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ABSTRACT

Knowledge editing (KE) enables precise modifications to factual content in large
language models (LLMs). Existing KE methods are largely designed for dense ar-
chitectures, limiting their applicability to the increasingly prevalent sparse Mixture-
of-Experts (MoE) models that underpin modern scalable LLMs. Although MoEs
offer strong efficiency and capacity scaling, naively adapting dense-model editors is
both computationally costly and prone to routing distribution shifts that undermine
stability and consistency. To address these challenges, we introduce MoEEdit, the
first routing-stable framework for parameter-modifying knowledge editing in MoE
LLMs. Our method reparameterizes expert updates via per-expert null-space pro-
jections that keep router inputs invariant and thereby suppress routing shifts. The
resulting block-structured optimization is solved efficiently with a block coordinate
descent (BCD) solver. Experiments show that MoEEdit attains state-of-the-art
efficacy and generalization while preserving high specificity and routing stability,
with superior compute and memory efficiency. These results establish a robust
foundation for scalable, precise knowledge editing in sparse LLMs and underscore
the importance of routing-stable interventions.

1 INTRODUCTION

Large language models (LLMs) can store and retrieve substantial factual knowledge (Petroni et al.,
2019; Sun et al., 2024), yet they sometimes produce incorrect or outdated statements. For Instance,
asserting that the capital of France is Berlin or misreporting the CEO of a major company. Such
errors undermine user trust and constrain deployment in knowledge-sensitive applications (Zhang
etal., 2024c; Zhong et al., 2023). Fully retraining these models or performing broad fine-tuning is
computationally prohibitive and can induce catastrophic forgetting of unrelated capabilities (Luo
et al., 2025). These limitations motivate knowledge editing, which aims to revise specific facts while
preserving the model’s general behavior (Meng et al., 2022; 2023; Mitchell et al., 2022a;b).

Most knowledge editing (KE) methods have been designed for dense Transformer architectures,
where all parameters are active for each input (Wang et al., 2024). Broadly, KE falls into two families:
parameter-preserving approaches leave base weights unchanged and attach auxiliary mechanisms
that conditionally override outputs (e.g., SERAC with an external edit memory and routing module
(Mitchell et al., 2022b)), and parameter-modifying approaches aim to directly update model weights
responsible for factual recall. Many methods follow a locate-then-edit paradigm: they identify
mediating parameters, often mid-layer feed-forward MLP modules (Geva et al., 2021; Dai et al.,
2022), using causal analyses, and then apply structured weight updates. Representative methods
include ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), and PMET (Li et al., 2024). Recent
work improves locality by projecting edits into the null space of a preservation set, which reduces
interference with unrelated behaviors (Fang et al., 2025).

State-of-the-art LLMs increasingly adopt Mixture-of-Experts (MoE) architectures to enlarge parame-
ter capacity while maintaining nearly constant computational throughput (FLOPs) (Shazeer et al.,
2017). In an MoE layer, a trainable router activates a small subset of experts for each token (for
instance, 8 of 128 in Qwen3-30B-A3B), yielding sparse, input-dependent computation and enabling
marked expert specialization (Lepikhin et al., 2021; Du et al., 2022). However, this sparse, modular
design introduces a tripartite challenge for knowledge editing that is absent in dense models.
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Figure 1: Overview of knowledge editing in Mixture-of-Experts (MoE) LLMs. (a) Challenges: MoE
editing is hindered by routing distribution shift, high computational cost, and expert coupling. (b)
Method: MoEEdit mitigates these issues using per-expert null-space projection to stabilize routing
and a randomized block coordinate descent (BCD) solver for efficient expert updates.

The first and most direct challenge is computational complexity. Naively applying dense-model
editing techniques would require updating all experts, multiplying the cost by their total number
(e.g., 128x) and thus rendering the process computationally prohibitive. This necessitates a targeted
approach, but editing only a subset of experts introduces further complications. Second, because
the layer’s output is a gate-weighted combination of multiple expert outputs, any edit must contend
with inter-expert coupling. A modification to a single expert’s parameters can be diluted or cause
unintended side effects when combined with others, demanding a principled allocation of the update
across the appropriate specialists. Third, and most subtly, edits risk inducing routing distribution
shifts in subsequent layers. Parameter perturbations in one MoE layer alter the input manifold for
downstream layers, causing their routers to select different experts. This cascading effect disrupts
the model’s learned routing patterns and specialized knowledge pathways, jeopardizing both edit
locality and overall model stability. Collectively, these intertwined issues of computational cost,
expert coupling, and routing stability make successful and localized knowledge editing in MoEs
substantially more difficult than in their dense counterparts.

To address this tripartite challenge, we introduce MoEEdit, an expert-aware editor that reframes
MoE knowledge editing as a principled, block-structured optimization problem where each expert
constitutes a block. We are the first to formally identify routing-induced instability as a central
obstacle to successful editing in MoEs. To solve this, we develop a novel per-expert null-space
projection that constrains parameter updates to preserve the input to subsequent routers, thereby
safeguarding model stability. This technique is paired with a highly efficient randomized block
coordinate descent (BCD) solver that tackles computational complexity and inter-expert coupling
by strategically updating only the most relevant experts for a given edit. This decoupling ensures our
method’s cost scales linearly with the expert hidden size, not the total number of experts, making
it highly scalable. Our integrated approach sets a new state-of-the-art on standard benchmarks
(COUNTERFACT, zsRE), decisively outperforming dense-model editors adapted for MoEs. This
result underscores the necessity of expert-aware, routing-stable interventions tailored to the unique
architectural properties of MoE models.

2 RELATED WORK

Knowledge editing (KE) in dense Transformers. KE seeks to revise specific factual associations
in LLMs while preserving general capabilities (Zhang et al., 2024c; Zhong et al., 2023). Methods for



dense Transformers fall into two families: parameter-modifying and parameter-preserving. Within
the former, locate-then-edit approaches such as ROME (Meng et al., 2022) and MEMIT (Meng et al.,
2023) directly modify a small set of FFN down-projection weights identified via causal analysis,
enabling single-fact and batched edits, respectively. Gradient-based editors such as MEND (Mitchell
et al., 2022a) learn hypernetworks that transform fine-tuning gradients into localized weight updates.
To improve locality and robustness under sequential edits, AlphaEdit (Fang et al., 2025) projects
updates into the null space of a preservation set. Other strands explore instruction-based editing
(Zhang et al., 2024a), hybrid neural-symbolic mechanisms (Zhang et al., 2024b), and in-context
editing (Zheng et al., 2023).

Complementing these, parameter-preserving or semi-parametric methods (e.g., SERAC (Mitchell
et al., 2022b)) store edits in external memories and perform inference-time routing, trading parametric
locality for reversibility and capacity. notably, LEMoE (Wang & Li, 2024) introduces a Mixture-of-
Experts (MoE) architecture within the adaptor itself to manage lifelong editing.** However, LEMoE
functions as a parameter-preserving framework that attaches external modules to a frozen backbone
(typically dense). It addresses routing consistency within the added adaptor rather than the routing
distribution shift of the base model itself.

Mixture-of-Experts (MoE) architectures. MOoE layers scale capacity by activating only a sparse
subset of experts per token through a learned router, thereby increasing representational power while
keeping FLOPs nearly constant (Shazeer et al., 2017; Lepikhin et al., 2021; Du et al., 2022). Each
expert is a gated feed-forward network with its own parameters; the router selects the top- K experts
using input-dependent logits and produces a gate-weighted sum of their outputs. This conditional
computation yields strong expert specialization but also creates editing complications: edits must
respect the router’s distribution, multiple experts jointly determine the output, and perturbations at
one layer can alter downstream routing.

Knowledge editing for MoE LLMs.  However, KE for MoE architectures remains largely
unexplored. While methods like LEMOE utilize MoE structures externally, they do not tackle the
challenge of modifying intrinsic MoE parameters. Existing techniques, which assume fully active
parameters, are ill-suited for the conditional computation in MoEs and present an intractable trade-off:
updating all experts is computationally prohibitive, while updating a subset is unreliable due to
stochastic routing. This leaves a critical gap for an editing framework explicitly designed for the
sparse and modular nature of MoE models.

3 PRELIMINARIES

Locate-then-Edit Paradigm (Dense Models). An autoregressive LLM updates the layer-/ hidden
state as h! = h!~! + a! + v!, where a! and v' are the outputs of the attention and feed-forward
(FFN) blocks at layer [, respectively. The FEN output can be written as

vl = W o(Wh~y(h' ™' +ah)) = W, -k, (1)

"keys"k

with layer norm +(-) and nonlinearity o(-). Following Geva et al. (2021), W . can be viewed as
a linear associative memory that maps post-gate features (“keys”: k = U(VVif1 y(h1 + al))) to
outputs (“values”: v = v'). If factual knowledge is formalized as triples (s, , 0) (subject, relation,
object), one can view k as encoding (s, r) and v as encoding o (Meng et al., 2022; Dai et al., 2022).
We adopt a locate-then-edit formulation: given keys K1 = [k |k2| - - - | k] for the new associations
and targets Vi = [v; |va| - -+ | v,,], find a small perturbation A to a single FFN projection W, such
that (W, + A) K & V; while preserving behavior on a preservation set with keys K. This yields
the regularized least-squares objective

. ~ 2 ~ 2 <

A= arg min [(Wou + A) K1 — Vi ||” + || AK, || + AA?, )

where \ > 0 controls locality and conditioning. For clarity, layer indices are omitted below since the
formulation applies identically to each layer.

KE in MoE LLMs. Modern LLMs increasingly adopt MoE layers to scale capacity with near-
constant FLOPs (Shazeer et al., 2017; Lepikhin et al., 2021). Given an input representation u,



a trainable router produces logits s, = u'e, (e, is the routing embedding for expert n) and
selects a small set S = TopK(s1.n, K) (TopK selects K biggest element of s1.y, and typically
K < N for MoE models). Let g,, denote the router weight for expert n. The MoE block output is a
router-weighted mixture

N
exp(sn)/ > s exp(sj), meES,
v = E,(u), = / 3)
Z gn En (1) n {0, otherwise,
where each expert is a gated FFN
() = Wi, [(Wu) © o Wikkw)] )
Thus, every expert realizes its own key—value memory: the post-gate feature k,, (Wé; ) u) ©

J(W(") u) serves as a key and the linear map W™ returns a value v, = W\")_k,, which the

gate down down
router aggregates into v =y gn, Un.

Extending Eqn. 2 to MoE, we edit expert-specific projections {W,,})_, (For brevity in the editing

objective, we denote W,, = W ") - For edit request 4, let k; ,, € R% be the post-gate key of expert
n, g;,n > 0 its router weight, and vl ; the target output. We consider disjoint sets: an edit set £ where
outputs should change and a preservation set P to remain stable. The MoE KE objective seeks small
perturbations {A,, } that (i) match targets on £ and (ii) preserve behavior on P:

{A}_argmanHZgzn n—l—A kin—v; +ZHZg’"A kin

265 n=1 i€EP n=1

“t /\ZIIAnH

Compared with the dense case, the router weights {g; » } couple experts: each example influences up
to K experts (Top-K gating), and a naive closed-form solve would require inverting a (Ndj,) x (Ndy,)
system—computationally prohibitive for large /V. This coupling and scale motivate the expert-aware
optimization strategy developed in Section 4.

4 METHOD

In this section, we present MoEEdit, a purpose-built, expert-aware knowledge editor for MoE models.
Our approach tackles the unique challenges of MoE editing head-on: (i)it mitigates the routing
distribution shift: a key instability when naively apply KE to MoE models by reparameterizing expert
updates through per-expert null-space projections , and (ii) solves the resulting objective efficiently
with a randomized block coordinate descent (BCD) procedure that scales with the expert hidden size,
making large-scale MoE editing tractable.

4.1 ROUTING DISTRIBUTION SHIFT IN MOE EDITING

Editing expert parameters changes the MoE block outputs and, after subsequent normalization and
attention, perturbs the input w to the router in the following MoE layers. Following the definition
in Section 3, let By = [ef, ..., e4] collect the router embeddings at layer ¢. The router computes
logits and mixture weights as g, = softmax(s)', where s, = Eéruz. A perturbation applied in
layer (¢ — 1) changes u, by duy, thus s, by s, = E/ du, and produces new routing weights
g, = softmax(s, + ds¢). We define the routing distribution shift as dg, = g; — gp. Its magnitude
can be quantified over a set of prompts using the Kullback-Leibler (KL) divergence or the Routing
Similarity (RS), which is defined as the Jaccard similarity between the pre- and post-edit Top- K
expert sets:

RS@ |S§>re N Sé)ost|

route = W or KL(gellgp), (6)
¢ ¢

where SP*° and S§**" denote the expert sets before and after editing, respectively. To characterize
dgy analytically, we linearize the softmax around sy:

gr = ge+ Jam(80)0s0 = 0gs = Jom(s0) E} duy, (7

'For clarity of analysis, we use the full softmax distribution and omit the Top-K selection, so that g, remains
differentiable for the Jacobian-based first-order analysis.



Where ~ denotes a first-order Taylor approximation of the softmax function around sy, when
the perturbation §s; is small, and Js,(s) = diag(sm(s)) — sm(s)sm(s)" is the Jacobian of
softmax and sm is the softmax function. This relation highlights a crucial observation: only the
component of du, that lies in the span of E, influences the routing probabilities, and the Jacobian
can amplify such components, potentially destabilizing expert selection. This insight motivates our
design—suppressing the projection of perturbations onto span(Ey) is key to preventing routing drift.

4.2 PER-EXPERT NULL-SPACE PROJECTION REPARAMETERIZATION

As established in Section 4.1, suppressing routing drift amounts to ensuring that duy, ~ 0 on a
preservation set. To achieve this by construction, we reparameterize each expert update so that
its effect vanishes along directions spanned by preservation features. Inspired by the null-space
constrained approach of ALPHAEDIT for dense models, we generalize the idea to the MoE setting by
computing a per-expert projector that filters out harmful update components.

Concretely, recall from Eqn. 4 that expert n produces output W, k; ,, for post-activation key k; .
Let P denote the set of preservation prompts, and collect their features for expert n into the matrix
K = [kin],.p € R%*IPl. The covariance K\, K}, captures the subspace of activations we
wish to keep invariant. We compute its eigendecomposition, KO K% = U, A,,U,|, and select
indices Zyp = {p : A\, < 7} corresponding to (near-)null eigenvalues under a small threshold
7> 0. Let U? = U, [:, Zo] and define the orthogonal projector onto the complement of span(K?)
by P, = UU?". Intuitively, P, preserves only those directions orthogonal to all preservation
features, so any update projected by P, is guaranteed not to alter expert outputs on P.

We then reparameterize the expert update as A,, = AnPn, where An is the free variable to be
optimized. Because P, k; , = O for all © € P (up to numerical error), the preservation outputs are

unaffected: AnPnk,;,n = 0. Consequently, for every ¢ € P we have duy(i) = 0, and by Eqn. 7 the
induced routing shift satisfies dg,(i) ~ 0, minimizing Eqn. 6 on the preservation set.

Projected editing objective. Let I;:i’n = P, k, ,, denote the projected key. Substituting A,, =
A, P, into the MoE objective (Eqn. 5) yields

R N o 9 N
{An}’rlyzl = arg {H}ln} Z H Z Gin (Wnki,n + Ank:z,n) —U; + A Z ||An||27 (8)
nlieg  n=1 n=1

where A > 0 controls the update magnitude and improves locality. No separate preservation term is
needed, as P, removes all preservation components by construction.

4.3 RANDOMIZED BLOCK COORDINATE DESCENT SOLVER

A naive step is to solve the projected objective in Eqn. 8 in one shot, just like what we do in dense
model KE(Meng et al., 2022; 2023; Fang et al., 2025). In this subsection, we (i) expose the structure
of the global closed-form solution, (ii) explain why the direct route is computationally impractical
in MoE, and (iii) arrive at an efficient randomized block coordinate descent (BCD) procedure that
scales with the expert hidden size.

The global closed-form (one shot). Let A,, € R% %% be the projected free variable for expert n,
and stack all expert updates horizontally as A = [A; --- Ay] € R *(Ndk) For edit example i,
define the base residual (excluding any edits) r; = v; — Zﬁf:l 9i,n Whr ki n, and the design vector
1,57; = [91,1];?21 . g,;7NI;:;7rN]T € RNd: where INc”L = P,k; . Then Eqn. 8 becomes a regularized
multi-output linear regression: ming » . ¢ HA@l - r¢||2 + A 227:1 |A,||?. Vectorizing with
0 = vec(A) € R¥Ndk and using vec(A;) = (b ® I )0, the normal equations take the
compact form

(Z(@BM )@ I, + AIdmNdk> 0=> (P @1I,,)r, ©

i€g i€g
with unique minimizer

0* = M_} by, and A* = unvec(*), (10)



where Mo, = 3, (¢ih]) ® Iy, + M and bgor, = 3. ,(3; ® I, )ri. A proof is provided in
Appendix B.2.

Although Eqn. 9 is elegant, it is not a practical editing primitive at MoE scale. First, even exploiting the
Kronecker structure, the system decomposes into d,,, independent problems of size (Ndy) x (Ndy)
each. For typical MoE layers, N can be 8-128 and dy, in the thousands, so factorizing d,,, such systems
(and re-factorizing as £ changes) is prohibitively expensive in both time O (dm (N dk)?’) and memory
O(dm(N dk)z). Second, while Top-K routing makes each 1p; K-block sparse, the accumulated
Gram matrix ), 1[:21/;: quickly densifies, yielding substantial fill-in under Cholesky/LDL . These
realities make the one-shot solve not suitable for fast, iterative MoE editing.

From global to block: randomized BCD. Since the insight that every expert is a natural chunk.
The structure of Eqn. 8 suggests a block strategy: treat each expert as a block and optimize one block
while holding the rest fixed. This reduces the problem to a sequence of well-conditioned, small ridge
least-squares solves of size dj X dy.

Fix {A ¢}o+n and define the residual that excludes expert 7:

= v, — Z it Wik o+ Ak ). (11)
l#n

The subproblem in A,, becomes the ridge-regularized least squares

. —-n AL 2 A
n}lnz H'r'l( ) _ gi,n,Ankiyn|| +MAL? (12)
An Gcg
Its normal equations
A (X otukekly + A1) = (X gar RL). 3
i€€ i€€
MnedeXdk BHGRd”l Xdp

admit the closed-form update
. - - -1
A =B, M ' = (Z ginr k] n) (Z 9 ki), + /\I) . (14)
ic€ (1<

We then write to parameters via the projection Ay = A;Pn and move to the next block.

Practicalities and complexity. = We traverse experts in randomized order and update only those
active in the current minibatch, which further reduces cost. For each updated expert, forming M,
costs O(|€|d%) and inverting it costs O(d3 ), typically modest since dj, < d,,,. We stream-accumulate

B,, and M,,, cache k; ,,, and use Cholesky with diagonal loading for numerical stability. Because
Eqn. 8 is a strictly convex quadratic in {A,, }, (randomized) BCD with exact block solves converges
globally under standard conditions (Tseng, 2001; Richtarik & Takac, 2014). Empirically we see fast
decrease within a few passes (< 10).

5 EXPERIMENTS

5.1 BASELINES, DATASETS, AND METRICS

We evaluate two modern MoE LLMs on standard factual-editing benchmarks: Qwen3-30B-
A3B (Yang et al., 2025) (128 experts; top-8 per token) and GPT-OSS-20B (Agarwal et al., 2025)
(32 experts; top-4 per token). As baselines, we adapt parameter-editing methods originally designed
for dense Transformers but directly applicable to MoE models: Fine-Tuning (FT) (Zhu et al., 2020),
FT-L (FT with a norm constraint), AdaLoRA (Zhang et al., 2023), and UnKE (Deng et al., 2025).

Following prior work, we use COUNTERFACT (single-hop counterfactual edits introduced with
MEMIT) (Meng et al., 2023) and ZsRE (zero-shot relation extraction) (Levy et al., 2017). Visualized
dataset examples are provided in Appendix E for unfamiliar readers. We report the standard editing
metrics (Meng et al., 2022; 2023; Mitchell et al., 2022a): (i) Efficacy (edit success on edited prompts),



Table 1: Sequential knowledge editing on MoE LLMs. Eff., Gen., Spe. denote Efficacy, Generalization,
Specificity; Uti. is their mean (higher is better 1). Best in bold, second-best underlined.

Method Model COUNTERFACT ZsRE

Eff.1 Gen.T Spe.T Uti.t Eff.T Gen.T Spe.T Uti.t
Pre-edited 13.30+034 15.10+031 84.45+024 37.62 41.30+029 40.50+028 40.91+027 40.90
FT 2 80.70+039 63.95+043 41.44+039 62.03 6.44+014  6.13+0.14 2.15+006 491
FT-L i 82.40+038 22.75+033 71.48+025 58.88 44.19+029 42.46+029 41.92+027 42.86
AdalLoRA § 51.90+050 49.75+040 48.10+026 49.92  3.66+0.09 3.60+000  4.68+0.10  3.98
UnKE § 89.30+031 82.85+033 48.15+033 73.43 31.43+028 29.78+027 25.30+023 28.84
MOoEEdit 4 99.30+008 94.10+020 80.97+025 91.46 84.47+022 78.01+028 42.82+028 68.43
Pre-edited 11.80+032 14.70+031 84.53+024 37.01 33.20+028 32.14+028 28.02+000 31.12
FT o 83.40+037 58.40+042 55.72+033 65.84 25.57+028 23.41+026 17.61+021 22.20
FT-L S 73.80+044 43.10+048 59.75+033 58.88 32.75+029 33.09+030 30.06+026 31.97
AdaLoRA @ 62.40+048  55.00+042 43.65+034 53.68 43.46+030 42.96+030 33.60+024 40.01
UnKE E 78.00+041 44.404+042 73.91+028 65.44 46.58+031 43.99+031 31.40+026 40.66
MoEEdit 95.90+020 44.10+043 81.09+025 73.70 81.68+025 68.44+034 32.55+026 60.89

(i) Generalization (success on paraphrases and lightly perturbed contexts), and (iii) Specificity
(locality on unrelated controls). Unless stated otherwise, we perform sequential batched edits. And to
summarize the overall trade-off, we additionally report Utility as the mean of the three metrics. See
Appendix A for full calculation details.

5.2 MAIN RESULTS ON KNOWLEDGE EDITING

We perform 1,000 sequential edits on each dataset (COUNTERFACT and ZsRE) with a batch size of
50 edits for all methods. Table | summarizes results on Qwen3-30B-A3B and GPT-OSS-20B.

As shown in Table |, MoEEdit consistently delivers outstanding results. On COUNTERFACT,
it achieves over 90 efficacy on both backbones, substantially outperforming UnKE and FT-L in
generalization and specificity, respectively. On GPT-OSS-20B, although FT attains slightly higher
generalization, MoEEdit still provides the best overall balance, with clear gains in efficacy (+12.5)
and specificity (+7.2). On ZsRE, MOEEDIT also demonstrates large improvements in efficacy and
generalization—over +30 points against the strongest baselines—while maintaining competitive
specificity (within 1 point of AdalLoRA). These results highlight that MOEEDIT offers the most
favorable trade-off between accuracy and locality across models and datasets.

5.3 MAIN RESULTS ON ROUTING DISTRIBUTION SHIFT

We analyze routing distribution shifts under sequential editing. Similar to Section 5.2, we perform
1,000 edits with a batch size of 50. To control for depth, all methods are constrained to update at
most the top editing layer (layer 7). Specifically, MoEEdit applies updates across layers {3,4,5,6,7}
using BCD, while FT, FT-L, UnKE, and AdaLLoRA are restricted to layer 7. We evaluate on Qwen3-
30B-A3B/COUNTERFACT and report the routing-similarity (RS) metric between pre- and post-edit
Top-K expert sets (Eqn. 6), averaged over windows of 10 layers, for both the editing and preservation
sets. The editing set consists of the 1,000 edited samples, while the preservation set is formed by
sampling an equal number of untouched examples from the remaining dataset. Table 2 summarizes
the results.

Projection suppresses routing drift and preserves stability. As shown in Table 2, methods directly
extended from dense models exhibit substantial routing drift, whereas MoEEdit maintains consistently
high routing stability (average RS > 88 across all layer ranges for both sets). Considering that Qwen3-
30B-A3B activates 8 experts per token, the average number of non-overlapping experts before and
after editing is close to one, which is negligible. This observation aligns with the heavy-tailed nature
of routing: small perturbations primarily affect low-weight expert selections that contribute little to
the output. The average KL divergence between pre- and post-edit routing distributions for MoEEdit
is only 0.02, indicating minimal shift. Furthermore, Figure 2 plots routing similarity across layers for
both editing and preservation sets. AdaLoRA and FT exhibit the lowest RS values across layers due



Table 2: Routing distribution shift on Qwen3-30B-A3B. Values are Jaccard similarity (RST) between pre- and
post-edit routing distributions. Higher is better. Best results are in bold, second-best are underlined.

Editi t R P ti t R
Method Model diting Set RSt reservation Set RST

Lay. 11-20 Lay. 21-30 Lay. 31-40 Lay. 11-20 Lay. 21-30 Lay. 31-40

FT 23.57 26.58 29.98 24.72 27.45 30.97
FT-L 2 47.01 51.20 53.68 48.80 50.17 53.45
AdalLLoRA é 16.63 24.11 27.00 16.38 23.84 26.60
UnKE % 52.46 44.12 44.80 49.90 4191 43.84
MOoEEdit g 86.62 88.16 89.93 87.02 88.55 90.22
o Editing Set Lo Preservation Set
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Figure 2: Routing similarity (RS) before and after editing on the editing and preservation sets.
MoEEdit achieves consistently high RS, demonstrating strong routing stability.

to their unconstrained updates that heavily disrupt routing patterns. In contrast, MoEEdit preserves
routing stability across all layers and consistently outperforms all baselines.

5.4 ABLATION STUDY

Effect of Projection. We
ablate the projection matrix in
MokEEdit to evaluate its contri-

Table 3: Ablation on the projection matrix. Removing projection signifi-
cantly weakens routing stability.

bution to routing stability. As
shown in Table 3, removing  pethod Set
projection reduces RS by an

RSt

Lay. 11-20 Lay. 21-30 Lay. 31-40

average of 14.81 points on the

editing set and 15.21 on the = MoEEdit Edi 86.62 88.16 89.93
preservation set. The KL diver-  MoEEdit (w/o Proj) it 73.64 72.90 73.75
gence also increases from 0.02 :

to 0.0834, confirming that pro- ~ MOEEdit Pres. 87.02 88.55 90.22
jection is critical for suppress- MOoEEdit (W/O Proj) 73.59 73.08 73.50

ing routing drift. These results
validate the projection design introduced in Section 4.2.

BCD Solver vs. Closed-form Solver. We compare the proposed block coordinate descent (BCD)
solver with a naive closed-form solution. The latter requires inverting large matrices that scale with
the number of experts and constraints, making it computationally infeasible at realistic scales. To
enable comparison, we construct a controlled synthetic batch and evaluate (i) convergence and (ii)
scalability. Results are shown in Figure 3.

Figure 3 illustrates two perspectives on our BCD solver: (a) reconstruction error convergence under
varying A, and (b) runtime scalability with respect to the number of experts. Smaller A values (e.g.,
10~%,10~3) achieve lower error, whereas larger values converge to higher error floors. Panel (b)
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Figure 3: Comparison of solvers. (a) BCD achieves fast convergence with suitable \. (b) BCD scales
efficiently with the number of experts, while the closed-form solver quickly becomes infeasible.

shows that the closed-form solver exhibits near-quadratic runtime growth and becomes infeasible
beyond N = 60, while BCD maintains nearly constant runtime up to 128 experts. Thus, BCD scales
linearly with hidden size rather than the total number of experts, ensuring practical efficiency.

Number of BCD Passes. We vary the number of 100

BCD passes € {2,4,6,8,10,12, 14,16, 18,20} while "

keeping all other settings fixed, and evaluate efficacy,

generality, specificity, and their harmonic mean. As 5 o ead
shown in Figure 4, as the number of BCD passes in- < .ot
o o SRS
creases, both efficacy and generality rise rapidly in <
the early phase and then plateau, reflecting dimin- g 101 —
2]

ishing returns beyond moderate passes. Specificity

shows a more stable, gradual upward trend. Since —— Efficiency =~ —=— Specificity

\ 201 )
each subproblem is convex, early passes remove dom- —— Generality ~ -=- Avg
inant residuals, while later passes only refine small 0
residuals, yielding slower gains. This behavior sug- 5 10 15 20

gests that a small number of passes (e.g., 6—10) already Number of BCD Passes

achieves a favorable trade-off between performance
and efficiency. Beyond this range, additional passes
bring only marginal improvements while increasing runtime, highlighting the practicality of moderate
BCD iterations in large-scale editing scenarios.

Figure 4: Ablation on the number of passes.

6 DISCUSSION AND CONCLUSION

In this work, we presented MoEEdit, a routing-stable knowledge editing framework tailored for
Mixture-of-Experts (MoE) LLMs. Our approach addresses the unique challenges of computational
cost, inter-expert coupling, and routing drift by combining per-expert null-space projection with an
efficient block coordinate descent solver. Extensive experiments on COUNTERFACT and ZsRE
benchmarks demonstrate that MoEEdit achieves high efficacy, strong generalization, and routing
stability, all with superior efficiency compared to prior methods.

Beyond empirical performance, our findings highlight several broader insights. First, expert-aware
design is crucial: naive adaptations of dense-model editors to MoEs fail to maintain stability and
efficiency. Second, routing stability emerges as a central factor in editing sparse architectures, where
even small perturbations can cascade through routing distributions. By explicitly controlling for this
effect, MoEEdit offers a principled solution that preserves locality without sacrificing scalability.

In summary, MoEEdit establishes a robust foundation for precise and scalable knowledge editing
in sparse architectures, advancing the state of the art and paving the way for more adaptive and
trustworthy MoE-based language models.
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A METRICS

In this section, we introduce the evaluation metrics we use for COUNTERFACT and ZsRE

A.1 ZSRE EVALUATION METRICS

Building on prior studies, we define for each ZsRE metric a large language model M, a factual
prompt (s;,7;), a revised target output y;, and the model’s initial output ¢;:

Effectiveness. Effectiveness is quantified as the average top-1 accuracy on edited inputs:
E; [1 (yl = argmax Pr(y | (sz,m))> ] (15)
y M

Generalization.  This measures the ability of the model to perform correctly on paraphrased
prompts N (s;,7;). It is computed as the average accuracy over such rephrasings:

B[t (15 = argmax Pty | ¥sir) )] (16)

Specificity.  Specificity ensures that modifications do not affect unrelated cases Q(s;, r;). It is
defined as:

£ [1 (3 = argmpxPr(y | 905 )] an

A.2 COUNTERFACTUAL EVALUATION METRICS

Similarly, we introduce Counterfactual metrics for M under the same setup (s;, ;) with target y;
and original ¢;:

Effectiveness (success ratio). The share of cases where y; is assigned higher probability than ¢;
under (s;,7;):

Ei| Pr(y: | (si73)) > Pr(ii | (s0,m2))]- (18)

Generalization (paraphrase success). The proportion of paraphrased prompts N (s;,7;) where y;
has higher likelihood than ;:

Ei| Pr(yi | N(si,mi)) > Pr(zi | N(si,r)- (19)

Specificity (neighborhood success).  For neighborhood prompts €2(s;, r;) that involve related but
distinct entities, specificity is the fraction of cases where y; is favored over ¥;:

Ei| Pr(yi | Qsiri)) > Pr(d | Qi) (20)

B PROOF & KNOWLEDGE EDITING

B.1 GENERAL FRAMEWORK OF LOCATE-THEN-EDIT

Knowledge editing seeks to precisely revise a model’s behavior to recall a new fact (s, r, 0*) in place
of an obsolete or incorrect one (s, 7, 0), conditioned on a prompt p(s, ). While various techniques
exist, the dominant locate-then-edit paradigm (Meng et al., 2022; 2023) typically decomposes the
process into three distinct phases: locating the mediating parameters, computing the optimal local
update targets, and solving for the new weights. We formalize this process below using notation
consistent with Section 3.

Step 1: Causal Localization. The initial phase identifies the specific layer [ and module (e.g., a
dense FFN or specific experts in an MoE layer) that mediate the retrieval of the factual association.
This is commonly achieved via Causal Tracing (Meng et al., 2022). By corrupting hidden states
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with noise to degrade the model’s prediction and subsequently restoring states at specific layers, one
can quantify the Indirect Effect (IE) of each layer on the correct output probability. The layer [*
exhibiting the maximal causal influence is selected as the target for editing:

"= argmlaxIE(l). (1)

Step 2: Acquiring the Target Output Vector (v*).  Once the target layer [* is identified, we
must determine the optimal output representation required to successfully trigger the target token o*.
Viewing the layer as a linear associative memory, it maps a key k (input features) to a value v (output
features). The objective is to identify a new output vector v* such that, if the layer were to produce
v*, the final model prediction would be o*.

This step is formulated as an optimization problem over the hidden state vector rather than the
model parameters. Let G(v) denote the function mapping the layer output v to the final model logits.
We freeze the model parameters and optimize a perturbation ¢ to the original output v, aiming to
maximize the log-likelihood of the target object o*:

v =v+406%, where §* = argméinflog]P’M (0" | do(v <+ v+9)). (22)

Here, the do(-) operator signifies a causal intervention where the layer output is manually set to
v 4 d. A regularization term (e.g., KL divergence) is typically included in the objective to minimize
prediction drift for the subject s and relation r, ensuring the edit remains semantically consistent.
This process effectively translates the semantic edit target (the token 0*) into a vector-space target v*.

Step 3: Updating Parameters. The final step is to update the projection weights W (corresponding
to Woy¢ in dense models or {W,, } in MoE experts) to map the specific input key % to the new target v*,
while preserving unrelated associations. This is formulated as a constrained least-squares problem.

Let £ denote the set of edit examples (new facts) and P denote the set of preservation examples
(invariant knowledge). We require Wk; ~ vj for edits © € £, and Wk; ~ v; for preservation

samples j € P. The optimal update W minimizes the aggregated error:
W=argmvivn;||Wki—v;‘\\2+;IIij—ijz- (23)
i J

Dense methods such as ROME and MEMIT solve this globally via a closed-form solution involving
the covariance matrix of the keys. As discussed in Section 4, our proposed MoEEdit adapts this
general objective to address the unique constraints of Mixture-of-Experts architectures.

B.2 SUPPLEMENTARY PROOF
B.2.1 PROOF OF THE GLOBAL CLOSED-FORM (ONE-SHOT) SOLUTION

Let {I;:,»’n}ie &, ne[n) be the projected keys and g; , > 0 the router weights. For each edit example
i € £, define the base residual

N
T, = U — Z Gi.n Wakin, (24)
n=1
and the design vector
= = S T
¥ = [giak{y -+ ginkly] € RV (25)

Stack the expert updates as A = [A; --- Ay] € R4 *(Ndk) The projected objective

N
. A 2 A2
min > |Ag; — i, + A AL (26)
A €€ n=1
has the unique minimizer
0" = My baon, A =unvec(6), 27)
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with
glob = (Ziﬁﬂ;j) @1, + A, Ny, bgiob = Z(%@Idm)ri- (28)
€€ €€
Let m := |£| and define the data matrices
T = [ - Py eRNWX™ R = [r - 1] € RTM, (29)

The objective becomes

. A 2 A2
Ae]Rglnlil(Ndk) ||A‘II7R||F + AlAflE. 30)

Taking derivatives gives
Vai=2AT -R)¥T" +2)\A. (31)
Setting this to zero yields
A(®UT + \ng)=RY'". (32)
Using vec(X A) = (AT @ I) vec(X), Eqn. 32 becomes
((w97T) @ L, + M, na, )0 = veo( RET), (33)
where 8 = vec(A). Noting that vec(R® ") = 3" (4h; ® I, )r;, we obtain the system in the
theorem statement.

Mo, = (¥ ") ® I, + A is positive definite for A > 0, hence invertible. The minimizer is
unique.

Thus * = M g_lolbbglob, and reshaping yields A* = unvec(6*).

B.2.2 DETAILED DERIVATION OF THE SINGLE-EXPERT SUBPROBLEM

Starting from the projected MoE objective (Eqn. 8),

N o 2 N )
i S| S g Wk + Aukin) = wi| + 2D 1AL, (34)
min=1 i€ n=1 n=1

we apply block coordinate descent (BCD) over experts, updating one expert at a time and keeping the
others fixed. For a fixed expert n, collect all terms that do not involve A,, into the external residual

r =0 =3 gi0 (Wikie + Ak ), (35)
b#n

and substitute Eqn. 35 back into Eqn. 34. The single-expert subproblem for A,, isthe ridge-regularized
least-squares

A~ 2 o
min 3 [ < ginAkin|| + AIAL (36)
A, “
ic€
Introduce compact notation
X=An wi=kin, vi=r{", gi=gin, 37)
so that )
FX) =3y — giXa||” + M X1 (38)
i€
Using the standard matrix derivative identity” yields
VAX)=-2) gy +2) gl Xzz] +2)X. (39)

2For vectors a, b and matrix X, 0lja — Xb||?/0X = —2(a — Xb)b".
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Setting the gradient to zero gives the normal equations

X ( Z Gxir] + )\I) = Zgiyix;r. (40)
i i
Restoring expert-specific symbols, define
M, 23 2 kinkl, + A, B,2Y gi.r Yk, @l
€€ €€

Then Eqn. 40 becomes An M, = B,,, with the unique minimizer
Ay =B,M,". 42)

Since the actual expert update is parameterized via the projection A,, = A, P, (Sec. 4.2), the written
update is

Ar=AXP,. (43)
Why M, is invertible (positive definite). By definition,
M, =>" g} kink], +Ma,. (44)
ic€

Gram matrix G, >0

For any nonzero z € R%,

=~ 2
2 "M,z = Zgzn(szm) + M2)12. (45)
€€

Since A > 0, then 2" M,z > A||z||?> > 0 forall z # 0, so M,, = 0 and is invertible. Moreover,
Amin(M,) > A, which ensures good conditioning (Tikhonov regularization). Because the projected
keys are k; ,, = P, k; ,, with an idempotent projector P,,, they lie in range(P,,). When A > 0, M,,
remains strictly positive definite on the full ambient space (not only on range(P,,)), guaranteeing a
unique closed-form update 42.

C EXPERIMENTS SETUP

Model Configuration We evaluate our method on two Mixture-of-Experts (MoE) models: Qwen3-
30B-A3B? and GPT-OSS-20B*. Qwen3-30B-A3B contains 128 experts per layer with the top-8
experts activated per token, resulting in approximately 3.3B active parameters during inference. The
latter, GPT-OSS-20B, features 32 experts per layer with the top-4 experts activated, corresponding to
approximately 3.6B active parameters.

Hardware and Quantization All experiments are conducted on a single node equipped with an
NVIDIA H20 GPU. To balance precision and memory constraints, we utilize the BF16 format for
model weights, while optimization is performed in FP32 to ensure numerical stability.

Fine-Tuning (FT) We evaluate both standard Fine-Tuning (FT) and Constrained Fine-Tuning
(FT-L). The primary distinction is that FT-L imposes a norm constraint € on the weight update. For
both Qwen3-30B-A3B and GPT-OSS-20B, we set £ = 1 x 103 for FT-L. We adopt a learning rate
of 1 x 1072 for both models. Updates are applied to layer 30 for Qwen3-30B-A3B and layer 0 for
GPT-0OSS-20B. For both methods, we target the mlp.experts.down_proj module. We train for 25
epochs, setting both weight decay and the KL divergence factor to 0.

UnKE As UnKE employs a two-stage structuring process, we configure the models as follows:
For Qwen3-30B-A3B, the first stage uses a learning rate of 5 x 10~ ! with 25 optimization steps and
a weight decay coefficient of 1 x 1072, In the second stage, we apply a learning rate of 2 x 104
and perform 50 optimization steps. For GPT-OSS-20B, the first stage similarly adopts a learning rate
of 5 x 10~! but with 50 optimization steps, utilizing the same weight decay (1 x 10~%). The second

3ht‘cps ://huggingface.co/Qwen/Qwen3-30B-A3B
4ht‘cps ://huggingface.co/openai/gpt-oss-20b
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stage proceeds with a learning rate of 1 x 10~ and 50 optimization steps. All experiments restrict
parameter updates to layer 7. Consistent with the focus on structured knowledge editing, optimization
is performed on the last subject token for both models.

AdaLLoRA  For AdalLoRA, updates are applied across all layers. We set the hyperparameters
a = 32 and rank » = 8. For Qwen3-30B-A3B, we set the learning rate to 5 x 102, while for
GPT-0SS-20B, we use a reduced learning rate of 5 x 10~*. The optimization is run for 25 steps for
both models.

MoEEdit (Ours) For Qwen3-30B-A3B, we edit layers {3, 4,5, 6, 7}, whereas for GPT-OSS-20B,
we target layer 5. For Qwen3-30B-A3B, we perform 25 optimization steps with a learning rate of
0.1 and execute 4 Block Coordinate Descent (BCD) passes. For GPT-OSS-20B, we perform 50
optimization steps with a learning rate of 0.2 and 10 BCD passes. For both models, we set the
regularization parameter A = 1 and the KL factor to 0.0625. We utilize 100,000 samples to compute
the covariance matrix for the null-space projection with projection threshold = 0.02.

D LLM USAGE DISCLOSURE

In accordance with the ICLR policy on responsible LLM usage, we hereby declare that Large
Language Models (LLMs) were used solely for language refinement purposes in this paper. Specifi-
cally, LLMs were employed to correct grammar, improve clarity, and polish the writing style of the
manuscript. No LLMs were used for generating ideas, designing methods, conducting experiments,
analyzing results, or drawing conclusions. All scientific contributions of this work are entirely original
and the responsibility of the authors.

E EXAMPLES OF ZSRE AND COUNTERFACT
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"subject”: "Watts Humphrey”,
"src”: "What university did Watts Humphrey attend?”,
"pred"”: "Trinity College",
"rephrase”: "What university did Watts Humphrey take part in?",
"alt": "University of Michigan”,
"answers"”: [
"Illinois Institute of Technology”
1,
"loc": "ng question: who played desmond doss father in hacksaw ridge”,
"loc_ans": "Hugo Weaving",
"cond": "Trinity College >> University of Michigan || What university did
Watts Humphrey attend?”
3
{

"subject”: "Ramalinaceae",
"src"”: "Which family does Ramalinaceae belong to?",
"pred”: "Ramalinales”,
"rephrase”: "What family are Ramalinaceae?”,
"alt”: "Lamiinae",
"answers”: [
"Lecanorales”
1,
"loc": "nqg question: types of skiing in the winter olympics 2018",
"loc_ans"”: "Downhill”,
"cond”: "Ramalinales >> Lamiinae || Which family does Ramalinaceae belong
to?"

"subject”: "Denny Herzig",
"src": "What role does Denny Herzig play in football?",
"pred”: "midfielder”,
"rephrase”: "What’s Denny Herzig’s role in football?",
"alt": "winger”,
"answers": [
"defender”
1,
"loc”: "nq question: where does aarp fall on the political spectrum”,
"loc_ans": "non-partisan”,
"cond": "midfielder >> winger || What role does Denny Herzig play in
football?”

Figure 5: Examples of ZsRE dataset
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"case_id": 975,
"pararel_idx": 17275,
"requested_rewrite"”: {
"prompt”: "{}, from",
"relation_id": "P127",
"target_new": {
"str": "Google",

HidH: HQ95H

i

"target_true”: {
"str": "Microsoft”,
Ilidll: HQ2283H

1

"subject”: "Bing Videos"
b
"paraphrase_prompts”: [
"\"01ld Jennifer: I’'m $adjectiveOld!\"” Bing Videos is owned by",
"J. Bing Videos is from”
1,
"neighborhood_prompts”: [
"OneDrive is from",
"German Research Center for Artificial Intelligence’s owner”,
"Groove Music’s owner”,
"Arkane Studios, from”,
"Yammer is from”,
"Yammer, by",
"Turn 10 Studios, by",
"German Research Center for Artificial Intelligence is owned by",
"Mojang Studios is from"”,
"id Software’s owner”

Figure 6: An example of COUNTERFACT
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