potentially indicates that the score on VP-SDE
admits a neural network estimator achieving a smaller error
than that of the score of a PBM [Tzen and Raginsky, 2019b],
we will now explore this conjecture empirically.

4 SIMULATIONS

In this section, we evaluate the performance of VP-SDE
and PBM using the score matching loss [Song et al., 2021b]
together with other metrics across different network sizes
and dataset dimensions. Section 4.1 analyzes performance
on two synthetic datasets, and Section 4.2 compares the per-
formance on image data. Detailed information on learning
rates, dataset splits, training epochs, and noise schedules is
provided in Appendices G and H, respectively.

4.1 SYNTETHIC SIMULATIONS

We explore both VP-SDE and PBM across two simulated
datasets, selected due to their flexibility in being able to
increase the dimension of space.

GMM-10: We use a Gaussian mixture model with 10 mix-
tures, each mixture is parameterized N (µi, I) where µi is
sampled uniformly within the (d− 1)-ball of Radius 6.

Neals Funnel [Neal, 2011] This d-dimensional
challenging distribution is given by γ(x1:d) =
N (x1; 0, σ

2
f )N (x2:d; 0, exp(x1)I), where σ2

f = 9.

4.1.1 Evaluation Metrics

To assess which method we report the following perfor-
mance metrics across a series of numerical simulations:

Score matching loss: We report the score matching loss
[Song et al., 2021b] on a hold test set. This loss acts as a
proxy to measure how well the trained network has learned
the score.

MMD: We the use maximum mean discrepancy metric
[Gretton et al., 2012] to measure the distance between
D(pmodel

θ , π). The motivation for this is that the KL-
divergence between the marginals pmodel

θ and π (via data
processing and Girsanov Theorem) is upper bounded by the
error between the scoring network and the true score, thus
a better performance in score matching typically indicates
better marginal performance, here we assess the latter.

r-divergence: Similar to the MMD experiments we explore
an additional divergence (the r-divergence [Zhao and Cao,



Figure 4: Samples (2D slice (x1, x0)) from PBM and VP
trained on various sizes of the Funnel distribution. In the
background probability density of the Funnel distribution.

2023]) to more thoroughly verify the performance in sam-
pling the data distribution.

Note for the MMD and r-divergence metrics we use 1000
samples from the trained score models and the target distri-
butions to compute the aforementioned metrics and 20000
samples for the validation score matching loss. More details
can be found in Appendix G.

4.1.2 Score Estimation Across Network Widths

For this experiment, we fix the dimensions of the data sets
to d = 50 and vary the width of the score networks across
4, 16, 32, 64, 128, 256, 512. From our results, we can see
that in Figure 2 on the left-hand side, VP-SDE attains a
lower score-matching loss for the same number of parame-
ters and can sample the target distribution better than PBM,
suggesting that VP-SDE requires less expressive networks
to be estimated, which is in agreement with the insights we
obtained from our covering number results.

In Figure 2, for the Funnel dataset, VP seems to express a
double descent Nakkiran et al. [2021], d’Ascoli et al. [2020]
type of behavior. As the hidden layer dimension passes 256
parameters, the model generates samples that are further
away from π.

We also ran experiments for d = 10, and the same behavior
can be noticed across all network widths. The experiments
can be viewed in Appendix G.2. In this case, for the Funnel
dataset, the double descent behavior can be noticed in both
VP and PBM cases, for MMD and R-Div metrics.

4.1.3 Score Estimation Across Data-set Dimensions

In this sequence of experiments depicted in Figure 3 on the
right, we maintain a fixed network width of 64 while vary-
ing the dimensionality across 2, 10, 25, 50 to evaluate the
performance of both methods in estimating the score as the
dimensionality of the target samples increases. For dimen-
sions below 50, VP tends to sample points that match the
target/data distribution more closely on the Funnel dataset,
whereas, at 50 dimensions, both their performances start

to degrade similarly (e.g. also see Figure 4). Finally, VP
consistently produces superior samples in the case of the
GMM targets, thus corroborating our observation.

4.2 IMAGE DATA SIMULTATION

In this section, we investigate the performance of VP-SDE
and PBM on image datasets, specifically MNIST, MNIST-
Fashion, and CIFAR-10. We conducted all experiments us-
ing a simple single-block ResNet architecture with three
feature maps with a total number of 1.34 million parameters
(only 3% of the number of the parameters used in Song et al.
[2020]). Given the nature of image datasets, we evaluated
the quality of generated samples using the Frechet Inception
Distance (FID) Jiralerspong et al. [2023]. The nature of the
experiment is to see the difference in the relative perfor-
mance of the two forward processes. Further details, and
generated samples are provided in Appendix H.

Table 1: Comparison of FID scores on the test set of MNIST,
Fashion MNIST, and CIFAR-10 datasets

Dataset MNIST Fashion MNIST CIFAR-10

VP-SDE 13.86± 0.06 6.99± 0.03 40.09± 0.88
PBM 15.59± 0.07 17.26± 0.35 49.47± 0.67

As shown in Table 1, given the same computation/parameter
budget, VP achieves better estimates than PBM across all
image datasets, with a notable improvement in performance
observed in MNIST-Fashion. This suggests that the balance
between the complexity of the datasets and the size of the
network was optimized for this particular dataset.

5 CONCLUSION

We establish a connection between the VP-SDE score and
the OU-semigroup, revealing similarities between Föllmer
drift-based and DDPM-based sampling approaches. Using
this connection, we demonstrate how the VP-SDE score can
be approximated efficiently by multilayer neural networks,
under fairly general assumptions on the target distribution.
To exploit previous results on the Föllmer drift [Tzen and
Raginsky, 2019b] we establish novel regularity properties
for the OU-semigroup that allow us to adapt the results in
Tzen and Raginsky [2019b] to our setting. Finally motivated
by our theoretical results we empirically demonstrate how a
VP-SDE based forward process can be approximated better
by a neural network of the same size than one with a PBM-
SDE forward process.
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A LIST OF DETAILED CONTRIBUTIONS

Main contributions:

1. Firstly, Vargas et al. [2023] prompts us to consider Remark 3.5, which allows us to view time reversal in denoising
diffusions through the lens of stochastic control. Unfortunately, this did not enable us to directly apply results from
Tzen and Raginsky [2019b]. The regularity properties for the OU semi-group and the Heat semi-group are significantly
different, thus rendering their entropy integral bounds inapplicable.

2. The quantity ḡt,x(z) for the heat semi-group is Lipschitz relative to the Euclidean metric. However, this is not the case
for OU. Instead, we can obtain a Lipschitz property with respect to a different metric, results presented in Section 3.3.1:

ρOU ((t, x), (t′, x′)) = ||e−tx− x′e−t
′
∥+ |t− t′|1/2

3. Once we have established a Lipschitz property, the next step is to obtain a covering number for the space of functions
induced by ḡt,x(z) (indexed by x and t). Unfortunately, as the Lipschitz property is not Euclidean, we can no longer
use the simple covering lemma employed in Tzen and Raginsky [2019b]:

N
(
G, L2(Q), ε∥F∥L2(Q)

)
≤ N

(
Bd(R), ∥ · ∥, ε/2

)
·N
(
[0, 1], | · |, ε2/4

)
This standard result known for covers of function spaces with a Euclidean Lipschitz property Shalev-Shwartz and
Ben-David [2014] does not apply to our metric space.

4. We then construct the cover for ([0, T ] × Bd(R), ρOU ) ourselves, which required several non-trivial steps (see the
proof for Lemma 3.10). A significant portion of our work was devoted to this challenging step (the whole process is
described in Section 3.3.2):

N
(
[0, T ]×Bd(R), ρOU , ϵ

)
≤ N

(
[0, T ], | · |, ϵ2/4

)
N
(
Bd(R), ∥ · ∥, ϵ/2

)
5. Once we obtained step 4, the derived bounds were slightly different, requiring some symbol manipulation and further

simplification steps to achieve the final results. In summary, step 4 was a challenging and distinguishing aspect of our
work compared to Tzen and Raginsky [2019b]. Furthermore, to the best of our knowledge, our work is the first to
derive these mathematical properties of the OU semi-group.

6. Deriving two bounds for OU semi-group in Corollary 3.11 and Proposition 3.12. Since the bound derived in Proposition
3.12 is tighter we arrived at Observation 1, which suggests that for the same parameterization, and target distribution,
VP-SDE-based models should perform better than PBM ones.

7. We derive the transition Kernel for the PBM-SDE which is a generalisation of the Föllmer drift explored in [Tzen
and Raginsky, 2019b] (Section 2.4, Appendix F for full derivations), this allowed us to empirically compare PBM-
SDE based score matching to VP-SDE in order to see which scales better when limited to the same neural network
expressiveness.

8. Empirically tested Observation 1 on two datasets of different sizes, as well as on models with varying width dimensions,
in Section 4.

B ASSUMPTIONS

Assumption B.1. Throughout all this work we assume that the target distribution π has a density that is it is absolutely
continuous wrt to the Lebesgue measure on Rd.

Assumption B.2. The function f is differentiable, both f and ∇f are L-Lipschitz, and there exists a constant c ∈ (0, 1]
such that f ≥ c everywhere.

Assumption B.3. The activation function σ : R → R is differentiable. Moreover, there exists cσ > 0 depending only on σ,
such that the following holds: For any L-Lipschitz function h : R → R which is constant outside the interval [−R,R] and for
any δ > 0, there exist real numbers a, {αi, βi, γi}mi=1 wherem ≤ cσ

RL
δ , such that the function h̃(x) = a+

∑
αiσ(βix+γi)

satisfies supx∈R |h̃(x)− h(x)| ≤ δ.



Finally as per Tzen and Raginsky [2019b] we introduce the assumption pertaining to the approximability of f by neural nets.
Let σ : R → R be a fixed nonlinearity. Given a vector w ∈ Rn and scalars α, β, define the function

Nσ
w,α,β : Rn → R, Nσ

w,α,β(x) := α · σ
(
wTx+ β

)
.

For ℓ ≥ 2, we define the class N σ
ℓ of ℓ-layer feedforward neural nets with activation function σ recursively as follows: N σ

2

consists of all functions of the form x 7→
∑m
i=1N

σ
wi,αi,βi

(x) for all m ∈ N, w1, . . . , wm ∈ Rd, α1, . . . , αm, β1, . . . , βm ∈
R, and, for each ℓ ≥ 2,

N σ
ℓ+1 :=

⋃
k≥1

⋃
m≥1

{
x 7→

m∑
i=1

Nσ
wi,αi,βi

(h1(x), . . . , hk(x)) :

α1, . . . , αm, β1, . . . , βm ∈ R, w1, . . . , wm ∈ Rk, h1, . . . , hk ∈ N σ
ℓ

}
.

Assumption B.4. For any R > 0 and ϵ > 0, there exist a neural net f̂ ∈ N σ
l,s with l, s < poly(1/ϵ, d, L,R), such that

sup
x∈Bd(R)

|f(x)− f̂(x)| ≤ ϵ and sup
x∈Bd(R)

||∇f(x)−∇f̂(x)|| ≤ ϵ. (21)

C REGULARITY RESULTS

Remark 3.5. The time reversal of the VP-SDE (i.e. b∗(y, t) = −βT−t(y− 2σ2∇ lnϕT−t(y))) can be expressed in terms of
the OU semigroup via:

∇ lnϕT−t(y) = ∇y lnU
βt

T−tf(y), (22)

When f(x) = π
N (0,σ2I) (x). This in turn can be related to the score

∇ ln pT−t(y) = −
( y

2σ2
−∇ lnϕT−t(y)

)
= −

( y

2σ2
−∇y lnU

βt

T−tf(y)
)
. (23)

Proof. Consider the OU semigroup evaluated on the appropriate RND:

Uβt

t f(y) = EZ∼N (0,I)

[
π

N (0, σ2I)

(
e−βty + σ(1− e−2βt)1/2Z

)]
= ExT∼pref

T |t(·|x)

[
π

N (0, σ2I)
(xT )

]
=

∫
prefT |t(xT |x)

π

N (0, σ2I)
(xT ) dxT

=

∫ preft|T (x|xT )p
ref
T (xT )

preft (x)

π

N (0, σ2I)
(xT ) dxT

=

∫ preft|T (x|xT )
preft (x)

π (xT ) dxT =
pt(x)

preft (x)

and thus it follows that

∇ ln pT−t(y) = −
( y

2σ2
−∇y lnU

βt

T−tf(y)
)
. (24)

relating the score and the OU semi-group as required.

Lemma 3.6. OU semigroup is commutative with the gradient operator that is for f : Rd → R we have ∂yiUtf(y) =
Ut∂yif(y).

Proof. It suffices to show that

d(x, z) = δ−1(f(e−tx+ (1− e−2t)1/2z)− f(e−t(x+ δei) + (1− e−2t)1/2z)), (25)



is dominated, where [ei]j = δij . As f is Lipchitz by assumption it follows that

|d(x, z)| ≤ L|δ−1e−tδ| = Le−t ≤ L (26)

As L is integrable under N (0, I) we have shown d(x, z) is dominated for all δ and thus the partial derivative operator and
the OU semigroup commute.

The choice of F (z) := L((R ∨ 1) +
√
2||z||) with these specific constants arises from the following result.

Lemma 3.7. (L 2 Lipchitz condition) Let ḡt,x(z) = g(e−tx+ (1− e−2t)1/2z)− g(0) then it follows that:

||ḡt,x(z)− ḡt′,x′(z)||L 2(Q) ≤ L
(
1 +

√
2||z||L 2(Q)

)
ρOU ((t, x), (t

′, x′))

such that:

ρOU ((t, x), (t
′, x′)) = ||etx− x′et

′
||+ |t− t′|1/2 (27)

Proof.

||ḡt,x(z)− ḡt′,x′(z)||L 2(Q) ≤ L||||e−tx+ (1− e−2t)1/2z − e−t
′
x′ − (1− e−2t′)1/2z||||L 2(Q)

≤ L
∣∣∣∣∣∣||e−tx− e−t

′
x′||+ |(1− e−2t)1/2 − (1− e−2t′)1/2| · ||z||

∣∣∣∣∣∣
L 2(Q)

≤ L

(
||e−tx− e−t

′
x′||+ |(1− e−2t)1/2 − (1− e−2t′)1/2| · ||z||L 2(Q)

)

≤ L

(
||e−tx− e−t

′
x′||+ |e−2t − e−2t′ |1/2 · ||z||L 2(Q)

)

≤ L

(
||e−tx− e−t

′
x′||+

√
2|t− t′|1/2 · ||z||L 2(Q)

)

Where in the last line we use that supt∈[0,T ] |(e−2t)′| = 2 and thus e−2t is 2-Lipchitz.

Lemma 3.8. Let g : Rd → R to L-Lipschitz with respect to the Euclidean norm. Then for F (z) := L((R ∨ 1) +
√
2||z||).∣∣∣g (e−tx+ (1− e−2t)1/2z

)
− g(0)

∣∣∣ ≤ F (z) (28)

Proof. By Lipschitz continuity for all z ∈ Rd, X ∈ Bd(R), t ∈ [0, T ] we have:

|g
(
e−tx+ (1− e−2t)1/2z

)
− g(0)| ≤ L||e−tx+ (1− e−2t)1/2z|| (29)

≤ L(e−t||x||+ (1− e−2t)1/2||z||) (30)

Since both e−t and (1− e−2t)1/2 are strictly smaller than 1, we have:

L(e−t||x||+ (1− e−2t)1/2||z||) ≤ L(R+ ||z||) (31)
≤ L((R ∨ 1) + ||z||) ≤ F (z) (32)



D COVERING NUMBER RESULTS

Remark D.1. The space ([0, T ]×Bd(R), ρOU ) is a metric space, where

ρOU ((t, x), (t
′, x′)) = ||e−tx− x′e−t

′
||+ |t− t′|1/2. (33)

Proof. • Positive definiteness:

ρOU ((t, x), (t
′, x′)) = 0 ⇐⇒ (34)

||e−tx− x′e−t
′
||+ |t− t′|1/2 = 0 ⇐⇒ (35)
x = x′ and t = t. (36)

Since in (35) both terms are positive on the LHS, each has to be 0 to get the RHS, thus we get (36).

• Symmetry:

ρOU ((t, x), (t
′, x′)) = ρOU ((t

′, x′), (t, x)). (37)

• Triangle inequality: we show triangle inequality on (t, x), (t′, x′) and (t′′, x′′). First let us note, that ||e−tx−x′e−t′ ||+
||e−t′x′ − x′′e−t

′′ || ≥ ||e−tx− x′′e−t
′′ ||, since || · || has the triangle inequality. Now:

|t− t′|1/2 + |t′ − t′′|1/2 ≥ |t− t′′|1/2 ⇐⇒ (38)

|t− t′|+ 2|t− t′|1/2|t′ − t′′|1/2 + |t′ − t′′| ≥ |t− t′′|. (39)

(39) is true, since | · | has the triangle inequality and 2|t− t′|1/2|t′ − t′′|1/2 ≥ 0.

Lemma 3.9. Given the metric space
(
[0, T ]×Bd(R), ρOU

)
where:

ρOU ((t, x), (t
′, x′)) = ||e−tx− x′e−t

′
||+ |t− t′|1/2 (40)

and

||(t, x)||OU = ρOU ((t, x), (0, 0)) = ||e−tx||+ |t|1/2 (41)

It follows that:

N(G,L 2(Q), ϵ||F ||L 2(Q)) ≤ N([0, T ]×Bd(R), ρOU , ϵ) (42)

Proof. Consider the ϵ-cover AρOU
with respect to ρOU of [0, T ]×Bd(R) it follows that for any (t, x) ∈ [0, T ]×Bd(R)

we have that there exists (t′, x′) ∈ AρOU
such that ρOU ((t, x), (t′, x′)) ≤ ϵ then by Lemma 3.7 it follows that

||ḡt,x(z)− ḡt′,x′(z)||L 2(Q) ≤ L
(
1 +

√
2||z||L 2(Q)

)
ρOU ((t, x), (t

′, x′)) (43)

≤ ||F ||L 2(Q)ρOU ((t, x), (t
′, x′)) (44)

≤ ||F ||L 2(Q)ϵ (45)

Hence the set:

GρOU
= {ḡt,x : (t, x) ∈ AρOU

} (46)

is an ||F ||ϵ cover of G with respect to the metric ρOU

Lemma 3.10. We have that

N([0, T ]×Bd(R), ρOU , ϵ) ≤ N([0, T ], | · |, ϵ2/4)N(Bd(R), || · ||, ϵ/2) (47)



Proof. Let Bdr0(R) denote a euclidean d-dimensional ball of radius R centered at r0 and let Bd+1
t0⊕x0,ρ(R

′)2 denote it’s
counterpart with respect to the metric ρ. Now notice that if ||e−tx− e−t0x0||+ |t− t0|1/2 ≤ ϵ then ||e−t0(x− x0)|| ≤ ϵ
and ||x− x0|| ≤ et0ϵ, thus,

{t0} ×Bdx0
(ϵ) ⊆ {t0} ×Bdx0

(et0ϵ) ⊆ Bd+1
t0⊕x0,ρ(ϵ), (48)

then since {t0} ×Bdx0
(et0ϵ) ⊆ Bd+1

t0⊕x0,ρ(ϵ) we can construct an ϵ cover namely At0 of {t0} ×Bd(R) with N(Bd(R), || ·
||, ϵet0) balls. Finally notice that if ||e−tx − e−t0x0|| + |t − t0|1/2 ≤ ϵ it follows that |t − t0|1/2 ≤ ϵ thus [0, T ] can be
covered in N([0, T ], | · |, ϵ2) ≤ Tϵ−2 sub intervals.

Let UT be the smallest cover containing N([0, T ], | · |, ϵ2) intervals un each centered at tn , then:

A =
⋃

un∈UT

Atn (49)

is an ϵ cover of [0, T ]×Bd(R) (with respect to the metric ρOU ), notice this follows as ∀x ∈ Bd(R) there exists an x0 such
that

[tn − ϵ2, tn + ϵ2]× {x} ⊆ Bd+1
tn⊕x0,ρ(ϵ) ∈ Atn (50)

Now we can see that

|A| ≤ |UT ||A0| = N([0, T ], | · |, ϵ2)N(Bd(R), || · ||, ϵet0), (51)

≤ N([0, T ], | · |, ϵ2/4)N(Bd(R), || · ||, ϵ/2), (52)

where |A0| = maxn |Atn |, completing our proof.

Lemma 3.11. Given the metric space
(
[0, T ]×Bd(R), ρOU

)
it follows that:

N(Bd(R), || · ||, ϵ/2)N([0, T ], | · |, ϵ2/4) ≤

(
2
√
3RT

ϵ

)2d

(53)

Proof. We know the covering number of N(Bd(R), || · ||, ϵ) is
(
2R
ϵ

)d
, and for N([0, T ], | · |, ϵ), it is T

2ϵ . In our settings:

N(Bd(R), || · ||, ϵ/2)N([0, T ], | · |, ϵ2/4) ≤
(
6R

ϵ

)d(
2T

ϵ2

)
(54)

Now for d ≥ 2 and ϵ small enough (ϵd−2 ≤ (2T )d−1) we get
(
2T
ϵ2

)
≤
(
2T
ϵ

)d
After this, our inequality will become:

(
6R

ϵ

)d(
2T

ϵ2

)
≤
(
6R

ϵ

)d(
2T

ϵ

)d
=

(
2
√
3RT

ϵ

)2d

Proposition 3.12. Given the metric space
(
[0, T ]×Bd(R), ρOU

)
it follows that:

N([0, T ]×Bd(R), ρOU , ϵ) ≤

(
2e−ϵ

2/2
√
3TR

ϵ

)d
(55)

2a⊕ b denotes the concatenation of a and b.



Proof. Let ρOU = ρ and Bdr0(R) denote a euclidean d-dimensional ball of radius R centered at r0 and let Bd+1
t0⊕x0,ρ(R

′)

denote it’s counterpart with respect to the metric ρ. Now notice that if ||e−tx− e−t0x0||+ |t− t0|1/2 ≤ ϵ then ||e−t0(x−
x0)|| ≤ ϵ and ||x− x0|| ≤ et0ϵ, thus,

{t0} ×Bdx0
(ϵ) ⊆ {t0} ×Bdx0

(et0ϵ) ⊆ Bd+1
t0⊕x0,ρ(ϵ), (56)

then since {t0} ×Bdx0
(etϵ) ⊆ Bd+1

t⊕x0,ρ(ϵ) we can construct an ϵ cover namely At0 of {t0} ×Bd(R) with
(
6Rϵ−1e−t0

)d
balls of form the form Bd+1

t0⊕x0,ρ. Finally notice that if ||e−tx − e−t0x0|| + |t − t0|1/2 ≤ ϵ it follows that |t − t0|1/2 ≤ ϵ
thus [0, T ] can be covered in 2−1Tϵ−2.

picking the cover UT such that its elements un are centered at (n+ 1)ϵ2/2 , then:

A =
⋃

un∈UT

A(n+1)ϵ2/2 (57)

is an ϵ cover of [0, T ]×Bd(R) (with respect to the metric ρOU ), notice this follows as ∀x ∈ Bd(R) there exists an x0 such
that

[(n+ 1)ϵ2/2− ϵ2, (n+ 1)ϵ2/2 + ϵ2]× {x} ⊆ Bd+1
(n+1)ϵ2/2⊕x0,ρ

(ϵ), (58)

with Bd+1
(n+1)ϵ2/2⊕x0,ρ

∈ A(n+1)ϵ2/2.

Now we can see that |A| ≤ |UT ||A0| ( |A0| = maxn |A(n+1)ϵ2/2|) completing our proof.

From Lemmas 3.9, 3.10 it follows that :

N(G,L 2(Q), ϵ||F ||L 2(Q)) ≤ N([0, T ], | · |, ϵ2/4)N(Bd(R), || · ||, ϵ/2) (59)

Lemma D.2. The Koltchinskii-Pollard ε-entropy of N(G,L 2(Q), ϵ||F ||L 2(Q)) is given by

H(G, F, ε) := sup
Q

√
ln 2N

(
G, L2(Q), ε∥F∥L2(Q)

)
Then we have

J(G,L 2(Q)) =

∫ ∞

0

H(G, F, ε)dε ≤ 2
√
3πRdT

with H(G, F, ε) ≤
√(

4d ln 2
√
3RT
ε

)
+

.

Proof. Following the derivations from Tzen and Raginsky [2019b], and our bound from Lemma 3.11:

J(G,L 2(Q)) =

∫ ∞

0

H(G, F, ε)dε ≤
∫ ∞

0

√√√√(4d ln 2
√
3RT

ε

)
+

dϵ (60)

= 2
√
d

∫ 2
√
3R

0

√√√√(ln 2
√
3RT

ε

)
dϵ = (61)

= 4
√
3dRT (ye−y

2
∣∣∣0
∞

−
∫ 0

∞
e−y

2

) = 4
√
3dRT

√
π

2
= 2

√
3dRπT (62)



Thus by Lemma D.4 (see the start of Page 18 in Tzen and Raginsky [2019a]) we now have the following corollary of Lemma
C.4 from Tzen and Raginsky [2019b]

Corollary D.3. (Theorem C.4. from Tzen and Raginsky [2019b]) Let g : Rd → R be L-Lipschitz with respect to the
Euclidean norm. Let Z1, . . . , ZN be i.i.d. copies of a d-dimensional random vector Z, such that U := ∥Z∥ has finite ψ2

norm. Then there exists an absolute constant C > 0, such that, for any γ > 0,

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣ 1N
N∑
n=1

g
(
e−tx+ (1− e−2t)1/2Zn

)
− E

[
g
(
e−tx+ (1− e−2t)1/2Z

)]∣∣∣∣∣
≤ C

[
16L

√
6πRd ((R ∨ 1) + ∥U∥ψ2

)√
N

+ 5L ((R ∨ 1) + ∥U∥ψ2
)

√
γ

N

]

with probability at least 1− e−γ .

Finally Theorem C.1 in Tzen and Raginsky [2019b] will hold true in our setting, with the modified choice of

N =


(
C
√
d

ε
· L((R ∨ 1) +

√
2d+

√
6) · (16

√
6πRdT + 5

√
ln 4(d+ 1))

)2
 , (63)

For completenteness we will now restate our adaptation of Theorem C.1.

Corollary 3.13. (Theorem C.1. from Tzen and Raginsky [2019b])

For any ε > 0 and any R > 0, there exist N = poly(1/ε, d, L,R, T ) points z1, . . . , zN ∈ Rd, for which the following
holds:

max
n≤N

∥zn∥ ≤ 8
√

(d+ 6) lnN

sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣ 1N
N∑
n=1

f
(
e−tx+ (1− e−2t)1/2zn

)
− Utf(x)

∣∣∣∣∣ ≤ ε

sup
x∈Bd(R)

sup
t∈[0,1]

∥∥∥∥∥ 1

N

N∑
n=1

∇f
(
e−tx+ (1− e−2t)1/2zn

)
−∇Utf(x)

∥∥∥∥∥ ≤ ε

We now have everything that is required to show the neural network approximation results.

Remark D.4. The same computation for our tight-bound from Proposition 3.12 leads to:

H(G, F, ε) ≤

√√√√2d ln

(
e−ϵ2/2

√
3TR

ϵ

)
+

(64)

Moving forward:

J(G, F ) ≤
∫ √

W (1)

0

√√√√2d ln

(
e−ϵ2/2

√
3TR

ϵ

)
+

dϵ

Where W (1) is the solution to −x = lnx. Unfortunately, we weren’t able to find a closed-form solution to this integral.

E NEURAL NETWORK APPROXIMATION

Corollary E.1. Under Assumption B.2, the vector field ∇ lnUtf(x) is bounded in norm by L
c and is Lipschitz with constant

L
c + L2

c2 where L is the max of the Lip constant of f and ∇f .

Proof. By direct application of Lemma B.1. (Tzen and Raginsky [2019b]) and our Lemma 3.6, which assures that OU
semi-group commutes with the gradient operator, we have that the results of this Corollary hold.



We now proceed to adapt one of the main theorems in Tzen and Raginsky [2019b]. Whilst the changes are minor to the
sketch in Tzen and Raginsky [2019a] some are subtle thus we have incorporated this proof for completeness. We highlight
in magenta the subtle changes required to adapt the result.

Corollary E.2. (Tzen and Ragisnky) Let 0 < ε < 4L/c and R > 0 be given. Then there exists a neural net v̂ :
Rd × [0, 1] → Rd of size polynomial in 1/ε, d, L,R, c, 1/c, such that the activation function of each neuron is an element of
the set {σ, σ′,ReLU}, and the following holds:

sup
x∈Bd(R)

sup
t∈[0,1]

∥v̂(x, t)−∇ lnUtf(x)∥ ≤ ε

and
max
i∈[d]

sup
x∈Rd

sup
t∈[0,1]

|v̂i(x, t)| ≤
2L

c
.

Proof. Let δ = c2ε
16L . By Theorem C.1 (which has been proved to hold true in our settings in Appendix C), there exist points

z1, . . . , zN ∈ Rd with N = poly(1/δ, d, L,R), such that RN,d := maxn≤N ∥zn∥ ≤ 8
√

(d+ 6) lnN , and the function
φ : Rd × [0, 1] → R defined by

φ(x, t) :=
1

N

N∑
n=1

f
(
e−tx+ (1− e−2t)1/2zn

)
(65)

satisfies
sup

x∈Bd(R)

sup
t∈[0,1]

|φ(x, t)− Utf(x)| ≤ δ and sup
x∈Bd(R)

sup
t∈[0,1]

∥∇φ(x, t)−∇Utf(x)∥ ≤ δ

By Assumption B.4, there exists a neural net f̂ : Rd → R be that approximates f and the gradient of f to accuracy δ on the
blown-up ball Bd (R+RN,d). Then the function

φ̂ : Rd × [0, 1] → R, φ̂(x, t) :=
1

N

N∑
n=1

f̂
(
e−tx+ (1− e−2t)1/2zn

)
can be computed by a neural net of sizeN · poly(1/δ, d, L,R), such that

sup
x∈Bd(R)

sup
t∈[0,1]

|φ̂(x, t)− Utf(x)|

≤ sup
x∈Bd(R)

sup
t∈[0,1]

|φ̂(x, t)− φ(x, t)|+ sup
x∈Bd(R)

sup
t∈[0,1]

|φ(x, t)− Utf(x)|

≤ sup
x∈Bd(R)

sup
t∈[0,1]

∣∣∣∣∣ 1N
N∑
n=1

f̂
(
x+ (1− e−2t)1/2zn

)
− 1

N

N∑
n=1

f
(
x+ (1− e−2t)1/2zn

)∣∣∣∣∣
+ sup
x∈Bd(R)

sup
t∈[0,1]

|φ(x, t)− Utf(x)|

≤ sup
x∈Bd(R+RN,d)

|f̂(x)− f(x)|+ sup
x∈Bd(R)

sup
t∈[0,1]

|φ(x, t)− Utf(x)| ≤ 2δ

where the third inequality follows since e−t ∈ [0, 1] and the final inequality follows since

max
n

sup
t∈[0,1]

(1− e−2t)1/2||zn|| = max
n

||zn|| = RN,d

Similarly

sup
x∈Bd(R)

sup
t∈[0,1]

∥∇φ̂(x, t)−∇Utf(x)∥

≤ sup
x∈Bd(R)

sup
t∈[0,1]

∥∇φ̂(x, t)−∇φ(x, t)∥+ sup
x∈Bd(R)

sup
t∈[0,1]

∥∇φ(x, t)−∇Utf(x)∥

≤ sup
x∈Bd(R+RN,d)

∥∇f̂(x)−∇f(x)∥+ sup
x∈Bd(R)

sup
t∈[0,1]

∥∇φ(x, t)−∇Utf(x)∥ ≤ 2δ.



Since f is L-Lipschitz and bounded below by c, we have Utf(x) ≥ EZ∼N (0,I)[c] = c, and

Utf(x) = EZ∼N (0,I)

[
f(e−tx+ (1− e−2t)1/2Z)

]
≤ EZ∼N (0,I)

[
L(||x||+

√
2||z||) + f(0)

]
= L||x||+ f(0) + L

√
2E[||z||]

≤ L(||x||+
√
2d) + f(0)

Thus it follows that c ≤ Utf(x) ≤ L(∥x∥+
√
2d) + f(0) for any x ∈ Rd and t ∈ [0, 1]. Therefore, on Bd(R)× [0, 1],

c

2
≤ φ̂(x, t) ≤ L(R+

√
2d) + f(0) +

c

2

where we use δ ≤ c/4. Without loss of generality, we may assume that L ≥ 1. Then, for any x ∈ Bd(R) and t ∈ [0, 1]

∥∇ ln φ̂(x, t)−∇ lnUtf(x)∥

=

∥∥∥∥∇φ̂(x, t)φ̂(x, t)
− ∇Utf(x)

Utf(x)

∥∥∥∥
≤ 1

φ̂(x, t)
∥∇φ̂(x, t)−∇Utf(x)∥+

∥∥∥∥∇Utf(x)Utf(x)

∥∥∥∥ |φ̂(x, t)− Utf(x)|
φ̂(x, t)

≤ 2L

c
· 2δ + L

c
· 2
c
· 2δ

≤ ε

2
,

where we have used Corollary E.1 to bound
∥∥∥∇Utf
Utf

∥∥∥ ≤ L/c. In other words, ∇ ln φ̂(x, t) approximates ∇ lnUtf(x) to

accuracy ε/2 uniformly on Bd(R)× [0, 1]. It remains to approximate ∇ ln φ̂(x, t) by a neural net to accuracy ε/2.

To that end, we first represent ∇ ln φ̂(x, t) as a composition of several elementary operations and then approximate each
step by a neural net. Specifically, the computation of vi = ∂i ln φ̂(x, t) can be represented as a computation graph with the
following structure:

1. Compute a = φ̂(x, t).

2. Compute bi = ∂iφ̂(x, t).

3. Compute r = 1/a.

4. Compute vi = rbi.

Given x and t, a is computed by a neural net with activation function σ, of size poly(1/δ, d, L,R) and depth poly
(1/δ, d, L,R). Therefore, by the cheap gradient principle (Lemma D.1 from Tzen and Raginsky [2019b]), bi can be
computed by a neural net of size poly (1/δ, d, L,R), where the activation function of each neuron is an element of the set
{σ, σ′}. Next, since a takes values in [c/2, L(R+

√
2d)+ f(0)+ c/2], by Lemma D.2 from Tzen and Raginsky [2019b] the

reciprocal r = 1/a can be computed to accuracy ε/(4L
√
d) by a 2 -layer neural net with activation function σ and of size

O

(
4

c2
· (L(R+

√
2d) + f(0) + c/2) · 4L

√
d

ε

)
≤ poly(1/ε, d, L,R, c, 1/c)

Let r̂ denote the resulting approximation. Then, since |bi| ≤ 2L and |r̂| ≤ 2/c + ε/(4L
√
d) ≤ 4/c, by Lemma D.2 the

product r̂bi can be approximated to accuracy ε/4
√
d by a 2-layer neural net with activation function σ and with at most

O

(
(4/c ∨ 2L)2 · 4

√
d

ε

)
≤ poly(1/ε, d, L, 1/c)

neurons. The overall accuracy of the approximation is

|v̂i − vi| ≤ |v̂i − r̂bi|+ |r̂bi − rbi| ≤
ε

2
√
d



Thus, the vector v = (v1, . . . , vd) can be ε/2-approximated by ṽ(x, t), where ṽ : Rd × [0, 1] → Rd is a neural net with
vector-valued output that has the size poly(1/ε, d, L,R, c, 1/c). Finally, since supx∈Bd(R) supt∈[0,1] |ṽi(x, t)| ≤ 2L/c, the
function

v̂i(x, t) := min {max {ṽi(x, t),−2L/c} , 2L/c}

is continuous, takes values in [−2L/c, 2L/c] and coincides with ṽi on Bd(R)× [0, 1]. Moreover, the min and max operations
can each be implemented exactly using O(1) ReLU neurons.

Corollary 3.1. Suppose Assumptions 1-3 are in force. Let L denote the maximum of the Lipschitz constants of f and ∇f .
Then for all 0 < ϵ < 16L2/c2, there exists a neural net v̂ : Rd × [0, 1] → Rd with size polynomial in 1/ϵ, d, L, c, 1/c such
that the activation function of each neuron in the set of {σ, σ′, ReLU}, and the following hold: If {x̂t}t∈[0,1] is the diffusion
process governed by the Itô SDE:

dx̂t = b̂(x̂t, t)dt+
√

2βdWt (66)

with x0 ∼ p1 ≈ N (0, I) with the drift b̂(x, t) = −(x− 2v̂(x, 1− t)), then µ̂ := Law(x̂1), satisfies D(µ||µ̂) ≤ ϵ.

Proof. For any R > 0, Corollary E.2 guarantees the existence of a neural net v̂ : Rd × [0, 1] → Rd that satisfies

sup
x∈Bd(R)

sup
t∈[0,1]

∥v̂(x, t)−∇ lnUtf(x)∥ ≤
√
ε (67)

and

max
i∈[d]

sup
x∈Rd

sup
t∈[0,1]

|v̂i(x, t)| ≤
2L

c
. (68)

Let µ := Law
(
x[0,1]

)
and µ̂ := Law

(
x̂[0,1]

)
. The Girsanov formula gives

KL(µ∥µ̂) = 1

2

∫ 1

0

E
∥∥∥b (xt, t)− b̂ (xt, t)

∥∥∥2 dt

where the interchange of the integral and the expectation follows from Fubini’s theorem because both b and b̂ are bounded
by Corollary E.1 and (68). We now proceed to estimate the integrand. For each t ∈ [0, 1]

E
∥∥∥b (xt, t)− b̂ (xt, t)

∥∥∥2
= E

[∥∥∥b (xt, t)− b̂ (xt, t)
∥∥∥2 · 1{xt ∈ Bd(R)

}]
+E

[∥∥∥b (xt, t)− b̂ (xt, t)
∥∥∥2 · 1{xt /∈ Bd(R)

}]
=: T1 + T2,

where T1 ≤ ε by (68). To estimate T2, we first observe that, since the OU drift is bounded in norm by L/c by E.1, we have

P

{
sup
t∈[0,1]

∥xt∥ ≥ R

}
≤

√
d+ L/c

R

(Bubeck et al. [2018], Lemma 3.8). Therefore,

T2 ≤ 9dL2

c2
·
√
d+ L/c

R

Since some of the bounds differ from the original Tzen and Raginsky [2019b] we verify that the bound still holds for our



drift. We used that d ≥ 2.

T2 = E

[∥∥∥b (xt, t)− b̂ (xt, t)
∥∥∥2 · 1{xt /∈ Bd(R)

}]
=

∫
xt /∈Bd(R)

∥b (xt, t)− b̂ (xt, t) ∥2dPxt =

=

∫
xt /∈Bd(R)

2∥b (xt, t) ∥2 + 2∥b̂ (xt, t) ∥2dPxt ≤
∫
xt /∈Bd(R)

2∥b (xt, t) ∥2 + 2d

(
2L

c

)2

dPxt ≤

≤
∫
xt /∈Bd(R)

2∥∇ lnUtf(xt)∥2 + 8d

(
L

c

)2

dPxt =

∫
xt /∈Bd(R)

2

∥∥∥∥∇Utf(xt)Utf(xt)

∥∥∥∥2 + 8d

(
L

c

)2

dPxt ≤

≤
∫
Xt /∈Bd(R)

2
L

c

2

+ 8d

(
L

c

)2

dPxt
≤ 9d

L2

c2
P

{
sup
t∈[0,1]

∥xt∥ ≥ R

}
≤ 9dL2

c2
·
√
d+ L/c

R

Choosing R large enough to guarantee T2 ≤ ε and putting everything together, we obtain D(µ∥µ̂) ≤ ε. Therefore,
D(µ∥µ̂) ≤ D(µ∥µ̂) ≤ ε by the data processing inequality.

Finally, we would like to highlight what happens when we sample x̂0 ∼ N (0, 1) rather than pT . Whilst our results are done
for t ∈ [0, 1] one can see that the overall approximation results will hold for t ∈ [0, T ].

Remark 3.2. Assuming π satisfies a logarithmic Sobolev inequality we extend the time domain to t ∈ [0, T ] and sampling
x̂0 ∼ N (0, I) approximately, it follows that D(µ||µ̂) ≤ e−TKL(π||N (0, 1)) + Tϵ

Proof. First, we remark that the estimation results and the results in Corollary 3.1 apply to the t ∈ [0, T ] setting, however,
they will introduce a polynomial dependency in T for the size of the network.

As in the above proof, we apply the Girsanov theorem to control the path KL, however here, the starting distributions of the
two Ito processes are no longer the same thus, we get an extra term from the chain rule:

KL(µ∥µ̂) = KL(pT ||N (0, 1)) +
1

2

∫ T

0

E
∥∥∥b (xt, t)− b̂ (xt, t)

∥∥∥2 dt (69)

≤ KL(pT ||N (0, 1)) + Tϵ (70)

≤ e−TKL(π||N (0, 1)) + Tϵ (71)

Where the final inequality follows from Theorem 5.2.1 in Bakry et al. [2014] under the assumption that π satisfies a
log-Sobolev inequality. This completes the circle and fully extends Theorem 3.1 from Tzen and Raginsky [2019b] to our
denoising diffusion setting.

Finally, note that if we assume that suppπ ⊆ Bd(R) from Theorem 2 of Chen et al. [2022] it follows that:

TV (Lawx̂t, π) ≤ O
(√

KL (π∥N (0, I)) exp(−T ) + ϵ
√
T
)
. (72)

This result complements Corollary 3.1 very nicely as unlike Chen et al. [2022] we no longer require assuming an ϵ error on
the score but instead prove such error can be attained.

F PBM TRANSITION DENSITY

As PBM is a linear SDE we know its transition densities are Gaussian thus finding its first and second moments fully
determines it.

F.1 MEAN

Taking expectations on the solution to the PBM-SDE yields an ODE for the mean of the transition density:



dµt
dt

=

(
dαt
dt

)
µt

αT − αt

separating variables:

1

µt
dµt =

1

αT − αt
dαt

integrating both sides:

ln
µt
µs

= ln
αT − αt
αT − αs

thus:
µt = µs

αT − αt
αT − αs

and at s = 0:
µt = x

αT − αt
αT − α0

F.2 VARIANCE

Applying Ito’s Lemma to the PBM-SDE zt = x2t yields,

dzt =

(
−
(
dαt
dt

)
2zt

αT − αt
+

(
dαt
dt

))
dt+ 2

(
dαt
dt

)1/2

xtdWt (73)

taking expectations and using the martingale property we have:

dµz(t)

dt
=

(
dαt
dt

)(
1− 2µz(t)

αT − αt

)
(74)

As before let us compute the integrating factor :

e
−

∫ t
s (

dατ
dτ ) 2Zτ

αT −ατ
dτ

=

(
αT − αs
αT − αt

)2

thus:

(
dαt
dt

)(
αT − αs
αT − αt

)2

=
d(((αT − αs)

2/(αT − αt)
2))µz(t))

dt
(75)

∫ t

s

(
dατ
dτ

)(
αT − αs
αT − ατ

)2

dτ =

(
αT − αs
αT − αt

)2

µz(t) + µz(s) (76)

∫ t

s

(
αT − αs
αT − ατ

)2

dατ =

(
αT − αs
αT − αt

)2

µz(t) + µz(s) (77)

(αT − αs)
2

((
1

αT − αt

)
−
(

1

αT − αs

))
=

(
αT − αs
αT − αt

)2

µz(t) + µz(s) (78)
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(a) Distances between π and pmodel
θ at time T over a 10-dimensional Funnel, with results obtained from 3 different seeds. The x-axis

represents various hidden layer dimensions
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(b) Distances between π and pmodel
θ at time T over a 10-dimensional GMM-10, with results obtained from 3 different seeds. The x-axis

represents various hidden layer dimensions

rearranging:

(αT − αt)−
(αT − αt)

2

αT − αs
−
(
αT − αt
αT − αs

)2

µz(s) = µz(t) (79)

Now using var(X) = E[X2]− E[X]2 give the desired result.

var(zt) = (αT − αt)−
(αT − αt)

2

αT − αs
=

(αT − αt)(αt − αs)

αT − αs
(80)

F.3 TRANSITION DENSITY

Using the results from the previous two sections and s = 0 we have:

p(xt|x0) = N

(
xt

∣∣∣∣∣αT − αt
αT − α0

x0,
(αT − αt)(αt − α0)

αT − α0

)
.

G SINTHETIC EXPERIMENTAL DETAILS

We employed a neural network architecture consisting of 5 MLP layers ReLU activation functions and dropout set to 0. The
learning rate was set to 0.00001, and we conducted training over 100 epochs for each model in our study. We utilized the
Adam optimizer along with a LambdaLR scheduler.



The datasets were divided into training, validation, and testing sets. The training set consisted of 100,000 samples, the
validation set consisted of 20,000 samples, and the testing set consisted of 10,000 samples. To evaluate model performance,
we computed Maximum Mean Discrepancy (MMD) and r-divergence between samples generated by the trained model at
the final time step and samples from the testing set.

G.1 NOISE SCHEDULE

For both VP-SDE and PBM-SDE we use the following linear noise schedule:

βt =
dαt
dt

= βmin
(T − t)

T
+ βmax

t

T
(81)

with T = 1 , βmin = 0.1, βmax = 20.

G.2 SCORE ESTIMATION ACROSS NETWORK SIZE

For this experiment, we fixed d = 10, and varied the network width across 4, 16, 32, 64, 128, 256, 512 for both GMM-10
and Funnel. The results obtained are in line with those in Section 4.1.2.

G.3 MMD AND R-DIVERGENCE DETAILS

We use MMD-Fuse [Biggs et al., 2023]3 codebase to compute MMD and a Laplace kernel.

For the R-divergence, we use a standard Gaussian kernel and a Scott bandwidth estimator [Scott, 1979] using the Scipy
library [Virtanen et al., 2020].

H IMAGE DATASETS EXPERIMENTAL DETAILS

The used network was a convolutional neural network (CNN) tailored for image processing tasks, specifically optimized for
images sized 28× 28 pixels with three color channels (RGB). It consisted of multiple layers of convolutional and residual
blocks, featuring a total of 32 channels within the convolutional layers and incorporating one residual block. The architecture
integrated the principle of channel multiplication, sequentially scaling the number of channels in each layer by factors of
1, 2, and 2. The model is also utilizing residual blocks for both upscaling and downscaling operations. The total number of
parameters is 1.34 million.

H.1 NOISE SCHEDULE

For both VP-SDE and PBM-SDE we use the following linear noise schedule:

βt =
dαt
dt

= βmin
(T − t)

T
+ βmax

t

T
, (82)

with values:

• for VP-SDE: T = 1 , βmin = 0.0001, βmax = 20.

• for PBM: T = 2 , βmin = 0.001, βmax = 1.

H.2 FID DETAILS

We use Jiralerspong et al. [2023]4 codebase to compute the FID metric over the test dataset, employing a sample size of
1000 and the CLIP feature extractor.

H.3 SAMPLES

3https://github.com/antoninschrab/mmdfuse
4https://github.com/marcojira/fld

https://github.com/antoninschrab/mmdfuse
https://github.com/marcojira/fld


Figure 6: MNIST samples

Figure 7: Fashion-MNIST samples

Figure 8: CIFAR-10 samples
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