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ABSTRACT

The comprehension of text-rich visual scenes has become a focal point for eval-
uating Multi-modal Large Language Models (MLLMs) due to their widespread
applications. Current benchmarks tailored to the scenario emphasize perceptual
capabilities, while overlooking the assessment of cognitive abilities. To address
this limitation, we introduce a Multimodal benchmark towards Text-rich visual
scenes, to evaluate the Cognitive capabilities of MLLMs through visual reasoning
and content-creation tasks (MCTBench). To mitigate potential evaluation bias
from the varying distributions of datasets, MCTBench incorporates several percep-
tion tasks (e.g., scene text recognition) to ensure a consistent comparison of both
the cognitive and perceptual capabilities of MLLMs. To improve the efficiency
and fairness of content-creation evaluation, we conduct an automatic evaluation
pipeline. Evaluations of various MLLMs on MCTBench reveal that, despite their
impressive perceptual capabilities, their cognition abilities require enhancement.
We hope MCTBench will offer the community an efficient resource to explore and
enhance cognitive capabilities towards text-rich visual scenes.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) OpenAI (2023); Team et al. (2023); Liu et al.
(2023b); Li et al. (2024b) have exhibited promising performance across various cross-modal tasks,
and revealed potential for widespread real-world applications. In practical applications, many images
contain crucial textual elements that are essential for addressing specific challenges, such as key
information extraction from receipts. Consequently, the ability to comprehend text-rich visual scenes
can significantly enhance the practicality of MLLMs and drive innovative applications across multiple
domains.

Recent benchmarks Liu et al. (2024c); Li et al. (2024a); iang Yue et al. (2023) have increasingly
focused on evaluating MLLMs towards text-rich visual scenes. Nonetheless, the benchmarks are
centred around evaluating perceptual capabilities yet overlook the assessment of cognitive abilities,
which are a significant strength of MLLMs (as illustrated in Figure 1).

In this paper, we propose a Multimodal benchmark to evaluate the Cognitive capabilities of MLLMs
in Text-rich visual scenes (MCTBench). To assess the cognitive abilities of MLLMs thoroughly,
we design two types of tasks in the MCTBench: reasoning tasks for comprehension of the input
scenes, and open-ended content-creation tasks for generating output responses. Besides, MCTBench
integrates various perception tasks to study the differences with cognition tasks, while avoiding evalu-
ation biases from varying dataset distributions. Fundamentally, MCTBench curates approximately
5.2k text-rich images from a wide range of public datasets, along with 8.5k rigorously annotated
question-answer pairs categorized into three tasks: perception, reasoning and content-creation. The
perception and reasoning tasks are formatted as multiple-choice questions for convenient evaluation,
following common practices in Fu et al. (2024); Liu et al. (2024b); Li et al. (2023b). Due to the sub-
jectivity and high cost of human evaluation in open-ended content creation, we establish an automated
evaluation pipeline by leveraging sophisticated MLLMs (e.g., GPT-4V) as the evaluator, to compare
the predictions of models against the provided references. Our experimental results demonstrate
that MLLMs exhibit notably lower performance of cognition capabilities compared to perception
in text-rich visual scenes, particularly for text-enhanced models. Furthermore, performances in
cognition tasks (reasoning and content-creation) are improved with larger parameter scales. Our main
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Q: What kind of place do you think this picture was taken 

based on the given text?

A. Busy city center              B. Suburban residential area

C. Small town corner          D. Countryside

GT:  C

Question: 

What is the humorous twist in this advertisement?

A.Chick-fil-A's chicken claiming they perfected chicken.   B.The 

cow's outfit.", 

C.The misspelled words on the cow's sign.                           D. 

The logo of Chick-fil-A"

Answer:  C

Q: Imagine you are the owner of the '1 Hour Cleaning' service, 

write an appealing tagline to attract customers.

GT:  '1 Hour Cleaning' – Efficient Cleaning, Swift Results. 

Experience a Spotless Space in No Time!

(a)  Q: What brand is on the plane?

        GT: G-ATCO

(b) Q: What is written on the blue t-shirt?

       GT: Bradley

(c)  Q: Which special day is associated with this poster?
        A.Earth Day.  B.National Reading Day.  C.Water Day. D.Mother's Day 
        GT:  C

Q: What is the brand name of this 

product?

A.Barbecue                             B.BRAND

C.All NAT                                 D.Lays

GT:  D

MCTBench:  Cognition ( Reasoning,  Content-Creation)  + Perception 

Cognition

Previous works: Perception 

Content-Creation: write an solgonReasoning: infer the place

Perception Cognition

Brand recognition

Brand recognition Text recognition Title recognition

Figure 1: The Comparison between previous Benchmarks Singh et al. (2019); Liu et al. (2024c); Li
et al. (2024a), and our proposed MCTBench. Q and GT stand for question and ground truth.

contributions are summarized as follows:

1. We propose a brand-new and large-scale benchmark for evaluating the cognitive capability
of MLLMs towards text-rich visual scenes.

2. The evaluation on MCTBench highlights that MLLMs necessitate enhancements in their
cognitive capabilities in text-rich visual scenes.

3. We develop an automated evaluation pipeline for the content-creation task, offering re-
searchers an efficient tool for further investigation of cognitive capabilities.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

The significant advancements in Large Language Models (LLMs) OpenAI (2023); Touvron et al.
(2023); Chiang et al. (2023) have paved the way for recent research Team et al. (2023); Bai et al.
(2023); Liu et al. (2023b); Chen et al. (2023a); Dai et al. (2023) into developing Multimodal Large
Language Models (MLLMs) that integrate visual capabilities. Early works in this field Alayrac et al.
(2022); Li et al. (2023c); Liu et al. (2023b); Chen et al. (2023a) have introduced various vision-
language projectors such as Q-formerDai et al. (2023), Multi-Layer Perceptron (MLP) Liu et al.
(2023b), and PerceiverAlayrac et al. (2022), which act as intermediaries between LLMs and visual
encoders. Furthermore, these efforts have also established robust training paradigms for MLLMs.
Building upon these foundational paradigms, recent initiatives Chen et al. (2023b); Lu et al. (2024a);
Liu et al. (2023a); McKinzie et al. (2024) have focused on scaling the quality of training data, to
enhance general visual capabilities effectively.

A primary challenge in the recent development of MLLMs is attaining fine-grained comprehension,
exemplified by tasks such as Visual Question Answering (VQA) on text-rich images. To address this
issue, increasing the resolution and integrating fine-grained visual features have been proven effective
across various studies Feng et al. (2023); Liu et al. (2024d;a); Hu et al. (2023); Ye et al. (2023b;a); Li
et al. (2024c); Wei et al. (2023). Additionally, works such as Feng et al. (2023); Hu et al. (2023);
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Benchmark Text-Rich
Oriented #Image #QAs PercetionReasoning Content

Creation
Answer

Type

MME Fu et al. (2024) ✘ 1137 2.2K ✔ ✔ Yes/No
MMBench Liu et al. (2024b) ✘ - 3K ✔ ✔ MC
OCRBench Liu et al. (2024c) ✔ 450 1K ✔ Open
SEED-bench-2-plus Li et al. (2024a) ✔ - 2.3K ✔ MC
Contextual Wadhawan et al. (2024) ✔ 506 506 ✔ ✔ Open
MMMU iang Yue et al. (2023) ✔ - 11.5K ✔ ✔ MC/Open
MCTBench ✔ 5.2K 8.5K ✔ ✔ ✔ MC/Open

Table 1: The comparison between MCTBench and previous benchmarks. Open and MC respectively
present open-ended and multiple choice format for answer type. QAs stands for question-answer
pairs. Text-Rich Oriented indicates whether the benchmark focuses on text-rich visual scenes.

Figure 2: The pipeline of constructing MCTBench.

Zhang et al. (2024); Li et al. (2024c); Tang et al. (2024) have incorporated high-quality, text-rich
visual tuning data to refine these models further.

2.2 MLLM BENCHMARKS

As multimodal large language models (MLLMs) continue to exhibit cross-task generality, single-task
evaluations (e.g., Goyal et al. (2017); Singh et al. (2019); Chen et al. (2015); Lin et al. (2024)) are
inadequate for a comprehensive performance assessment. Recent works Liu et al. (2024b); Li et al.
(2023b); Fu et al. (2024); Yu et al. (2023) present general MLLM benchmarks comprising multiple
tasks. Furthermore, to explore the performance of MLLMs on more complex tasks, MathVista Lu
et al. (2024b) evaluates their mathematical abilities, and MMMU iang Yue et al. (2023) integrates
multiple-discipline questions to benchmark MLLMs in expert domains.

Conversely, text-rich visual scenes are attracting growing attention due to their potential applications.
Early works Mathew et al. (2021); Mishra et al. (2019a); Singh et al. (2019) focused on single tasks,
while OCRBench Liu et al. (2024c) integrates multiple single-task datasets into five representative
OCR(Optical Character Recognition)-based tasks. In contrast, our work evaluates MLLMs on
complex tasks beyond OCR-based ones in text-rich visual scenes. A similar work is presented
in Wadhawan et al. (2024), which demonstrates the model’s performance on reasoning tasks but
only on a limited set of test datasets. Our study provides a broader evaluation of cognition in text-
rich visual scenes, pushing the boundaries of what MLLMs can achieve in more diverse scenarios
such as content-creation. Table 1 demonstrates the detailed comparison between ours and previous
benchmarks.

3 MCTBENCH

In this section, we outline the process of constructing the MCTBench. Section 3.1 provides an
overview of MCTBench and compares it with previous benchmarks. Section 3.2 describes the
procedure of collecting text-rich image sources from publicly accessible datasets. Finally, Section 3.2
explains the annotation process applied to the collected images.

3
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3.1 OVERVIEW

The MCTBench is designed to evaluate the cognitive capabilities of Multimodal Large Language
Models (MLLMs) towards text-rich visual scenes. To construct the comprehensive and diverse
benchmark, we collected 5,194 images from a variety of public datasets, encompassing a wide
array of text-rich scenes such as natural environments, books, scientific contexts, advertisements,
e-commerce, and video shots. We meticulously annotate these images with a total of 8.5k question-
answer pairs categorized into three tasks: perception, reasoning, and content creation. Specifically,
MCTBench consists of 2,734 perception multiple-choice samples, 2,602 reasoning multiple-choice
samples, and 3,130 content-creation samples. Figure 2 illustrates the overall construction pipeline of
MCTBench.

3.2 TEXT-RICH IMAGES COLLECTION

Image Source The images of MCTBench are collected from 10 different publicly available datasets,
aiming to incorporate comprehensive visual scenes to evaluate the cognition of Multimodal Large
Language Models (MLLMs). We begin with sampling common general natural scenes (e.g., street
views, competitions, road signs) from the COCO Lin et al. (2015), Flickr30k Young et al. (2014),
GQA Hudson & Manning (2019), SeedBench Li et al. (2023b) and Visual Genome Krishna et al.
(2016) datasets.

Furthermore, we select conventional text-rich multimodal datasets: OCR-VQA Mishra et al. (2019b),
and VizWiz Gurari et al. (2018) taken by blind photographers. To further diversify MCTBench, we in-
corporate three domain-specific scenes with broad potential applications: advertising (AutoUnderAds
Hussain et al. (2017)), e-commerce (FoodLogoDet-1500 Hou et al. (2021)), and science (ScienceQA
Lu et al. (2022)). We randomly extract one frame from each video in the AutoUnderAds dataset. All
data sources are specifically selected from the testsets. We adhere to the original licenses stated by all
datasets.

OCR-based image filtering. We select the text-rich images from the sourced images, which are
guided by the following guidelines. To maintain the clarity and substantive textual content, we only
retain images with valid OCR-recognized characters (with recognition probabilities higher than 0.2)
of at least 10 characters. To ensure text contributes to overall visual semantics, we select images
where text regions occupy more than 10% of the image area, after validating the impact of valid text
lines on semantic expression. These meticulous selection criteria resulted in a curated collection of
high-quality and crystal-clear text-rich images, designed to challenge and inspire advancements in
perceptual and cognitive understanding within textual domains.

Annotation Considering the bias and efficiency of the manual annotation, we employ a GPT-aided
approach to generate at least 10 pseudo-questions for each image, and ask annotators to remove
low-quality ones. All answers are human-annotated with two rounds: (1) Each image with at least 10
GPT-aided pseudo-questions, is randomly assigned to three annotators. Each annotator independently
annotates the questions and provides answers. (2) Quality checkers will review the annotation in
the first round. If any question or image quality does not meet our annotation guidelines, the set is
re-annotated by the corresponding annotators, who also revise their answers. Annotators in the second
round are required to have at least 2 years of experience in text-rich multimodal scene annotation.
To reach an agreement, we use majority voting to determine the final answer. If majority voting
does not reach an agreement (i.e., all three answers are inconsistent), we check if the discrepancy
originated in the second round. If so, the question is re-annotated; if inconsistencies persist, it is
discarded. The question is discarded if the discrepancy does not arise in the second round. In addition
to content-creation tasks, due to the inherent diversity of responses, we do not provide unified answers.
Instead, we offer standard references generated by powerful MLLMs (e.g., GPT-4V) and meticulously
reviewed by humans.

Quality control During the image quality assessment, annotators remove low-quality images (e.g.,
blurry, unclear text, inappropriate, solely tables/documents, and only watermark). For the QA quality
assessment, annotators eliminate low-quality questions (e.g., ambiguous, overly generalized, too
simplistic) and check the correctness of annotated answers (e.g., logical errors). On the other hand,
We filter out multiple-choice options with more than 30% word count disparity and remove the
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Figure 3: Visualization of the question for three different tasks using word clouds. In the word cloud,
the size of a word indicates how frequently it appears. Best viewed in color.

questions that GPT-4 refuses to answer due to ethical concerns. To detail the specific issues addressed
by each type, we assigned a label to each question and visualized the terms in Figure 3.

3.3 DATA CONSTRUCTION

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate current MLLMs. Firstly, we
outline experimental settings for the evaluated models and metrics used on MCTBench in Section 4.1
and 4.2. The results obtained from these experiments allow us to perform analysis of the selected
models across three categories of tasks in Section 4.3. Furthermore, we conduct a case study to
investigate performance variations among diverse models in Section 4.5.

4.1 MODELS

To evaluate the performance of various MLLMs on MCTBench, we select a diverse range of models
categorized into two primary types: general MLLMs and text-enhanced MLLMs (specifically
optimized for text recognition in images). We establish two naive baselines (random choice and
frequency choice) as reference points to ensure the robustness and validity of the dataset in Table
2. Random choice involves selecting an option at random as the prediction result, while frequency
choice involves selecting the prediction result based on the option with the highest proportion in the
ground truth.

General MLLMs The experiment initially evaluates popular closed-source models, specifically
Gemini-Pro Team et al. (2023) and GPT-4V(ision) OpenAI (2023). For open-source models, we select
several notable general-purpose MLLMs, including Sharegpt4V Chen et al. (2023b), Honeybee Cha
et al. (2024), LLaVA Liu et al. (2024a; 2023b), Otter Li et al. (2023a), Yi-VL AI et al. (2024), Qwen-
VL-chat Bai et al. (2023) and Deepseek-VL Lu et al. (2024a) as competitive baselines. Additionally,
we incorporate CogVLM Wang et al. (2023) and SPHINX-v2 Lin et al. (2023), which are enhanced
for fine-grained understanding. To assess differentiated performance, we also integrate a larger
open-source model, Mini-Gemini Li et al. (2024b).

Text-enhanced MLLMs Recent researchers propose remarkable works to tackle the understanding
of text-rich images via enhancing the textual capabilities. Consequently, we select models mPLUG-
DocOwl Ye et al. (2023b), Monkey Liu et al. (2024d); Li et al. (2024c), InternLM-XComposer2-VL
Dong et al. (2024), CogAgent Hong et al. (2023) and LLaVA-NeXT Liu et al. (2024a) which have
demonstrated strong OCR capabilities in previous evaluations.

5
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4.2 METRICS

MCTBench is constructed with three categories of tasks: perception, reasoning, and content-creation.
Due to the standard answer provided in perception and reasoning tasks, each QA pair is designed
in a multiple-choice format. In contrast, the content-creation task is considered as an open-ended
generation problem due to the diversity of responses.

Perception and reasoning Perception and reasoning tasks entail the acquisition of information
from input data, comprehension of images and text, and derivation of conclusions. Consequently,
employing multiple-choice question-answering can effectively validate the corresponding capabilities
of MLLMs, following Liu et al. (2024b); Li et al. (2023b). In practice, we prioritize original prompts
employed by MLLMs and, if not specified, use those prompts which yield optimal results. For lengthy
responses, we use regular expressions and supplementary rules to extract the option answers. We use
mean accuracy to evaluate MLLMs’ perception and reasoning capability.

Content-creation To ensure consistency and efficiency in evaluation, we implement automatic
evaluation for content-creation tasks. However, due to the diversity of answers in content creation,
standard responses are not feasible, leading us to establish competitive references. These references
are generated through manually crafted responses from text-only GPT-4, based on inputs from OCR
recognition and detailed descriptions. The evaluation is grounded on four principal aspects: relevance,
faithfulness, creativity, and instruction following. Subsequently, we employ machines (e.g., GPT-4V)
to compare other MLLMs against our references with the mentioned principal, and categorize their
performance as Good, Same, or Bad (i.e., the GSB metric). We measure each model’s performance
by calculating the percentage of ’Good’ and ’Same’ ratings relative to all questions, indicating how
many outperform or match the constructed reference (i.e., (G+ S)/(G+ S +B)).

To assess correlations and validate the reliability of machine evaluation, we also conduct a manual
evaluation on subsets of the data using the mentioned metrics (GSB) and compare them with machine
evaluation. We integrate three powerful MLLMs (GPT-4V OpenAI (2023), Gemini-Pro Team et al.
(2023) and LLaVA-NeXT Liu et al. (2024a)) as evaluators. We measure the evaluation correlation
between humans and machines using accuracy and Pearson correlation Benesty et al. (2009) on
GSB scores. Table 3 illustrates the results between three machine evaluators and human evaluations,
indicating that GPT-4V achieves a top correlation score.

4.3 RESULTS

Perception Firstly, experiments are conducted to verify the perceptual performances of each
model as baselines. As shown in Table 2, most models achieved satisfying scores on the perception
task. Closed-source models (e.g., GPT-4V OpenAI (2023)) demonstrated excellent accuracy, while
some open-source models (e.g., Mini-Gemini Li et al. (2024b)) demonstrated superior perception
capabilities, surpassing the their performance. Models with higher resolutions and more parameters
(e.g., LLaVA-NeXT Liu et al. (2024a) and Mini-Gemini Li et al. (2024b)), typically performed better.
Among similarly-sized models, text-enhanced MLLMs generally outperformed others by effectively
extracting text from images and generating precise responses.

Reasoning The reasoning task is more challenging than perception. It requires not only effective
extraction and fusion of visual and textual features, but also involves comprehensive inference to
generate accurate responses. As shown in Table 2, most models exhibited a significant drop in scores
due to the increased difficulty of reasoning tasks compared to perception tasks.

Notably, GPT-4V demonstrates exceptional performance among MLLMs, surpassing most models by
a significant margin. Besides, there still exists a positive correlation between a model’s performance
and the number of its parameters. This phenomenon arises from larger models’ enhanced ability, to
comprehend text and integrate image information for reasoning more effectively.

Nevertheless, text-enhanced MLLMs have not substantially outperformed general models on rea-
soning tasks. Given that text-enhanced models have achieved superior results in perception tasks,
we posit their effectiveness in recognizing text within images. However, achieving higher scores
in reasoning tasks necessitates the ability to analyse and summarise effectively. TextMonkey Liu
et al. (2024d) shows the least performance gap and achieves results comparable to the perception
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Cognition Average Scores
Model Params Perception Reasoning Content-

Creation∗ MC Cog All

Naive Baseline
Random choice - 25.00 25.00 - - - -
Frequency choice - 25.16 25.52 - - - -

General MLLMs
GPT-4V OpenAI (2023) - 83.58 74.21 87.35 78.90 83.12 81.71
Gemini-Pro Team et al. (2023) - 78.79 70.18 56.78 74.49 65.63 68.58
Yi-VL AI et al. (2024) 6B 77.25 72.33 41.45 74.79 58.12 63.68
Deepseek-VL Lu et al. (2024a) 7B 76.74 68.79 57.25 72.77 65.01 67.59
Honeybee Cha et al. (2024) 7B 72.60 67.22 73.64 69.91 71.78 71.15
Otter Li et al. (2023a) 7B 58.12 54.42 31.70 56.27 43.99 48.08
Qwen-VL-chat Bai et al. (2023) 7B 77.98 70.68 67.53 74.33 70.93 72.06
Sharegpt4V Chen et al. (2023b) 13B 74.54 69.49 66.19 72.02 69.10 70.07
LLaVA-1.5 Liu et al. (2023b) 13B 78.09 72.56 66.47 75.33 70.90 72.37
SPHINX-v2 Lin et al. (2023) 13B 78.02 71.94 62.30 74.98 68.64 70.75
CogVLM Wang et al. (2023) 17B 71.40 69.52 65.61 70.46 68.04 68.84
Mini-Gemini Li et al. (2024b) 34B 83.83 73.33 86.76 78.58 82.67 81.31

Text-enhanced MLLMs
IXC 2 Dong et al. (2024) 7B 78.05 72.10 74.45 75.08 74.76 74.87
Monkey Li et al. (2024c) 7B 79.22 72.64 59.56 75.93 67.75 70.47
TextMonkey Liu et al. (2024d) 7B 71.80 69.45 22.81 70.63 46.72 54.69
mPLUG-DocOwl Ye et al. (2023a) 10B 75.05 70.06 60.87 72.56 66.71 68.66
CogAgent Hong et al. (2023) 34B 58.56 56.46 56.86 57.51 57.19 57.29
LLaVA-NeXT Liu et al. (2024a) 34B 83.87 71.64 85.30 77.76 81.53 80.27

Table 2: Evaluation results for MLLMs on MCTBench. MC means the average score of the two
tasks (perception and reasoning) in multiple-choice format. Cog means the average scores of the two
cognitive tasks (reasoning and content-creation). All means the overall average scores of all tasks.
∗The content-creation task is scored using the percentage of ’Good’ and ’Same’ ratings by the GSB
metric except for accuracy used in Perception and reasoning tasks. Numbers in Bold and underline
represent the top-2 results in each task.

task. However, most text-enhanced models are not explicitly trained in this aspect, and consequently
do not outperform general MLLMs.

GPT-4V Gemini-Pro Best open-source
(LLaVA-NeXT)

Accuracy 79.38 70.71 65.22
Pearson Correlation 0.558 0.380 0.304

Table 3: Correlation analysis between automatic machine and human evaluation on content-creation
using the accuracy and Pearson correlation coefficient.

Content-creation The open-ended creation task differs from the aforementioned tasks, leading
to the observation of a broader array of perspectives. As mentioned in Section 4.2, the evaluation
is based on four principal aspects: relevance, faithfulness, creativity, and instruction following.
Therefore, as the content-creation task emphasizes the generation of suitable text for images, we also
notice significantly enhancement on performances by employing larger language models. However,
the performance of text-enhanced MLLMs exhibits considerable variation due to differences in
training objectives. Some models are specifically trained to extract structured text information or
comprehend lengthy text inputs. Consequently, they may underperform relative to general models
when tasked with creative endeavours. We also found that the closed-source model Gemini-Pro
Team et al. (2023) is unable to achieve good results. A notable discrepancy in its scores of template
following demonstrates that Gemini struggles to create corresponding formats for task specifications.
For instance, in the task of generating a slogan, Gemini may tend to produce lengthy paragraphs
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Input Perception Reasoning Creation
Image + OCR texts 75.60 71.68 65.45
Image (text regions removed) 62.22 62.22 46.89
Image (text regions only) 74.69 68.01 58.78
Image (baseline) 78.09 72.56 66.47

Table 4: The effect of visual and textual information.

instead of concise phrases. Some text-enhanced MLLMs, such as TextMonkey, also have similar
phenomena.

Summary MLLMs have shown certain multi-modal capabilities in perception tasks, with main-
stream models achieving commendable performances. However, in reasoning tasks, existing models
still have room for improvement. Performance on content-creation tasks indicates that text-enhanced
MLLMs trained for different types of tasks may lose some creative capabilities. We suggest that
reasoning and creation tasks serve as distinct dimensions for evaluation, offering insights into the
model’s comprehension of input and its proficiency in generating output responses. While existing
models excel in basic perception tasks, achieving comparable competence in reasoning and creation
tasks remains challenging.

4.4 ABLATION STUDY

The effect of visual and textual information. In Table 4, we conduct several experiments to reveal
the effect of visual and textual information in images of our benchmark. We use the LLaVA-1.5
as the baseline. Firstly, we conduct an experiment that adds OCR texts as input. As shown in the
table, even if the OCR texts are contained as input, the model cannot gain explicit improvement.
This demonstrates that the MCTBench does not rely solely on texts to get answers. Furthermore,
we conduct an experiment that removes all texts from images to check the importance of texts in
our benchmark. Specifically, we detected and blurred all the texts in images. We noticed that the
performance dropped significantly. This also demonstrates that it is difficult for a model to correctly
answer the question without text in the image. Additionally, if we only keep the text region, and
delete other background parts in the image. The performance is between the above two experiments,
indicating that MCTBench relies both on textual and visual information, to get the final result. To
conclude, explicitly adding OCR texts, or removing text/image parts does not help, or even lead to
worse performance on MCTBench. MLLMs are required to jointly recognize related textual and
visual patterns, to answer the questions correctly.

4.5 CASE STUDY

For the perception and reasoning tasks, we select representative cases shown in Figure 4. Specifically,
we select GPT-4V as a strong reference along with several open-source representative MLLMs,
split into three groups: large model size and resolution MLLMs (Mini-Gemini Li et al. (2024b) and
LLaVA-NeXT Liu et al. (2024a)), text-enhanced MLLMs (Monkey Li et al. (2024c) and mPLUG-
DocOwl Ye et al. (2023a)), and general MLLMs (LLaVA-1.5 Liu et al. (2023a) and ShareGPT4V
Chen et al. (2023b)). For the selected perception question, both high-resolution MLLMs and text-
enhanced MLLMs perform well, while general MLLMs fail in fine-grained understanding. On the
contrary, text-enhanced MLLMs excelled in perception but performed poorly in reasoning tasks.
Larger models like Mini-Gemini Li et al. (2024b), LLaVA-NeXT Liu et al. (2024a), and GPT-4V
OpenAI (2023) handle reasoning better by effectively integrating textual and visual elements.

For the content-creation task, using GPT-4V OpenAI (2023) as a robust reference, we select general
and text-enhanced models that performed well on MCTBench, and conduct case studies in three
scenarios. As shown in Figure 5, GPT-4V OpenAI (2023) significantly surpassed other models in
content creation quality. Mini-Gemini Li et al. (2024b) also showed consistent performance across
cognitive tasks, while text-enhanced models like Monkey Li et al. (2024c) were limited to text
recognition and basic descriptions, resulting in less attractive content.
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Under review as a conference paper at ICLR 2025 GT:    C.2010
GPT-4v:  A.2017  
honeybee:  A.2017  
llava_v1_6_34b:  C.2010
internLM_xcomposer_vl: C.2010

GT:    D. Symbolizes Intellectual Curiosity.
GPT-4v:  B. Symbolizes Meetings. 
gemini:   B. Symbolizes Meetings. 
TextMonkey:  B. Symbolizes Meetings. 
MGM-34B-HD: D. Symbolizes Intellectual Curiosity.

Question: Who is most likely the target audience for this 
advertisement? 'A. Children 
B. Parents 
C. Teenagers 
D. Elderly

GT:B
GPT-4V:B
MGM-34B-HD: B
Gemini-Pro: B
InternLM-Xcomposer-vl: A
LLaVA-1.5-13b: A
LLaVA-1.6-34b: B
Monkey-chat: A
mplug_owl2: A
Deepseek-VL-7B: A

GT:    A. 287 kilometers 
GPT-4v:  C. 382 kilometers  
llava_v1_5_13b:  D. 131 kilometers 
monkey_chat:  A. 287 kilometers 
mplug_owl2_1: A. 287 kilometers

✔ ✖ ✔ ✔ ✔

A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔

Sign Recognition

Identification

A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔

A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔

A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔

A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔
A. 287 kilometers  ✔

Groud Truth:
GPT-4V(ision):  
MiniGemini-34B
-HD: 

Question

What is the estimated 
distance to 
Roebourne?

What is the name of the 
product represented in 
the image?

Does this juice product cater 
to the needs of vegetarians?

Who is most likely the target 
audience for this advertisement?

What emotion is the billboard 
trying to invoke in drivers?

A. 287 kilometers A. Dare A. Yes A. Children A. Fear
B. 189 kilometers B. Male smoke B. No B. Parents B. Joy
C. 382 kilometers C. 3 hours of heat C. Teenagers C. Guilt
D. 131 kilometers D. Craving relief D. Elderly D. Caution

Groud Truth A. 287 kilometers A. Dare A. Yes B. Parents D. Caution
GPT-4V C. 382 kilometers ✖ C. 3 hours of heat ✖ A. Yes B. Parents D. Caution
MGM A. 287 kilometers A. Dare A. Yes B. Parents D. Caution
LLaVA-NeXT A. 287 kilometers A. Dare A. Yes B. Parents C. Guilt ✖
Monkey A. 287 kilometers A. Dare A. Yes A. Children ✖ A. Fear ✖
mPLUG-doc A. 287 kilometers A. Dare A. Yes A. Children ✖ A. Fear ✖
LLaVA-1.5 D. 131 kilometers ✖ C. 3 hours of heat ✖ B. No ✖ A. Children ✖ C. Guilt ✖
ShareGPT4v D. 131 kilometers ✖ C. 3 hours of heat ✖ B. No ✖ A. Children ✖ C. Guilt ✖

Reasoning

Brand identification Key information Understadnding Target audience predication Emotion analysisScene

Image

Figure 4: The cases of predication from different MLLMs divided into four groups: GPT-4V OpenAI
(2023), Mini-Gemini Li et al. (2024b)(MGM) and LLaVA-NeXT Liu et al. (2024a) for larger model
size, Monkey Li et al. (2024c) and mPLUG-DocOwl Ye et al. (2023a) for text-enhanced MLLMs,
LLaVA-1.5 Liu et al. (2023a) and ShareGPT4V Chen et al. (2023b) for the general MLLMs

5 LIMITATIONS

Our dataset primarily focuses on English, which may limit the generalization of our findings to
multilingual scenes. Although we believe that the cognitive capacities of MLLMs should theoretically
extend to other languages, we have not empirically substantiated this assertion in the present study.
Additionally, we have only selected a subset of representative models for evaluation due to space
constraints. This selection may not cover the full spectrum of currently available MLLMs. Our future
work aims to provide evaluation results for a more extensive range of models.

6 CONCLUSION

In this work, we introduce MCTBench, a comprehensive benchmark designed to evaluate the cognitive
capabilities of MLLMs in text-rich visual scenes. The MCTBench comprises 5.2k images and 8.5k
question-answer pairs, covering a range of tasks including reasoning, content creation for cognitive
assessment, and conventional perception. Evaluations of MLLMs on MCTBench reveal that current
MLLMs still need further advancements in cognitive capabilities, despite their superior perception
performance. We hope that MCTBench will motivate researchers to further improve the cognitive
capabilities of MLLMs in text-rich visual scenes, thereby enhancing the practical utility of AI in
real-world applications.
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Adversitment Solgon 

Question Create a brief marketing slogan for the Subway 
sandwich shown in the image, using the text 
displayed 

Write a short review for the book 'Windmills in My Oven' based on the 
image.

If this image is designed as a social 
media post, what call to action 
sentence would you include to 
encourage viewer engagement?

GPT-4V Bite into freshness with our Turkey & Bacon 
Avocado Sandwich – A delectable delight for your 
taste buds! ⭐⭐⭐

Windmills in My Oven is a delightful collection of Dutch baking recipes 
that will transport you to the Netherlands with each bite. The author, 
Gaitri Pagrach-Chandra, has compiled an impressive array of 
traditional Dutch treats, from the famous stroopwafels to the 
lesser-known but equally delicious boterkoek. The book is 
well-organized, with clear instructions and beautiful photographs. 
Whether you're an experienced baker or just starting out, Windmills 
in My Oven is sure to become a staple in your cookbook collection. 
Highly recommended for anyone with a sweet tooth and a love for 
Dutch culture. ⭐⭐⭐

Join the Scion community by watching 
Franco and Franco's adventures and 
share your thoughts with us! Don't 
forget to follow us on our social media 
channels for more exciting content.
⭐⭐⭐

Mini-Gemini Subway's Twist on the Classic: Turkey, Bacon, and 
Avocado Ohhh! ⭐⭐

The book 'Windmills in My Oven: A Book of Dutch Baking' by Gaitri 
Pagrach-Chandra appears to be a comprehensive guide to Dutch 
baking traditions. The title suggests a personal connection or 
fondness for Dutch baking, implying that the recipes might be family 
favorites or have a personal significance to the author. The cover 
design, featuring black and white historical images, indicates that the 
book may not only provide recipes but also offer insights into the 
cultural and historical context of Dutch baking. The use of 
monochromatic images on the cover could be an artistic choice to 
reflect the simplicity and authenticity of traditional Dutch baking. The 
book seems to be a blend of culinary history and practical recipes, 
likely appealing to both those interested in cultural heritage and those 
seeking to learn about Dutch baking techniques. ⭐⭐

Discover the latest in style and tech 
with the new SCION iM. Watch Franco 
and Franco's review, find your local 
dealer, and join the excitement at 
SCION.com! #SCION #iM 
#SocialMediaEngagement ⭐⭐⭐

Monkey Turkey & Bacon Avocado Ohh ⭐ The image is a book cover for \"Windmills in My Oven: A Book of 
Dutch Baking\" by Gaitri Pagrach-Chandra. The cover features a 
collage of black and white photos of various objects, including 
windmills, which are the central theme of the book. The title and 
author's name are written in black on a pink background, and the 
publisher's name is also visible. The overall design is simple yet 
eye-catching, with the collage of photos providing a unique visual 
representation of the book's content. ⭐

"Like" and "Share" ⭐

Scene

Image

Book reviews Social media posts

Figure 5: The cases of predication on content-creation tasks from three representative MLLMs:
GPT-4V OpenAI (2023), Mini-Gemini Li et al. (2024b) and Monkey Li et al. (2024c). We mark
high-quality sentences in red, words hit the text in the image with underlining, and rate the quality of
the generation with stars.
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