
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOEEDIT: EFFICIENT AND ROUTING-STABLE KNOWL- EDGE EDITING FOR MIXTURE-OF-EXPERTS LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Knowledge editing (KE) enables precise modifications to factual content in large language models (LLMs). Existing KE methods are largely designed for dense architectures, limiting their applicability to the increasingly prevalent sparse Mixture-of-Experts (MoE) models that underpin modern scalable LLMs. Although MoEs offer strong efficiency and capacity scaling, naively adapting dense-model editors is both computationally costly and prone to routing distribution shifts that undermine stability and consistency. To address these challenges, we introduce MoEEdit, [the first routing-stable framework for parameter-modifying knowledge editing in MoE LLMs](#). Our method reparameterizes expert updates via per-expert null-space projections that keep router inputs invariant and thereby suppress routing shifts. The resulting block-structured optimization is solved efficiently with a block coordinate descent (BCD) solver. Experiments show that MoEEdit attains state-of-the-art efficacy and generalization while preserving high specificity and routing stability, with superior compute and memory efficiency. These results establish a robust foundation for scalable, precise knowledge editing in sparse LLMs and underscore the importance of routing-stable interventions.

1 INTRODUCTION

Large language models (LLMs) can store and retrieve substantial factual knowledge (Petroni et al., 2019; Sun et al., 2024), yet they sometimes produce incorrect or outdated statements. For Instance, asserting that the capital of France is Berlin or misreporting the CEO of a major company. Such errors undermine user trust and constrain deployment in knowledge-sensitive applications (Zhang et al., 2024c; Zhong et al., 2023). Fully retraining these models or performing broad fine-tuning is computationally prohibitive and can induce catastrophic forgetting of unrelated capabilities (Luo et al., 2025). These limitations motivate knowledge editing, which aims to revise specific facts while preserving the model’s general behavior (Meng et al., 2022; 2023; Mitchell et al., 2022a;b).

Most knowledge editing (KE) methods have been designed for dense Transformer architectures, where all parameters are active for each input (Wang et al., 2024). Broadly, KE falls into two families: *parameter-preserving approaches* leave base weights unchanged and attach auxiliary mechanisms that conditionally override outputs (e.g., SERAC with an external edit memory and routing module (Mitchell et al., 2022b)), and *parameter-modifying approaches* aim to directly update model weights responsible for factual recall. Many methods follow a locate-then-edit paradigm: they identify mediating parameters, often mid-layer feed-forward MLP modules (Geva et al., 2021; Dai et al., 2022), using causal analyses, and then apply structured weight updates. Representative methods include ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), and PMET (Li et al., 2024). Recent work improves locality by projecting edits into the null space of a preservation set, which reduces interference with unrelated behaviors (Fang et al., 2025).

State-of-the-art LLMs increasingly adopt Mixture-of-Experts (MoE) architectures to enlarge parameter capacity while maintaining nearly constant computational throughput (FLOPs) (Shazeer et al., 2017). In an MoE layer, a trainable router activates a small subset of experts for each token (for instance, 8 of 128 in Qwen3-30B-A3B), yielding sparse, input-dependent computation and enabling marked expert specialization (Lepikhin et al., 2021; Du et al., 2022). However, this sparse, modular design introduces a tripartite challenge for knowledge editing that is absent in dense models.

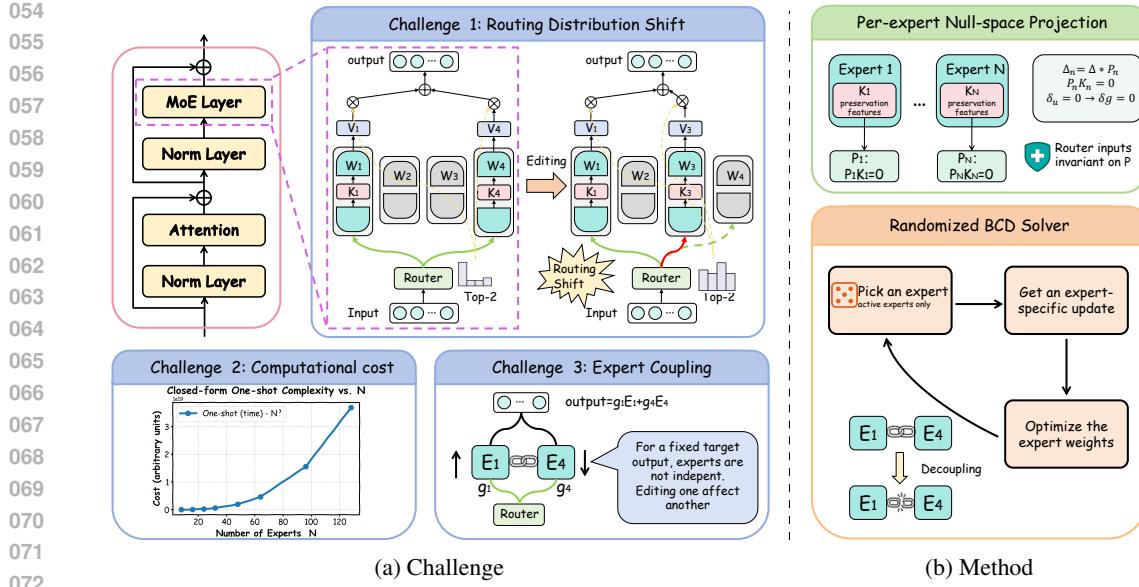


Figure 1: Overview of knowledge editing in Mixture-of-Experts (MoE) LLMs. (a) **Challenges**: MoE editing is hindered by routing distribution shift, high computational cost, and expert coupling. (b) **Method**: MoEEdit mitigates these issues using per-expert null-space projection to stabilize routing and a randomized block coordinate descent (BCD) solver for efficient expert updates.

The first and most direct challenge is *computational complexity*. Naively applying dense-model editing techniques would require updating all experts, multiplying the cost by their total number (e.g., $128\times$) and thus rendering the process computationally prohibitive. This necessitates a targeted approach, but editing only a subset of experts introduces further complications. Second, because the layer’s output is a gate-weighted combination of multiple expert outputs, any edit must contend with *inter-expert coupling*. A modification to a single expert’s parameters can be diluted or cause unintended side effects when combined with others, demanding a principled allocation of the update across the appropriate specialists. Third, and most subtly, edits risk inducing *routing distribution shifts* in subsequent layers. Parameter perturbations in one MoE layer alter the input manifold for downstream layers, causing their routers to select different experts. This cascading effect disrupts the model’s learned routing patterns and specialized knowledge pathways, jeopardizing both edit locality and overall model stability. Collectively, these intertwined issues of computational cost, expert coupling, and routing stability make successful and localized knowledge editing in MoEs substantially more difficult than in their dense counterparts.

To address this tripartite challenge, we introduce MoEEdit, an expert-aware editor that reframes MoE knowledge editing as a principled, block-structured optimization problem where each expert constitutes a block. We are the first to formally identify routing-induced instability as a central obstacle to successful editing in MoEs. To solve this, we develop a novel **per-expert null-space projection** that constrains parameter updates to preserve the input to subsequent routers, thereby safeguarding model stability. This technique is paired with a highly efficient **randomized block coordinate descent (BCD) solver** that tackles computational complexity and inter-expert coupling by strategically updating only the most relevant experts for a given edit. This decoupling ensures our method’s cost scales linearly with the expert hidden size, not the total number of experts, making it highly scalable. Our integrated approach sets a new state-of-the-art on standard benchmarks (COUNTERFACT, zsRE), decisively outperforming dense-model editors adapted for MoEs. This result underscores the necessity of expert-aware, routing-stable interventions tailored to the unique architectural properties of MoE models.

2 RELATED WORK

Knowledge editing (KE) in dense Transformers. KE seeks to revise specific factual associations in LLMs while preserving general capabilities (Zhang et al., 2024c; Zhong et al., 2023). Methods for

108 dense Transformers fall into two families: *parameter-modifying* and *parameter-preserving*. Within
 109 the former, locate-then-edit approaches such as ROME (Meng et al., 2022) and MEMIT (Meng et al.,
 110 2023) directly modify a small set of FFN down-projection weights identified via causal analysis,
 111 enabling single-fact and batched edits, respectively. Gradient-based editors such as MEND (Mitchell
 112 et al., 2022a) learn hypernetworks that transform fine-tuning gradients into localized weight updates.
 113 To improve locality and robustness under sequential edits, AlphaEdit (Fang et al., 2025) projects
 114 updates into the null space of a preservation set. Other strands explore instruction-based editing
 115 (Zhang et al., 2024a), hybrid neural–symbolic mechanisms (Zhang et al., 2024b), and in-context
 116 editing (Zheng et al., 2023).

117 Complementing these, *parameter-preserving* or semi-parametric methods (e.g., SERAC (Mitchell
 118 et al., 2022b)) store edits in external memories and perform inference-time routing, trading parametric
 119 locality for reversibility and capacity. notably, LEMoE (Wang & Li, 2024) introduces a Mixture-of-
 120 Experts (MoE) architecture within the adaptor itself to manage lifelong editing.** However, LEMoE
 121 functions as a parameter-preserving framework that attaches external modules to a frozen backbone
 122 (typically dense). It addresses routing consistency within the added adaptor rather than the routing
 123 distribution shift of the base model itself.

124 **Mixture-of-Experts (MoE) architectures.** MoE layers scale capacity by activating only a sparse
 125 subset of experts per token through a learned router, thereby increasing representational power while
 126 keeping FLOPs nearly constant (Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022). Each
 127 expert is a gated feed-forward network with its own parameters; the router selects the top- K experts
 128 using input-dependent logits and produces a gate-weighted sum of their outputs. This conditional
 129 computation yields strong expert specialization but also creates editing complications: edits must
 130 respect the router’s distribution, multiple experts jointly determine the output, and perturbations at
 131 one layer can alter downstream routing.

132 **Knowledge editing for MoE LLMs.** However, KE for MoE architectures remains largely
 133 unexplored. While methods like LEMoE utilize MoE structures externally, they do not tackle the
 134 challenge of modifying intrinsic MoE parameters. Existing techniques, which assume fully active
 135 parameters, are ill-suited for the conditional computation in MoEs and present an intractable trade-off:
 136 updating all experts is computationally prohibitive, while updating a subset is unreliable due to
 137 stochastic routing. This leaves a critical gap for an editing framework explicitly designed for the
 138 sparse and modular nature of MoE models.

139 3 PRELIMINARIES

140 **Locate-then-Edit Paradigm (Dense Models).** An autoregressive LLM updates the layer- l hidden
 141 state as $\mathbf{h}^l = \mathbf{h}^{l-1} + \mathbf{a}^l + \mathbf{v}^l$, where \mathbf{a}^l and \mathbf{v}^l are the outputs of the attention and feed-forward
 142 (FFN) blocks at layer l , respectively. The FFN output can be written as
 143

$$144 \mathbf{v}^l = \mathbf{W}_{\text{out}}^l \underbrace{\sigma(\mathbf{W}_{\text{in}}^l \gamma(\mathbf{h}^{l-1} + \mathbf{a}^l))}_{\text{"keys" } \mathbf{k}} = \mathbf{W}_{\text{out}}^l \cdot \mathbf{k}, \quad (1)$$

145 with layer norm $\gamma(\cdot)$ and nonlinearity $\sigma(\cdot)$. Following Geva et al. (2021), $\mathbf{W}_{\text{out}}^l$ can be viewed as
 146 a linear associative memory that maps post-gate features (“keys”: $\mathbf{k} = \sigma(\mathbf{W}_{\text{in}}^l \gamma(\mathbf{h}^{l-1} + \mathbf{a}^l))$) to
 147 outputs (“values”: $\mathbf{v} = \mathbf{v}^l$). If factual knowledge is formalized as triples (s, r, o) (subject, relation,
 148 object), one can view \mathbf{k} as encoding (s, r) and \mathbf{v} as encoding o (Meng et al., 2022; Dai et al., 2022).
 149 We adopt a locate-then-edit formulation: given keys $\mathbf{K}_1 = [\mathbf{k}_1 | \mathbf{k}_2 | \dots | \mathbf{k}_n]$ for the new associations
 150 and targets $\mathbf{V}_1 = [\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n]$, find a small perturbation Δ to a single FFN projection \mathbf{W}_{out} such
 151 that $(\mathbf{W}_{\text{out}} + \Delta)\mathbf{K}_1 \approx \mathbf{V}_1$ while preserving behavior on a preservation set with keys \mathbf{K}_0 . This yields
 152 the regularized least-squares objective
 153

$$154 \Delta = \arg \min_{\Delta} \|(\mathbf{W}_{\text{out}} + \tilde{\Delta})\mathbf{K}_1 - \mathbf{V}_1\|^2 + \|\tilde{\Delta}\mathbf{K}_0\|^2 + \lambda \|\tilde{\Delta}\|^2, \quad (2)$$

155 where $\lambda \geq 0$ controls locality and conditioning. For clarity, layer indices are omitted below since the
 156 formulation applies identically to each layer.

157 **KE in MoE LLMs.** Modern LLMs increasingly adopt MoE layers to scale capacity with near-
 158 constant FLOPs (Shazeer et al., 2017; Lepikhin et al., 2021). Given an input representation \mathbf{u} ,

162 a trainable router produces logits $s_n = \mathbf{u}^\top \mathbf{e}_n$ (\mathbf{e}_n is the routing embedding for expert n) and
163 selects a small set $S = \text{TopK}(s_{1:N}, K)$ (TopK selects K biggest element of $s_{1:N}$, and typically
164 $K \ll N$ for MoE models). Let g_n denote the router weight for expert n . The MoE block output is a
165 router-weighted mixture

$$166 \quad \mathbf{v} = \sum_{n=1}^N g_n E_n(\mathbf{u}), \quad g_n = \begin{cases} \exp(s_n) / \sum_{j \in S} \exp(s_j), & n \in S, \\ 167 \quad 0, & \text{otherwise,} \end{cases} \quad (3)$$

169 where each expert is a gated FFN

$$170 \quad E_n(\mathbf{u}) = \mathbf{W}_{\text{down}}^{(n)} \left[(\mathbf{W}_{\text{up}}^{(n)} \mathbf{u}) \odot \sigma(\mathbf{W}_{\text{gate}}^{(n)} \mathbf{u}) \right]. \quad (4)$$

172 Thus, every expert realizes its own key-value memory: the post-gate feature $\mathbf{k}_n = (\mathbf{W}_{\text{up}}^{(n)} \mathbf{u}) \odot$
173 $\sigma(\mathbf{W}_{\text{gate}}^{(n)} \mathbf{u})$ serves as a key and the linear map $\mathbf{W}_{\text{down}}^{(n)}$ returns a value $\mathbf{v}_n = \mathbf{W}_{\text{down}}^{(n)} \mathbf{k}_n$, which the
174 router aggregates into $\mathbf{v} = \sum_n g_n \mathbf{v}_n$.

175 Extending Eqn. 2 to MoE, we edit expert-specific projections $\{\mathbf{W}_n\}_{n=1}^N$ (For brevity in the editing
176 objective, we denote $\mathbf{W}_n \equiv \mathbf{W}_{\text{down}}^{(n)}$). For edit request i , let $\mathbf{k}_{i,n} \in \mathbb{R}^{d_k}$ be the post-gate key of expert
177 n , $g_{i,n} \geq 0$ its router weight, and \mathbf{v}_i the target output. We consider disjoint sets: an edit set \mathcal{E} where
178 outputs should change and a preservation set \mathcal{P} to remain stable. The MoE KE objective seeks small
179 perturbations $\{\Delta_n\}$ that (i) match targets on \mathcal{E} and (ii) preserve behavior on \mathcal{P} :

$$180 \quad \{\Delta_n\} = \arg \min_{\{\tilde{\Delta}_n\}} \sum_{i \in \mathcal{E}} \left\| \sum_{n=1}^N g_{i,n} (\mathbf{W}_n + \tilde{\Delta}_n) \mathbf{k}_{i,n} - \mathbf{v}_i \right\|^2 + \sum_{i \in \mathcal{P}} \left\| \sum_{n=1}^N g_{i,n} \tilde{\Delta}_n \mathbf{k}_{i,n} \right\|^2 + \lambda \sum_{n=1}^N \|\tilde{\Delta}_n\|^2. \quad (5)$$

181 Compared with the dense case, the router weights $\{g_{i,n}\}$ couple experts: each example influences up
182 to K experts (Top- K gating), and a naive closed-form solve would require inverting a $(Nd_k) \times (Nd_k)$
183 system—computationally prohibitive for large N . This coupling and scale motivate the expert-aware
184 optimization strategy developed in Section 4.

4 METHOD

191 In this section, we present MoEEedit, a purpose-built, expert-aware knowledge editor for MoE models.
192 Our approach tackles the unique challenges of MoE editing head-on: (i) it mitigates the routing
193 distribution shift: a key instability when naively apply KE to MoE models by reparameterizing expert
194 updates through per-expert null-space projections, and (ii) solves the resulting objective efficiently
195 with a randomized block coordinate descent (BCD) procedure that scales with the expert hidden size,
196 making large-scale MoE editing tractable.

4.1 ROUTING DISTRIBUTION SHIFT IN MOE EDITING

200 Editing expert parameters changes the MoE block outputs and, after subsequent normalization and
201 attention, perturbs the input \mathbf{u} to the router in the following MoE layers. Following the definition
202 in Section 3, let $\mathbf{E}_\ell = [\mathbf{e}_1^\ell, \dots, \mathbf{e}_N^\ell]$ collect the router embeddings at layer ℓ . The router computes
203 logits and mixture weights as $\mathbf{g}_\ell = \text{softmax}(\mathbf{s}_\ell)$ ¹, where $\mathbf{s}_\ell = \mathbf{E}_\ell^\top \mathbf{u}_\ell$. A perturbation applied in
204 layer $(\ell - 1)$ changes \mathbf{u}_ℓ by $\delta \mathbf{u}_\ell$, thus \mathbf{s}_ℓ by $\delta \mathbf{s}_\ell = \mathbf{E}_\ell^\top \delta \mathbf{u}_\ell$ and produces new routing weights
205 $\mathbf{g}'_\ell = \text{softmax}(\mathbf{s}_\ell + \delta \mathbf{s}_\ell)$. We define the routing distribution shift as $\delta \mathbf{g}_\ell = \mathbf{g}'_\ell - \mathbf{g}_\ell$. Its magnitude
206 can be quantified over a set of prompts using the Kullback-Leibler (KL) divergence or the Routing
207 Similarity (RS), which is defined as the Jaccard similarity between the pre- and post-edit Top- K
208 expert sets:

$$209 \quad \text{RS}_{\text{route}}^\ell = \frac{|S_\ell^{\text{pre}} \cap S_\ell^{\text{post}}|}{|S_\ell^{\text{pre}} \cup S_\ell^{\text{post}}|} \quad \text{or} \quad \text{KL}(\mathbf{g}_\ell \| \mathbf{g}'_\ell), \quad (6)$$

210 where S_ℓ^{pre} and S_ℓ^{post} denote the expert sets before and after editing, respectively. To characterize
211 $\delta \mathbf{g}_\ell$ analytically, we linearize the softmax around \mathbf{s}_ℓ :

$$212 \quad \mathbf{g}'_\ell \approx \mathbf{g}_\ell + J_{\text{sm}}(\mathbf{s}_\ell) \delta \mathbf{s}_\ell \quad \Rightarrow \quad \delta \mathbf{g}_\ell \approx J_{\text{sm}}(\mathbf{s}_\ell) \mathbf{E}_\ell^\top \delta \mathbf{u}_\ell, \quad (7)$$

213 ¹For clarity of analysis, we use the full softmax distribution and omit the Top- K selection, so that \mathbf{g}_ℓ remains
214 differentiable for the Jacobian-based first-order analysis.

216 Where \approx denotes a first-order Taylor approximation of the softmax function around s_ℓ , when
 217 the perturbation δs_ℓ is small, and $J_{\text{sm}}(s) = \text{diag}(\text{sm}(s)) - \text{sm}(s)\text{sm}(s)^\top$ is the Jacobian of
 218 softmax and sm is the softmax function. This relation highlights a crucial observation: only the
 219 component of δu_ℓ that lies in the span of E_ℓ influences the routing probabilities, and the Jacobian
 220 can amplify such components, potentially destabilizing expert selection. This insight motivates our
 221 design—suppressing the projection of perturbations onto $\text{span}(E_\ell)$ is key to preventing routing drift.
 222

223 4.2 PER-EXPERT NULL-SPACE PROJECTION REPARAMETERIZATION

225 As established in Section 4.1, suppressing routing drift amounts to ensuring that $\delta u_\ell \approx \mathbf{0}$ on a
 226 preservation set. To achieve this by construction, we reparameterize each expert update so that
 227 its effect vanishes along directions spanned by preservation features. Inspired by the null-space
 228 constrained approach of ALPHAEDIT for dense models, we generalize the idea to the MoE setting by
 229 computing a per-expert projector that filters out harmful update components.
 230

231 Concretely, recall from Eqn. 4 that expert n produces output $W_n k_{i,n}$ for post-activation key $k_{i,n}$.
 232 Let \mathcal{P} denote the set of preservation prompts, and collect their features for expert n into the matrix
 $K_n^0 = [k_{i,n}]_{i \in \mathcal{P}} \in \mathbb{R}^{d_k \times |\mathcal{P}|}$. The covariance $K_n^0 K_n^{0\top}$ captures the subspace of activations we
 233 wish to keep invariant. We compute its eigendecomposition, $K_n^0 K_n^{0\top} = U_n \Lambda_n U_n^\top$, and select
 234 indices $\mathcal{I}_0 = \{p : \lambda_{n,p} < \tau\}$ corresponding to (near-)null eigenvalues under a small threshold
 235 $\tau > 0$. Let $U_n^0 = U_n[:, \mathcal{I}_0]$ and define the orthogonal projector onto the complement of $\text{span}(K_n^0)$
 236 by $P_n = U_n^0 U_n^{0\top}$. Intuitively, P_n preserves only those directions orthogonal to all preservation
 237 features, so any update projected by P_n is guaranteed not to alter expert outputs on \mathcal{P} .
 238

239 We then reparameterize the expert update as $\Delta_n = \hat{\Delta}_n P_n$, where $\hat{\Delta}_n$ is the free variable to be
 240 optimized. Because $P_n k_{i,n} = \mathbf{0}$ for all $i \in \mathcal{P}$ (up to numerical error), the preservation outputs are
 241 unaffected: $\hat{\Delta}_n P_n k_{i,n} = \mathbf{0}$. Consequently, for every $i \in \mathcal{P}$ we have $\delta u_\ell(i) = \mathbf{0}$, and by Eqn. 7 the
 242 induced routing shift satisfies $\delta g_\ell(i) \approx \mathbf{0}$, minimizing Eqn. 6 on the preservation set.
 243

244 **Projected editing objective.** Let $\tilde{k}_{i,n} = P_n k_{i,n}$ denote the projected key. Substituting $\Delta_n =$
 $\hat{\Delta}_n P_n$ into the MoE objective (Eqn. 5) yields

$$245 \quad \{\hat{\Delta}_n\}_{n=1}^N = \arg \min_{\{\hat{\Delta}_n\}} \sum_{i \in \mathcal{E}} \left\| \sum_{n=1}^N g_{i,n} (W_n k_{i,n} + \hat{\Delta}_n \tilde{k}_{i,n}) - v_i \right\|^2 + \lambda \sum_{n=1}^N \|\hat{\Delta}_n\|^2, \quad (8)$$

246 where $\lambda \geq 0$ controls the update magnitude and improves locality. No separate preservation term is
 247 needed, as P_n removes all preservation components by construction.
 248

249 4.3 RANDOMIZED BLOCK COORDINATE DESCENT SOLVER

250 A naive step is to solve the projected objective in Eqn. 8 in one shot, just like what we do in dense
 251 model KE(Meng et al., 2022; 2023; Fang et al., 2025). In this subsection, we (i) expose the structure
 252 of the global closed-form solution, (ii) explain why the direct route is computationally impractical
 253 in MoE, and (iii) arrive at an efficient randomized block coordinate descent (BCD) procedure that
 254 scales with the expert hidden size.
 255

256 **The global closed-form (one shot).** Let $\hat{\Delta}_n \in \mathbb{R}^{d_m \times d_k}$ be the projected free variable for expert n ,
 257 and stack all expert updates horizontally as $\hat{\Delta} = [\hat{\Delta}_1 \cdots \hat{\Delta}_N] \in \mathbb{R}^{d_m \times (Nd_k)}$. For edit example i ,
 258 define the base residual (excluding any edits) $r_i = v_i - \sum_{n=1}^N g_{i,n} W_n k_{i,n}$, and the design vector
 $\tilde{\psi}_i = [g_{i,1} \tilde{k}_{i,1}^\top \cdots g_{i,N} \tilde{k}_{i,N}^\top]^\top \in \mathbb{R}^{Nd_k}$, where $\tilde{k}_{i,n} = P_n k_{i,n}$. Then Eqn. 8 becomes a regularized
 259 multi-output linear regression: $\min_{\hat{\Delta}} \sum_{i \in \mathcal{E}} \|\hat{\Delta} \tilde{\psi}_i - r_i\|^2 + \lambda \sum_{n=1}^N \|\hat{\Delta}_n\|^2$. Vectorizing with
 $\theta = \text{vec}(\hat{\Delta}) \in \mathbb{R}^{d_m N d_k}$ and using $\text{vec}(\hat{\Delta} \tilde{\psi}_i) = (\tilde{\psi}_i^\top \otimes I_{d_m}) \theta$, the normal equations take the
 260 compact form

$$261 \quad \left(\sum_{i \in \mathcal{E}} (\tilde{\psi}_i \tilde{\psi}_i^\top) \otimes I_{d_m} + \lambda I_{d_m N d_k} \right) \theta = \sum_{i \in \mathcal{E}} (\tilde{\psi}_i \otimes I_{d_m}) r_i, \quad (9)$$

262 with unique minimizer
 263

$$264 \quad \theta^* = M_{\text{glob}}^{-1} b_{\text{glob}} \quad \text{and} \quad \hat{\Delta}^* = \text{unvec}(\theta^*), \quad (10)$$

270 where $\mathbf{M}_{\text{glob}} = \sum_i (\tilde{\psi}_i \tilde{\psi}_i^\top) \otimes \mathbf{I}_{d_m} + \lambda \mathbf{I}$ and $\mathbf{b}_{\text{glob}} = \sum_i (\tilde{\psi}_i \otimes \mathbf{I}_{d_m}) \mathbf{r}_i$. A proof is provided in
 271 Appendix B.2.
 272

273 Although Eqn. 9 is elegant, it is not a practical editing primitive at MoE scale. First, even exploiting the
 274 Kronecker structure, the system decomposes into d_m independent problems of size $(Nd_k) \times (Nd_k)$
 275 each. For typical MoE layers, N can be 8–128 and d_k in the thousands, so factorizing d_m such systems
 276 (and re-factorizing as \mathcal{E} changes) is prohibitively expensive in both time $O(d_m(Nd_k)^3)$ and memory
 277 $O(d_m(Nd_k)^2)$. Second, while Top- K routing makes each $\tilde{\psi}_i$ K -block sparse, the accumulated
 278 Gram matrix $\sum_i \tilde{\psi}_i \tilde{\psi}_i^\top$ quickly densifies, yielding substantial fill-in under Cholesky/LDL $^\top$. These
 279 realities make the one-shot solve not suitable for fast, iterative MoE editing.

280 **From global to block: randomized BCD.** Since the insight that every expert is a natural chunk.
 281 The structure of Eqn. 8 suggests a block strategy: treat each expert as a block and optimize one block
 282 while holding the rest fixed. This reduces the problem to a sequence of well-conditioned, small ridge
 283 least-squares solves of size $d_k \times d_k$.

284 Fix $\{\hat{\Delta}_\ell\}_{\ell \neq n}$ and define the residual that excludes expert n :
 285

$$286 \mathbf{r}_i^{(-n)} = \mathbf{v}_i - \sum_{\ell \neq n} g_{i,\ell} (\mathbf{W}_\ell \mathbf{k}_{i,\ell} + \hat{\Delta}_\ell \tilde{\mathbf{k}}_{i,\ell}). \quad (11)$$

288 The subproblem in $\hat{\Delta}_n$ becomes the ridge-regularized least squares
 289

$$290 \min_{\hat{\Delta}_n} \sum_{i \in \mathcal{E}} \|\mathbf{r}_i^{(-n)} - g_{i,n} \hat{\Delta}_n \tilde{\mathbf{k}}_{i,n}\|^2 + \lambda \|\hat{\Delta}_n\|^2. \quad (12)$$

292 Its normal equations
 293

$$294 \hat{\Delta}_n \underbrace{\left(\sum_{i \in \mathcal{E}} g_{i,n}^2 \tilde{\mathbf{k}}_{i,n} \tilde{\mathbf{k}}_{i,n}^\top + \lambda \mathbf{I} \right)}_{\mathbf{M}_n \in \mathbb{R}^{d_k \times d_k}} = \underbrace{\left(\sum_{i \in \mathcal{E}} g_{i,n} \mathbf{r}_i^{(-n)} \tilde{\mathbf{k}}_{i,n}^\top \right)}_{\mathbf{B}_n \in \mathbb{R}^{d_m \times d_k}}, \quad (13)$$

298 admit the closed-form update
 299

$$300 \hat{\Delta}_n^* = \mathbf{B}_n \mathbf{M}_n^{-1} = \left(\sum_{i \in \mathcal{E}} g_{i,n} \mathbf{r}_i^{(-n)} \tilde{\mathbf{k}}_{i,n}^\top \right) \left(\sum_{i \in \mathcal{E}} g_{i,n}^2 \tilde{\mathbf{k}}_{i,n} \tilde{\mathbf{k}}_{i,n}^\top + \lambda \mathbf{I} \right)^{-1}. \quad (14)$$

302 We then write to parameters via the projection $\Delta_n^* = \hat{\Delta}_n^* \mathbf{P}_n$ and move to the next block.
 303

304 **Practicalities and complexity.** We traverse experts in randomized order and update only those
 305 active in the current minibatch, which further reduces cost. For each updated expert, forming \mathbf{M}_n
 306 costs $O(|\mathcal{E}|d_k^2)$ and inverting it costs $O(d_k^3)$, typically modest since $d_k \ll d_m$. We stream-accumulate
 307 \mathbf{B}_n and \mathbf{M}_n , cache $\tilde{\mathbf{k}}_{i,n}$, and use Cholesky with diagonal loading for numerical stability. Because
 308 Eqn. 8 is a strictly convex quadratic in $\{\hat{\Delta}_n\}$, (randomized) BCD with exact block solves converges
 309 globally under standard conditions (Tseng, 2001; Richtárik & Takáč, 2014). Empirically we see fast
 310 decrease within a few passes (≤ 10).
 311

312 5 EXPERIMENTS

314 5.1 BASELINES, DATASETS, AND METRICS

316 We evaluate two modern MoE LLMs on standard factual-editing benchmarks: **Qwen3-30B-A3B**
 317 (Yang et al., 2025) (128 experts; top-8 per token) and **GPT-OSS-20B** (Agarwal et al., 2025)
 318 (32 experts; top-4 per token). As baselines, we adapt parameter-editing methods originally designed
 319 for dense Transformers but directly applicable to MoE models: Fine-Tuning (FT) (Zhu et al., 2020),
 320 FT-L (FT with a norm constraint), AdaLoRA (Zhang et al., 2023), and UnKE (Deng et al., 2025).

321 Following prior work, we use **COUNTERFACT** (single-hop counterfactual edits introduced with
 322 MEMIT) (Meng et al., 2023) and **ZsRE** (zero-shot relation extraction) (Levy et al., 2017). Visualized
 323 dataset examples are provided in Appendix E for unfamiliar readers. We report the standard editing
 metrics (Meng et al., 2022; 2023; Mitchell et al., 2022a): (i) **Efficacy** (edit success on edited prompts),

324 Table 1: Sequential knowledge editing on MoE LLMs. *Eff.*, *Gen.*, *Spe.* denote Efficacy, Generalization,
 325 Specificity; *Uti.* is their mean (higher is better \uparrow). Best in **bold**, second-best underlined.

327 328 329 330 331 332 333 334 335 336 337 338 339 340	327 328 329 330 331 332 333 334 335 336 337 338 339 340	327 328 329 330 331 332 333 334 335 336 337 338 339 340	COUNTERFACT				ZsRE			
			Eff. \uparrow	Gen. \uparrow	Spe. \uparrow	Uti. \uparrow	Eff. \uparrow	Gen. \uparrow	Spe. \uparrow	Uti. \uparrow
Qwen3-30B-A3B	Pre-edited		13.30 \pm 0.34	15.10 \pm 0.31	84.45 \pm 0.24	37.62	41.30 \pm 0.29	40.50 \pm 0.28	40.91 \pm 0.27	40.90
	FT		80.70 \pm 0.39	63.95 \pm 0.43	41.44 \pm 0.39	62.03	6.44 \pm 0.14	6.13 \pm 0.14	2.15 \pm 0.06	4.91
	FT-L		82.40 \pm 0.38	22.75 \pm 0.33	<u>71.48</u> \pm 0.25	58.88	<u>44.19</u> \pm 0.29	<u>42.46</u> \pm 0.29	<u>41.92</u> \pm 0.27	<u>42.86</u>
	AdaLoRA		51.90 \pm 0.50	49.75 \pm 0.40	48.10 \pm 0.26	49.92	3.66 \pm 0.09	3.60 \pm 0.09	4.68 \pm 0.10	3.98
	UnKE		<u>89.30</u> \pm 0.31	<u>82.85</u> \pm 0.33	48.15 \pm 0.33	<u>73.43</u>	31.43 \pm 0.28	29.78 \pm 0.27	25.30 \pm 0.23	28.84
	MoEEedit		99.30 \pm 0.08	94.10 \pm 0.20	80.97 \pm 0.25	91.46	84.47 \pm 0.22	78.01 \pm 0.28	42.82 \pm 0.28	68.43
GPT-OSS-20B	Pre-edited		11.80 \pm 0.32	14.70 \pm 0.31	84.53 \pm 0.24	37.01	33.20 \pm 0.28	32.14 \pm 0.28	28.02 \pm 0.00	31.12
	FT		83.40 \pm 0.37	58.40 \pm 0.42	55.72 \pm 0.33	<u>65.84</u>	25.57 \pm 0.28	23.41 \pm 0.26	17.61 \pm 0.21	22.20
	FT-L		73.80 \pm 0.44	43.10 \pm 0.48	59.75 \pm 0.33	<u>58.88</u>	32.75 \pm 0.29	33.09 \pm 0.30	30.06 \pm 0.26	31.97
	AdaLoRA		62.40 \pm 0.48	<u>55.00</u> \pm 0.42	43.65 \pm 0.34	53.68	43.46 \pm 0.30	42.96 \pm 0.30	33.60 \pm 0.24	40.01
	UnKE		78.00 \pm 0.41	44.40 \pm 0.42	<u>73.91</u> \pm 0.28	65.44	<u>46.58</u> \pm 0.31	<u>43.99</u> \pm 0.31	31.40 \pm 0.26	40.66
	MoEEedit		95.90 \pm 0.20	44.10 \pm 0.43	81.09 \pm 0.25	73.70	81.68 \pm 0.25	68.44 \pm 0.34	<u>32.55</u> \pm 0.26	60.89

(ii) **Generalization** (success on paraphrases and lightly perturbed contexts), and (iii) **Specificity** (locality on unrelated controls). Unless stated otherwise, we perform sequential batched edits. And to summarize the overall trade-off, we additionally report **Utility** as the mean of the three metrics. See Appendix A for full calculation details.

5.2 MAIN RESULTS ON KNOWLEDGE EDITING

We perform 1,000 sequential edits on each dataset (COUNTERFACT and ZsRE) with a batch size of 50 edits for all methods. Table 1 summarizes results on Qwen3-30B-A3B and GPT-OSS-20B.

As shown in Table 1, MoEEedit consistently delivers outstanding results. On COUNTERFACT, it achieves over 90 efficacy on both backbones, substantially outperforming UnKE and FT-L in generalization and specificity, respectively. On GPT-OSS-20B, although FT attains slightly higher generalization, MoEEedit still provides the best overall balance, with clear gains in efficacy (+12.5) and specificity (+7.2). On ZsRE, MOEEEDIT also demonstrates large improvements in efficacy and generalization—over +30 points against the strongest baselines—while maintaining competitive specificity (within 1 point of AdaLoRA). These results highlight that MOEEEDIT offers the most favorable trade-off between accuracy and locality across models and datasets.

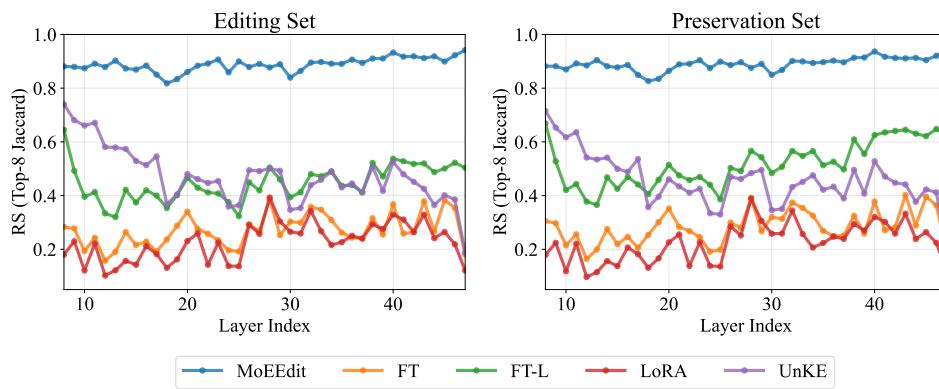
5.3 MAIN RESULTS ON ROUTING DISTRIBUTION SHIFT

We analyze routing distribution shifts under sequential editing. Similar to Section 5.2, we perform 1,000 edits with a batch size of 50. To control for depth, all methods are constrained to update at most the top editing layer (layer 7). Specifically, MoEEedit applies updates across layers {3,4,5,6,7} using BCD, while FT, FT-L, UnKE, and AdaLoRA are restricted to layer 7. We evaluate on Qwen3-30B-A3B/COUNTERFACT and report the routing-similarity (RS) metric between pre- and post-edit Top- K expert sets (Eqn. 6), averaged over windows of 10 layers, for both the editing and preservation sets. The editing set consists of the 1,000 edited samples, while the preservation set is formed by sampling an equal number of untouched examples from the remaining dataset. Table 2 summarizes the results.

Projection suppresses routing drift and preserves stability. As shown in Table 2, methods directly extended from dense models exhibit substantial routing drift, whereas MoEEedit maintains consistently high routing stability (average RS > 88 across all layer ranges for both sets). Considering that Qwen3-30B-A3B activates 8 experts per token, the average number of non-overlapping experts before and after editing is close to one, which is negligible. This observation aligns with the heavy-tailed nature of routing: small perturbations primarily affect low-weight expert selections that contribute little to the output. The average KL divergence between pre- and post-edit routing distributions for MoEEedit is only 0.02, indicating minimal shift. Furthermore, Figure 2 plots routing similarity across layers for both editing and preservation sets. AdaLoRA and FT exhibit the lowest RS values across layers due

378 Table 2: Routing distribution shift on Qwen3-30B-A3B. Values are Jaccard similarity ($\text{RS} \uparrow$) between pre- and
 379 post-edit routing distributions. Higher is better. Best results are in **bold**, second-best are underlined.

381 Method	382 Model	383 Editing Set RS}↑			384 Preservation Set RS}↑		
		385 Lay. 11–20	386 Lay. 21–30	387 Lay. 31–40	388 Lay. 11–20	389 Lay. 21–30	390 Lay. 31–40
384 FT	385 Qwen3-30B-A3B	23.57	26.58	29.98	24.72	27.45	30.97
385 FT-L		47.01	<u>51.20</u>	<u>53.68</u>	48.80	<u>50.17</u>	<u>53.45</u>
386 AdaLoRA		16.63	24.11	27.00	16.38	23.84	26.60
387 UnKE		<u>52.46</u>	44.12	44.80	<u>49.90</u>	41.91	43.84
388 MoEEdit		86.62	88.16	89.93	87.02	88.55	90.22



404 Figure 2: Routing similarity (RS) before and after editing on the editing and preservation sets.
 405 MoEEdit achieves consistently high RS, demonstrating strong routing stability.

406 to their unconstrained updates that heavily disrupt routing patterns. In contrast, MoEEdit preserves
 407 routing stability across all layers and consistently outperforms all baselines.

409 5.4 ABLATION STUDY

411 **Effect of Projection.** We
 412 ablate the projection matrix in
 413 MoEEdit to evaluate its contribu-
 414 tion to routing stability. As
 415 shown in Table 3, removing
 416 projection reduces RS by an
 417 average of 14.81 points on the
 418 editing set and 15.21 on the
 419 preservation set. The KL diver-
 420 gence also increases from 0.02
 421 to 0.0834, confirming that pro-
 422 jection is critical for suppress-
 423 ing routing drift. These results
 424 validate the projection design introduced in Section 4.2.

425 Table 3: Ablation on the projection matrix. Removing projection signifi-
 426 cantly weakens routing stability.

427 Method	428 Set	429 RS}↑		
		430 Lay. 11–20	431 Lay. 21–30	432 Lay. 31–40
433 MoEEdit	434 Edit.	86.62	88.16	89.93
435 MoEEdit (w/o Proj)		73.64	72.90	73.75
436 MoEEdit	437 Pres.	87.02	88.55	90.22
438 MoEEdit (w/o Proj)		73.59	73.08	73.50

439 **BCD Solver vs. Closed-form Solver.** We compare the proposed block coordinate descent (BCD)
 440 solver with a naive closed-form solution. The latter requires inverting large matrices that scale with
 441 the number of experts and constraints, making it computationally infeasible at realistic scales. To
 442 enable comparison, we construct a controlled synthetic batch and evaluate (i) convergence and (ii)
 443 scalability. Results are shown in Figure 3.

444 Figure 3 illustrates two perspectives on our BCD solver: (a) reconstruction error convergence under
 445 varying λ , and (b) runtime scalability with respect to the number of experts. Smaller λ values (e.g.,
 446 $10^{-4}, 10^{-3}$) achieve lower error, whereas larger values converge to higher error floors. Panel (b)

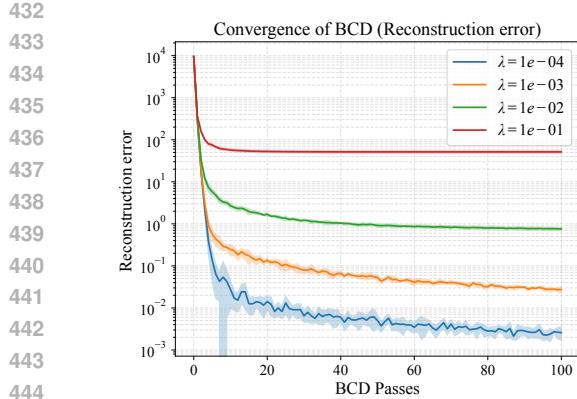
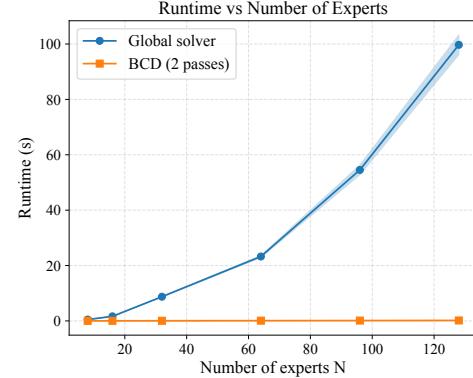
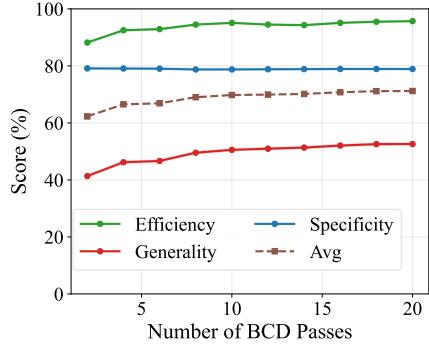


Figure 3: Comparison of solvers. (a) BCD achieves fast convergence with suitable λ . (b) BCD scales efficiently with the number of experts, while the closed-form solver quickly becomes infeasible.

shows that the closed-form solver exhibits near-quadratic runtime growth and becomes infeasible beyond $N \approx 60$, while BCD maintains nearly constant runtime up to 128 experts. Thus, BCD scales linearly with hidden size rather than the total number of experts, ensuring practical efficiency.

Number of BCD Passes. We vary the number of BCD passes $\in \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ while keeping all other settings fixed, and evaluate efficacy, generality, specificity, and their harmonic mean. As shown in Figure 4, as the number of BCD passes increases, both efficacy and generality rise rapidly in the early phase and then plateau, reflecting diminishing returns beyond moderate passes. Specificity shows a more stable, gradual upward trend. Since each subproblem is convex, early passes remove dominant residuals, while later passes only refine small residuals, yielding slower gains. This behavior suggests that a small number of passes (e.g., 6–10) already achieves a favorable trade-off between performance and efficiency. Beyond this range, additional passes bring only marginal improvements while increasing runtime, highlighting the practicality of moderate BCD iterations in large-scale editing scenarios.



In this work, we presented MoEEedit, a routing-stable knowledge editing framework tailored for Mixture-of-Experts (MoE) LLMs. Our approach addresses the unique challenges of computational cost, inter-expert coupling, and routing drift by combining per-expert null-space projection with an efficient block coordinate descent solver. Extensive experiments on COUNTERFACT and ZsRE benchmarks demonstrate that MoEEedit achieves high efficacy, strong generalization, and routing stability, all with superior efficiency compared to prior methods.

Beyond empirical performance, our findings highlight several broader insights. First, expert-aware design is crucial: naive adaptations of dense-model editors to MoEs fail to maintain stability and efficiency. Second, routing stability emerges as a central factor in editing sparse architectures, where even small perturbations can cascade through routing distributions. By explicitly controlling for this effect, MoEEedit offers a principled solution that preserves locality without sacrificing scalability.

In summary, MoEEedit establishes a robust foundation for precise and scalable knowledge editing in sparse architectures, advancing the state of the art and paving the way for more adaptive and trustworthy MoE-based language models.

486 REFERENCES

487

- 488 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K.
489 Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao, Nivedita Brett,
490 Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark Chen, Enoch
491 Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad Fomenko,
492 Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher, Lukas Gross,
493 Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar, Haitang Hu,
494 Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Dominik Kundel,
495 Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park Lennon, Scott
496 Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily, Liu, Jiancheng
497 Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath, Scott McKinney,
498 Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles, Alexander Neitz, Alex
499 Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano, Giambattista Parascandolo,
500 Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry Pimenov, Michelle Pokrass,
501 Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Ras, Hongyu Ren, Kimmy Richardson, David
502 Robinson, Bob Rotstet, Hadi Salman, Suvansh Sanjeev, Max Schwarzer, D. Sculley, Harshit
503 Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey, Zhiqing Sun, Philippe Tillet,
504 Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin Wang, Miles Wang, Olivia
505 Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney, Hannah Wong, Lin Yang,
506 Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting Zhan, Cyril Zhang,
507 Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b gpt-oss-20b model card, 2025. URL
508 <https://arxiv.org/abs/2508.10925>.
- 509 Damai Dai, Li Dong, Yaru Hao, Dian Sui, Songhao Piao, Longyue Dou, Weinan Wang, and Furu
510 Wei. Knowledge neurons in pretrained transformers. In *Proceedings of the 60th Annual Meeting*
511 of the Association for Computational Linguistics (ACL), pp. 8493–8502, 2022. doi: 10.18653/v1/2022.acl-long.584.
- 512 Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding, Huawei Shen, and Xueqi Cheng. Everything
513 is editable: Extend knowledge editing to unstructured data in large language models. In *ICLR*,
514 2025. URL <https://openreview.net/forum?id=X5r05VytB>.
- 515 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
516 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
517 Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellar, Kevin Robinson, Kathleen
518 Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
519 and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Kamalika
520 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
521 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
522 *Proceedings of Machine Learning Research*, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
523 <https://proceedings.mlr.press/v162/du22c.html>.
- 524 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
525 and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models.
526 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HvSytvg3Jh>.
- 527 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
528 key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wenthau
529 Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language
530 Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November 2021.
531 Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL <https://aclanthology.org/2021.emnlp-main.446/>.
- 532 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
533 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
534 computation and automatic sharding. In *International Conference on Learning Representations*,
535 2021. URL <https://openreview.net/forum?id=qrwe7XHTmYb>.
- 536 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
537 reading comprehension. In Roger Levy and Lucia Specia (eds.), *Proceedings of the 21st Conference*

-
- 540 *on Computational Natural Language Learning (CoNLL 2017)*, pp. 333–342, Vancouver, Canada,
541 August 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL
542 <https://aclanthology.org/K17-1034/>.
- 543 Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
544 editing in a transformer. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(17):
545 18564–18572, Mar. 2024. doi: 10.1609/aaai.v38i17.29818. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29818>.
- 546 Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
547 catastrophic forgetting in large language models during continual fine-tuning. *IEEE Transactions*
548 *on Audio, Speech and Language Processing*, 33:3776–3786, 2025. doi: 10.1109/TASLPRO.2025.
549 3606231.
- 550 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
551 tions in gpt. In *Proceedings of the 36th International Conference on Neural Information Processing*
552 Systems, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- 553 Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
554 memory in a transformer. In *The Eleventh International Conference on Learning Representations*,
555 2023. URL <https://openreview.net/forum?id=MkbcAHYgyS>.
- 556 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
557 model editing at scale. In *International Conference on Learning Representations*, 2022a. URL
558 <https://openreview.net/forum?id=0DcZxeWfOPT>.
- 559 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
560 based model editing at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
561 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine*
562 *Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 15817–15831. PMLR,
563 17–23 Jul 2022b. URL <https://proceedings.mlr.press/v162/mitchell22a.html>.
- 564 Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
565 and Alexander Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang,
566 Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods*
567 *in Natural Language Processing and the 9th International Joint Conference on Natural Language*
568 *Processing (EMNLP-IJCNLP)*, pp. 2463–2473, Hong Kong, China, November 2019. Association
569 for Computational Linguistics. doi: 10.18653/v1/D19-1250. URL <https://aclanthology.org/D19-1250/>.
- 570 Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
571 methods for minimizing a composite function. *Mathematical Programming*, 144:1–38, 2014.
- 572 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
573 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
574 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=B1ckMDq1g>.
- 575 Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowl-
576 edgeable are large language models (LLMs)? A.K.A. will LLMs replace knowledge graphs?
577 In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Confer-
578 ence of the North American Chapter of the Association for Computational Linguistics: Human*
579 *Language Technologies (Volume 1: Long Papers)*, pp. 311–325, Mexico City, Mexico, June
580 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.18. URL
581 <https://aclanthology.org/2024.naacl-long.18/>.
- 582 Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
583 *Journal of Optimization Theory and Applications*, 109(3):475–494, 2001.
- 584 Renzhi Wang and Piji Li. LEMoE: Advanced mixture of experts adaptor for lifelong model editing
585 of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
586 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.

-
- 594 2551–2575, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
595 doi: 10.18653/v1/2024.emnlp-main.149. URL <https://aclanthology.org/2024.emnlp-main.149/>.
- 596
- 597 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
598 editing for large language models: A survey. *ACM Comput. Surv.*, 57(3), November 2024. ISSN
599 0360-0300. doi: 10.1145/3698590. URL <https://doi.org/10.1145/3698590>.
- 600
- 601 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
602 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
603 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
604 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
605 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
606 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
607 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
608 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
609 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
- 610 Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie
611 Gou, Xi Chen, and Huajun Chen. Instructedit: instruction-based knowledge editing for large
612 language models. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
613 Intelligence, IJCAI '24*, 2024a. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/733. URL
614 <https://doi.org/10.24963/ijcai.2024/733>.
- 615 Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang,
616 Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Huajun
617 Chen. Oneedit: A neural-symbolic collaboratively knowledge editing system, 2024b. URL
618 <https://arxiv.org/abs/2409.07497>.
- 619
- 620 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
621 Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
622 Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
623 Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024c.
624 URL <https://arxiv.org/abs/2401.01286>.
- 625 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
626 Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In
627 *International Conference on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=lq62uWRJjiY>.
- 628
- 629 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we
630 edit factual knowledge by in-context learning? In *The 2023 Conference on Empirical Methods in
631 Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=hsjQHAM8MV>.
- 632
- 633 Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen. MQuAKE:
634 Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor,
635 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Meth-
636 ods in Natural Language Processing*, pp. 15686–15702, Singapore, December 2023. Association
637 for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL <https://aclanthology.org/2023.emnlp-main.971/>.
- 638
- 639 Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, and
640 Sanjiv Kumar. Modifying memories in transformer models. *arXiv preprint arXiv:2012.00363*,
641 2020. URL <https://arxiv.org/abs/2012.00363>.
- 642
- 643
- 644
- 645
- 646
- 647

648 **A METRICS**
649

650 In this section, we introduce the evaluation metrics we use for COUNTERFACT and ZsRE
651

652 **A.1 ZsRE EVALUATION METRICS**
653

654 Building on prior studies, we define for each ZsRE metric a large language model \mathcal{M} , a factual
655 prompt (s_i, r_i) , a revised target output y_i , and the model's initial output \hat{y}_i :

656 **Effectiveness.** Effectiveness is quantified as the average top-1 accuracy on edited inputs:
657

658
$$\mathbb{E}_i \left[\mathbf{1} \left(y_i = \arg \max_y \Pr_{\mathcal{M}}(y | (s_i, r_i)) \right) \right]. \quad (15)$$

659

660 **Generalization.** This measures the ability of the model to perform correctly on paraphrased
661 prompts $\tilde{N}(s_i, r_i)$. It is computed as the average accuracy over such rephrasings:
662

663
$$\mathbb{E}_i \left[\mathbf{1} \left(y_i = \arg \max_y \Pr_{\mathcal{M}}(y | \tilde{N}(s_i, r_i)) \right) \right]. \quad (16)$$

664

665 **Specificity.** Specificity ensures that modifications do not affect unrelated cases $\Omega(s_i, r_i)$. It is
666 defined as:
667

668
$$\mathbb{E}_i \left[\mathbf{1} \left(\hat{y}_i = \arg \max_y \Pr_{\mathcal{M}}(y | \Omega(s_i, r_i)) \right) \right]. \quad (17)$$

669

670 **A.2 COUNTERFACTUAL EVALUATION METRICS**
671

672 Similarly, we introduce Counterfactual metrics for \mathcal{M} under the same setup (s_i, r_i) with target y_i
673 and original \hat{y}_i :

674 **Effectiveness (success ratio).** The share of cases where y_i is assigned higher probability than \hat{y}_i
675 under (s_i, r_i) :

676
$$\mathbb{E}_i \left[\Pr_{\mathcal{M}}(y_i | (s_i, r_i)) > \Pr_{\mathcal{M}}(\hat{y}_i | (s_i, r_i)) \right]. \quad (18)$$

677

678 **Generalization (paraphrase success).** The proportion of paraphrased prompts $\tilde{N}(s_i, r_i)$ where y_i
679 has higher likelihood than \hat{y}_i :

680
$$\mathbb{E}_i \left[\Pr_{\mathcal{M}}(y_i | \tilde{N}(s_i, r_i)) > \Pr_{\mathcal{M}}(\hat{y}_i | \tilde{N}(s_i, r_i)) \right]. \quad (19)$$

681

682 **Specificity (neighborhood success).** For neighborhood prompts $\Omega(s_i, r_i)$ that involve related but
683 distinct entities, specificity is the fraction of cases where y_i is favored over \hat{y}_i :

684
$$\mathbb{E}_i \left[\Pr_{\mathcal{M}}(y_i | \Omega(s_i, r_i)) > \Pr_{\mathcal{M}}(\hat{y}_i | \Omega(s_i, r_i)) \right]. \quad (20)$$

685

686 **B PROOF & KNOWLEDGE EDITING**
687

688 **B.1 GENERAL FRAMEWORK OF LOCATE-THEN-EDIT**
689

690 Knowledge editing seeks to precisely revise a model's behavior to recall a new fact (s, r, o^*) in place
691 of an obsolete or incorrect one (s, r, o) , conditioned on a prompt $p(s, r)$. While various techniques
692 exist, the dominant *locate-then-edit* paradigm (Meng et al., 2022; 2023) typically decomposes the
693 process into three distinct phases: locating the mediating parameters, computing the optimal local
694 update targets, and solving for the new weights. We formalize this process below using notation
695 consistent with Section 3.

696 **Step 1: Causal Localization.** The initial phase identifies the specific layer l and module (e.g., a
697 dense FFN or specific experts in an MoE layer) that mediate the retrieval of the factual association.
698 This is commonly achieved via *Causal Tracing* (Meng et al., 2022). By corrupting hidden states
699

702 with noise to degrade the model’s prediction and subsequently restoring states at specific layers, one
 703 can quantify the *Indirect Effect* (IE) of each layer on the correct output probability. The layer l^*
 704 exhibiting the maximal causal influence is selected as the target for editing:
 705

$$706 \quad l^* = \arg \max_l \text{IE}(l). \quad (21)$$

708 **Step 2: Acquiring the Target Output Vector (v^*).** Once the target layer l^* is identified, we
 709 must determine the optimal output representation required to successfully trigger the target token o^* .
 710 Viewing the layer as a linear associative memory, it maps a key k (input features) to a value v (output
 711 features). The objective is to identify a new output vector v^* such that, if the layer were to produce
 712 v^* , the final model prediction would be o^* .

713 This step is formulated as an optimization problem over the hidden state vector rather than the
 714 model parameters. Let $G(v)$ denote the function mapping the layer output v to the final model logits.
 715 We freeze the model parameters and optimize a perturbation δ to the original output v , aiming to
 716 maximize the log-likelihood of the target object o^* :

$$717 \quad v^* = v + \delta^*, \quad \text{where} \quad \delta^* = \arg \min_{\delta} -\log \mathbb{P}_{\mathcal{M}}(o^* \mid \text{do}(v \leftarrow v + \delta)). \quad (22)$$

719 Here, the $\text{do}(\cdot)$ operator signifies a causal intervention where the layer output is manually set to
 720 $v + \delta$. A regularization term (e.g., KL divergence) is typically included in the objective to minimize
 721 prediction drift for the subject s and relation r , ensuring the edit remains semantically consistent.
 722 This process effectively translates the semantic edit target (the token o^*) into a vector-space target v^* .
 723

724 **Step 3: Updating Parameters.** The final step is to update the projection weights W (corresponding
 725 to W_{out} in dense models or $\{W_n\}$ in MoE experts) to map the specific input key k to the new target v^* ,
 726 while preserving unrelated associations. This is formulated as a constrained least-squares problem.

727 Let \mathcal{E} denote the set of edit examples (new facts) and \mathcal{P} denote the set of preservation examples
 728 (invariant knowledge). We require $Wk_i \approx v_i^*$ for edits $i \in \mathcal{E}$, and $Wk_j \approx v_j$ for preservation
 729 samples $j \in \mathcal{P}$. The optimal update \hat{W} minimizes the aggregated error:

$$730 \quad \hat{W} = \arg \min_W \sum_{i \in \mathcal{E}} \|Wk_i - v_i^*\|^2 + \sum_{j \in \mathcal{P}} \|Wk_j - v_j\|^2. \quad (23)$$

733 Dense methods such as ROME and MEMIT solve this globally via a closed-form solution involving
 734 the covariance matrix of the keys. As discussed in Section 4, our proposed MoEEedit adapts this
 735 general objective to address the unique constraints of Mixture-of-Experts architectures.
 736

737 B.2 SUPPLEMENTARY PROOF

739 B.2.1 PROOF OF THE GLOBAL CLOSED-FORM (ONE-SHOT) SOLUTION

740 Let $\{\tilde{k}_{i,n}\}_{i \in \mathcal{E}, n \in [N]}$ be the projected keys and $g_{i,n} \geq 0$ the router weights. For each edit example
 741 $i \in \mathcal{E}$, define the base residual
 742

$$743 \quad \mathbf{r}_i = \mathbf{v}_i - \sum_{n=1}^N g_{i,n} \mathbf{W}_n \mathbf{k}_{i,n}, \quad (24)$$

746 and the design vector

$$747 \quad \tilde{\psi}_i = [g_{i,1} \tilde{k}_{i,1}^\top \cdots g_{i,N} \tilde{k}_{i,N}^\top]^\top \in \mathbb{R}^{Nd_k}. \quad (25)$$

749 Stack the expert updates as $\hat{\Delta} = [\hat{\Delta}_1 \cdots \hat{\Delta}_N] \in \mathbb{R}^{d_m \times (Nd_k)}$. The projected objective
 750

$$751 \quad \min_{\hat{\Delta}} \sum_{i \in \mathcal{E}} \|\hat{\Delta} \tilde{\psi}_i - \mathbf{r}_i\|_2^2 + \lambda \sum_{n=1}^N \|\hat{\Delta}_n\|_F^2 \quad (26)$$

754 has the unique minimizer

$$755 \quad \theta^* = \mathbf{M}_{\text{glob}}^{-1} \mathbf{b}_{\text{glob}}, \quad \hat{\Delta}^* = \text{unvec}(\theta^*), \quad (27)$$

756 with

$$758 \quad \mathbf{M}_{\text{glob}} = \left(\sum_{i \in \mathcal{E}} \tilde{\psi}_i \tilde{\psi}_i^\top \right) \otimes \mathbf{I}_{d_m} + \lambda \mathbf{I}_{d_m N d_k}, \quad \mathbf{b}_{\text{glob}} = \sum_{i \in \mathcal{E}} (\tilde{\psi}_i \otimes \mathbf{I}_{d_m}) \mathbf{r}_i. \quad (28)$$

760 Let $m := |\mathcal{E}|$ and define the data matrices

$$762 \quad \mathbf{\Psi} = [\tilde{\psi}_1 \cdots \tilde{\psi}_m] \in \mathbb{R}^{N d_k \times m}, \quad \mathbf{R} = [\mathbf{r}_1 \cdots \mathbf{r}_m] \in \mathbb{R}^{d_m \times m}. \quad (29)$$

764 The objective becomes

$$765 \quad \min_{\hat{\Delta} \in \mathbb{R}^{d_m \times (N d_k)}} \|\hat{\Delta} \mathbf{\Psi} - \mathbf{R}\|_F^2 + \lambda \|\hat{\Delta}\|_F^2. \quad (30)$$

767 Taking derivatives gives

$$768 \quad \nabla_{\hat{\Delta}} = 2(\hat{\Delta} \mathbf{\Psi} - \mathbf{R}) \mathbf{\Psi}^\top + 2\lambda \hat{\Delta}. \quad (31)$$

770 Setting this to zero yields

$$771 \quad \hat{\Delta} (\mathbf{\Psi} \mathbf{\Psi}^\top + \lambda \mathbf{I}_{N d_k}) = \mathbf{R} \mathbf{\Psi}^\top. \quad (32)$$

772 Using $\text{vec}(\mathbf{X} \mathbf{A}) = (\mathbf{A}^\top \otimes \mathbf{I}) \text{vec}(\mathbf{X})$, Eqn. 32 becomes

$$774 \quad \left((\mathbf{\Psi} \mathbf{\Psi}^\top) \otimes \mathbf{I}_{d_m} + \lambda \mathbf{I}_{d_m N d_k} \right) \boldsymbol{\theta} = \text{vec}(\mathbf{R} \mathbf{\Psi}^\top), \quad (33)$$

776 where $\boldsymbol{\theta} = \text{vec}(\hat{\Delta})$. Noting that $\text{vec}(\mathbf{R} \mathbf{\Psi}^\top) = \sum_{i=1}^m (\tilde{\psi}_i \otimes \mathbf{I}_{d_m}) \mathbf{r}_i$, we obtain the system in the
777 theorem statement.

778 $\mathbf{M}_{\text{glob}} = (\mathbf{\Psi} \mathbf{\Psi}^\top) \otimes \mathbf{I}_{d_m} + \lambda \mathbf{I}$ is positive definite for $\lambda > 0$, hence invertible. The minimizer is
779 unique.

780 Thus $\boldsymbol{\theta}^* = \mathbf{M}_{\text{glob}}^{-1} \mathbf{b}_{\text{glob}}$, and reshaping yields $\hat{\Delta}^* = \text{unvec}(\boldsymbol{\theta}^*)$.

783 B.2.2 DETAILED DERIVATION OF THE SINGLE-EXPERT SUBPROBLEM

784 Starting from the projected MoE objective (Eqn. 8),

$$786 \quad \min_{\{\hat{\Delta}_n\}_{n=1}^N} \sum_{i \in \mathcal{E}} \left\| \sum_{n=1}^N g_{i,n} (\mathbf{W}_n \mathbf{k}_{i,n} + \hat{\Delta}_n \tilde{\mathbf{k}}_{i,n}) - \mathbf{v}_i \right\|^2 + \lambda \sum_{n=1}^N \|\hat{\Delta}_n\|^2, \quad (34)$$

789 we apply block coordinate descent (BCD) over experts, updating one expert at a time and keeping the
790 others fixed. For a fixed expert n , collect all terms that do *not* involve $\hat{\Delta}_n$ into the external residual

$$792 \quad \mathbf{r}_i^{(-n)} = \mathbf{v}_i - \sum_{\ell \neq n} g_{i,\ell} (\mathbf{W}_\ell \mathbf{k}_{i,\ell} + \hat{\Delta}_\ell \tilde{\mathbf{k}}_{i,\ell}), \quad (35)$$

794 and substitute Eqn. 35 back into Eqn. 34. The single-expert subproblem for $\hat{\Delta}_n$ is the ridge-regularized
795 least-squares

$$797 \quad \min_{\hat{\Delta}_n} \sum_{i \in \mathcal{E}} \left\| \mathbf{r}_i^{(-n)} - g_{i,n} \hat{\Delta}_n \tilde{\mathbf{k}}_{i,n} \right\|^2 + \lambda \|\hat{\Delta}_n\|^2. \quad (36)$$

799 Introduce compact notation

$$801 \quad X = \hat{\Delta}_n, \quad x_i = \tilde{\mathbf{k}}_{i,n}, \quad y_i = \mathbf{r}_i^{(-n)}, \quad g_i = g_{i,n}, \quad (37)$$

802 so that

$$803 \quad f(X) = \sum_{i \in \mathcal{E}} \|y_i - g_i X x_i\|^2 + \lambda \|X\|^2. \quad (38)$$

805 Using the standard matrix derivative identity² yields

$$807 \quad \nabla f(X) = -2 \sum_i g_i y_i x_i^\top + 2 \sum_i g_i^2 X x_i x_i^\top + 2\lambda X. \quad (39)$$

809 ²For vectors a, b and matrix X , $\partial \|a - Xb\|^2 / \partial X = -2(a - Xb)b^\top$.

810 Setting the gradient to zero gives the normal equations
 811

$$812 X \left(\sum_i g_i^2 x_i x_i^\top + \lambda I \right) = \sum_i g_i y_i x_i^\top. \quad (40)$$

814 Restoring expert-specific symbols, define
 815

$$816 \mathbf{M}_n \triangleq \sum_{i \in \mathcal{E}} g_{i,n}^2 \tilde{\mathbf{k}}_{i,n} \tilde{\mathbf{k}}_{i,n}^\top + \lambda I, \quad \mathbf{B}_n \triangleq \sum_{i \in \mathcal{E}} g_{i,n} \mathbf{r}_i^{(-n)} \tilde{\mathbf{k}}_{i,n}^\top. \quad (41)$$

818 Then Eqn. 40 becomes $\hat{\Delta}_n \mathbf{M}_n = \mathbf{B}_n$, with the unique minimizer
 819

$$820 \hat{\Delta}_n^* = \mathbf{B}_n \mathbf{M}_n^{-1}. \quad (42)$$

822 Since the actual expert update is parameterized via the projection $\Delta_n = \hat{\Delta}_n \mathbf{P}_n$ (Sec. 4.2), the written
 823 update is

$$824 \Delta_n^* = \hat{\Delta}_n^* \mathbf{P}_n. \quad (43)$$

825 **Why \mathbf{M}_n is invertible (positive definite).** By definition,

$$827 \mathbf{M}_n = \sum_{i \in \mathcal{E}} \underbrace{g_{i,n}^2 \tilde{\mathbf{k}}_{i,n} \tilde{\mathbf{k}}_{i,n}^\top}_{\text{Gram matrix } \mathbf{G}_n \succeq 0} + \lambda I_{d_k}. \quad (44)$$

831 For any nonzero $z \in \mathbb{R}^{d_k}$,

$$832 z^\top \mathbf{M}_n z = \sum_{i \in \mathcal{E}} g_{i,n}^2 (z^\top \tilde{\mathbf{k}}_{i,n})^2 + \lambda \|z\|^2. \quad (45)$$

835 Since $\lambda > 0$, then $z^\top \mathbf{M}_n z \geq \lambda \|z\|^2 > 0$ for all $z \neq 0$, so $\mathbf{M}_n \succ 0$ and is invertible. Moreover,
 836 $\lambda_{\min}(\mathbf{M}_n) \geq \lambda$, which ensures good conditioning (Tikhonov regularization). Because the projected
 837 keys are $\tilde{\mathbf{k}}_{i,n} = \mathbf{P}_n \mathbf{k}_{i,n}$ with an idempotent projector \mathbf{P}_n , they lie in $\text{range}(\mathbf{P}_n)$. When $\lambda > 0$, \mathbf{M}_n
 838 remains strictly positive definite *on the full ambient space* (not only on $\text{range}(\mathbf{P}_n)$), guaranteeing a
 839 unique closed-form update 42.

841 C EXPERIMENTS SETUP

843 **Model Configuration** We evaluate our method on two Mixture-of-Experts (MoE) models: Qwen3-
 844 30B-A3B³ and GPT-OSS-20B⁴. Qwen3-30B-A3B contains 128 experts per layer with the top-8
 845 experts activated per token, resulting in approximately 3.3B active parameters during inference. The
 846 latter, GPT-OSS-20B, features 32 experts per layer with the top-4 experts activated, corresponding to
 847 approximately 3.6B active parameters.

848 **Hardware and Quantization** All experiments are conducted on a single node equipped with an
 849 NVIDIA H20 GPU. To balance precision and memory constraints, we utilize the BF16 format for
 850 model weights, while optimization is performed in FP32 to ensure numerical stability.

851 **Fine-Tuning (FT)** We evaluate both standard Fine-Tuning (FT) and Constrained Fine-Tuning
 852 (FT-L). The primary distinction is that FT-L imposes a norm constraint ε on the weight update. For
 853 both Qwen3-30B-A3B and GPT-OSS-20B, we set $\varepsilon = 1 \times 10^{-3}$ for FT-L. We adopt a learning rate
 854 of 1×10^{-3} for both models. Updates are applied to layer 30 for Qwen3-30B-A3B and layer 0 for
 855 GPT-OSS-20B. For both methods, we target the `mlp.experts.down_proj` module. We train for 25
 856 epochs, setting both weight decay and the KL divergence factor to 0.

857 **UnKE** As UnKE employs a two-stage structuring process, we configure the models as follows:
 858 For Qwen3-30B-A3B, the first stage uses a learning rate of 5×10^{-1} with 25 optimization steps and
 859 a weight decay coefficient of 1×10^{-3} . In the second stage, we apply a learning rate of 2×10^{-4}
 860 and perform 50 optimization steps. For GPT-OSS-20B, the first stage similarly adopts a learning rate
 861 of 5×10^{-1} but with 50 optimization steps, utilizing the same weight decay (1×10^{-3}). The second

862 ³<https://huggingface.co/Qwen/Qwen3-30B-A3B>

863 ⁴<https://huggingface.co/openai/gpt-oss-20b>

864 stage proceeds with a learning rate of 1×10^{-4} and 50 optimization steps. All experiments restrict
865 parameter updates to layer 7. Consistent with the focus on structured knowledge editing, optimization
866 is performed on the last subject token for both models.

867 **AdaLoRA** For AdaLoRA, updates are applied across all layers. We set the hyperparameters
868 $\alpha = 32$ and rank $r = 8$. For Qwen3-30B-A3B, we set the learning rate to 5×10^{-3} , while for
869 GPT-OSS-20B, we use a reduced learning rate of 5×10^{-4} . The optimization is run for 25 steps for
870 both models.

871 **MoEEdit (Ours)** For Qwen3-30B-A3B, we edit layers $\{3, 4, 5, 6, 7\}$, whereas for GPT-OSS-20B,
872 we target layer 5. For Qwen3-30B-A3B, we perform 25 optimization steps with a learning rate of
873 0.1 and execute 4 Block Coordinate Descent (BCD) passes. For GPT-OSS-20B, we perform 50
874 optimization steps with a learning rate of 0.2 and 10 BCD passes. For both models, we set the
875 regularization parameter $\lambda = 1$ and the KL factor to 0.0625. We utilize 100,000 samples to compute
876 the covariance matrix for the null-space projection with projection threshold = 0.02.

877 **D LLM USAGE DISCLOSURE**

878 In accordance with the ICLR policy on responsible LLM usage, we hereby declare that Large
879 Language Models (LLMs) were used solely for language refinement purposes in this paper. Specifi-
880 cally, LLMs were employed to correct grammar, improve clarity, and polish the writing style of the
881 manuscript. No LLMs were used for generating ideas, designing methods, conducting experiments,
882 analyzing results, or drawing conclusions. All scientific contributions of this work are entirely original
883 and the responsibility of the authors.

884 **E EXAMPLES OF ZSRE AND COUNTERFACT**

```

918
919
920
921
922
923 {
924     "subject": "Watts Humphrey",
925     "src": "What university did Watts Humphrey attend?",
926     "pred": "Trinity College",
927     "rephrase": "What university did Watts Humphrey take part in?",
928     "alt": "University of Michigan",
929     "answers": [
930         "Illinois Institute of Technology"
931     ],
932     "loc": "nq question: who played desmond doss father in hacksaw ridge",
933     "loc_ans": "Hugo Weaving",
934     "cond": "Trinity College >> University of Michigan || What university did
935             Watts Humphrey attend?"
936 },
937 {
938     "subject": "Ramalinaceae",
939     "src": "Which family does Ramalinaceae belong to?",
940     "pred": "Ramalinales",
941     "rephrase": "What family are Ramalinaceae?",
942     "alt": "Lamiinae",
943     "answers": [
944         "Lecanorales"
945     ],
946     "loc": "nq question: types of skiing in the winter olympics 2018",
947     "loc_ans": "Downhill",
948     "cond": "Ramalinales >> Lamiinae || Which family does Ramalinaceae belong
949             to?"
950 },
951 {
952     "subject": "Denny Herzog",
953     "src": "What role does Denny Herzog play in football?",
954     "pred": "midfielder",
955     "rephrase": "What's Denny Herzog's role in football?",
956     "alt": "winger",
957     "answers": [
958         "defender"
959     ],
960     "loc": "nq question: where does aarp fall on the political spectrum",
961     "loc_ans": "non-partisan",
962     "cond": "midfielder >> winger || What role does Denny Herzog play in
963             football?"
964 }
965
966
967     Figure 5: Examples of ZsRE dataset
968
969
970
971

```

```

972
973
974
975
976
977
978
979
980
981
982     {
983         "case_id": 975,
984         "pararel_idx": 17275,
985         "requested_rewrite": {
986             "prompt": "{}", "from",
987             "relation_id": "P127",
988             "target_new": {
989                 "str": "Google",
990                 "id": "Q95"
991             },
992             "target_true": {
993                 "str": "Microsoft",
994                 "id": "Q2283"
995             },
996             "subject": "Bing Videos"
997         },
998         "paraphrase_prompts": [
999             "\"Old Jennifer: I'm $adjectiveOld!\" Bing Videos is owned by",
1000             "J. Bing Videos is from"
1001         ],
1002         "neighborhood_prompts": [
1003             "OneDrive is from",
1004             "German Research Center for Artificial Intelligence's owner",
1005             "Groove Music's owner",
1006             "Arkane Studios, from",
1007             "Yammer is from",
1008             "Yammer, by",
1009             "Turn 10 Studios, by",
1010             "German Research Center for Artificial Intelligence is owned by",
1011             "Mojang Studios is from",
1012             "id Software's owner"
1013         ]
1014     }
1015
1016             Figure 6: An example of COUNTERFACT
1017
1018
1019
1020
1021
1022
1023
1024
1025

```