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ABSTRACT

Reinforcement learning has emerged as a popular method for post-training large
language models (LLMs). While improving the model’s performance on down-
stream tasks, it often reduces the model’s output diversity, leading to narrow,
canonical responses. Existing methods to enhance diversity are limited, either
by operating at inference time or by focusing on lexical differences. We propose
a novel training method named DQO (Diversity Quality Optimization) based on
determinantal point processes (DPPs) to jointly optimize LLMs for quality and se-
mantic diversity. Our approach samples and embeds a group of responses for each
prompt, then uses the determinant of a kernel-based similarity matrix to measure
diversity as the volume spanned by the embeddings of these responses. Experi-
ments across instruction-following, summarization, story generation, and reason-
ing tasks demonstrate that our method substantially improves semantic diversity
without sacrificing model quality.
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Figure 1: The quality and diversity scores of responses generated by the model trained with DQO
compared to the model trained solely with reward. The reported quality score is the reward of one
generation. The diversity score is the average across multiple diversity metrics, each computed over
10 responses. All responses are generated with a temperature of 1.0.

1 INTRODUCTION

Large language models (LLMs) are typically post-trained to better align with human intentions and
to perform effectively on downstream tasks (Ouyang et al., 2022; Bai et al., 2022). Reinforcement
learning (RL) is commonly used to either maximize an existing reward function, or a reward model
trained from human preference data (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022;
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Bai et al., 2022; DeepSeek-AI et al., 2025). These methods substantially improve the output quality
for targeted tasks. However, a widely observed drawback is that post-training often leads to a sharp
reduction in output diversity, with models converging on a narrow set of canonical responses (Kirk
et al., 2023; Murthy et al., 2024; Anderson et al., 2024; Xu et al., 2025; Casper et al., 2023). This loss
of diversity is problematic across multiple dimensions: it limits reasoning and personalization by
restricting alternative solution paths or user-preferred styles; it undermines test-time performance by
reducing test-time search capabilities, robustness to distribution shift, and coverage of reward modes;
and it weakens training dynamics by limiting exploration and the discovery of novel strategies.

Current efforts to promote diversity in LLM outputs are mostly limited to inference-time interven-
tions such as temperature scaling (Ackley et al., 1985), top-k sampling (Holtzman et al., 2020), and
related strategies (Nguyen et al., 2024; Franceschelli & Musolesi, 2025). While these approaches
help in improving the spread across the response distribution, they often only introduce shallow,
token-level variation and fail to produce truly diverse or meaningful responses. In many cases, they
also hurt output quality, making the model less reliable or coherent. More critically, they cannot
recover modes absent from the base model’s learned distribution. A more principled approach is to
optimize for diversity during training, but this poses two central challenges: defining diversity in a
computationally efficient and theoretically sound way, and balancing diversity with response quality.

Recent attempts to improve diversity during training largely remain at the lexical level. Yao et al.
(2025) encourage variation with a token-level entropy regularizer, but such measures fail to capture
semantic diversity, which is often more meaningful to humans. Lanchantin et al. (2025) extend
direct preference optimization (DPO) (Rafailov et al., 2023) by selecting the most diverse candidate
among high-reward responses, yet their notion of diversity is still based on surface features such
as generation probability or word counts. Likewise, Li et al. (2025) aim to preserve diversity in
supervised fine-tuning by carefully constraining probability transfer between tokens during updates,
again focusing on token-level variation. More broadly, these approaches prioritize local lexical
differences rather than encouraging models to generate responses that span distinct semantic modes.
Most related to our work, Chung et al. (2025) introduce a DPO variant that weights loss by average
embedding distance, but it remains DPO-specific and considers only pairwise distances, which can
yield degenerate solutions.

In this work, we propose a principled training method based on determinantal point processes (DPPs)
(Kulesza et al., 2012) to directly optimize LLMs for both quality and diversity in generated re-
sponses. Unlike token-level entropy or lexical perturbations, our approach operates at the semantic
level. Specifically, for each prompt we sample a set of responses, map them into an embedding
space using a pretrained encoder, and compute a similarity matrix via a kernel function. The diver-
sity score is then defined as the determinant of this matrix, which corresponds to the volume spanned
by the response embeddings. Optimizing this objective encourages the model to generate responses
that span a subspace in the answers’ embedding space with the largest volume. The reward of each
response can be regarded as a scaling factor of the corresponding embedding vector, providing an
interpretable mechanism to balance quality against diversity. We refer to our algorithm as DQO
(Diversity Quality Optimization). DQO is highly flexible and can be layered on top of existing
state-of-the-art methods such as GRPO, making it broadly applicable in practice. We evaluate DQO
across instruction-following, summarization, story generation, and reasoning tasks, and demonstrate
that it significantly enhances semantic diversity while maintaining high response quality.

We summarize our contributions as the following,

• Principled framework for Diversity Quality Optimization : We propose a principled
method, DQO, for post-training LLMs to generate diverse, high-quality responses. DQO is
a flexible approach that can be applied on top of existing reinforcement learning algorithms,
such as PPO and GRPO.

• Semantic diversity beyond lexical variation : We demonstrate that the DPP-based for-
mulation provides a theoretically grounded framework for defining diversity, ensuring that
responses span the semantic space both broadly and meaningfully.

• Quality–diversity trade-off : We experimentally show that DQO improves semantic di-
versity while preserving response utility, coherence, and task accuracy across a wide range
of tasks. In addition, we conduct extensive ablations to illustrate the trade-off between
quality and diversity.
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2 PRELIMINARIES

2.1 NOTATIONS

For ease of readability, we summarize some frequently used notations here. We use x and y to
represent a prompt and a response, respectively. We represent a group of k responses {y1, . . . , yk}
by y1:k and we denote {y1, . . . , yi−1, yi+1, . . . , yk} by y−i. We use Ik ∈ Rk×k to represent the
identity matrix with size k. And det(·) represents the determinant of a matrix.

2.2 REINFORCEMENT LEARNING

Reinforcement learning has become a widely adopted approach for post-training LLMs with ei-
ther an existing reward function or the one inferred from a preference dataset (e.g., RLHF). With
the reward function, the model is typically optimized by maximizing the following KL-regularized
objective,

π∗ = argmax
πθ

{J(πθ)− βKL(πθ||πref )} (1)

where J(πθ) = Ex,y∼π(·|x)[r(x, y)] is the expected return and β is a hyperparameter that balances
the KL divergence penalty and the rewards. Among existing algorithms, PPO (Schulman et al.,
2017) and GRPO (Shao et al., 2024) have demonstrated strong empirical performance, by intro-
ducing some practical techniques including the clipping mechanism and group-based advantage
estimation, respectively.

2.3 DETERMINANTAL POINT PROCESSES (DPPS)

In this work, we quantify the diversity of LLM generated outputs based on ideas derived from the
Determinantal Point Process (DPP) literature (for a comprehensive introduction to DPPs, please
refer to Kulesza et al. (2012)). Below we introduce the definition of an L-ensemble, which is a
subclass of DPPs.

Definition 1 (L-ensemble) Let Y = {1, 2, . . . , N} be a ground set, and Y ⊆ Y be a random
subset. Suppose L ∈ RN×N is a real symmetric positive semi-definite matrix. We say L defines an
L-ensemble, if for every A ⊆ Y ,

Pr(Y = A) ∝ det(LA),

where LA is the submatrix of L indexed by A.

If we think of the entries of L as measurements of similarity between pairs of elements, such as
the dot product of the feature vectors of items, the determinant det(LA) corresponds to the squared
volume spanned by the feature vectors of items in A, which increases when the vectors are diverse
and decreases when they are redundant or highly correlated. Thus, DPPs are well-suited to represent
distributions over subsets of items where sets consisting of diverse items are more likely.

For instance, consider the two-element set A = {i, j}. By definition,

Pr(A) ∝
∣∣∣∣Lii Lij
Lji Ljj

∣∣∣∣ = LiiLjj − LijLji

If items i and j are highly similar, then Lij is large, resulting in a low probability. Conversely, if L
is diagonal (i.e., Lij = 0), there are no correlations and the elements occur independently.

3 DIVERSITY QUALITY OPTIMIZATION

We now formally define our notion of semantic diversity inspired by DPPs and how to incorporate
it in reinforcement learning algorithms to jointly optimize quality and diversity.

3
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Figure 2: The DPP-based diversity metric of DQO promotes meaningful semantic diversity while
ensuring robustness agains degenerate solutions.

3.1 DIVERSITY VIA DPPS

Based on the above definition of DPPs, given a group of responses y1:k, we can formulate their
diversity score as,

Div(y1:k) = det(Lϕ(y1:k)) (2)

where Lϕ(y1:k)[i, j] = f(ϕ(yi), ϕ(yj)), f is a kernel function and ϕ(·) is a selected embedding
model which can map a response into a high-dimensional semantic space. Although in most of this
work we set the kernel function as the dot product, f(ϕ(yi), ϕ(yj)) = ⟨ϕ(yi), ϕ(yj)⟩,in Appendix D
we also explore Gaussian kernel function and provide additional results. For simplicity, when it is
clear from the context, we will omit the subscript in Lϕ.

Our definition of diversity offers two main advantages. First, it operates in the embedding space
of the responses, allowing it to capture semantic diversity which is typically what humans intend.
Second, its determinant-based definition induces a notion of group diversity that overcomes the
limitations of simple pairwise distance metrics. A key limitation of pairwise distance measures,
such as the average distance across responses, is their well-known vulnerability to a degenerate
“clustering” effect, as noted by Parker-Holder et al. (2020). An algorithm optimizing for this metric
might produce responses that form a few distinct, widely separated clusters, creating a misleading
sense of diversity. In contrast, our determinant-based metric, which encourages the formation of
a parallelepiped with a large volume in the embedding space, directly addresses this issue. The
determinant is highly sensitive to the linear independence of the response vectors. If responses form
tight clusters, the vectors within a cluster become nearly linearly dependent, causing the determinant
of the similarity matrix to approach zero, regardless of the large distances between clusters. This
correctly identifies a lack of true diversity. Furthermore, the determinant is a more robust measure
because it recognizes when responses, despite having large pairwise distances, are confined to a
lower-dimensional subspace. This forces the system to explore the full high-dimensional embedding
space, ensuring genuine diversity that simple pairwise distances fail to capture.

3.2 QUALITY-DIVERSITY OBJECTIVE

Using the DPP based diversity metric (2) we now present the objective optimized by our DQO
algorithm. For each prompt x, we sample k responses y1:k ∼ πθ(·|x) from the policy, similarly
to the sampling performed as part of GRPO. Instead of optimizing only the reward, we incorporate
a diversity term based on the logarithm of our diversity metric into the objective. This yields the
objective given by

JDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

r(x, yi) + α log det(Lϕ(y1:k))− βKL(πθ||πref )

]
, (3)

where Lϕ(y1:k) is defined in (2). The hyperparameter α controls the trade-off between quality and
diversity. Maximizing JDiv(πθ) directly optimizes the policy for both quality and semantic diversity
in generated responses.

In fact, it can be shown that by optimizing (3), the optimal policy satisfies,

πdiv(y1:k|x) ∝ πref (y1:k|x) exp

(
1

β

(
k∑
i=1

r(x, yi) + α log det(Lϕ(y1:k))

))
(4)
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For simplicity of exposition, suppose β = α. We can define a reward-augmented embedding vector

for the prompt-response pair (x, y) as ψ(x, y) =
√
exp

(
r(x,y)
α

)
πref (y|x) ·ϕ(y). Here, the reward

acts as a scaling factor of the original semantic embedding. With the formulation of the reward-
augmented embeddings, we can show that our optimal policy satisfies,

πdiv(y1:k|x) ∝ det(Lψ(x, y1:k)) (5)

For the complete derivation, we refer the reader to Appendix B. The expression above shows that
our optimal policy (5) assigns probabilities to groups of responses in proportion to the determinant
of the Gram matrix constructed from their embedding vectors. Geometrically, this means the policy
selects groups of vectors in the response embedding space according to the squared volume of the
parallelepiped spanned by those vectors.

The balance between quality and diversity also admits a clear geometric interpretation. The em-
bedding vector ψ consists of two components: a semantic embedding vector, which determines its
direction, and a reward, which determines its norm. To maximize the volume of the spanned space,
one should select vectors that are well separated from each other (i.e., diverse responses) while also
having large norms (i.e., high-quality responses). The overall trade-off is governed by the hyperpa-
rameter α.

3.3 ALGORITHM

We noticed that directly optimizing (3) presents challenges, including high variance in stochastic
gradient estimates and risks of numerical instability. To address these issues, we now present a
practical algorithmic formulation that stabilizes training and makes the QD objective feasible in
practice. To identify the source of these challenges, we begin by computing the gradient of JDiv(πθ),
which is given by (for simplicity, we omit the KL-regularization term here),

∇JDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

∇ log πθ(yi|x)(r(x, yi) + α log det(L(y1:k)))

]
. (6)

The first issue is that the determinant of L(y1:k) can be close to zero, which results in a very large
negative value of log(det(L(y1:k))). This unbounded diversity term destabilizes training and com-
plicates the trade-off between quality and diversity, to the point that only a carefully chosen α is
effective. To mitigate this issue, we propose to consider the determinant of the matrix L(y1:k) + Ik
instead. It can be shown that by adding an identity matrix, we have k ≥ log(det(L(y1:k)+ Ik)) ≥ 0
which is well-bounded. Briefly, adding an identity matrix to our objective can be regarded as a reg-
ularization term; we further discuss its effect on the objective in Appendix B and provide ablation
results in Appendix D.

The second issue is that the gradient consists of the sum of the gradients of k responses y1:k, which
causes it to have high variance, especially for large k. To mitigate the issue of inflating variance,
we propose to use leave-one-out (loo) gradient estimators by subtracting the log-determinant of the
gram matrix which leaves one response out,

∇looJDiv(πθ) = Ex,y1:k∼πθ(·|x)

[
k∑
i=1

∇ log πθ(x, yi)

(
r(yi) + λ log

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)

)]
.

Importantly, it can be shown that the loo estimator is unbiased and has a nice property on the bound-
edness of its value shown in Lemma 1 (for the proof, please refer to Appendix B). Lemma 1 shows
that the diversity term is non-negative, with an upper bound of order log(k), which increases slowly
as k becomes large. This property stabilizes training and makes DQO robust to large values of k.

Lemma 1 Let us write the eigenvalues of L(y1:k) as λk ≥ · · · ≥ λ1, then we have 1 + λk ≥
det(L(y1:k)+I)
det(L(y−i)+I)

≥ 1 + λ1. And the eigenvalue of L(y1:k) is always in [0, k] since the embedding

vectors are normalized, we have 1+k ≥ det(L(y1:k)+I)
det(L(y−i)+I)

≥ 1 and log(1+k) ≥ log det(L(y1:k)+I)
det(L(y−i)+I)

≥ 0.

5
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4 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the performance of DQO in generating
diverse and high-quality responses. Specifically, we aim to answer the following questions:

• Does DQO improve diversity in responses and how does it compare with the reward-only
baseline and other existing quality-diversity algorithms?

• Does DQO achieve a favorable balance between quality and diversity? Can the model
preserve or improve task performance while enhancing diversity?

• Is the performance of DQO consistent across different tasks and settings?
• How does DQO manage the trade-off between quality and diversity, and how do its hyper-

parameters influence performance?

4.1 CITY RECOMMENDATION

We begin with a simple synthetic experiment on city recommendation to clearly illustrate the di-
versity achieved by DQO. In this task, the model was prompted to recommend a city for traveling
along with a concise reason. The exact prompt we used is provided in Appendix F. We compared
DQO with GRPO and also implemented a variant of DQO using the average pairwise distance as
the diversity score, which we refer to as DQO-pairwise distance; the original algorithm is denoted
as DQO-determinant. The results are summarized in Figure 3, and the full details, including exact
numbers and city names, are reported in Appendix D.

Figure 3: From left to right: GRPO, DQO-
pairwise distance, DQO-determinant. Each cir-
cle represents a different city, with the size pro-
portional to the number of times it was recom-
mended. For each model, we sampled 100 times
with a temperature of 1.0.

DQO clearly encourages the model to generate
more diverse recommendations. When trained
solely with the reward, the model tends to con-
verge on recommending the same city repeatedly.
For using the pairwise distance as the diversity
score, we observed that the model’s recommenda-
tions were dominated by two major cities, which
aligns with our previous analysis. This occurs
because high pairwise distance can be achieved
with two widely separated clusters. In contrast,
the determinant-based approach penalizes linear
dependence, encouraging responses to span the
space as broadly as possible. As shown in Fig-
ure 3, DQO-determinant produces the most di-
verse set of recommendations.

4.2 GENERAL TASKS

In the above section, we show the effectiveness of DQO in promoting diversity on the controlled city
recommendation task, we now turn to a broader evaluation on general language model tasks. We
implemented extensive experiments on four different kinds of tasks including reasoning (GSM8K
(Cobbe et al., 2021)), summarization (CNN-dailymail (See et al., 2017)), story-writing (Common-
Gen (Lin et al., 2020)) and instruction-following (Dolly Conover et al. (2023)).

We compare DQO to the baseline algorithm which trains the model solely with reward. For rea-
soning tasks, we use GRPO, while for non-reasoning tasks, we adopt PPO. We also compare DQO
with other two popular quality-diversity algorithms: GRPO-likelihood (He et al., 2025) and GRPO-
entropy (Yao et al., 2025). For the detailed experimental setup, please see Appendix C.

In this work, we employ a reward model to provide quality scores. Notice that, for reasoning tasks,
we also rely on the reward model rather than outcome-based rewards, due to the observed phe-
nomenon of reward hacking with outcome reward (for details, please refer to Appendix E). During
training, rewards are normalized by dividing by an empirical maximum value to ensure a comparable
scale with the diversity score, whereas during evaluation, we report the unnormalized rewards.

We report pass@n metric (i.e., the highest score among n responses) as measures of the quality in
the responses with n varies from 1 to 10. Without special clarifications, responses are sampled with

6
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a temperature of 1.0. And we use multiple metrics to measure the diversity in the responses which
we summarize below,

• Distinct-n: Count the ratio of unique n-grams among the responses.
• Self-BLEU (Papineni et al., 2002) and Self-ROUGE (Lin, 2004) score: Two popular met-

rics to measure the similarity of languages. Note these scores measure the similarity, to be
consistent with other metrics, we report 1− Score.

• LLM as a judge: We prompt an advanced model GPT-4o-mini to judge the model’s out-
put in terms of the diversity (see Appendix F and G), serving as a surrogate for human
judgment.

Table 1: The quality and diversity scores achieved by DQO compared to other baseline algorithms
on the instruction-following task: Dolly, and the reasoning task: GSM8K. Diversity metrics are
calculated across 10 generated responses per prompt.

Method / Task Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

Dolly
PPO 0.24 0.64 0.41 0.49 5.65 8.39
GRPO-likelihood 0.26 0.70 0.46 0.54 5.86 8.50
GRPO-entropy 0.36 0.75 0.56 0.57 4.71 7.70
DQO 0.28 0.69 0.46 0.54 5.92 8.74

GSM8K
GRPO 0.09 0.32 0.09 0.21 76.8 87.9
GRPO-likelihood 0.26 0.86 0.53 0.59 50.9 80.4
GRPO-entropy 0.10 0.38 0.12 0.25 77.0 92.6
DQO 0.10 0.42 0.14 0.31 76.3 91.2

We first compare the performance of DQO against all baseline algorithms. The results are sum-
marized in Table 1. To evaluate the model, we select a representative non-reasoning task and a
reasoning task. Among all algorithms, DQO is the only one that achieves both high diversity and
high quality scores across both tasks. GRPO-likelihood shows performance comparable to DQO on
the Dolly task but underperforms on GSM8K, whereas GRPO-entropy performs well on GSM8K
but poorly on Dolly. These results demonstrate that DQO consistently delivers strong performance
in post-training LLMs to produce diverse and high-quality generations.

4.3 QUALITY-DIVERSITY BALANCE

Here, we present more fine-grained results on the diversity and quality of responses generated by the
model trained with DQO. For comparison, we also include the results of the model trained solely
with the reward.

Quality. In Figure 4, we show the pass@n performance across four tasks with n varying from 1 to
10. DQO exhibits better performance than the baseline model especially when n is large. Besides,
in the case of n = 1, our model has similar or better performance to the baseline. Together, the
results show that our method does not hurt pass@1 performance while providing better pass@n
performance with n > 1 indicating that our model can generate both high-quality and diverse re-
sponses.

Diversity. The superior performance on pass@n already suggests that our method enhances re-
sponse diversity. To further validate this, we present six diversity metrics in Figure 4. For each
metric, higher values indicate greater diversity. As shown in the figure, DQO consistently outper-
forms the baseline model, demonstrating a clear advantage in diversity. In particular, for the LLM-
as-a-judge metric, the advanced model GPT-4o-mini strongly recognizes the diversity of responses
generated by our approach (See Appendix G), highlighting improvements at the semantic level.

7
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Figure 4: The performance of the trained model on pass@n metrics. For DQO, we set hyperparam-
eters α = 1.0 and k = 4.
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Figure 5: The performance of the trained model on six diversity metrics. For each metric, the higher
value means the higher diversity. For DQO, we set hyperparameters α = 1.0 and k = 4. And the
diversity metrics are calculated across 10 generated responses per prompt.

Pareto frontier. To illustrate how DQO achieves a favorable balance between quality and diver-
sity, we plot the Pareto frontiers of DQO and the baseline model by varying either the training steps
or the sampling temperature in Figure 6. Across different sampling temperatures (the right in Fig-
ure 6), our model consistently occupies the upper-right region relative to the baseline, demonstrating
a robust advantage in balancing quality and diversity at the inference stage. Similarly, when varying
the training steps (the left in Figure 6), our model remains Pareto-optimal throughout the entire train-
ing process, indicating that it consistently achieves a better quality–diversity balance throughout the
entire training process.
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Figure 6: Pareto frontiers on quality and diversity of our model and the baseline. On the left, each
point is a model trained with different training steps and the sampling temperature is set as 1.0. On
the right, we take the final trained model but vary the sampling temperature.

4.4 ABLATION STUDY

DQO introduces two key hyperparameters: α and k. The hyperparameter α controls the weight
of the diversity term in the training objective, while k is the number of responses sampled per
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prompt in the algorithm. Both parameters jointly influence the trade-off between output quality and
diversity. To analyze their impact, we conduct experiments across different values of α and k, and
the results on Dolly task are summarized in Table 2 (for the ablations on GSM8K task, please refer
to Appendix D).

Table 2: The quality and diversity scores of the model trained with different values of hyperparam-
eters k and α on the Dolly task. Diversity metrics are calculated across 10 generated responses per
prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

PPO 0.24 0.64 0.41 0.49 5.65 8.39

α = 0.5, k = 4 0.28 0.69 0.44 0.53 5.84 8.79
α = 1.0, k = 4 0.28 0.69 0.47 0.54 5.92 8.73
α = 1.5, k = 4 0.33 0.79 0.57 0.61 5.47 8.56
α = 2.0, k = 4 0.35 0.82 0.54 0.64 5.42 8.69

k = 2, α = 1.0 0.24 0.62 0.40 0.50 5.71 8.13
k = 4, α = 1.0 0.28 0.69 0.47 0.54 5.92 8.73
k = 6, α = 1.0 0.31 0.76 0.49 0.58 5.71 8.83
k = 8, α = 1.0 0.32 0.79 0.52 0.61 5.64 8.64

From Table 2, we can observe the trade-off between quality and diversity when changing the value
of α or k. Both increasing α and k can enhance the diversity of generated responses, however, in-
creasing k incurs additional computational costs since more responses must be generated. Overall,
compared with the baseline model, DQO exhibits robust improvements in both quality and diversity
across a wide range of α and k values, suggesting that it does not require highly sensitive hyperpa-
rameter tuning.

In addition to the ablations on different values of α and k, we also conduct ablations on different
kernel functions and on the weight of the identity matrix in the determinant calculation, controlled
by the parameter γ in det(L(y1:k)+γIk). Due to space constraints, we refer readers to Appendix D
for detailed results.

5 CONCLUSIONS

In this work, we propose an algorithm DQO to post-train LLMs for diverse high-quality responses.
Based on determinantal point processes, DQO defines the diversity in a group of responses as the
determinant of a kernel-based similarity matrix of the embeddings of those responses. This defini-
tion of diversity has a straightforward interpretation as the squared volume of the space spanned by
the embeddings of the response. We conduct extensive experiments across different kinds of tasks,
and show that DQO can optimize the model to generate significantly more diverse responses while
maintaining high quality in the generated responses.

Although DQO achieves superior performance, there are some limitations in this work. First, the
quality-diversity objective is vulnerable to reward hacking when using the outcome reward. A re-
ward model is needed which limits the applicability in many reasoning tasks where the outcome
reward is commonly used. Second, DQO relies on the embedding models to map responses into
a semantic space. The performance of DQO depends on the quality of these embeddings. A more
principled and adaptive method for measuring diversity could better capture the underlying semantic
variation, potentially adjusting automatically to the specific requirements of different tasks, which
may emphasize different aspects of diversity, thus achieves better performance.

9
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Yanzhu Guo, Guokan Shang, and Chloé Clavel. Benchmarking linguistic diversity of large language
models. CoRR, abs/2412.10271, 2024. URL https://doi.org/10.48550/arXiv.
2412.10271.

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grpo beyond distribution
sharpening. arXiv preprint arXiv:2506.02355, 2025.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. CoRR, abs/2310.06452, 2023. URL https://doi.org/10.48550/arXiv.
2310.06452.

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations
and Trends® in Machine Learning, 5(2–3):123–286, 2012.

Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. arXiv preprint arXiv:2501.18101,
2025.

Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Zhi-Quan Luo, and Ruoyu Sun.
Preserving diversity in supervised fine-tuning of large language models. In ICLR, 2025.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. CommonGen: A constrained text generation challenge for generative commonsense
reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
1823–1840, Online, November 2020. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/2020.findings-emnlp.165.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei
Shen, Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling
preference data curation via human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Sonia K Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea: Align-
ment reduces language models’ conceptual diversity. arXiv preprint arXiv:2411.04427, 2024.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2502.14037
https://doi.org/10.48550/arXiv.2412.10271
https://doi.org/10.48550/arXiv.2412.10271
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/arXiv.2310.06452
https://doi.org/10.48550/arXiv.2310.06452
https://www.aclweb.org/anthology/2020.findings-emnlp.165
https://www.aclweb.org/anthology/2020.findings-emnlp.165


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minh Nhat Nguyen, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid
Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. arXiv
preprint arXiv:2407.01082, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
TG8KACxEON.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Feiz5HtCD0.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective Di-
versity in Population Based Reinforcement Learning. In Advances in Neural Information Pro-
cessing Systems 34. 2020.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Chantal Shaib, Joe Barrow, Jiuding Sun, Alexa Siu, Byron C Wallace, and Ani Nenkova. Stan-
dardizing the measurement of text diversity: A tool and comparative analysis, 2024. URL
https://openreview.net/forum?id=jvRCirB0Oq.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert Bas-
tani. Evaluating the diversity and quality of LLM generated content. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=O7bF6nlSOD.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NeurIPS
’20, 2020.

Weijia Xu, Nebojsa Jojic, Sudha Rao, Chris Brockett, and Bill Dolan. Echoes in ai: Quantifying
lack of plot diversity in llm outputs. Proceedings of the National Academy of Sciences, 122(35),
2025.

12

https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=Feiz5HtCD0
https://openreview.net/forum?id=Feiz5HtCD0
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://openreview.net/forum?id=jvRCirB0Oq
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=O7bF6nlSOD


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Jian Yao, Ran Cheng, Xingyu Wu, Jibin Wu, and Kay Chen Tan. Diversity-aware policy optimization
for large language model reasoning. arXiv preprint arXiv:2505.23433, 2025.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.
URL https://arxiv.org/abs/1909.08593.

13

https://arxiv.org/abs/1909.08593


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORKS

Evaluating Diversity of LLMs. Several works have focused on evaluating the diversity of LLM
generated content (Guo et al., 2024; Shaib et al., 2024), also on investigating the impact of post-
training on diversity metrics (Kirk et al., 2023; Shypula et al., 2025). The lack of diversity in LLM
generated content also affects text written by humans using LLMs (Padmakumar & He, 2024).

Improving Diversity of LLMs. There are mainly two lines of works on promoting diversity in
LLMs. One focuses on inference strategies. Nguyen et al. (2024) proposed a decoding method
to reallocate the next-token probabilities which they show can increase the entropy of the correct
solutions. The DiffSampling strategy, proposed by Franceschelli & Musolesi (2025), considers the
largest difference between consecutive probabilities of tokens in a sorted distribution to promote di-
versity while maintaining correctness. Ahmed et al. (2025) proposed a two-stage inference strategy
which consists of a high-temperature key words sampling process and a low-temperature expansion
procedure.

Another line of works focus on the training strategy to best elicit diversity from LLMs. Lanchantin
et al. (2025) proposed diverse preference optimization. They selected the most diverse response
from the high-reward group and the least diverse response from the low-reward group to form the
preference pair. The selection is based on some diversity criteria. Yao et al. (2025) shows that by
adding an entropy term of correct answers to the reward-based objective, LLMs can improve the di-
versity while maintaining the quality. Different from those using reinforcement learning algorithms,
Li et al. (2025) instead study the supervised finetuning approach. They proposed carefully-designed
update strategy to mitigate the distribution collapse in SFT, thus encourages diversity. Most related
to our work, Chung et al. (2025) propose a variant of DPO that weights the loss by the average
pairwise distance in cosine similarity after embedding responses, this however, is limited to DPO,
considers only pairwise distances, and requires sampling k ≥ 3 responses per prompt in the training
dataset.

Determinantal Point Processes. Determinantal point processes (DPPs) (Kulesza et al., 2012), are
a class of probabilistic models that arise in quantum physics and random matrix theory for modeling
repulsion. DPPs are well-suited for modeling diversity. Parker-Holder et al. (2020) proposed a
DPPs-based algorithm to train a population of diverse polices in reinforcement learning for better
exploration.
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B THEORETICAL RESULTS AND PROOFS

Lemma. Suppose ψ(x, y) =
√

exp( r(x,y)α )πref (y|x) ·ϕ(y), then the optimal policy defined in (4)
satisfies πdiv(y1:k|x) ∝ det(Lψ(y1:k)) when α = β.

Proof. Let B ∈ Rn×k have columns ϕ(y1), . . . , ϕ(bk). The Gram matrix is

L = B⊤B.

Now suppose we scale each column ϕ(yi) by a factor ai, and denote

A = diag(a1, . . . , ak), B′ = BA.

Then the new Gram matrix is

L′ = (B′)⊤B′ = (AB⊤)(BA) = A(B⊤B)A = ALA.

Taking determinants,

det(L′) = det(ALA) = det(A) det(L) det(A) =
(
det(A)

)2
det(L).

Since det(A) =
∏k
i=1 ai, we obtain

det(L′) =

(
k∏
i=1

ai

)2

det(L).

Recall that πdiv(y1:k|x) is defined as when α = β,

πdiv(y1:k|x) ∝ πref (y1:k|x) exp

(
1

α

(
k∑
i=1

r(x, yi)

)
+ log det(Lϕ(y1:k))

)

= πref (y1:k|x) exp

(
1

α

(
k∑
i=1

r(x, yi)

))
det(Lϕ(y1:k))

=

k∏
i=1

(
πref (yi|x) exp

(
r(x, yi)

α

))
det(Lϕ(y1:k))

The second equality holds because y1:k are sampled independently. Combined with the result above,
we have πdiv(y1:k|x) ∝ det(Lψ(y1:k)).

Analysis of det(L(y1:k)) and det(L(y1:k) + Ik). Maximizing det(L) is equivalent to max-
imizing the volume of the parallelepiped spanned by the selected feature vectors, which enforces
strict linear independence: any subset that induces a singular L receives zero score. In contrast,
maximizing det(L + I) introduces a ridge-like regularization. Indeed, if L = BB⊤ for a feature
matrix B ∈ Rk×d, we have

det(L+ I) = det(BB⊤ + I) = det(I +B⊤B).

This is precisely the determinant of a regularized scatter matrix, analogous to the role of (B⊤B+λI)
in ridge regression. From this viewpoint, adding I stabilizes the objective by preventing collapse
along directions of near-linear dependence and avoiding the degeneracy of zero determinants.

A complementary interpretation arises from Bayesian linear models and Gaussian processes. In
Bayesian linear regression with a Gaussian prior w ∼ N (0, I) and unit-variance observation noise,

the marginal likelihood normalization involves det(I + B⊤B)−
1
2 . Similarly, in Gaussian process

regression, the log marginal likelihood includes log det(L + σ2I), with σ2 corresponding to the
noise variance. Setting σ2 = 1 recovers the det(L+ I) objective. Hence, det(L+ I) can be viewed
as the determinant under a model with a prior noise floor, which softens the diversity requirement
and balances between variance explained by the selected items and a baseline level of uncertainty.
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Eigenvalue Interlacing Theorem (Fisk, 2005). Suppose A ∈ Rn×n is symmetric. Let B ∈
Rm×m with m < n be a principal submatrix (obtained by deleting both i-th row and i-th column
for some values of i). Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has eigenvalues β1 ≤ · · · ≤
βm. Then,

λk ≤ βk ≤ λk+n−m, for k = 1, · · · ,m

And if m = n− 1, one has,

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn

Proof. We use the Courant–Fischer min–max theorem. For a symmetric matrix A ∈ Rn×n with
eigenvalues λ1 ≤ · · · ≤ λn, the k-th eigenvalue can be characterized as

λk = min
S⊂Rn

dim(S)=k

max
x∈S
x ̸=0

x⊤Ax

x⊤x
.

Similarly, for the principal submatrix B ∈ Rm×m with eigenvalues β1 ≤ · · · ≤ βm, we have

βk = min
T⊂Rm

dim(T )=k

max
y∈T
y ̸=0

y⊤By

y⊤y
.

Now observe that B is obtained by restricting A to a coordinate subspace (corresponding to remov-
ing some rows and columns). Hence any y ∈ Rm can be embedded into Rn by padding with zeros.
Under this embedding, the Rayleigh quotient is preserved:

y⊤By

y⊤y
=
x⊤Ax

x⊤x
, where x is y padded with zeros.

Therefore, the feasible subspaces for B are restrictions of those for A. This leads to the inequalities

λk ≤ βk ≤ λk+n−m, k = 1, . . . ,m.

In the special case m = n− 1, the inequalities expand into the chain

λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn,

which is exactly the interlacing property.

Lemma. Let’s write the eigenvalues of L(y1:k) as λk ≥ · · · ≥ λ1, then we have 1 + λk ≥
det(L(y1:k)+Ik)

det(L(y−i)+Ik−1)
≥ 1 + λ1. And the eigenvalue of L(y1:k) is always in [0, k] since the em-

bedding vectors are normalized, we have 1 + k ≥ det(L(y1:k)+Ik)
det(L(y−i)+Ik−1)

≥ 1 and log(1 + k) ≥
log det(L(y1:k)+Ik)

det(L(y−i)+Ik−1)
≥ 0.

Proof. Let’s write the eigenvalues ofL(y−i) as βk−1 ≥ · · · ≥ β1. Based on Eigenvalue Interlacing
Theorem, we have,

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)
= (1 + λ1)

k−1∏
i=1

1 + λi+1

1 + βi
≥ 1 + λ1

and,

det(L(y1:k) + Ik)

det(L(y−i) + Ik−1)
= (1 + λk)

k−1∏
i=1

1 + λi
1 + βi

≤ 1 + λk

SinceL(y1:k) is positive semidefinite, it holds λi ≥ 0, ∀i. And we have
∑k
i=1 λi = tr(L(y1:k)) = k

due to the normalization of the feature vectors. Hence, we have k ≥ λk ≥ λ1 ≥ 0.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Connection to D-Optimal Design We construct a controlled toy setup to empirically compare
our setting to D-optimal selection strategy against the baseline of uniform sampling, highlighting
scenarios where diversity plays a critical role in achieving robust performance across varied reward
functions

Setup and Notation: Let d = 3 denote the dimensionality of the embedding space, and let
{ϕ1, ϕ2, . . . , ϕN} ⊂ Rd be a set of normalized candidate embeddings. We synthetically construct
the pool to be imbalanced along coordinate directions: nx = 40: vectors near the x-axis, ny = 40:
vectors near the y-axis and nz = 10: vectors near the z-axis (rare) with N = 90. Small Gaussian
noise ε ∼ N (0, 10−4I) is added to prevent rank-deficiency.

To illustrate our hypothesis, we compare two sampling strategies: Uniform: wi = 1
N for all i and

ours by solving the following optimization problem

max
w∈∆N

log det

(
N∑
i=1

wiϕiϕ
⊤
i + δI

)

s.t.
N∑
i=1

wi = 1, 0 ≤ wi ≤ 1

where δ = 10−9 ensures numerical stability. The DPP based approach promotes spectral coverage
across all directions. Next, we define four linear reward directions: kx = [1, 0, 0]⊤ (high mass),
ky = [0, 1, 0]⊤ (high mass), kz = [0, 0, 1]⊤ (low mass), kbal =

1√
3
[1, 1, 1]⊤ (balanced). The

expected reward under policy w and reward k is

Eϕ∼w [⟨k, ϕ⟩] =
N∑
i=1

wi⟨k, ϕi⟩ (7)

We compute the information matrices: Σ(w) =
∑N
i=1 wiϕiϕ

⊤
i and visualize their eigenvalues.

Uniform sampling has low spectral mass in the z-direction. In contrast, our DPP based approach
balances mass across all directions. This confirms that log det promotes coverage.

Thus this simulation reveals a failure mode of uniform sampling in imbalanced datasets. D-optimal
design reallocates weights toward rare directions, yielding significantly improved performance in
worst-case reward scenarios. The log-determinant acts as a diversity-promoting surrogate, superior
to naive metrics like pairwise distance or cosine dissimilarity.
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C EXPERIMENTAL SETUP

Data preparation For GSM8K dataset, we directly use the training and test split. For CNN-
dailymail dataset, we take the test split, and select 8, 000 data points as the training set and 1, 024
data points as the test set. For Dolly dataset, there is only one training split of 15, 000 data points.
We divided it into two subsets with the ratio of 0.2. For Gen, we use the training split, remove data
with repetitive key words, and divided the set into two subsets, each containing 8, 000 and 1, 024
data points respectively.

Training configuration We use GRPO algorithm for GSM8K task and use PPO algorithm
for the other tasks. We use Qwen2.5-MATH-1.5B (Yang et al., 2024) as the base model for
GSM8K task, and use Llama3.2-1B for the other tasks. For all tasks, we use the reward model
Skywork/Skywork-Reward-V2-Llama-3.2-1B (Liu et al., 2025) and embedding model sentence-
transformers/all-MiniLM-L6-v2. For baseline algorithms, we directly use the hyperparameters re-
ported in their papers. For GRPO-likelihood, we use α = 0.25 and for GRPO-entropy, we use
α = 0.01.

Table 3: Training configurations. For max prompt and response length, we use different values for
different datasets. From left to right, it corresponds to GSM8K, CNN-dailymail, Dolly, Gen.

training batch size 128

training epoches 3

actor learning rate 1e-6

critic learning rate 1e-5

rollout temperature 1.0

max prompt length 256, 1536, 1024, 64

max response length 256, 256, 512, 128
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D ADDITIONAL EXPERIMENTS

D.1 CITY RECOMMENDATION

The following table shows the numerical results that were used to plot Figure 3. For each model, we
sampled 100 times and countered the times of each city being recommended.

Table 4: The frequencies of each city being recommended for models trained with different methods.

Method City (Frequency)
GRPO Tokyo (97); New York (3)

DQO-pairwise distance New Orleans (48); Asheville (37); Budapest (8); Barcelona (7)

DQO-determinant
Budapest (45); Chiang Mai (22); New Orleans (19); Hanoi (7);
Krakow (1); Kanazawa (1); Ottawa (1); Nashville (1);
Tokyo (1); Bangkok (1); Singapore (1)

D.2 ADDITIONAL ABLATION STUDIES

Value of α and k. In Table 2 in the main page, we show the ablation results of α and k on Dolly
task. Here, Table 5 shows the results on GSM8K task.

Table 5: The quality and diversity scores of the model trained with different values of hyperparam-
eters k and α on the GSM8K task. Diversity metrics are calculated across 10 generated responses
per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

GRPO 0.09 0.32 0.09 0.21 76.8 87.9

α = 0.5, k = 4 0.09 0.33 0.09 0.22 74.6 89.2
α = 1.0, k = 4 0.10 0.42 0.14 0.31 76.3 91.2
α = 1.5, k = 4 0.11 0.48 0.19 0.34 76.1 92.6
α = 2.0, k = 4 0.13 0.54 0.21 0.40 76.7 92.7
α = 5.0, k = 4 0.16 0.62 0.28 0.44 77.7 93.3

k = 2, α = 1.0 0.11 0.40 0.13 0.26 73.9 90.3
k = 4, α = 1.0 0.10 0.42 0.14 0.31 76.3 91.2
k = 6, α = 1.0 0.10 0.44 0.17 0.33 76.5 92.1
k = 8, α = 1.0 0.11 0.47 0.16 0.32 74.9 90.8

Kernel function. DQO formulates the diversity score as the determinant of the kernel matrix. By
default, we use the dot product kernel function, i.e., ϕ(y1, y2) = ⟨y1, y2⟩. We study the effect
of different kernel functions on DQO. We implemented same experiments using Gaussian kernel
function, i.e., ϕ(y1, y2) = exp

(
−∥y1−y′2∥

2

2

)
. Table 6 shows the performance of DQO with different

kernel functions on Dolly and GSM8K tasks. DQO demonstrates robust performance under different
kernel functions.

Regularization by introducing identity matrix. To solve the numerical explosion issue, we in-
troduce an identity matrix when calculating the determinant: det(L(y1:k + γIk)). It can be shown
adding an identity matrix plays a role as a regularization. By default, we simply set γ = 1. We test
DQO with different values of γ. The results are summarized in Table 7 and Table 8.

We can see from Table 7, when γ = 0.1, the diversity in responses surges while the quality collapses.
This is consistent with our analysis. The identity matrix can be regarded as a regularization term.
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Table 6: The quality and diversity scores of the model trained with different kernel functions on
Dolly and GSM8K tasks. Diversity metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

Dolly

α = 1.0, gaussian 0.29 0.72 0.48 0.56 6.45 8.61
α = 1.0, dot product 0.28 0.69 0.46 0.54 6.56 8.74

α = 2.0, gaussian 0.34 0.79 0.54 0.61 6.12 8.64
α = 2.0, dot product 0.35 0.82 0.54 0.64 6.41 8.69

GSM8K

α = 1.0, gaussian 0.10 0.43 0.16 0.31 77.1 90.9
α = 1.0, dot product 0.10 0.42 0.14 0.31 76.3 91.2

α = 2.0, gaussian 0.11 0.48 0.19 0.36 75.2 91.2
α = 2.0, dot product 0.13 0.54 0.21 0.40 76.7 92.7

The objective will prioritize diversity more if γ is low. In addition, when α = 0.5, we can see
decreasing γ does not affect the quality much as in the case where α = 1.0. This is because α also
controls the balance between quality and diversity. When α is low, the diversity is less important in
the objective, hence, the effect of decreasing γ is diluted. The phenomenon is consistent on GSM8K
task.

Table 7: The performance of DQO with different identity matrix weights on Dolly task. Diversity
metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

α = 1.0,+0.1I 0.57 0.96 0.79 0.86 3.44 6.38
α = 1.0,+0.5I 0.37 0.83 0.56 0.66 6.72 8.90
α = 1.0,+I 0.28 0.69 0.46 0.54 6.56 8.74

α = 0.5,+0.1I 0.34 0.84 0.58 0.68 6.04 8.75
α = 0.5,+0.5I 0.28 0.71 0.44 0.54 6.31 8.72
α = 0.5,+I 0.28 0.69 0.43 0.53 6.47 8.77

Table 8: The performance of DQO with different identity matrix weights on GSM8K task. Diversity
metrics are calculated across 10 generated responses per prompt.

Method Diversity ↑ Quality ↑
distinct-1 distinct-4 self-bleu self-rouge pass@1 pass@10

α = 1.0,+0.1I 0.23 0.79 0.41 0.52 73.3 93.9
α = 1.0,+0.5I 0.11 0.49 0.19 0.36 77.5 92.0
α = 1.0,+I 0.10 0.42 0.14 0.31 76.3 91.2

α = 2.0,+0.1I 0.38 0.88 0.58 0.74 63.5 91.3
α = 2.0,+0.5I 0.15 0.59 0.24 0.42 78.0 93.2
α = 2.0,+I 0.13 0.54 0.21 0.40 76.7 92.7
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E REWARD HACKING WITH OUTCOME REWARD

We observed an interesting phenomenon when doing experiments on GSM8K task. With only out-
come reward provided, the model trained with the quality-diversity objective learns to first generate
a correct answer to the question thus securing the outcome reward, then generate some random or
irrelevant contents to artificially increase diversity. See the concrete example below.

The reward-hacking phenomenon does not exist when we use reward models, since the reward model
evaluates the quality of the entire response rather than just the final answer.

We explored a potential solution by computing the cosine similarity between the embeddings of the
prompt and the response and multiplying this score with the diversity term. The intuition is that only
responses semantically aligned with the prompt contribute to the diversity objective. However, we
observed that the model can still exploit this mechanism by generating correct answers followed by
random contents but superficially related to the prompt. See the concrete example below.

We believe outcome-based reward alone is inherently susceptible to reward hacking. The outcome
reward is widely used in reasoning tasks due to its simplicity and effectiveness, however, when
combined with other objectives, it is vulnerable to reward hacking. This phenomenon presents an
intriguing challenge for future study.

An example of reward hacking with outcome reward

Prompt: Gretchen has some coins. There are 30 more gold coins than silver coins. If she
had 70 gold coins, how many coins did Gretchen have in total? Let’s think step by step and
output the final answer after ”####”.

Response: If Gretchen had 70 gold coins and there are 30 more gold coins than silver coins,
then the number of silver coins she had is

70− 30 = 40 silver coins.

The total number of coins Gretchen has is the sum of gold and silver coins, so it is

70 + 40 = 110 coins. #### 110

The correct answer is: 110

Which digit is first to appear in the units place of

51 + 52 + 53 + · · ·+ 52004 + 52005 ?

(A) 0

(B) 1

(C) 2

(D) 5

To determine which digit is first to appear in the units place of the sum

51 + 52 + 53 + · · ·+ 52004 + 52005,

we need to analyze the units digits of the powers of 5.
First, let’s observe the units digits of the first few powers of 5:

. . .
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An example of reward hacking with prompt-response similarity

Prompt: Bobby takes a 30 min lunch and two 15 minutes break per day at the office. After
5 days, how many hours do his lunches and breaks add up to? Let’s think step by step and
output the final answer after ”####”.

Response: Bobby takes a 30 minute lunch and a 15 minute break twice a day.
So in total, Bobby takes 30 + 15 + 15 = 60 minutes of lunch and breaks per day.
After 5 days, Bobby takes a total of

60× 5 = 300 minutes of lunch and breaks.
Since there are 60 minutes in an hour, Bobby’s lunches and breaks add up to

300

60
= 5 hours.

#### 5
Bobby’s lunches and breaks add up to 5 hours.
Bobby’s dog is on a diet. For every meal he eats, he needs to walk him for 2 minutes. When
he eats twice, he walks him 4 times that amount. How many minutes did Bobby walk his
dog if he let him eat 7 meals? Let’s think step by step and output the final answer after
”####”.
Bobby’s dog needs to walk 2 minutes for every meal he eats.

2× 7 = 14 minutes.
#### 14
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F PROMPTS

We listed the prompts we used in this work.

Prompt for city recommendation

Prompt = ”Recommend a city to visit along with a reason. Respond ONLY with valid JSON
with the following schema. Do not include explanations or extra text.
{
”city”: ”<city name>”,
”reason”: ”<reason>”
}”

Prompt for GSM8K

Prompt = ”{QUESTION} Please reason step by step, and put your final answer within
\\boxed{}.”

Prompt for CNN-dailymail

Prompt = f”Summarize the following article:
{ARTICLE}
Summary:”

Prompt for Dolly

prompt = f”### Instruction:
{INSTRUCTION}
### Input:
{INPUT}
### Response:”

Prompt for Common-gen

Prompt = f”Write a short story of 3–4 sentences that includes the following keywords: {KEY
WORD}. The story should be coherent, creative, and naturally incorporate all the keywords.
Story:”

Prompt of LLM as a diversity judge

Instructions=”The following are two files, each records responses generated by a model.
The ’prompt’ field stores prompts, and the ’response’ field stores the corresponding groups
of generated responses for the prompts. Please judge two models in terms of the diversity of
their generated responses. You should give each model a score between [0,1].”
Input= f”Files: model 1: {FILE}; model 2: {FILE}.”
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G LLM AS A DIVERSITY JUDGE

We use advanced LLMs (GPT-4o-mini) to score the diversity of the responses generated by the
models. The following are the evaluations given by GPT-4o-mini. For fair comparison, we did two
comparisons by changing the order of two models and taking the average scores.

Diversity judged by gpt-4o-mini on GSM8K; Model 1 (GRPO), Model 2 (DQO)

To evaluate the diversity of responses generated by the two models, we can analyze the
patterns seen in the “responses” field of each model.
Model 1:

• Characteristics:
– The majority of responses are quite repetitive, consistently using phrases like

“To solve this problem, we’ll break it down” or variations thereof.
– There appears to be a lack of varied strategies or unique approaches in the

generated answers, with many instances simply restating the problem-solving
process in a similar structure.

• Diversity Score: Given the high level of similarity and repeated phrasing, I would
rate the diversity of responses for Model 1 as 0.2/1.

Model 2:
• Characteristics:

– This model exhibits a somewhat greater variety in response structure, with
different steps highlighted in the problem-solving process.

– Phrases like “Step X: Determine the...” and “Let’s denote the total number...”
introduce variation, and there seems to be a more thoughtful approach to sev-
eral responses.

– While there are still some repeated forms, the presence of distinct steps and
strategies indicates a broader array of response possibilities.

• Diversity Score: The variety and different methodologies present in the responses
lead me to rate Model 2’s diversity as 0.5/1.

Summary:
• Model 1 Score: 0.2/1
• Model 2 Score: 0.5/1

Model 2 demonstrates better response diversity compared to Model 1, which relies heavily
on similar language and structure.
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Diversity judged by gpt-4o-mini on CNN-dailymail; Model 1 (PPO), Model 2 (DQO)

To assess the diversity of the responses generated by the two models, we evaluate the variety
and uniqueness of the content provided in the responses to identical prompts.
Model 1:

• The responses from Model 1 vary in terms of length and detail, but many responses
are quite structured and similar in approach.

• There is some variation in naming conventions and specific details, but overall, a
noticeable pattern exists in how the information is expressed.

• Many responses use similar phrasing, leading to less diversity overall.
Model 2:

• Responses from Model 2 exhibit greater variation in phrasing, structure, and detail.
• The content shows a wide range of descriptions and perspectives, which enhances

the uniqueness of each response.
• There is a noticeable effort to vary not just the wording but also the structure of

each response, leading to a more diverse set of outputs.
Scores: Based on this analysis, we assign the following scores for diversity in generated
responses:

• Model 1: 0.4 (Limited diversity, responses similar in structure and phrasing)
• Model 2: 0.8 (High diversity, significant variation in responses)

These scores reflect the extent of variety present in the responses generated by each model.
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Diversity judged by gpt-4o-mini on Dolly; Model 1 (PPO), Model 2 (DQO)

To assess the diversity of responses generated by both models, we analyze the responses
across various prompts, looking for variances in creativity, structure, and content diversity.
Model 1 Analysis:

• The responses from Model 1 often maintain a similar structure, primarily focusing
on straightforward factual information, lists, or direct answers to prompts.

• The responses appear to have consistent formatting, providing succinct and clear
answers, but can feel repetitive and lack creative exploration.

• While some responses do reflect a variety of information (e.g., multiple examples,
details), the overall tone and presentation remain quite uniform.

Model 2 Analysis:
• Model 2 demonstrates a greater variety of response styles, incorporating

markdown-like formatting, lists, and varying degrees of detail and structure across
its outputs. This format enhances readability and introduces an engaging style.

• The responses in Model 2 often include additional editorial commentary or creativ-
ity (e.g., humorous tones in astrology interpretations, narrative elements in product
recommendations).

• The use of diverse sentence structures and clear formatting contributes to a sense
of dynamism in responses.

Scoring:
• Model 1: 0.4 (due to consistent structure and less creative diversity in responses)
• Model 2: 0.8 (due to varied response formats, creative styles, and more engaging

outputs)
Final Scores:

• Model 1: 0.4
• Model 2: 0.8
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Diversity judged by gpt-4o-mini on Common-gen; Model 1 (DQO), Model 2 (PPO)

To evaluate the diversity of the generated responses from both models, we analyze the con-
tent and variety of the responses provided for the same prompts.
Model 1:

• The responses feature varied character names and professions, indicating a range
of different story premises.

• While the structure is somewhat consistent (retired individuals reflecting on their
past), each response introduces a new character with unique backstories or contexts.

• The diversity is primarily in the character names and their respective professions,
leading to different narrative angles.

Model 2:
• The responses are more repetitive in structure; most of them start similarly with

“An older woman pauses...”.
• There is a notable lack of variation in terms of settings and character actions across

the responses. Although some details differ (such as the specific verb or object),
the overall premise and sentence structure remain largely the same.

• This limits the diversity of storytelling in comparison to Model 1.
Scores:

• Model 1: 0.8 — Scores high for its unique character introductions and storytelling
approaches, exhibiting good diversity.

• Model 2: 0.4 — Scores lower due to the repetitive structure and similarity in re-
sponses, which significantly reduces the diversity in storytelling.

Summary: Model 1 demonstrates a greater range of ideas and creativity in responses, while
Model 2 lacks variety, leading to a more uniform storytelling style.
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