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ABSTRACT

The interest of the deep learning community in image synthesis has grown mas-
sively in recent years. Nowadays, deep generative methods, and specifically Gen-
erative Adversarial Networks (GANs), are leading to state-of-the-art performance,
capable of synthesizing images that appear realistic. While the efforts for improv-
ing the quality of the generated images are extensive, most attempts still consider
the generator part as an uncorroborated ”black-box”. In this paper, we aim to pro-
vide a better understanding of the image generation process. We interpret existing
generators as implicitly relying on sparsity-inspired models. More specifically, we
show that generators can be viewed as manifestations of the Convolutional Sparse
Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes. We
leverage this observation by explicitly enforcing a sparsifying regularization on
appropriately chosen activation layers in the generator and demonstrate that this
leads to improved image synthesis. Furthermore, we show that the same rationale
and benefits apply to generators serving inverse problems, demonstrated on the
Deep Image Prior (DIP) method.

1 INTRODUCTION

The use of Generative Adversarial Networks (GANs) for image synthesis is one of the most fas-
cinating outcomes of the emerging deep learning era, leading to impressive results across various
generative-based tasks (Goodfellow et al., 2014; Radford et al., 2015; Zhu et al., 2017; Ledig et al.,
2017; Karras et al., 2018; 2019; Brock et al., 2019). Although leading to impressive results, GANs
are difficult to train and prone to undesired phenomena, such as mode collapse, failure to converge,
and vanishing gradients (Thanh-Tung & Tran, 2020). Much of the research in this field has been fo-
cusing on mitigating the above difficulties and on stabilizing the training process, mainly by heuris-
tically modifying the architectures of the generator and the discriminator, and by exposing new and
better-behaved training losses (Salimans et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017;
Mao et al., 2017). As such, while GANs, in general, have been extensively studied and redesigned,
the generator itself still operates as a ”black-box” of unjustified architecture and meaning.

Motivated by the sparse modeling literature (Elad, 2010), we propose a novel interpretation that
sheds light on the architecture of image generators and provides a meaningful and effective regular-
ization to it. We interpret generators as implicitly relying on sparse models in general and the Con-
volutional Sparse Coding (CSC) and its Multi-Layered (ML-CSC) version in particular (Szlam et al.,
2010; Bristow et al., 2013; Chalasani et al., 2013; Grosse et al., 2012; Heide et al., 2015; Papyan
et al., 2017b; Papyan et al., 2016; Sulam et al., 2018; Sulam et al., 2018) (we provide a comprehen-
sive overview of sparse coding in appendix B). This observation provides a possible explanation for
the generator’s intermediate mappings. We harness this insight by proposing a general model-based
approach to regularize image generators which can be applied easily to various architectures. We
validate our proposed view by conducting extensive experiments on a variety of well-known GAN
architectures, from relatively simple to up-to-date ones, and show substantial performance gains.

We further extend our contribution by demonstrating that the same rationale and improvement are
valid for other image generator neural networks. More specifically, we apply the proposed regular-
izations to the Deep Image Prior (DIP) algorithm (Ulyanov et al., 2018) for solving image denoising.
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We examine the effects of our approach and show that also in this setting, in addition to image syn-
thesis, it leads to a performance improvement.

2 IMPROVED IMAGE SYNTHESIS VIA GANS

Deep generative models are neural network-based architectures that synthesize signals such that
their output follows the probabilistic distribution of a given data source. To this end, they map a
given source distribution Pz to a data distribution of interest Px,

G(z) = xgen s.t. z ∼ Pz and xgen ∼ Px. (1)
Due to the complexity of image synthesis, the above mapping function is usually modeled by a
highly expressive feed-forward deep Convolutional Neural Network (CNN), consisting of several
consecutive layers. In its simplest and most common form, an image generator with K layers can be
rephrased as a feed-forward CNN of the form GK(...(G1(z))) = xgen, where Gi represents the ith
layer of the generative model, applying convolutions, normalizations, and a non-linearity (typically
ReLU). Thus, the overall mapping is attained by a sequence of K transitional mappings. Despite the
incremental nature of the deep image generator, it is treated as a black-box, without understanding
the purpose of the inner activations nor enforcing a specific structure or properties on it.

In this work, we interpret existing image generators as implicitly relying on sparse modeling and
propose a novel model-based approach to describe and improve the synthesis process of such archi-
tectures. Since these generators are highly expressive and over-parametrized, confining them can
lead to superior results and facilitate the training process. To do so, we utilize the convolutional
sparse coding (CSC) and its Multi-Layer version (ML-CSC) models. According to the CSC model,
an image x can be represented as a multiplication of a sparse representation vector Γ by a convolu-
tional dictionary D, i.e. x = DΓ. The ML-CSC further assumes that the dictionary is achieved by
a multiplication of L dictionaries: Deff = D1D2 · · · DL. For additional explanation and overview
regarding these models, we refer the readers to appendix B. Note, however, that although both are
generative models, there is a substantial gap between their description and the process described in
eq. (1). Whereas the CSC synthesis starts with a sparse representation vector, the typical image gen-
eration setup begins with a dense latent random vector z. To bridge this gap, we propose to interpret
image generators as performing two consecutive tasks:

1. GS : Map the input vector z to a sparse latent vector Γ (done by the generator’s first K − 1
layers).

2. GI : Multiply Γ by a convolutional dictionary D, i.e., DΓ ∼ Px (performed by the genera-
tor’s Kth layer that learns a convolutional dictionary for this purpose).

We emphasize that the second task is exactly the CSC synthesis process. By splitting the generation
process into two parts, we identify the role of Γ as the sparse representation in a (ML-)CSC-based
model. This way, the image synthesis process can be described as

GS(z) = Γ , GI(Γ) = x s.t. z ∼ Pz, Γ is sparse, x ∼ Px, (2)

After establishing our view (see fig. 4 in appendix D for a visualization of our interpretation), we
turn to analyze the sparsity of Γ in regular adversarial training according to our perspective and find
out that it is not sufficient (as demonstrated in fig. 3). For the purpose of designing more compatible
generators with both the CSC and the ML-CSC models, we encourage GS to map z to a truly sparse
representation Γ. To this end, we utilize few well-known sparsifying techniques from the sparse-
coding literature: (1) L1 regularization via a penalty (2) L0 constraint enforced by eliminating
small non-zero entries in Γ to satisfy a predefined sparsity constraint (3) L0,∞ inspired constraint
by enforcing patch-based sparsity measure (Papyan et al., 2017a; Zisselman et al., 2019), which is
more compatible with the CSC variants. Although these methods induce sparsity, they are different
from each other, as further explained in appendix C.

To summarize the proposed theme, we argue that learning a direct mapping from random noise to
natural images’ distribution is an extremely hard task that can be mitigated by enforcing a model that
provides a meaningful regularization. Since the CSC model has been shown to be highly compatible
with natural images, we believe that these assumptions empirically hold, and hence, the suggested
approach will lead to better results.
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3 IMPROVED SOLUTION OF INVERSE PROBLEMS

Solving inverse problems such as denoising, deblurring, inpainting, and super-resolution, is one of
the most important and studied topics, and there are thousands of papers dedicated to the derivation
of algorithms and strategies for handling it. In this paper, we focus on one specific and fascinating
method, DIP (Ulyanov et al., 2018), which uses an image generator for handling inverse problems.
According to this method, the architecture itself of convolutional deep generative models can serve
as a prior for solving inverse problems. Additional overview about DIP is detailed in appendix G.

DIP is an unsupervised technique for handling inverse problems, and we find it is ideal for testing
our core hypothesis – the main claim advocated in our work is that CSC-based models are adequate
for generating images. If indeed correct, one would expect that CNN architectures with induced
sparsity could serve better as a prior for inverse problems. Recall that both L0 and L0,∞ sparsity
constraints are enforced via an architectural modification (a projection layer). DIP puts forward an
exact such test, as its essence is a reliance solely on the model’s architecture itself for regularizing
inverse problems. Therefore, image restoration via DIP serves as a meaningful setup for verify-
ing our sparse-modeling assumptions. To this end, we aim to inject well-justified sparsity-inspired
regularizations to specific activation layers within the generator for improving the final outcome.

Although DIP is a generic concept that can be applied to various generator architectures, we exper-
iment with the same architecture as in the original paper – an encoder-decoder model that maps a
latent vector drawn from Pz into an image of the same spatial extent. Due to the significant structural
difference between the encoder-decoder and standard generators, applying our method in the same
way in both is unjustified. Despite this difference, a clear connection to sparse coding can be found
– the blocks of the encoder part can be viewed as performing multi-layered thresholding algorithm
(Papyan et al., 2016; Sulam et al., 2018; Sulam et al., 2018). Thus, we interpret the encoding process
as sparse coding serving the ML-CSC model and enforce structural sparsity using the sparsifying
techniques listed in section 2. Additional explanations regarding the connection to sparse coding
and our interpretation of such architecture are provided in appendix G.

4 EXPERIMENTS

In this section, we experimentally examine the proposed method and compare its performance to
non-regularized (”baseline”) image generator architectures. First, we evaluate it on image synthesis
via GANs – we conduct an extensive study on a variety of GAN architectures and explore the effect
of applying our suggested regularizations to them. In addition, we examine our approach in image
generation in the low data regime. Furthermore, we also show that sparsity-inducing regularization
is versatile and can also be applied to more general image generators. To this end, we implement
our method on the Deep Image Prior algorithm and evaluate its performance on image denoising,
compared to the proper baseline. Comprehensive experiments validate that our method leads to a
substantial performance improvement in both image generation and image denoising.

Improved Image Synthesis For experimenting with the suggested regularizations for image syn-
thesis, we apply these on the GAN’s generator during the training phase in two setups – regular and
low-data regimes. In the regular-data regime setup, we conduct comprehensive experiments on var-
ious GAN architectures, conditional and unconditional, using the CIFAR-10 dataset (Krizhevsky,
2012), one of the most popular benchmarks for image synthesis. We evaluate the synthesis results
with the commonly-used Fréchet Inception Distance, FID, (Heusel et al., 2017), where lower values
are better, and report the results in table 1. In the low-data regime image generation, we study the
effects of applying our proposed method when operating with limited datasets – we use 10% (5,000
images) and 20% (10,000 images) of the CIFAR-10 dataset. To this end, we experiment with a Big-
GAN architecture trained both using the regular scheme and the differentiable augmentation method
(Zhao et al., 2020), which provides state-of-the-art results on limited data. Table 2 demonstrates the
performance improvement attained by applying our method in both of the setups.

These results attest that using our proposed regularization techniques significantly enhances the
performance across all examined GAN models, from simple to more sophisticated up-to-date archi-
tectures, both in the regular and the low-data regime image generation. These strongly demonstrate
the versatility and the generality of the proposed regularizations.
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Table 1: CIFAR-10 synthesis FID results. ML corresponds to a Multi-Layer variant using L0,∞.

Architecture baseline L0,∞ L0 L1 ML
DCGAN (Radford et al., 2015) 37.75 34.45 35.53 35.52 32.30
cGAN (Mirza & Osindero, 2014) 27.64 26.43 26.06 26.48 26.41
WGAN-GP (Gulrajani et al., 2017) 30.06 28.97 28.51 30.59 28.04
MSGAN (Mao et al., 2019) 24.32 21.72 23.80 23.91 21.86
SNGAN (Miyato et al., 2018) 25.50 25.11 24.81 24.85 23.63
SAGAN (Zhang et al., 2019) 18.39 18.23 18.37 18.48 18.09
SSGAN* (Tran et al., 2019) 11.40 11.19 11.57 11.11 10.92
BigGAN (Brock et al., 2019) 8.23 7.58 7.50 7.68 7.66
DiffCRBigGAN (Zhao et al., 2020) 6.66 6.22 6.20 6.31 5.95

Table 2: Image generation results (FID) on limited data sources using BigGAN architecture.

Dataset BigGAN DiffCRBigGAN
baseline L0,∞ L0 ML baseline L0,∞ L0 ML

20% CIFAR-10 20.25 19.78 19.96 17.72 11.29 10.93 10.62 10.33
10% CIFAR-10 38.33 42.52 35.72 37.77 16.80 15.30 15.82 16.20

Improved Solution of Inverse Problems We proceed by experimenting with our regularizations
on standalone image generators in the context of the DIP algorithm. Our goal is to compare the
ability of regularized and non-regularized image generators to serve as an implicit prior for solving
inverse problems. In the conducted experiments, we solve a denoising problem using an U-Net-like
Ronneberger et al. (2015) “hourglass“ architecture with skip-connections, as used in DIP (Ulyanov
et al., 2018). We conduct a similar experiment to the one in DIP, using the standard denoising
dataset1. In this setup, an observed noisy image x0 is created by adding an additive white Gaussian
noise (AWGN) with standard deviation σn (σn = 25 in our experiments). To quantitatively evaluate
the denoising performance we use the Peak signal-to-noise ratio (PSNR). The results are reported
in table 3, where “Single” refers to the top PSNR value achieved by a single output, and “Average”
is the highest PSNR value of an averaged output (obtained by an exponential sliding window over
past iterations, as performed in DIP). We run each experiment multiple times to verify the statistical
significance of our results. In appendix G.2, we detail the measures taken to ensure a fair comparison
with the baseline.

Table 3: Denoising results of regularized and non-regularized U-Net generator using DIP.

baseline L0,∞ L0

Single 28.74± 0.03 29.03± 0.03 29.22 ± 0.06
Average 29.88± 0.02 29.94± 0.04 30.21 ± 0.05

As can be seen, enforcing sparsity using our proposed methods outperforms the non-regularized
model. These results demonstrate that the CSC modeling assumption is valid and contributes to
better regularizing the inverse problem.

5 CONCLUSIONS

In this work, we describe simple yet effective regularization techniques for image generator archi-
tectures, which rely on sparse modeling. We demonstrate that such methods yield substantial im-
provements across a wide range of GAN architectures, both in regular and low-data regime setups.
In addition, we show the versatility of the approach by applying it to image generators for solv-
ing inverse problems using DIP. In this context, our regularization improves the denoising results
achieved by DIP. The enhanced performance achieved by promoting sparsity in image generators,
in general, testifies to the relevance of sparsity-inspired models in image synthesis. We believe that
this connection can be further learned and utilized to obtain even more promising results.

1http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html#ref_results
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A RELATED WORK

We note that a connection between sparse modeling and GANs’ generators has been already pro-
posed in Mahdizadehaghdam et al. (2019). In their work, they introduced sparsity in GANs for
boosting performance and achieved their goal by designing a specific architecture that utilizes patch-
based modeling and a pre-trained dictionary. While inspired by their view, our work differs sub-
stantially, as we propose a more general strategy that leverages more advanced models (CSC and
ML-CSC), does not require a pre-training of any sort and can be easily applied to various existing
GAN architectures. Indeed, as we shall see in the next section, our theme extends to other generators
that go beyond GANs.

B SPARSE CODING OVERVIEW

B.1 SPARSE MODELING

Sparse Modeling has been proven to be highly effective in signal and image processing applications,
e.g., (Dabov et al., 2007; Bruckstein et al., 2009; Yang et al., 2010; Elad, 2010; Dong et al., 2011;
2013; Mairal et al., 2014). This model assumes an underlying linear generative model, according to
which, a signal x ∈ RN can be described as a linear combination of a few columns from a dictionary
D ∈ RN×M , i.e. x = DΓ, where Γ is a sparse vector. The columns of D are referred to as atoms and
they may form an overcomplete set, i.e., M > N . Retrieval of a sparse vector Γ, corresponding to a
given a signal x and a dictionary D, is referred to as sparse coding, formulated as

min
Γ

∥Γ∥0 s.t. DΓ = x, (3)

where ∥Γ∥0 counts the non-zeros in Γ. Thus, synthesizing a signal according to this model is done
by generating a sparse representation vector Γ and multiplying it by D.

B.2 CONVOLUTIONAL SPARSE CODING (CSC)

CSC (Szlam et al., 2010; Grosse et al., 2012; Bristow et al., 2013; Chalasani et al., 2013; Heide
et al., 2015; Papyan et al., 2017b) is a global variant of the above model, which is applied when
handling images. The CSC has demonstrated superb performance in image processing tasks, such
as denoising, separation, fusion, and super-resolution (Gu et al., 2015; Liu et al., 2016; Papyan et al.,
2017a; Simon & Elad, 2019; Zisselman et al., 2019). This model’s dictionary is structured, being
a concatenation of banded circulant matrices containing small support filters, each appearing in all
possible shifts. Thus, D ∈ RN×mN where N is the size of the signal x and m is the number of
filters, each of length n ≪ N . According to this paradigm, a signal x can be expressed by x = DΓ,
as described above (see Figure 1).

The CSC has demonstrated superb performance in image processing tasks, such as denoising, sepa-
ration, fusion, and super-resolution (Gu et al., 2015; Liu et al., 2016; Papyan et al., 2017a; Simon &
Elad, 2019; Zisselman et al., 2019). A recent work (Papyan et al., 2017b) has proposed a theoretical
analysis of this model, exposing the need for a redefinition of the sparsity measure to be used on Γ,
in order to account for local use of atoms instead of globally counting non-zeros. We shall get back
to this in the next section when using the CSC model.

Figure 1: CSC visualization: A signal x is generated by a superposition of a few atoms from a
convolutional dictionary D. Each entry of Γ corresponds to a certain shift of a limited support filter.
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Figure 2: 2D CSC visualization: Γ is an H×W×C tensor, composed of H×W “needles”, denoted as
γ, each of size 1×1×C. Since Γ is sparse, the bulk of its entries is zeros. A given γ at location i, j in
Γ contributes to a patch located in the corresponding location in the output image x. Each non-zero
entry γi in γ defines the coefficient for the filter ai in a superposition that creates a patch. Note that
the patches created by nearby needles may overlap, depending on the stride and the spatial size of
the atoms in D.

B.3 MULTI-LAYER CONVOLUTIONAL SPARSE CODING (ML-CSC)

ML-CSC (Papyan et al., 2016; Sulam et al., 2018; Sulam et al., 2018) is an extension of the CSC,
which generates a cascade of sparse representations {Γi}Li=1, corresponding to CSC dictionaries
{Di}Li=1. This model assumes that a signal x ∈ RN can be represented as

x = D1Γ1 s.t. ∥Γ1∥0 ≤ λ1,

Γ1 = D2Γ2 s.t. ∥Γ2∥0 ≤ λ2,

...
ΓL−1 = DLΓL s.t. ∥ΓL∥0 ≤ λL,

where {λi}Li=1 are sparsity thresholds. Thus, while the first equation perfectly aligns with the regular
CSC model, the additional equations add further structure by suggesting that each sparse representa-
tion vector is by itself a CSC signal. Note that by substituting the above equations, a signal x can also
be described as x = D1 · · ·DiΓi = DeffΓ, 1 ≤ i ≤ L, with intermediate sparse representations.

C SPARSITY REGULARIZATION TECHNIQUES

As stated in section 2, we examine several widely-used sparsification techniques from the sparse
coding literature:

(1) L1 regularization: Adding an L1 based penalty on the representations Γ to the overall loss of
the image generator.

(2) L0 constraint: Eliminating small non-zero entries in Γ to satisfy a predefined sparsity constraint:
∥Γ∥0 ≤ λ. Namely, the amount of non-zero entries in Γ should be less or equal to λ. This can be
viewed as a projection to a constraint-satisfying tensor, obtained by zeroing the smallest absolute
values of the representation.

(3) L0,∞ inspired constraint: This pseudo-norm is based on a new sparsity measure related to
the CSC Papyan et al. (2017b). ∥Γ∥0,∞ is the maximal number of non-zero coefficients affecting
any pixel in the image x. Thus, forcing ∥Γ∥0,∞ ≤ λ restricts the number of local atoms to λ.
While this constraint is theoretically justified in the context of CSC, projection onto it is known to
be challenging (Plaut & Giryes, 2019). To approximate it in a computationally plausible manner,
we use a “needle”-based sparsity measure (Papyan et al., 2017a; Zisselman et al., 2019). In the
general 2D CSC case, Γ is a 3D tensor, of size H×W×C, where H and W define the image size to
be synthesized, and C is the number of filters. We define a needle as 1×1×C tensor, contained in Γ.
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Hence, Γ contains H×W needles, each contributing to a patch of pixels in a corresponding position
in the output image. In this configuration, every pixel is affected by several adjacent needles. This
setup is described in Figure 2. We propose to limit the amount of non-zero entries in every such
needle. To this end, for a given representation tensor Γ, we zero the smallest absolute values in each
needle of the representation to satisfy the relaxed constraint.

Although the above three options all promote sparsity in Γ, they are substantially different, as
demonstrated empirically in our experiments. While L1 and L0 consider global sparsity, the L0,∞
forces a local balance in the use of the atoms, i.e., limiting the local density in the representation Γ.
As for the difference between L0 and L1, the first is deployed as a constraint, while the latter is used
as a penalty. Since both L0,∞ and L0 are constraints, we implemented them as projection layers that
map an input tensor to a constraint-satisfying one by zeroing its smallest entries.

(a) Sparsity levels and FID comparison

(b) Sparsification methods’ comparison

Figure 3: An illustrative experiment on the effects of applying our method during the training of
a simple DCGAN (Radford et al., 2015) on the CIFAR-10 dataset. (a): Sparsity levels and FID
comparison between non-regularized, L1-based regularization and a constraint-based regularization
(L0 and L0,∞) on a single-layer CSC and a L0,∞ constraint applied on the ML-CSC. The sparsity
level is the percentage of non-zeros in the representation Γ. As can be seen, promoting sparsity
leads to improved performance. (b): A spatial sparsity distribution comparison of Γ, obtained by
the different sparsifying techniques. Each pixel in the above figure represents the mean sparsity
attained in the corresponding needle of the sparse tensor Γ. As demonstrated above, L0 and L1 lead
to a global sparsity that is imbalanced locally, while L0,∞ forces such a balance. Since most of the
objects in CIFAR-10 are centered, applying L0 or L1 regularizations leads to denser needles at the
center.

D PROPOSED INTERPRETATION FOR IMAGE GENERATORS

We present our suggested view of convolutional image generators for synthesis purposes in section 2.
According to it, the generator architecture is divided into two parts where each performs a different
task – GS maps the input into a sparse representation Γ and GI transforms Γ into an image by
multiplication with a CSC-based dictionary. A visualization of our novel view is provided in fig. 4.

E VISUALIZATION OF THE ML-CSC ATOMS

In the sparse coding field, it is a common practice to visualize the learned atoms in the CSC model
in order to demonstrate their variety and richness. In fig. 5, we show the atoms of the ML-CSC
dictionary as obtained for DCGAN trained on the CIFAR-10 database. In order to visualize the
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Figure 4: Our interpretation (green) of generators as handling two separate sub-tasks. The depicted
architecture contains 4 blocks and the dimensions are typical for synthesizing 32× 32× 3 images.

atoms in this two-layered ML-CSC case, we need to observe both the columns of D1 and Deff =
D1D2 (Papyan et al., 2016; Sulam et al., 2018). In our setup, D1 contains 128 atoms of size 4×4×3,
whereas D2 contains 128 atoms of size 3 × 3 × 128. According to the ML-CSC, each atom in D2

specifies how to combine atoms from D1 to form an atom in Deff . Therefore Deff contains 128
atoms, where each is of size 8 × 8 × 3 and created by a sparse combination of atoms from D1.
A visualization of the dictionaries D1 and Deff , trained as part of a regularized ML-CSC based
DCGAN on the CIFAR-10 dataset, can be viewed in fig. 5. As expected, the atoms of Deff are
more complex than the atoms of D1.

F ADDITIONAL ANALYSIS OF SPARSITY IN GANS

We turn to present additional graphs, similar to the one given in fig. 3, that demonstrate the effect
of promoting sparsity in different GAN architectures. As can be seen in fig. 6, inducing sparsity
consistently improves the performance of the tested models.

G DEEP IMAGE PRIOR (DIP)

G.1 BACKGROUND AND METHOD

According to DIP, a deep image generator should be trained (i.e., adapt its parameters θ) to map a
fixed random tensor z to a given corrupted image x0, and the solution to the inverse problem would
be the generator’s output. Formally,

θ∗ = argmin
θ

L(Gθ(z)|x0), x∗ = Gθ∗(z), (4)

where L(x|x0) is a task-dependant loss term. This way, much of the information about the images’
distribution Px is derived from the generator’s architecture.

To better understand the proper context of sparsity in such architectures, we focus on the encoder
part of the overall system. We interpret this part as transforming its input into a set of transitional
representations {Γ1, ...,ΓK}, where K is the number of scales in the architecture, as can be seen in
Figure 7. These are injected into the decoder, from which it constructs the output image. As these
representations are attained by a CNN, which resembles a multi-layered thresholding algorithm (Pa-
pyan et al., 2016; Sulam et al., 2018; Sulam et al., 2018), we interpret this process as sparse coding
serving the ML-CSC model. According to this perspective, the encoder maps the input random vec-
tor to a dense signal and proceeds by performing a multi-layer pursuit to obtain {Γ1, ...,ΓK}, in the
spirit of the ML-CSC model. Figure 7 shows our sparsity-related view of such architecture. Using
this observation, we propose to apply our sparsity-inducing regularization, as described in section 2,
on all these representations.
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(a)

(b)

Figure 5: A visualization of the dictionary atoms in the ML-CSC setup obtained for DCGAN trained
on the CIFAR-10 database: (a) The 128 atoms of D1, each of size 4× 4× 3. (b) The 128 atoms of
Deff = D1D2, each of size 8× 8× 3.

G.2 FAIR COMPARISON

In order to verify that we compare with the baseline fairly, we implement our method upon the same
architecture used in DIP paper and use its provided code base. Moreover, we use the exact same
hyperparameters such that the only difference between our’s models and training scheme and the
baseline is the sparsity regularization.

DIP algorithm is based on carefully stopping the optimization process to obtain a perceptually pleas-
ing result. Applying our method might interfere with such a mechanism and cause a longer or shorter
optimization process, thus, leading to unfair comparison. To avoid such a possibility, we consider
the best image in terms of PSNR as our final prediction, both for the baseline and our approach.
This way, we ensure that the only difference is in the application of sparsity regularization and that
we evaluated our method adequately and fairly.
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Figure 6: A visualization of the performance improvement obtained by the proposed sparsity-
inducing methods across various GAN architectures.

Figure 7: A visualization of our view in an encoder-decoder architecture with skip-connections.
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