
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MOEEDIT: EFFICIENT AND ROUTING-STABLE KNOWL-
EDGE EDITING FOR MIXTURE-OF-EXPERTS LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge editing (KE) enables precise modifications to factual content in large
language models (LLMs). Existing KE methods are largely designed for dense ar-
chitectures, limiting their applicability to the increasingly prevalent sparse Mixture-
of-Experts (MoE) models that underpin modern scalable LLMs. Although MoEs
offer strong efficiency and capacity scaling, naively adapting dense-model editors is
both computationally costly and prone to routing distribution shifts that undermine
stability and consistency. To address these challenges, we introduce MoEEdit, the
first routing-stable framework for parameter-modifying knowledge editing in MoE
LLMs. Our method reparameterizes expert updates via per-expert null-space pro-
jections that keep router inputs invariant and thereby suppress routing shifts. The
resulting block-structured optimization is solved efficiently with a block coordinate
descent (BCD) solver. Experiments show that MoEEdit attains state-of-the-art
efficacy and generalization while preserving high specificity and routing stability,
with superior compute and memory efficiency. These results establish a robust
foundation for scalable, precise knowledge editing in sparse LLMs and underscore
the importance of routing-stable interventions.

1 INTRODUCTION

Large language models (LLMs) can store and retrieve substantial factual knowledge (Petroni et al.,
2019; Sun et al., 2024), yet they sometimes produce incorrect or outdated statements. For Instance,
asserting that the capital of France is Berlin or misreporting the CEO of a major company. Such
errors undermine user trust and constrain deployment in knowledge-sensitive applications (Zhang
et al., 2024c; Zhong et al., 2023). Fully retraining these models or performing broad fine-tuning is
computationally prohibitive and can induce catastrophic forgetting of unrelated capabilities (Luo
et al., 2025). These limitations motivate knowledge editing, which aims to revise specific facts while
preserving the model’s general behavior (Meng et al., 2022; 2023; Mitchell et al., 2022a;b).

Most knowledge editing (KE) methods have been designed for dense Transformer architectures,
where all parameters are active for each input (Wang et al., 2024). Broadly, KE falls into two families:
parameter-preserving approaches leave base weights unchanged and attach auxiliary mechanisms
that conditionally override outputs (e.g., SERAC with an external edit memory and routing module
(Mitchell et al., 2022b)), and parameter-modifying approaches aim to directly update model weights
responsible for factual recall. Many methods follow a locate-then-edit paradigm: they identify
mediating parameters, often mid-layer feed-forward MLP modules (Geva et al., 2021; Dai et al.,
2022), using causal analyses, and then apply structured weight updates. Representative methods
include ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), and PMET (Li et al., 2024). Recent
work improves locality by projecting edits into the null space of a preservation set, which reduces
interference with unrelated behaviors (Fang et al., 2025).

State-of-the-art LLMs increasingly adopt Mixture-of-Experts (MoE) architectures to enlarge parame-
ter capacity while maintaining nearly constant computational throughput (FLOPs) (Shazeer et al.,
2017). In an MoE layer, a trainable router activates a small subset of experts for each token (for
instance, 8 of 128 in Qwen3-30B-A3B), yielding sparse, input-dependent computation and enabling
marked expert specialization (Lepikhin et al., 2021; Du et al., 2022). However, this sparse, modular
design introduces a tripartite challenge for knowledge editing that is absent in dense models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

MoE Layer

Norm Layer

Attention

Norm Layer

Challenge 2: Computational cost

K1

Router

V1

...

K4

V4

W1 W4

...

W3W2

Input
Top-2

output

Challenge 1: Routing Distribution Shift

Editing

Challenge 3: Expert Coupling

K1

Router

V1

...

K3

V3

W1 W3

...

W4W2

Input
Top-2

output

E1 E4

Router

g1 g4

output=g1E1+g4E4...

For a fixed target
output, experts are

not indepent.
Editing one affect

another

Routing
Shift

(a) Challenge

Router inputs
invariant on P

Per-expert Null-space Projection

Expert 1
K1

preservation
features

P1：
P1K1=0

∆!= ∆ ∗ 𝑃!
𝑃!𝐾! = 0

𝛿" = 0 → 𝛿𝑔 = 0...

Pick an expert
active experts only

Get an expert-
specific update

Optimize the
expert weightsE4E1

E4E1

Decoupling

Randomized BCD Solver

Expert N
KN

preservation
features

PN：
PNKN=0

(b) Method

Figure 1: Overview of knowledge editing in Mixture-of-Experts (MoE) LLMs. (a) Challenges: MoE
editing is hindered by routing distribution shift, high computational cost, and expert coupling. (b)
Method: MoEEdit mitigates these issues using per-expert null-space projection to stabilize routing
and a randomized block coordinate descent (BCD) solver for efficient expert updates.

The first and most direct challenge is computational complexity. Naively applying dense-model
editing techniques would require updating all experts, multiplying the cost by their total number
(e.g., 128×) and thus rendering the process computationally prohibitive. This necessitates a targeted
approach, but editing only a subset of experts introduces further complications. Second, because
the layer’s output is a gate-weighted combination of multiple expert outputs, any edit must contend
with inter-expert coupling. A modification to a single expert’s parameters can be diluted or cause
unintended side effects when combined with others, demanding a principled allocation of the update
across the appropriate specialists. Third, and most subtly, edits risk inducing routing distribution
shifts in subsequent layers. Parameter perturbations in one MoE layer alter the input manifold for
downstream layers, causing their routers to select different experts. This cascading effect disrupts
the model’s learned routing patterns and specialized knowledge pathways, jeopardizing both edit
locality and overall model stability. Collectively, these intertwined issues of computational cost,
expert coupling, and routing stability make successful and localized knowledge editing in MoEs
substantially more difficult than in their dense counterparts.

To address this tripartite challenge, we introduce MoEEdit, an expert-aware editor that reframes
MoE knowledge editing as a principled, block-structured optimization problem where each expert
constitutes a block. We are the first to formally identify routing-induced instability as a central
obstacle to successful editing in MoEs. To solve this, we develop a novel per-expert null-space
projection that constrains parameter updates to preserve the input to subsequent routers, thereby
safeguarding model stability. This technique is paired with a highly efficient randomized block
coordinate descent (BCD) solver that tackles computational complexity and inter-expert coupling
by strategically updating only the most relevant experts for a given edit. This decoupling ensures our
method’s cost scales linearly with the expert hidden size, not the total number of experts, making
it highly scalable. Our integrated approach sets a new state-of-the-art on standard benchmarks
(COUNTERFACT, zsRE), decisively outperforming dense-model editors adapted for MoEs. This
result underscores the necessity of expert-aware, routing-stable interventions tailored to the unique
architectural properties of MoE models.

2 RELATED WORK

Knowledge editing (KE) in dense Transformers. KE seeks to revise specific factual associations
in LLMs while preserving general capabilities (Zhang et al., 2024c; Zhong et al., 2023). Methods for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

dense Transformers fall into two families: parameter-modifying and parameter-preserving. Within
the former, locate-then-edit approaches such as ROME (Meng et al., 2022) and MEMIT (Meng et al.,
2023) directly modify a small set of FFN down-projection weights identified via causal analysis,
enabling single-fact and batched edits, respectively. Gradient-based editors such as MEND (Mitchell
et al., 2022a) learn hypernetworks that transform fine-tuning gradients into localized weight updates.
To improve locality and robustness under sequential edits, AlphaEdit (Fang et al., 2025) projects
updates into the null space of a preservation set. Other strands explore instruction-based editing
(Zhang et al., 2024a), hybrid neural–symbolic mechanisms (Zhang et al., 2024b), and in-context
editing (Zheng et al., 2023).

Complementing these, parameter-preserving or semi-parametric methods (e.g., SERAC (Mitchell
et al., 2022b)) store edits in external memories and perform inference-time routing, trading parametric
locality for reversibility and capacity. notably, LEMoE (Wang & Li, 2024) introduces a Mixture-of-
Experts (MoE) architecture within the adaptor itself to manage lifelong editing.** However, LEMoE
functions as a parameter-preserving framework that attaches external modules to a frozen backbone
(typically dense). It addresses routing consistency within the added adaptor rather than the routing
distribution shift of the base model itself.

Mixture-of-Experts (MoE) architectures. MoE layers scale capacity by activating only a sparse
subset of experts per token through a learned router, thereby increasing representational power while
keeping FLOPs nearly constant (Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022). Each
expert is a gated feed-forward network with its own parameters; the router selects the top-K experts
using input-dependent logits and produces a gate-weighted sum of their outputs. This conditional
computation yields strong expert specialization but also creates editing complications: edits must
respect the router’s distribution, multiple experts jointly determine the output, and perturbations at
one layer can alter downstream routing.

Knowledge editing for MoE LLMs. However, KE for MoE architectures remains largely
unexplored. While methods like LEMoE utilize MoE structures externally, they do not tackle the
challenge of modifying intrinsic MoE parameters. Existing techniques, which assume fully active
parameters, are ill-suited for the conditional computation in MoEs and present an intractable trade-off:
updating all experts is computationally prohibitive, while updating a subset is unreliable due to
stochastic routing. This leaves a critical gap for an editing framework explicitly designed for the
sparse and modular nature of MoE models.

3 PRELIMINARIES

Locate-then-Edit Paradigm (Dense Models). An autoregressive LLM updates the layer-l hidden
state as hl = hl−1 + al + vl, where al and vl are the outputs of the attention and feed-forward
(FFN) blocks at layer l, respectively. The FFN output can be written as

vl =W l
out σ

(
W l

in γ(h
l−1 + al)

)︸ ︷︷ ︸
"keys"k

=W l
out · k, (1)

with layer norm γ(·) and nonlinearity σ(·). Following Geva et al. (2021), W l
out can be viewed as

a linear associative memory that maps post-gate features (“keys”: k = σ
(
W l

in γ(h
l−1 + al)

)
) to

outputs (“values”: v = vl). If factual knowledge is formalized as triples (s, r, o) (subject, relation,
object), one can view k as encoding (s, r) and v as encoding o (Meng et al., 2022; Dai et al., 2022).
We adopt a locate-then-edit formulation: given keysK1 = [k1 |k2| · · · | kn] for the new associations
and targets V1 = [v1 |v2| · · · | vn], find a small perturbation ∆ to a single FFN projectionWout such
that (Wout +∆)K1 ≈ V1 while preserving behavior on a preservation set with keysK0. This yields
the regularized least-squares objective

∆ = argmin
∆̃

∥∥(Wout + ∆̃)K1 − V1

∥∥2 + ∥∥∆̃K0

∥∥2 + λ∥∆̃∥2, (2)

where λ≥0 controls locality and conditioning. For clarity, layer indices are omitted below since the
formulation applies identically to each layer.

KE in MoE LLMs. Modern LLMs increasingly adopt MoE layers to scale capacity with near-
constant FLOPs (Shazeer et al., 2017; Lepikhin et al., 2021). Given an input representation u,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

a trainable router produces logits sn = u⊤en (en is the routing embedding for expert n) and
selects a small set S = TopK(s1:N ,K) (TopK selects K biggest element of s1:N , and typically
K≪N for MoE models). Let gn denote the router weight for expert n. The MoE block output is a
router-weighted mixture

v =

N∑
n=1

gn En(u), gn =

{
exp(sn)

/∑
j∈S exp(sj), n ∈ S,

0, otherwise,
(3)

where each expert is a gated FFN

En(u) =W
(n)
down

[(
W (n)

up u
)
⊙ σ
(
W

(n)
gateu

)]
. (4)

Thus, every expert realizes its own key–value memory: the post-gate feature kn =
(
W

(n)
up u

)
⊙

σ
(
W

(n)
gateu

)
serves as a key and the linear map W (n)

down returns a value vn =W
(n)
downkn, which the

router aggregates into v =
∑

n gn vn.

Extending Eqn. 2 to MoE, we edit expert-specific projections {Wn}Nn=1 (For brevity in the editing
objective, we denoteWn ≡W (n)

down). For edit request i, let ki,n∈Rdk be the post-gate key of expert
n, gi,n≥0 its router weight, and vi the target output. We consider disjoint sets: an edit set E where
outputs should change and a preservation set P to remain stable. The MoE KE objective seeks small
perturbations {∆n} that (i) match targets on E and (ii) preserve behavior on P:

{∆n} = arg min
{∆̃n}

∑
i∈E

∥∥∥ N∑
n=1

gi,n
(
Wn+∆̃n

)
ki,n−vi

∥∥∥2

+
∑
i∈P

∥∥∥ N∑
n=1

gi,n∆̃nki,n

∥∥∥2

+ λ

N∑
n=1

∥∆̃n∥2. (5)

Compared with the dense case, the router weights {gi,n} couple experts: each example influences up
to K experts (Top-K gating), and a naive closed-form solve would require inverting a (Ndk)×(Ndk)
system—computationally prohibitive for large N . This coupling and scale motivate the expert-aware
optimization strategy developed in Section 4.

4 METHOD

In this section, we present MoEEdit, a purpose-built, expert-aware knowledge editor for MoE models.
Our approach tackles the unique challenges of MoE editing head-on: (i)it mitigates the routing
distribution shift: a key instability when naively apply KE to MoE models by reparameterizing expert
updates through per-expert null-space projections , and (ii) solves the resulting objective efficiently
with a randomized block coordinate descent (BCD) procedure that scales with the expert hidden size,
making large-scale MoE editing tractable.

4.1 ROUTING DISTRIBUTION SHIFT IN MOE EDITING

Editing expert parameters changes the MoE block outputs and, after subsequent normalization and
attention, perturbs the input u to the router in the following MoE layers. Following the definition
in Section 3, let Eℓ = [eℓ1, . . . ,e

ℓ
N] collect the router embeddings at layer ℓ. The router computes

logits and mixture weights as gℓ = softmax(sℓ)
1, where sℓ = E⊤

ℓ uℓ. A perturbation applied in
layer (ℓ − 1) changes uℓ by δuℓ, thus sℓ by δsℓ = E⊤

ℓ δuℓ and produces new routing weights
g′ℓ = softmax(sℓ + δsℓ). We define the routing distribution shift as δgℓ = g′ℓ − gℓ. Its magnitude
can be quantified over a set of prompts using the Kullback-Leibler (KL) divergence or the Routing
Similarity (RS), which is defined as the Jaccard similarity between the pre- and post-edit Top-K
expert sets:

RSℓroute =
|Spre

ℓ ∩ Spost
ℓ |

|Spre
ℓ ∪ Spost

ℓ |
or KL(gℓ∥g′ℓ), (6)

where Spre
ℓ and Spost

ℓ denote the expert sets before and after editing, respectively. To characterize
δgℓ analytically, we linearize the softmax around sℓ:

g′ℓ ≈ gℓ + Jsm(sℓ)δsℓ ⇒ δgℓ ≈ Jsm(sℓ)E
⊤
ℓ δuℓ, (7)

1For clarity of analysis, we use the full softmax distribution and omit the Top-K selection, so that gℓ remains
differentiable for the Jacobian-based first-order analysis.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Where ≈ denotes a first-order Taylor approximation of the softmax function around sℓ, when
the perturbation δsℓ is small, and Jsm(s) = diag(sm(s)) − sm(s) sm(s)⊤ is the Jacobian of
softmax and sm is the softmax function. This relation highlights a crucial observation: only the
component of δuℓ that lies in the span of Eℓ influences the routing probabilities, and the Jacobian
can amplify such components, potentially destabilizing expert selection. This insight motivates our
design—suppressing the projection of perturbations onto span(Eℓ) is key to preventing routing drift.

4.2 PER-EXPERT NULL-SPACE PROJECTION REPARAMETERIZATION

As established in Section 4.1, suppressing routing drift amounts to ensuring that δuℓ ≈ 0 on a
preservation set. To achieve this by construction, we reparameterize each expert update so that
its effect vanishes along directions spanned by preservation features. Inspired by the null-space
constrained approach of ALPHAEDIT for dense models, we generalize the idea to the MoE setting by
computing a per-expert projector that filters out harmful update components.

Concretely, recall from Eqn. 4 that expert n produces output Wnki,n for post-activation key ki,n.
Let P denote the set of preservation prompts, and collect their features for expert n into the matrix
K0

n =
[
ki,n

]
i∈P ∈ Rdk×|P|. The covariance K0

nK
0⊤
n captures the subspace of activations we

wish to keep invariant. We compute its eigendecomposition, K0
nK

0⊤
n = UnΛnU

⊤
n , and select

indices I0 = {p : λn,p < τ} corresponding to (near-)null eigenvalues under a small threshold
τ > 0. Let U0

n = Un[:, I0] and define the orthogonal projector onto the complement of span(K0
n)

by Pn = U0
nU

0⊤
n . Intuitively, Pn preserves only those directions orthogonal to all preservation

features, so any update projected by Pn is guaranteed not to alter expert outputs on P .

We then reparameterize the expert update as ∆n = ∆̂nPn, where ∆̂n is the free variable to be
optimized. Because Pnki,n = 0 for all i ∈ P (up to numerical error), the preservation outputs are
unaffected: ∆̂nPnki,n = 0. Consequently, for every i ∈ P we have δuℓ(i) = 0, and by Eqn. 7 the
induced routing shift satisfies δgℓ(i) ≈ 0, minimizing Eqn. 6 on the preservation set.

Projected editing objective. Let k̃i,n = Pnki,n denote the projected key. Substituting ∆n =

∆̂nPn into the MoE objective (Eqn. 5) yields

{∆̂n}Nn=1 = arg min
{∆̃n}

∑
i∈E

∥∥∥ N∑
n=1

gi,n
(
Wnki,n + ∆̃nk̃i,n

)
− vi

∥∥∥2 + λ

N∑
n=1

∥∆̃n∥2, (8)

where λ ≥ 0 controls the update magnitude and improves locality. No separate preservation term is
needed, as Pn removes all preservation components by construction.

4.3 RANDOMIZED BLOCK COORDINATE DESCENT SOLVER

A naive step is to solve the projected objective in Eqn. 8 in one shot, just like what we do in dense
model KE(Meng et al., 2022; 2023; Fang et al., 2025). In this subsection, we (i) expose the structure
of the global closed-form solution, (ii) explain why the direct route is computationally impractical
in MoE, and (iii) arrive at an efficient randomized block coordinate descent (BCD) procedure that
scales with the expert hidden size.

The global closed-form (one shot). Let ∆̂n ∈ Rdm×dk be the projected free variable for expert n,
and stack all expert updates horizontally as ∆̂ = [∆̂1 · · · ∆̂N] ∈ Rdm×(Ndk). For edit example i,
define the base residual (excluding any edits) ri = vi −

∑N
n=1 gi,nWnki,n, and the design vector

ψ̃i = [gi,1k̃
⊤
i,1 · · · gi,N k̃⊤i,N]⊤ ∈ RNdk , where k̃i,n = Pnki,n. Then Eqn. 8 becomes a regularized

multi-output linear regression: min∆̂
∑

i∈E
∥∥∆̂ψ̃i − ri

∥∥2 + λ
∑N

n=1 ∥∆̂n∥2. Vectorizing with
θ = vec(∆̂) ∈ RdmNdk and using vec(∆̂ψ̃i) = (ψ̃⊤

i ⊗ Idm
)θ, the normal equations take the

compact form (∑
i∈E

(ψ̃iψ̃
⊤
i)⊗ Idm

+ λIdmNdk

)
θ =

∑
i∈E

(ψ̃i ⊗ Idm
)ri, (9)

with unique minimizer

θ⋆ =M−1
globbglob and ∆̂⋆ = unvec(θ⋆), (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

where Mglob =
∑

i(ψ̃iψ̃
⊤
i) ⊗ Idm

+ λI and bglob =
∑

i(ψ̃i ⊗ Idm
)ri. A proof is provided in

Appendix B.2.

Although Eqn. 9 is elegant, it is not a practical editing primitive at MoE scale. First, even exploiting the
Kronecker structure, the system decomposes into dm independent problems of size (Ndk)× (Ndk)
each. For typical MoE layers, N can be 8–128 and dk in the thousands, so factorizing dm such systems
(and re-factorizing as E changes) is prohibitively expensive in both time O

(
dm(Ndk)

3
)

and memory
O
(
dm(Ndk)

2
)
. Second, while Top-K routing makes each ψ̃i K-block sparse, the accumulated

Gram matrix
∑

i ψ̃iψ̃
⊤
i quickly densifies, yielding substantial fill-in under Cholesky/LDL⊤. These

realities make the one-shot solve not suitable for fast, iterative MoE editing.

From global to block: randomized BCD. Since the insight that every expert is a natural chunk.
The structure of Eqn. 8 suggests a block strategy: treat each expert as a block and optimize one block
while holding the rest fixed. This reduces the problem to a sequence of well-conditioned, small ridge
least-squares solves of size dk × dk.

Fix {∆̂ℓ}ℓ̸=n and define the residual that excludes expert n:

r
(−n)
i = vi −

∑
ℓ̸=n

gi,ℓ
(
Wℓki,ℓ + ∆̂ℓk̃i,ℓ

)
. (11)

The subproblem in ∆̂n becomes the ridge-regularized least squares

min
∆̂n

∑
i∈E

∥∥r(−n)
i − gi,n∆̂nk̃i,n

∥∥2 + λ∥∆̂n∥2. (12)

Its normal equations

∆̂n

(∑
i∈E

g2i,nk̃i,nk̃
⊤
i,n + λI

)
︸ ︷︷ ︸

Mn∈Rdk×dk

=
(∑

i∈E
gi,nr

(−n)
i k̃⊤i,n

)
︸ ︷︷ ︸

Bn∈Rdm×dk

, (13)

admit the closed-form update

∆̂⋆
n = BnM

−1
n =

(∑
i∈E

gi,nr
(−n)
i k̃⊤i,n

)(∑
i∈E

g2i,nk̃i,nk̃
⊤
i,n + λI

)−1

. (14)

We then write to parameters via the projection ∆⋆
n = ∆̂⋆

nPn and move to the next block.

Practicalities and complexity. We traverse experts in randomized order and update only those
active in the current minibatch, which further reduces cost. For each updated expert, formingMn

costs O(|E|d2k) and inverting it costs O(d3k), typically modest since dk ≪ dm. We stream-accumulate
Bn andMn, cache k̃i,n, and use Cholesky with diagonal loading for numerical stability. Because
Eqn. 8 is a strictly convex quadratic in {∆̂n}, (randomized) BCD with exact block solves converges
globally under standard conditions (Tseng, 2001; Richtárik & Takáč, 2014). Empirically we see fast
decrease within a few passes (≤ 10).

5 EXPERIMENTS

5.1 BASELINES, DATASETS, AND METRICS

We evaluate two modern MoE LLMs on standard factual-editing benchmarks: Qwen3-30B-
A3B (Yang et al., 2025) (128 experts; top-8 per token) and GPT-OSS-20B (Agarwal et al., 2025)
(32 experts; top-4 per token). As baselines, we adapt parameter-editing methods originally designed
for dense Transformers but directly applicable to MoE models: Fine-Tuning (FT) (Zhu et al., 2020),
FT-L (FT with a norm constraint), AdaLoRA (Zhang et al., 2023), and UnKE (Deng et al., 2025).

Following prior work, we use COUNTERFACT (single-hop counterfactual edits introduced with
MEMIT) (Meng et al., 2023) and ZsRE (zero-shot relation extraction) (Levy et al., 2017). Visualized
dataset examples are provided in Appendix E for unfamiliar readers. We report the standard editing
metrics (Meng et al., 2022; 2023; Mitchell et al., 2022a): (i) Efficacy (edit success on edited prompts),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Sequential knowledge editing on MoE LLMs. Eff., Gen., Spe. denote Efficacy, Generalization,
Specificity; Uti. is their mean (higher is better ↑). Best in bold, second-best underlined.

Method Model
COUNTERFACT ZsRE

Eff.↑ Gen.↑ Spe.↑ Uti.↑ Eff.↑ Gen.↑ Spe.↑ Uti.↑

Pre-edited

Q
w

en
3-

30
B

-A
3B

13.30±0.34 15.10±0.31 84.45±0.24 37.62 41.30±0.29 40.50±0.28 40.91±0.27 40.90

FT 80.70±0.39 63.95±0.43 41.44±0.39 62.03 6.44±0.14 6.13±0.14 2.15±0.06 4.91
FT-L 82.40±0.38 22.75±0.33 71.48±0.25 58.88 44.19±0.29 42.46±0.29 41.92±0.27 42.86
AdaLoRA 51.90±0.50 49.75±0.40 48.10±0.26 49.92 3.66±0.09 3.60±0.09 4.68±0.10 3.98
UnKE 89.30±0.31 82.85±0.33 48.15±0.33 73.43 31.43±0.28 29.78±0.27 25.30±0.23 28.84
MoEEdit 99.30±0.08 94.10±0.20 80.97±0.25 91.46 84.47±0.22 78.01±0.28 42.82±0.28 68.43

Pre-edited

G
PT

-O
SS

-2
0B

11.80±0.32 14.70±0.31 84.53±0.24 37.01 33.20±0.28 32.14±0.28 28.02±0.00 31.12

FT 83.40±0.37 58.40±0.42 55.72±0.33 65.84 25.57±0.28 23.41±0.26 17.61±0.21 22.20
FT-L 73.80±0.44 43.10±0.48 59.75±0.33 58.88 32.75±0.29 33.09±0.30 30.06±0.26 31.97
AdaLoRA 62.40±0.48 55.00±0.42 43.65±0.34 53.68 43.46±0.30 42.96±0.30 33.60±0.24 40.01
UnKE 78.00±0.41 44.40±0.42 73.91±0.28 65.44 46.58±0.31 43.99±0.31 31.40±0.26 40.66
MoEEdit 95.90±0.20 44.10±0.43 81.09±0.25 73.70 81.68±0.25 68.44±0.34 32.55±0.26 60.89

(ii) Generalization (success on paraphrases and lightly perturbed contexts), and (iii) Specificity
(locality on unrelated controls). Unless stated otherwise, we perform sequential batched edits. And to
summarize the overall trade-off, we additionally report Utility as the mean of the three metrics. See
Appendix A for full calculation details.

5.2 MAIN RESULTS ON KNOWLEDGE EDITING

We perform 1,000 sequential edits on each dataset (COUNTERFACT and ZsRE) with a batch size of
50 edits for all methods. Table 1 summarizes results on Qwen3-30B-A3B and GPT-OSS-20B.

As shown in Table 1, MoEEdit consistently delivers outstanding results. On COUNTERFACT,
it achieves over 90 efficacy on both backbones, substantially outperforming UnKE and FT-L in
generalization and specificity, respectively. On GPT-OSS-20B, although FT attains slightly higher
generalization, MoEEdit still provides the best overall balance, with clear gains in efficacy (+12.5)
and specificity (+7.2). On ZsRE, MOEEDIT also demonstrates large improvements in efficacy and
generalization—over +30 points against the strongest baselines—while maintaining competitive
specificity (within 1 point of AdaLoRA). These results highlight that MOEEDIT offers the most
favorable trade-off between accuracy and locality across models and datasets.

5.3 MAIN RESULTS ON ROUTING DISTRIBUTION SHIFT

We analyze routing distribution shifts under sequential editing. Similar to Section 5.2, we perform
1,000 edits with a batch size of 50. To control for depth, all methods are constrained to update at
most the top editing layer (layer 7). Specifically, MoEEdit applies updates across layers {3,4,5,6,7}
using BCD, while FT, FT-L, UnKE, and AdaLoRA are restricted to layer 7. We evaluate on Qwen3-
30B-A3B/COUNTERFACT and report the routing-similarity (RS) metric between pre- and post-edit
Top-K expert sets (Eqn. 6), averaged over windows of 10 layers, for both the editing and preservation
sets. The editing set consists of the 1,000 edited samples, while the preservation set is formed by
sampling an equal number of untouched examples from the remaining dataset. Table 2 summarizes
the results.

Projection suppresses routing drift and preserves stability. As shown in Table 2, methods directly
extended from dense models exhibit substantial routing drift, whereas MoEEdit maintains consistently
high routing stability (average RS > 88 across all layer ranges for both sets). Considering that Qwen3-
30B-A3B activates 8 experts per token, the average number of non-overlapping experts before and
after editing is close to one, which is negligible. This observation aligns with the heavy-tailed nature
of routing: small perturbations primarily affect low-weight expert selections that contribute little to
the output. The average KL divergence between pre- and post-edit routing distributions for MoEEdit
is only 0.02, indicating minimal shift. Furthermore, Figure 2 plots routing similarity across layers for
both editing and preservation sets. AdaLoRA and FT exhibit the lowest RS values across layers due

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Routing distribution shift on Qwen3-30B-A3B. Values are Jaccard similarity (RS↑) between pre- and
post-edit routing distributions. Higher is better. Best results are in bold, second-best are underlined.

Method Model
Editing Set RS↑ Preservation Set RS↑

Lay. 11–20 Lay. 21–30 Lay. 31–40 Lay. 11–20 Lay. 21–30 Lay. 31–40

FT
Q

w
en

3-
30

B
-A

3B

23.57 26.58 29.98 24.72 27.45 30.97
FT-L 47.01 51.20 53.68 48.80 50.17 53.45
AdaLoRA 16.63 24.11 27.00 16.38 23.84 26.60
UnKE 52.46 44.12 44.80 49.90 41.91 43.84
MoEEdit 86.62 88.16 89.93 87.02 88.55 90.22

10 20 30 40
Layer Index

0.2

0.4

0.6

0.8

1.0

R
S

(T
op

-8
 Ja

cc
ar

d)

Editing Set

10 20 30 40
Layer Index

0.2

0.4

0.6

0.8

1.0

R
S

(T
op

-8
 Ja

cc
ar

d)

Preservation Set

MoEEdit FT FT-L LoRA UnKE

Figure 2: Routing similarity (RS) before and after editing on the editing and preservation sets.
MoEEdit achieves consistently high RS, demonstrating strong routing stability.

to their unconstrained updates that heavily disrupt routing patterns. In contrast, MoEEdit preserves
routing stability across all layers and consistently outperforms all baselines.

5.4 ABLATION STUDY

Table 3: Ablation on the projection matrix. Removing projection signifi-
cantly weakens routing stability.

Method Set
RS↑

Lay. 11–20 Lay. 21–30 Lay. 31–40

MoEEdit
Edit.

86.62 88.16 89.93
MoEEdit (w/o Proj) 73.64 72.90 73.75

MoEEdit
Pres.

87.02 88.55 90.22
MoEEdit (w/o Proj) 73.59 73.08 73.50

Effect of Projection. We
ablate the projection matrix in
MoEEdit to evaluate its contri-
bution to routing stability. As
shown in Table 3, removing
projection reduces RS by an
average of 14.81 points on the
editing set and 15.21 on the
preservation set. The KL diver-
gence also increases from 0.02
to 0.0834, confirming that pro-
jection is critical for suppress-
ing routing drift. These results
validate the projection design introduced in Section 4.2.

BCD Solver vs. Closed-form Solver. We compare the proposed block coordinate descent (BCD)
solver with a naive closed-form solution. The latter requires inverting large matrices that scale with
the number of experts and constraints, making it computationally infeasible at realistic scales. To
enable comparison, we construct a controlled synthetic batch and evaluate (i) convergence and (ii)
scalability. Results are shown in Figure 3.

Figure 3 illustrates two perspectives on our BCD solver: (a) reconstruction error convergence under
varying λ, and (b) runtime scalability with respect to the number of experts. Smaller λ values (e.g.,
10−4, 10−3) achieve lower error, whereas larger values converge to higher error floors. Panel (b)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 20 40 60 80 100
BCD Passes

10−3

10−2

10−1

100

101

102

103

104

R
ec

on
st

ru
ct

io
n

er
ro

r

Convergence of BCD (Reconstruction error)

λ= 1e− 04
λ= 1e− 03
λ= 1e− 02
λ= 1e− 01

(a) Reconstruction error

20 40 60 80 100 120
Number of experts N

0

20

40

60

80

100

R
un

tim
e

(s
)

Runtime vs Number of Experts

Global solver
BCD (2 passes)

(b) Scalability

Figure 3: Comparison of solvers. (a) BCD achieves fast convergence with suitable λ. (b) BCD scales
efficiently with the number of experts, while the closed-form solver quickly becomes infeasible.

shows that the closed-form solver exhibits near-quadratic runtime growth and becomes infeasible
beyond N ≈ 60, while BCD maintains nearly constant runtime up to 128 experts. Thus, BCD scales
linearly with hidden size rather than the total number of experts, ensuring practical efficiency.

5 10 15 20
Number of BCD Passes

0

20

40

60

80

100
Sc

or
e

(%
)

Efficiency
Generality

Specificity
Avg

Figure 4: Ablation on the number of passes.

Number of BCD Passes. We vary the number of
BCD passes ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}while
keeping all other settings fixed, and evaluate efficacy,
generality, specificity, and their harmonic mean. As
shown in Figure 4, as the number of BCD passes in-
creases, both efficacy and generality rise rapidly in
the early phase and then plateau, reflecting dimin-
ishing returns beyond moderate passes. Specificity
shows a more stable, gradual upward trend. Since
each subproblem is convex, early passes remove dom-
inant residuals, while later passes only refine small
residuals, yielding slower gains. This behavior sug-
gests that a small number of passes (e.g., 6–10) already
achieves a favorable trade-off between performance
and efficiency. Beyond this range, additional passes
bring only marginal improvements while increasing runtime, highlighting the practicality of moderate
BCD iterations in large-scale editing scenarios.

6 DISCUSSION AND CONCLUSION

In this work, we presented MoEEdit, a routing-stable knowledge editing framework tailored for
Mixture-of-Experts (MoE) LLMs. Our approach addresses the unique challenges of computational
cost, inter-expert coupling, and routing drift by combining per-expert null-space projection with an
efficient block coordinate descent solver. Extensive experiments on COUNTERFACT and ZsRE
benchmarks demonstrate that MoEEdit achieves high efficacy, strong generalization, and routing
stability, all with superior efficiency compared to prior methods.

Beyond empirical performance, our findings highlight several broader insights. First, expert-aware
design is crucial: naive adaptations of dense-model editors to MoEs fail to maintain stability and
efficiency. Second, routing stability emerges as a central factor in editing sparse architectures, where
even small perturbations can cascade through routing distributions. By explicitly controlling for this
effect, MoEEdit offers a principled solution that preserves locality without sacrificing scalability.

In summary, MoEEdit establishes a robust foundation for precise and scalable knowledge editing
in sparse architectures, advancing the state of the art and paving the way for more adaptive and
trustworthy MoE-based language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K.
Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler Bertao, Nivedita Brett,
Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen, Mark Chen, Enoch
Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives, Vlad Fomenko,
Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher, Lukas Gross,
Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar, Haitang Hu,
Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman, Dominik Kundel,
Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park Lennon, Scott
Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily, Liu, Jiancheng
Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath, Scott McKinney,
Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles, Alexander Neitz, Alex
Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano, Giambattista Parascandolo,
Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry Pimenov, Michelle Pokrass,
Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu Ren, Kimmy Richardson, David
Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max Schwarzer, D. Sculley, Harshit
Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey, Zhiqing Sun, Philippe Tillet,
Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin Wang, Miles Wang, Olivia
Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney, Hannah Wong, Lin Yang,
Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting Zhan, Cyril Zhang,
Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b gpt-oss-20b model card, 2025. URL
https://arxiv.org/abs/2508.10925.

Damai Dai, Li Dong, Yaru Hao, Dian Sui, Songhao Piao, Longyue Dou, Weinan Wang, and Furu
Wei. Knowledge neurons in pretrained transformers. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 8493–8502, 2022. doi: 10.18653/v1/
2022.acl-long.584.

Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding, Huawei Shen, and Xueqi Cheng. Everything
is editable: Extend knowledge editing to unstructured data in large language models. In ICLR,
2025. URL https://openreview.net/forum?id=X5rO5VyTgB.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=HvSytvg3Jh.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL https:
//aclanthology.org/2021.emnlp-main.446/.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. In Roger Levy and Lucia Specia (eds.), Proceedings of the 21st Conference

10

https://arxiv.org/abs/2508.10925
https://openreview.net/forum?id=X5rO5VyTgB
https://proceedings.mlr.press/v162/du22c.html
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://aclanthology.org/2021.emnlp-main.446/
https://aclanthology.org/2021.emnlp-main.446/
https://openreview.net/forum?id=qrwe7XHTmYb

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

on Computational Natural Language Learning (CoNLL 2017), pp. 333–342, Vancouver, Canada,
August 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL
https://aclanthology.org/K17-1034/.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):
18564–18572, Mar. 2024. doi: 10.1609/aaai.v38i17.29818. URL https://ojs.aaai.org/index.
php/AAAI/article/view/29818.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. IEEE Transactions
on Audio, Speech and Language Processing, 33:3776–3786, 2025. doi: 10.1109/TASLPRO.2025.
3606231.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
tions in gpt. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=MkbcAHIYgyS.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022a. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 15817–15831. PMLR,
17–23 Jul 2022b. URL https://proceedings.mlr.press/v162/mitchell22a.html.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2463–2473, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/
D19-1250/.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144:1–38, 2014.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=B1ckMDqlg.

Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowl-
edgeable are large language models (LLMs)? A.K.A. will LLMs replace knowledge graphs?
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 311–325, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.18. URL
https://aclanthology.org/2024.naacl-long.18/.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

Renzhi Wang and Piji Li. LEMoE: Advanced mixture of experts adaptor for lifelong model editing
of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.

11

https://aclanthology.org/K17-1034/
https://ojs.aaai.org/index.php/AAAI/article/view/29818
https://ojs.aaai.org/index.php/AAAI/article/view/29818
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://aclanthology.org/D19-1250/
https://aclanthology.org/D19-1250/
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://aclanthology.org/2024.naacl-long.18/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

2551–2575, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.emnlp-main.149. URL https://aclanthology.org/2024.emnlp-main.
149/.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Comput. Surv., 57(3), November 2024. ISSN
0360-0300. doi: 10.1145/3698590. URL https://doi.org/10.1145/3698590.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie
Gou, Xi Chen, and Huajun Chen. Instructedit: instruction-based knowledge editing for large
language models. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’24, 2024a. ISBN 978-1-956792-04-1. doi: 10.24963/ijcai.2024/733. URL
https://doi.org/10.24963/ijcai.2024/733.

Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang,
Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Huajun
Chen. Oneedit: A neural-symbolic collaboratively knowledge editing system, 2024b. URL
https://arxiv.org/abs/2409.07497.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024c.
URL https://arxiv.org/abs/2401.01286.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In
International Conference on Learning Representations (ICLR), 2023. URL https://openreview.
net/forum?id=lq62uWRJjiY.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can we
edit factual knowledge by in-context learning? In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023. URL https://openreview.net/forum?id=hsjQHAM8MV.

Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen. MQuAKE:
Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 15686–15702, Singapore, December 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL https:
//aclanthology.org/2023.emnlp-main.971/.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020. URL https://arxiv.org/abs/2012.00363.

12

https://aclanthology.org/2024.emnlp-main.149/
https://aclanthology.org/2024.emnlp-main.149/
https://doi.org/10.1145/3698590
https://arxiv.org/abs/2505.09388
https://doi.org/10.24963/ijcai.2024/733
https://arxiv.org/abs/2409.07497
https://arxiv.org/abs/2401.01286
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=hsjQHAM8MV
https://aclanthology.org/2023.emnlp-main.971/
https://aclanthology.org/2023.emnlp-main.971/
https://arxiv.org/abs/2012.00363

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A METRICS

In this section, we introduce the evaluation metrics we use for COUNTERFACT and ZsRE

A.1 ZSRE EVALUATION METRICS

Building on prior studies, we define for each ZsRE metric a large language modelM, a factual
prompt (si, ri), a revised target output yi, and the model’s initial output ŷi:

Effectiveness. Effectiveness is quantified as the average top-1 accuracy on edited inputs:

Ei

[
1

(
yi = argmax

y
Pr
M

(y | (si, ri))
)]

. (15)

Generalization. This measures the ability of the model to perform correctly on paraphrased
prompts Ñ(si, ri). It is computed as the average accuracy over such rephrasings:

Ei

[
1

(
yi = argmax

y
Pr
M

(y | Ñ(si, ri))

)]
. (16)

Specificity. Specificity ensures that modifications do not affect unrelated cases Ω(si, ri). It is
defined as:

Ei

[
1

(
ŷi = argmax

y
Pr
M

(y | Ω(si, ri))
)]

. (17)

A.2 COUNTERFACTUAL EVALUATION METRICS

Similarly, we introduce Counterfactual metrics forM under the same setup (si, ri) with target yi
and original ŷi:

Effectiveness (success ratio). The share of cases where yi is assigned higher probability than ŷi
under (si, ri):

Ei

[
Pr
M

(yi | (si, ri)) > Pr
M

(ŷi | (si, ri))
]
. (18)

Generalization (paraphrase success). The proportion of paraphrased prompts Ñ(si, ri) where yi
has higher likelihood than ŷi:

Ei

[
Pr
M

(yi | Ñ(si, ri)) > Pr
M

(ŷi | Ñ(si, ri))
]
. (19)

Specificity (neighborhood success). For neighborhood prompts Ω(si, ri) that involve related but
distinct entities, specificity is the fraction of cases where yi is favored over ŷi:

Ei

[
Pr
M

(yi | Ω(si, ri)) > Pr
M

(ŷi | Ω(si, ri))
]
. (20)

B PROOF & KNOWLEDGE EDITING

B.1 GENERAL FRAMEWORK OF LOCATE-THEN-EDIT

Knowledge editing seeks to precisely revise a model’s behavior to recall a new fact (s, r, o∗) in place
of an obsolete or incorrect one (s, r, o), conditioned on a prompt p(s, r). While various techniques
exist, the dominant locate-then-edit paradigm (Meng et al., 2022; 2023) typically decomposes the
process into three distinct phases: locating the mediating parameters, computing the optimal local
update targets, and solving for the new weights. We formalize this process below using notation
consistent with Section 3.

Step 1: Causal Localization. The initial phase identifies the specific layer l and module (e.g., a
dense FFN or specific experts in an MoE layer) that mediate the retrieval of the factual association.
This is commonly achieved via Causal Tracing (Meng et al., 2022). By corrupting hidden states

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

with noise to degrade the model’s prediction and subsequently restoring states at specific layers, one
can quantify the Indirect Effect (IE) of each layer on the correct output probability. The layer l∗
exhibiting the maximal causal influence is selected as the target for editing:

l∗ = argmax
l

IE(l). (21)

Step 2: Acquiring the Target Output Vector (v∗). Once the target layer l∗ is identified, we
must determine the optimal output representation required to successfully trigger the target token o∗.
Viewing the layer as a linear associative memory, it maps a key k (input features) to a value v (output
features). The objective is to identify a new output vector v∗ such that, if the layer were to produce
v∗, the final model prediction would be o∗.

This step is formulated as an optimization problem over the hidden state vector rather than the
model parameters. Let G(v) denote the function mapping the layer output v to the final model logits.
We freeze the model parameters and optimize a perturbation δ to the original output v, aiming to
maximize the log-likelihood of the target object o∗:

v∗ = v + δ∗, where δ∗ = argmin
δ
− logPM (o∗ | do(v ← v + δ)) . (22)

Here, the do(·) operator signifies a causal intervention where the layer output is manually set to
v + δ. A regularization term (e.g., KL divergence) is typically included in the objective to minimize
prediction drift for the subject s and relation r, ensuring the edit remains semantically consistent.
This process effectively translates the semantic edit target (the token o∗) into a vector-space target v∗.

Step 3: Updating Parameters. The final step is to update the projection weights W (corresponding
to Wout in dense models or {Wn} in MoE experts) to map the specific input key k to the new target v∗,
while preserving unrelated associations. This is formulated as a constrained least-squares problem.

Let E denote the set of edit examples (new facts) and P denote the set of preservation examples
(invariant knowledge). We require Wki ≈ v∗i for edits i ∈ E , and Wkj ≈ vj for preservation
samples j ∈ P . The optimal update Ŵ minimizes the aggregated error:

Ŵ = argmin
W

∑
i∈E
∥Wki − v∗i ∥2 +

∑
j∈P
∥Wkj − vj∥2. (23)

Dense methods such as ROME and MEMIT solve this globally via a closed-form solution involving
the covariance matrix of the keys. As discussed in Section 4, our proposed MoEEdit adapts this
general objective to address the unique constraints of Mixture-of-Experts architectures.

B.2 SUPPLEMENTARY PROOF

B.2.1 PROOF OF THE GLOBAL CLOSED-FORM (ONE-SHOT) SOLUTION

Let {k̃i,n}i∈E, n∈[N] be the projected keys and gi,n ≥ 0 the router weights. For each edit example
i ∈ E , define the base residual

ri = vi −
N∑

n=1

gi,nWnki,n, (24)

and the design vector
ψ̃i =

[
gi,1k̃

⊤
i,1 · · · gi,N k̃

⊤
i,N

]⊤ ∈ RNdk . (25)

Stack the expert updates as ∆̂ = [∆̂1 · · · ∆̂N] ∈ Rdm×(Ndk). The projected objective

min
∆̂

∑
i∈E

∥∥∆̂ψ̃i − ri
∥∥2
2
+ λ

N∑
n=1

∥∥∆̂n

∥∥2
F

(26)

has the unique minimizer

θ⋆ = M−1
glob bglob, ∆̂⋆ = unvec(θ⋆), (27)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

with

Mglob =
(∑

i∈E
ψ̃iψ̃

⊤
i

)
⊗ Idm

+ λ IdmNdk
, bglob =

∑
i∈E

(
ψ̃i ⊗ Idm

)
ri. (28)

Let m := |E| and define the data matrices

Ψ =
[
ψ̃1 · · · ψ̃m

]
∈ RNdk×m, R =

[
r1 · · · rm

]
∈ Rdm×m. (29)

The objective becomes
min

∆̂∈Rdm×(Ndk)

∥∥∆̂Ψ−R
∥∥2
F

+ λ ∥∆̂∥2F . (30)

Taking derivatives gives
∇∆̂ = 2(∆̂Ψ−R)Ψ⊤ + 2λ ∆̂. (31)

Setting this to zero yields
∆̂ (ΨΨ⊤ + λINdk

) = RΨ⊤. (32)

Using vec(XA) = (A⊤ ⊗ I) vec(X), Eqn. 32 becomes(
(ΨΨ⊤)⊗ Idm

+ λIdmNdk

)
θ = vec(RΨ⊤), (33)

where θ = vec(∆̂). Noting that vec(RΨ⊤) =
∑m

i=1(ψ̃i ⊗ Idm)ri, we obtain the system in the
theorem statement.

Mglob = (ΨΨ⊤) ⊗ Idm
+ λI is positive definite for λ > 0, hence invertible. The minimizer is

unique.

Thus θ⋆ =M−1
globbglob, and reshaping yields ∆̂⋆ = unvec(θ⋆).

B.2.2 DETAILED DERIVATION OF THE SINGLE-EXPERT SUBPROBLEM

Starting from the projected MoE objective (Eqn. 8),

min
{∆̂n}N

n=1

∑
i∈E

∥∥∥ N∑
n=1

gi,n
(
Wnki,n + ∆̂nk̃i,n

)
− vi

∥∥∥2 + λ

N∑
n=1

∥∆̂n∥2, (34)

we apply block coordinate descent (BCD) over experts, updating one expert at a time and keeping the
others fixed. For a fixed expert n, collect all terms that do not involve ∆̂n into the external residual

r
(−n)
i = vi −

∑
ℓ̸=n

gi,ℓ
(
Wℓki,ℓ + ∆̂ℓk̃i,ℓ

)
, (35)

and substitute Eqn. 35 back into Eqn. 34. The single-expert subproblem for ∆̂n is the ridge-regularized
least-squares

min
∆̂n

∑
i∈E

∥∥∥r(−n)
i − gi,n∆̂nk̃i,n

∥∥∥2 + λ∥∆̂n∥2. (36)

Introduce compact notation

X = ∆̂n, xi = k̃i,n, yi = r
(−n)
i , gi = gi,n, (37)

so that
f(X) =

∑
i∈E

∥∥yi − giXxi

∥∥2 + λ∥X∥2. (38)

Using the standard matrix derivative identity2 yields

∇f(X) = −2
∑
i

giyix
⊤
i + 2

∑
i

g2iXxix
⊤
i + 2λX. (39)

2For vectors a, b and matrix X , ∂∥a−Xb∥2/∂X = −2(a−Xb)b⊤.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Setting the gradient to zero gives the normal equations

X
(∑

i

g2i xix
⊤
i + λI

)
=
∑
i

giyix
⊤
i . (40)

Restoring expert-specific symbols, define

Mn ≜
∑
i∈E

g2i,nk̃i,nk̃
⊤
i,n + λI, Bn ≜

∑
i∈E

gi,nr
(−n)
i k̃⊤i,n. (41)

Then Eqn. 40 becomes ∆̂nMn = Bn, with the unique minimizer

∆̂⋆
n = BnM

−1
n . (42)

Since the actual expert update is parameterized via the projection ∆n = ∆̂nPn (Sec. 4.2), the written
update is

∆⋆
n = ∆̂⋆

nPn. (43)

WhyMn is invertible (positive definite). By definition,

Mn =
∑
i∈E

g2i,nk̃i,nk̃
⊤
i,n︸ ︷︷ ︸

Gram matrix Gn⪰0

+λIdk
. (44)

For any nonzero z ∈ Rdk ,

z⊤Mnz =
∑
i∈E

g2i,n
(
z⊤k̃i,n

)2
+ λ∥z∥2. (45)

Since λ > 0, then z⊤Mnz ≥ λ∥z∥2 > 0 for all z ̸= 0, so Mn ≻ 0 and is invertible. Moreover,
λmin(Mn) ≥ λ, which ensures good conditioning (Tikhonov regularization). Because the projected
keys are k̃i,n = Pnki,n with an idempotent projector Pn, they lie in range(Pn). When λ > 0,Mn

remains strictly positive definite on the full ambient space (not only on range(Pn)), guaranteeing a
unique closed-form update 42.

C EXPERIMENTS SETUP

Model Configuration We evaluate our method on two Mixture-of-Experts (MoE) models: Qwen3-
30B-A3B3 and GPT-OSS-20B4. Qwen3-30B-A3B contains 128 experts per layer with the top-8
experts activated per token, resulting in approximately 3.3B active parameters during inference. The
latter, GPT-OSS-20B, features 32 experts per layer with the top-4 experts activated, corresponding to
approximately 3.6B active parameters.

Hardware and Quantization All experiments are conducted on a single node equipped with an
NVIDIA H20 GPU. To balance precision and memory constraints, we utilize the BF16 format for
model weights, while optimization is performed in FP32 to ensure numerical stability.

Fine-Tuning (FT) We evaluate both standard Fine-Tuning (FT) and Constrained Fine-Tuning
(FT-L). The primary distinction is that FT-L imposes a norm constraint ε on the weight update. For
both Qwen3-30B-A3B and GPT-OSS-20B, we set ε = 1× 10−3 for FT-L. We adopt a learning rate
of 1× 10−3 for both models. Updates are applied to layer 30 for Qwen3-30B-A3B and layer 0 for
GPT-OSS-20B. For both methods, we target the mlp.experts.down_proj module. We train for 25
epochs, setting both weight decay and the KL divergence factor to 0.

UnKE As UnKE employs a two-stage structuring process, we configure the models as follows:
For Qwen3-30B-A3B, the first stage uses a learning rate of 5× 10−1 with 25 optimization steps and
a weight decay coefficient of 1× 10−3. In the second stage, we apply a learning rate of 2× 10−4

and perform 50 optimization steps. For GPT-OSS-20B, the first stage similarly adopts a learning rate
of 5× 10−1 but with 50 optimization steps, utilizing the same weight decay (1× 10−3). The second

3https://huggingface.co/Qwen/Qwen3-30B-A3B
4https://huggingface.co/openai/gpt-oss-20b

16

https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/openai/gpt-oss-20b

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

stage proceeds with a learning rate of 1× 10−4 and 50 optimization steps. All experiments restrict
parameter updates to layer 7. Consistent with the focus on structured knowledge editing, optimization
is performed on the last subject token for both models.

AdaLoRA For AdaLoRA, updates are applied across all layers. We set the hyperparameters
α = 32 and rank r = 8. For Qwen3-30B-A3B, we set the learning rate to 5 × 10−3, while for
GPT-OSS-20B, we use a reduced learning rate of 5× 10−4. The optimization is run for 25 steps for
both models.

MoEEdit (Ours) For Qwen3-30B-A3B, we edit layers {3, 4, 5, 6, 7}, whereas for GPT-OSS-20B,
we target layer 5. For Qwen3-30B-A3B, we perform 25 optimization steps with a learning rate of
0.1 and execute 4 Block Coordinate Descent (BCD) passes. For GPT-OSS-20B, we perform 50
optimization steps with a learning rate of 0.2 and 10 BCD passes. For both models, we set the
regularization parameter λ = 1 and the KL factor to 0.0625. We utilize 100,000 samples to compute
the covariance matrix for the null-space projection with projection threshold = 0.02.

D LLM USAGE DISCLOSURE

In accordance with the ICLR policy on responsible LLM usage, we hereby declare that Large
Language Models (LLMs) were used solely for language refinement purposes in this paper. Specifi-
cally, LLMs were employed to correct grammar, improve clarity, and polish the writing style of the
manuscript. No LLMs were used for generating ideas, designing methods, conducting experiments,
analyzing results, or drawing conclusions. All scientific contributions of this work are entirely original
and the responsibility of the authors.

E EXAMPLES OF ZSRE AND COUNTERFACT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

{
"subject": "Watts Humphrey",
"src": "What university did Watts Humphrey attend?",
"pred": "Trinity College",
"rephrase": "What university did Watts Humphrey take part in?",
"alt": "University of Michigan",
"answers": [
"Illinois Institute of Technology"

],
"loc": "nq question: who played desmond doss father in hacksaw ridge",
"loc_ans": "Hugo Weaving",
"cond": "Trinity College >> University of Michigan || What university did

Watts Humphrey attend?"
},
{
"subject": "Ramalinaceae",
"src": "Which family does Ramalinaceae belong to?",
"pred": "Ramalinales",
"rephrase": "What family are Ramalinaceae?",
"alt": "Lamiinae",
"answers": [
"Lecanorales"

],
"loc": "nq question: types of skiing in the winter olympics 2018",
"loc_ans": "Downhill",
"cond": "Ramalinales >> Lamiinae || Which family does Ramalinaceae belong

to?"
},
{
"subject": "Denny Herzig",
"src": "What role does Denny Herzig play in football?",
"pred": "midfielder",
"rephrase": "What’s Denny Herzig’s role in football?",
"alt": "winger",
"answers": [
"defender"

],
"loc": "nq question: where does aarp fall on the political spectrum",
"loc_ans": "non-partisan",
"cond": "midfielder >> winger || What role does Denny Herzig play in

football?"
}

Figure 5: Examples of ZsRE dataset

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

{
"case_id": 975,
"pararel_idx": 17275,
"requested_rewrite": {
"prompt": "{}, from",
"relation_id": "P127",
"target_new": {
"str": "Google",
"id": "Q95"

},
"target_true": {
"str": "Microsoft",
"id": "Q2283"

},
"subject": "Bing Videos"

},
"paraphrase_prompts": [
"\"Old Jennifer: I’m $adjectiveOld!\" Bing Videos is owned by",
"J. Bing Videos is from"

],
"neighborhood_prompts": [
"OneDrive is from",
"German Research Center for Artificial Intelligence’s owner",
"Groove Music’s owner",
"Arkane Studios, from",
"Yammer is from",
"Yammer, by",
"Turn 10 Studios, by",
"German Research Center for Artificial Intelligence is owned by",
"Mojang Studios is from",
"id Software’s owner"

]
}

Figure 6: An example of COUNTERFACT

19

	Introduction
	Related Work
	Preliminaries
	Method
	Routing Distribution Shift in MoE Editing
	Per-Expert Null-Space Projection Reparameterization
	Randomized Block Coordinate Descent Solver

	Experiments
	Baselines, Datasets, and Metrics
	Main Results on Knowledge Editing
	Main Results on Routing Distribution Shift
	Ablation Study

	Discussion and Conclusion
	Metrics
	ZsRE Evaluation Metrics
	Counterfactual Evaluation Metrics

	Proof & Knowledge Editing
	GENERAL FRAMEWORK OF LOCATE-THEN-EDIT
	Supplementary proof
	Proof of the Global Closed-Form (One-Shot) Solution
	Detailed derivation of the single-expert subproblem

	Experiments Setup
	LLM Usage Disclosure
	Examples of ZsRE and COUNTERFACT

