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ABSTRACT

The propensity of Large Language Models (LLMs) to generate hallucinations and
non-factual content undermines their reliability in high-stakes domains, where
rigorous control over Type I errors (the conditional probability of incorrectly classi-
fying hallucinations as truthful content) is essential. Despite its importance, formal
verification of LLM factuality with such guarantees remains largely unexplored. In
this paper, we introduce FACTTEST, a novel framework that statistically assesses
whether an LLM can confidently provide correct answers to given questions with
high-probability correctness guarantees. We formulate factuality testing as hypoth-
esis testing problem to enforce an upper bound of Type I errors at user-specified
significance levels. Notably, we prove that our framework also ensures strong Type
II error control under mild conditions and can be extended to maintain its effec-
tiveness when covariate shifts exist. Our approach is distribution-free and works
for any number of human-annotated samples. It is model-agnostic and applies to
any black-box or white-box LM. Extensive experiments on question-answering
(QA) and multiple-choice benchmarks demonstrate that FACTTEST effectively
detects hallucinations and improves the model’s ability to abstain from answering
unknown questions, leading to an over 40% accuracy improvement.

1 INTRODUCTION

Large Language Models (LLMs) like ChatGPT (Ouyang et al., 2022; OpenAI, 2024a) have demon-
strated substantial advancements across various domains including summarization systems, search
engines and virtual assistants. However, their outputs cannot be fully trusted due to their propensity
to generate nonfactual and incorrect information with seemingly high fluency and natural grounding,
a challenge known as hallucination (Maynez et al., 2020b; Huang et al., 2023; Ji et al., 2023). This
tendency undermines the reliability and trustworthiness of the generated content, highlighting a
critical need for robust mechanisms to verify the factuality and correctness of LLM outputs.

Existing approaches to hallucination detection like retrieval-based methods (Thorne et al., 2018b;
Gou et al., 2024; Chen et al., 2024) and training-based approaches (Zhang et al., 2023) either rely on
external databases or resource-intensive fine-tuning processes, which are often impractical or costly.
Therefore, there has been growing interest in uncertainty estimation as a zero-resource alternative
for hallucination detection (Varshney et al., 2023; Xiong et al., 2024), operating under the premise
that hallucinations are intrinsically tied to the model’s uncertainty (Huang et al., 2023). However,
none of these methods can provide theoretical guarantees for the detection or testing results, a critical
requirement for deploying LLMs in high-stakes domains (Kumar et al., 2023) where precise control of
Type I errors (incorrectly flagging a hallucination as truthful content) is needed for decision-making.
For instance, incorrect medical diagnoses in healthcare or the provision of uncertain legal advice in
the legal field could result in detrimental consequences.

To address these limitations, we introduce FACTTEST, a framework that statistically evaluates whether
an LLM can reliably generate correct answers to given questions with provable correctness guarantees.
We formulate the factuality testing within a hypothesis testing framework to theoretically control the
Type I error while minimizing the Type II error. Leveraging the fundamental connection between
Neyman-Pearson (NP) classification and statistical testing (Tong et al., 2018; Tong, 2013; Scott
& Nowak, 2005), we define a score function to quantify correctness and determine an appropriate
threshold based on a calibration dataset. This allow LLMs to refuse unknown questions and control
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the false positive rate for any score function. Furthermore, we prove that, if the score function
effectively quantifies model correctness, FACTTEST achieves strong power control, ensuring not only
Type I error control but also a low Type II error, thereby providing reliable factuality assessments.
On the other hand, recognizing that the i.i.d. assumption underlying statistical tests may not always
hold in practice, we enhance the robustness of our framework by incorporating an extension to
handle covariate shifts through the estimation of density ratios and the use of rejection sampling. Our
approach is model-agnostic and does not rely on specific data distribution assumptions, making it
broadly applicable to any language model. Importantly, it works for any number of human-annotated
samples, ensuring practicality and ease of implementation.

To the best of our knowledge, this study is the first to introduce statistical factuality testing for large
language models, thereby facilitating safer and more reliable deployment in high-stakes applica-
tions. We evaluate the effectiveness of our proposed framework on question-answering (QA) and
multiple-choice benchmarks. The results demonstrate several key advantages of our approach: (1) it
consistently outperforms base models by a substantial margin without requiring additional training
or external data sources; (2) it surpasses fine-tuned baselines by a large margin while utilizing only
half of the training data; and (3) it maintains superior performance on out-of-distribution testing data.
Notably, the theoretical guarantees of our method remain valid even when the i.i.d. assumption is
violated. We summarize the main contributions below.

• We propose FACTTEST, a novel statistical testing framework that evaluates the factuality of
LLMs while enabling them to decline unknown questions with user-specified Type I error
guarantees.

• We prove that our statistical framework achieves strong power control under mild conditions,
ensuring that the predictor can also maintain a low Type II error. This power analysis is broadly
applicable to standard NP classification problems, not limited to this setting.

• We extend our framework to accommodate covariate shifts by approximating density ratios and
employing rejection sampling, thereby enhancing its robustness for real-world applications.

• We demonstrate that FACTTEST effectively detects hallucinations while maintaining Type I
error below user-specified significance levels, achieving an over 40% improvement in accuracy
compared to pretrained models without any fine-tuning. Additionally, it surpasses training-based
baselines by 30% using only half of the fine-tuning data.

2 STATISTICAL FACTUALITY TESTING

In this section, we formulate the evaluation of factuality in LLMs as a statistical hypothesis testing
problem and introduce our FACTTEST framework to overcome hallucination issues.

2.1 PROBLEM FORMULATION

We consider a text generation task in which a language model 𝑀 will generate its answers 𝑀 (𝑞)
based on a question 𝑞. Our goal is to statistically evaluate whether 𝑀 can correctly answer 𝑞. We
formulate this objective as a hypothesis testing problem with the following hypotheses:

𝐻0 : The model 𝑀 cannot answer the question 𝑞 correctly.
𝐻1 : The model 𝑀 can answer the question 𝑞 correctly.

For any question-answer pair (𝑞, 𝑎) with 𝑎 to be one of the correct answer for question 𝑞, we apply
𝑀 to generate an answer 𝑀 (𝑞). The question-generated answer pair (𝑞, 𝑀 (𝑞)) is deemed correct if
the null hypothesis 𝐻0 is rejected, i.e., 𝑀 (𝑞) aligns with 𝑎; otherwise, it is deemed incorrect. Let
𝑃0 and 𝑃1 represent the distributions of all possible incorrect and correct question-generated answer
pairs (𝑞, 𝑀 (𝑞)), respectively.

Given a dataset {(𝑞1, 𝑎1), ..., (𝑞𝑛, 𝑎𝑛)} ⊂ Q × Ai.i.d.∼ 𝑃𝑞,𝑎 comprising 𝑛 question-answer pairs with
Q,A to be the set of all possible questions and answers, respectively, and 𝑃𝑞,𝑎 is a distribution
of Q × A, we apply 𝑀 to generate answers for all the 𝑛 questions, resulting in the set D =

{(𝑞1, 𝑀 (𝑞1), 𝑎1), . . . , (𝑞𝑛, 𝑀 (𝑞𝑛), 𝑎𝑛)}. Since the distribution 𝑃𝑀 (𝑞) |𝑞 of 𝑀 (𝑞) produced by 𝑀

given the question 𝑞 is fully determined by 𝑀 and independent of 𝑎, we know D i.i.d.∼ 𝑃𝑞,𝑀 (𝑞) ,𝑎 =

𝑃𝑞,𝑎𝑃𝑀 (𝑞) |𝑞 . Then our goal is to construct a predictor 𝑓𝛼 : Q × A → {0, 1} that classifies a pair
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(𝑞, 𝑀 (𝑞)) as correct (output 1) or incorrect (output 0) while ensuring that the false positive rate, or
Type I error, does not exceed a pre-specified significance level 𝛼. Formally, we seek 𝑓𝛼 such that the
error of predicting incorrect (𝑞, 𝑀 (𝑞)) as correct is below level 𝛼 with probability at least 1 − 𝛿, i.e.,

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 ( 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = 1) > 𝛼) ≤ 𝛿. (1)
where 𝛿 denotes the allowable probability of exceeding the significance level. Note that given any
question 𝑞, the answer 𝑀 (𝑞) generated by 𝑀 is randomized. While the distribution of 𝑀 (𝑞) is
fully determined by 𝑞, the realization 𝑀 (𝑞) involves additional sampling randomness independent
of 𝑞. By taking (𝑞, 𝑀 (𝑞)) as inputs to 𝑓𝛼, we enable the predictor to utilize information from the
question 𝑞, the distribution of 𝑀 (𝑞) (by asking 𝑀 the same question 𝑞 multiple times), and the
current realization 𝑀 (𝑞) of the produced answer.

2.2 FINITE-SAMPLE AND DISTRIBUTION-FREE TYPE I ERROR CONTROL

Calibration Dataset Construction. Following the methodology of Zhang et al. (2023), we adopt a
supervised identification strategy to partition the dataset D into a correct subset D1 and an incorrect
subset D0.

Specifically, for each question-generated answer pair (𝑞𝑖 , 𝑀 (𝑞𝑖)) in D, we define an indicator
variable 𝑦𝑖 ∈ {0, 1} to indicate the correctness of 𝑀 (𝑞𝑖) such that

𝑦𝑖 =

{
1, if 𝑀 (𝑞𝑖) aligns with the true answer 𝑎𝑖 ,
0, otherwise.

Based on these indicators, the dataset is divided into:
D1 = {(𝑞𝑖 , 𝑀 (𝑞𝑖)) ∈ Q × A : 𝑦𝑖 = 1, 𝑖 ∈ [𝑛]}, D0 = {(𝑞𝑖 , 𝑀 (𝑞𝑖)) ∈ Q × A : 𝑦𝑖 = 0, 𝑖 ∈ [𝑛]}.

Note that the construction of the indicator variable 𝑦 = I(𝑀 (𝑞) aligns with 𝑎) for (𝑞, 𝑀 (𝑞), 𝑎) ∼
𝑃𝑞,𝑀 (𝑞) ,𝑎 defines a distribution 𝑃𝑞,𝑀 (𝑞) ,𝑎,𝑦 , then the data {(𝑞𝑖 , 𝑀 (𝑞𝑖), 𝑦𝑖)}𝑛𝑖=1 are i.i.d. samples
from 𝑃𝑞,𝑀 (𝑞) ,𝑦 over all possible combinations of (𝑞, 𝑀 (𝑞), 𝑦), and the distributions of D0 and D1
are 𝑃0 = 𝑃𝑞,𝑀 (𝑞) |𝑦=0 and 𝑃1 = 𝑃𝑞,𝑀 (𝑞) |𝑦=1, respectively.

Correctness Predictor based on Score Function. Suppose there is a score function 𝜂 : Q ×A → R
that measures the correctness of (𝑞, 𝑀 (𝑞)). The value is expected to be large if 𝑀 has the ability to
provide a factual answer. The predictor 𝑓𝛼 (𝑞, 𝑀 (𝑞)) can then be defined as:

𝑓𝛼 (𝑞, 𝑀 (𝑞)) = I(𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼) (2)

where I is the indicator function and 𝜏𝛼 is a threshold to be determined. The task thus reduces to
selecting a threshold 𝜏𝛼 that satisfies the requirement in Eq. 1:

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼) > 𝛼) ≤ 𝛿. (3)

Calibration and Threshold Selection To determine the appropriate threshold 𝜏𝛼, we utilize the
calibration subset D0. Denote the 𝑛0 samples in D0 as D0 = {(𝑞 (0)

𝑖
, 𝑀 (𝑞 (0)

𝑖
)) : 𝑖 ∈ [𝑛0]}. For

each calibration sample (𝑞 (0)
𝑖
, 𝑀 (𝑞 (0)

𝑖
)) ∈ D0, we compute the score 𝑇𝑖 = 𝜂(𝑞 (0)

𝑖
, 𝑀 (𝑞 (0)

𝑖
)). We

then order these scores in ascending order to obtain the order statistics 𝑇(1) ≤ . . . ≤ 𝑇(𝑛0 ) , and set
𝑇(𝑛0+1) = +∞. Motivated by the seminal works Vovk (2012) on the PAC-style conformal prediction
and Tong et al. (2018) on Neyman-Pearson classification, if we set the threshold 𝜏𝛼 to be the 𝑘th
smallest score 𝑇(𝑘 ) , the probability for 𝑓𝛼 to have type I error greater than 𝛼 can be controlled in a
distribution-free and finite-sample manner,

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇(𝑘 ) ) > 𝛼) ≤
𝑛0∑︁
𝑗=𝑘

(
𝑛0
𝑗

)
(1 − 𝛼) 𝑗𝛼𝑛0− 𝑗 △

= 𝑣(𝑘), 𝑘 ∈ [𝑛0 + 1], (4)

when 𝑘 = 𝑛0 + 1, 𝑣(𝑘) is defined to be 0. We then determine �̂� as

�̂� = min{𝑘 ∈ [𝑛0 + 1] : 𝑣(𝑘) ≤ 𝛿}, (5)

Subsequently, the threshold is set to: 𝜏𝛼 = 𝑇( �̂� ) . Note that 𝜏𝛼 is well defined for any 𝑛0, ensuring
Type I error control irrespective of the calibration sample size 𝑛. Specifically, when 𝑛0 is small such
that 𝑣(𝑛0) > 𝛿, the threshold becomes 𝜏𝛼 = 𝑇(𝑛0+1) = +∞, causing 𝑓𝛼 to conservatively classify
all pairs (𝑞, 𝑀 (𝑞)) as incorrect, thereby abstaining from answering any question. The derivation is
deferred to Appendix. A.
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Theorem 1 For any 𝑛 ∈ N+, with probability at least 1 − 𝛿, the constructed classifier 𝑓𝛼 has type I
error below 𝛼, i.e.,

PD
(
P(𝑞,𝑀 (𝑞) )∼𝑃0 ( 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = 1) ≤ 𝛼

)
≥ 1 − 𝛿.

With the determined threshold 𝜏𝛼, the predictor 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = I(𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼) is formally
defined. This classifier ensures that, for a given significance level 𝛼, the Type I error is controlled
below 𝛼 with high probability 1 − 𝛿. Consequently, when 𝜂(𝑞, 𝑀 (𝑞)) ≥ 𝜏𝛼, we reject the null
hypothesis 𝐻0 and assert that the model 𝑀 can answer the question 𝑞 correctly. Otherwise, the model
will output an acknowledgment of uncertainty.

2.3 TYPE II ERROR CONTROL

The effectiveness of FACTTEST not only hinges on Type I error control but also on ensuring sufficient
statistical power to detect true positives. We then analyze the Type II error of the constructed classifier,
which is the probability of misclassifying correct (𝑞, 𝑀 (𝑞)) from 𝑃1 as incorrect in our setting.

Denote 𝜂(𝑞, 𝑀 (𝑞)) = P𝑦∼𝑃𝑦 |𝑞,𝑀 (𝑞) (𝑦 = 1|𝑞, 𝑀 (𝑞)) to be the conditional probability that 𝑀 (𝑞) aligns
with the correct answer 𝑎 given any question 𝑞 and the generated answer 𝑀 (𝑞). Note that a question
𝑞 may have multiple correct answers and 𝑎 is just one realization from 𝑃𝑎 |𝑞 . Therefore, 𝑎, and thus 𝑦,
may still be random given (𝑞, 𝑀 (𝑞)), implying 𝜂(𝑞, 𝑀 (𝑞)) may take value in (0, 1). For any classifier
𝑓 , we set R0 ( 𝑓 ) = P(𝑞,𝑀 (𝑞) )∼𝑃0 ( 𝑓 (𝑞, 𝑀 (𝑞)) = 1) (resp. R1 ( 𝑓 ) = P(𝑞,𝑀 (𝑞) )∼𝑃1 ( 𝑓 (𝑞, 𝑀 (𝑞)) = 0))
to be the Type I error (resp. Type II error). It follows from Theorem 1 in Tong (2013) that the Bayes
optimal classifier 𝑓 ∗𝛼

𝑓 ∗𝛼 ∈ arg min
𝑓 :Q×A→{0,1}

R1 ( 𝑓 ) s.t. R0 ( 𝑓 ) ≤ 𝛼

has the form 𝑓 ∗𝛼 (𝑞, 𝑀 (𝑞)) = I(𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼) for some 𝜏𝛼 ∈ [0, 1]. Therefore 𝑓 ∗𝛼 is the optimal
rule of detecting incorrect answers and 𝜂 is an optimal choice of the score function.

Suppose there exist an increasing function 𝐻 and 𝜖𝜂 > 0 such that ∥𝐻 ◦ 𝜂 − 𝜂∥∞ ≤ 𝜖𝜂 , where
𝐻 ◦ 𝜂(𝑞, 𝑀 (𝑞)) = 𝐻 (𝜂(𝑞, 𝑀 (𝑞))) is the composition of 𝐻 and 𝜂. Let 𝑝𝑦 = P𝑦∼𝑃𝑦

(𝑦 = 1) denote the
marginal probability that 𝑀 is correct. We define

𝜉𝛼 =
𝜏𝛼 (1 − 𝑝𝑦)
(1 − 𝜏𝛼)𝑝𝑦

, 𝛼′ = 𝛼 − 𝑐
√︂
𝛼

𝑛0
log

1
𝛿
, 𝜖𝜏 = 𝜏𝛼′ − 𝜏𝛼 + 𝜖𝜂 ,

for some constant 𝑐 > 0. If we denote 𝐺𝛼 (𝜖) = P(𝑞,𝑀 (𝑞) )∼𝑃0 ( |𝜂(𝑞, 𝑀 (𝑞)) − 𝜏𝛼 | ≤ 𝜖) to be the
probability measure around the classification boundary of 𝑓 ∗𝛼, then the following theorem states
that as long as the score function 𝜂 measures the level of correctness of 𝑀, the type II error of our
algorithm is small.

Theorem 2 If 𝜂(𝑞, 𝑀 (𝑞)) is a continuous random variable with (𝑞, 𝑀 (𝑞)) ∼ 𝑃0, 𝛼 ≳ log 1/𝛿
𝑛0

and
𝜏𝛼 + 𝜖𝜏 + 𝜖𝜂 < 1, then with probability at least 1 − 2𝛿, we have

R1 ( 𝑓𝛼) − R1 ( 𝑓 ∗𝛼) ≲ 𝜉𝛼
√︂
𝛼

𝑛0
log

1
𝛿
+

(1 − 𝑝𝑦) (𝜖𝜏 + 𝜖𝜂)
𝑝𝑦 (1 − 𝜏𝛼 − 𝜖𝜏 − 𝜖𝜂)2𝐺𝛼 (𝜖𝜏 + 𝜖𝜂).

3 EXTENSION OF FACTTEST TO COVARIATE SHIFTS

The threshold selection procedure developed in Section 2 relies on the assumption that the calibration
dataset D0 = {(𝑞𝑖 , 𝑀 (𝑞𝑖)) ∈ Q | 𝑦𝑖 = 0} follows the target distribution 𝑃0 of incorrect question-
generated answer pairs. However, labeled samples from the target distribution may not always be
available in practice. Instead, people may use the labeled data that they believe to be similar to
the target distribution, which necessitates methods to handle distribution shifts. In this section, we
study the case of covariate shift, where the distribution of the question-generated answer pairs in
the calibration data differs from that in the target distribution, while the conditional distribution of 𝑦
given (𝑞, 𝑀 (𝑞)) remains the same.

3.1 SETUP

Suppose we observe 𝑛 samples D = {(𝑞𝑖 , 𝑀 (𝑞𝑖), 𝑦𝑖) : 𝑖 ∈ [𝑛]} from the source distribution
�̃�𝑞,𝑀 (𝑞) ,𝑦 . We assume 𝑃𝑦 |𝑞,𝑀 (𝑞) = �̃�𝑦 |𝑞,𝑀 (𝑞) but 𝑃𝑞,𝑀 (𝑞) ≠ �̃�𝑞,𝑀 (𝑞) , i.e., the distribution of
questions changes but the oracle rule of detecting incorrect answers remains. Following Section 2, we
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split D into a correct subset D1 = {(𝑞𝑖 , 𝑀 (𝑞𝑖)) : 𝑦𝑖 = 1, 𝑖 ∈ [𝑛]} = {(𝑞 (1)
𝑖
, 𝑀 (𝑞 (1)

𝑖
)) : 𝑖 ∈ [𝑛1]} and

an incorrect subset D0 = {(𝑞𝑖 , 𝑀 (𝑞𝑖)) : 𝑦𝑖 = 0, 𝑖 ∈ [𝑛]} = {(𝑞 (0)
𝑖
, 𝑀 (𝑞 (0)

𝑖
)) : 𝑖 ∈ [𝑛0]}. We denote

the distribution of D0,D1 to be �̃�0, �̃�1, respectively. We further denote the density ratio between the
target distribution 𝑃0 of incorrect question-generated answer pair and the source distribution �̃�0 to be
𝑤(𝑞, 𝑀 (𝑞)) = 𝑑𝑃0

𝑑�̃�0
(𝑞, 𝑀 (𝑞)). In this section, we assume 𝑤 is known and satisfies 𝑤(𝑞, 𝑀 (𝑞)) ≤ 𝐵

for all (𝑞, 𝑀 (𝑞)) ∈ Q × A.

3.2 TYPE I ERROR CONTROL UNDER COVARIATE SHIFT

To extend the procedure in Section 2 to the covariate shift setting, we take an additional step to
transform the samples in D0 from �̃�0 to 𝑃0 distributed random variables by rejection sampling.

In the first step, we generate 𝑛0 uniform random variables𝑈1, . . . ,𝑈𝑛0
i.i.d.∼ Unif [0, 𝐵] and select the

indexes I = {𝑖 ∈ [𝑛0] : 𝑈𝑖 ≤ 𝑤(𝑞 (0)
𝑖
, 𝑀 (𝑞 (0)

𝑖
))}. If we collect all the samples in D0 with indexes

in I to form D̃0 = {(𝑞 (0)
𝑖
, 𝑀 (𝑞 (0)

𝑖
)) : 𝑖 ∈ I} △

= {(𝑞𝑖 , 𝑀 (𝑞𝑖)) : 𝑖 ∈ [�̃�0]}. Then it will be shown in
Appendix A that given the selection I by rejection sampling, the selected samples D̃0 follow the
target distribution 𝑃0 i.e., D̃0 | I i.i.d.∼ 𝑃0.

In the second step, we apply the procedure introduced in Section 2 to the incorrect subset D̃0.
Specifically, given the incorrect subset D̃0, we calculate the scores 𝑇𝑖 = 𝜂(𝑞𝑖 , 𝑀 (𝑞𝑖)) and order them
in increasing order to get 𝑇(1) ≤ . . . ≤ 𝑇(�̃�0 ) , and set 𝑇(�̃�0+1) = +∞. Then we set the threshold 𝜏𝛼 to
be 𝑇( �̂� ) , with �̂� satisfies

�̂� = min{𝑘 ∈ [�̃�0 + 1] : �̃�(𝑘) ≤ 𝛿}, �̃�(𝑘) =
�̃�0∑︁
𝑗=𝑘

(
�̃�0
𝑗

)
(1 − 𝛼) 𝑗𝛼�̃�0− 𝑗 , �̃�(�̃�0 + 1) = 0.

Since D̃0 | I i.i.d.∼ 𝑃0, theoretical results in Section 2 can be directly applied here. Due to limited
space, we control the Type I error as follows.

Theorem 3 With probability at least 1−𝛿, the constructed classifier 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = I(𝜂(𝑞, 𝑀 (𝑞)) >
𝑇( �̂� ) ) has type I error below 𝛼, i.e.

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 ( 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = 1) ≤ 𝛼) ≥ 1 − 𝛿.

4 EXPERIMENTS

In this section, we empirically investigate FACTTEST in addressing the hallucination problem of
LLMs, focusing on the following questions: Q1: Can FACTTEST improve the accuracy and lead to
more factual LLMs? Q2: Can FACTTEST effectively control the Type I error? Q3: Can FACTTEST
generalize well when covariate shifts exist?

4.1 EXPERIMENTAL SETUPS

Datasets. Following R-Tuning (Zhang et al., 2023), we conduct experiments on knowledge-extensive
QA tasks, categorized into two generation tasks. Further details are provided in Appendix D.2.

• Question-Answering: Given a question, the model directly predicts its answer. We include
ParaRel (Elazar et al., 2021) and HotpotQA (Yang et al., 2018). For experiments considering
distirbution shifts, we utilize ParaRel-OOD as the testing dataset, which comprises questions from
different domains compared with ParaRel.

• Multiple-Choice: Given a question with several choices, the model chooses one option among A,
B and C. We include WiCE (Kamoi et al., 2023) and FEVER (Thorne et al., 2018a).

Evaluating whether 𝑀 (𝑞) aligns with the answer 𝑎 depends on the datasets. For question-answering
datasets, we verify whether the first few output tokens contain 𝑎. For multiple-choice datasets, we
check whether 𝑀 (𝑞) exactly matches 𝑎.

Score Functions. We can fit a prediction model to predict the correctness of a given question or
use any off-the-shelf certainty estimation function to serve as𝜂. Particularly, we introduce three
entropy-based certainty functions. Details about the score functions are deferred to Appendix D.3.
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• Vanilla Entropy (VE): We query the model 𝑀 𝑘 times and calculate the entropy across 𝑘 answers.

𝑉𝐸 (𝑞, 𝑀 (𝑞)) = −
𝑘∑︁
𝑗=1

𝑝(𝑀 (𝑞) 𝑗 |𝑞) log 𝑝(𝑀 (𝑞) 𝑗 |𝑞), 𝜂(𝑞, 𝑀 (𝑞)) = −𝑉𝐸 (𝑞, 𝑀 (𝑞)). (6)

where 𝑝(𝑀 (𝑞) 𝑗 |𝑞) is the frequency of a predicted answer 𝑀 (𝑞) 𝑗 given a question 𝑞.
• Semantic Entropy (SE): Kuhn et al. (2023) measures uncertainty in natural language generation

by accounting for the probability distribution over distinct meanings rather than individual token
sequences.

• Kernel Language Entropy (KLE): Nikitin et al. (2024) quantifies uncertainty by using semantic
similarity kernels between generated answers, allowing for a more nuanced estimation of uncer-
tainty. Notably, this function does not apply to multiple-choice datasets and we only employ it on
ParaRel and HotpotQA.

Models. In main experiments, we focus on distribution-free settings, where models do not make
specific assumptions about the underlying distribution. We include Base and SelfCheckGPT (Manakul
et al., 2023) as baselines. Base evaluates the original model on the entire test set without any
modifications, while SelfCheckGPT and FACTTEST are assessed only on questions for which they
can confidently provide answers. We utilize three score functions to implement 9 variants of
FACTTEST. Specifically, FACTTEST-ve𝑘 , FACTTEST-se𝑘 and FACTTEST-kle𝑘 correspond to using
VE, SE and KLE as score functions, respectively, where 𝑘 denotes the number of sampled outputs for
a given question.

To facilitate comparison with training-based methods, we randomly split our training dataset, allo-
cating half for instruction-tuning and the remaining half to construct the calibration dataset. We use
15-generation SE as the score function, referring to this variant as FACTTEST-t. For comparative
analysis, we include R-Tuning (Zhang et al., 2023) as our primary baseline, evaluating it on the subset
of questions that it is willing to answer. We also consider Finetune-All and Finetune-Half, which
undergo instruction-tuning using the entire and half of the original training dataset, respectively, and
are evaluated on the entire test set.

To evaluate the applicability of our framework on black-box APIs, we further implement FACTTEST
on GPT-4o Mini, GPT-4o (OpenAI, 2024b), Gemini-1.5 and Claude-3.5 (Anthropic, 2024).

Metrics. For models that could only output either the answer or an unknown expression, we evaluate
the questions that our model is willing to answer. The accuracy is calculated as follows:

Acc =
# of correctly and willingly answered questions

# of willingly answered questions
. (7)

Besides, we also include Type I error (False Positive Rate, FPR), and Type II error (False Negative
Rate, FNR), as our evaluation metrics.

Implementation. We choose OpenLLaMA-3B, OpenLLaMA-7B, OpenLLaMA-13B (Geng & Liu,
2023), and LLaMA-7B, LLaMA-13B (Touvron et al., 2023) as the base models in our main text. Due
to space limits, experiments involving Mistral-7B (Jiang et al., 2023), LLaMA-3.2-3B-Instruct (Dubey
et al., 2024) and Tulu2-7B (Ivison et al., 2023) are deferred to App. E.4. The temperature is set
to 0 for evaluation and 0.7 for calculating score functions. We follow Zhang et al. (2023) to use
LMFlow (Diao et al., 2023) to conduct instruction tuning, setting epoch to 1 and learning rate to 2𝑒−5.
All the experiments are implemented on 4 Nvidia H100-80GB GPUs.

4.2 MAIN EXPERIMENTAL RESULTS

We first conduct in-distribution experiments on question-answering and multiple choice datasets
ParaRel, HotpotQA, WiCE and FEVER.

Main Performance. The accuracy results are presented in Table 1, where the significance level
𝛼 for FACTTEST is set to 0.05. Additional experimental results for other significance levels (e.g.,
𝛼 = 0.10) are provided in Appendix E.1. Analysis of the results reveals that FACTTEST significantly
outperforms pretrained models by a substantial margin in terms of accuracy on the questions it is
willing to answer, compared to baselines that respond to all questions indiscriminately. Notably,
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Table 1: The accuracy performance (%) of FACTTEST compared to Pretrained models on question-answering
and multiple-choice datasets using a significance level of 𝛼 = 0.05. For brevity, FACTTEST is abbreviated as
FTEST. The notation FTEST-ve15 denotes the use of a vanilla entropy score function with 15 generated outputs.

Dataset Model Base SelfCheckGPT FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel
OpenLLaMA-3B 36.66 53.60 60.54 66.75 67.28 60.10 62.50 67.26 78.45
OpenLLaMA-7B 40.38 60.05 74.92 79.87 80.29 65.53 71.40 65.23 76.83

OpenLLaMA-13B 42.21 59.62 77.37 77.31 79.41 73.49 68.89 73.09 83.84

HotpotQA
OpenLLaMA-3B 25.72 36.42 50.81 55.19 53.75 45.37 52.55 52.66 55.35
OpenLLaMA-7B 28.63 39.16 56.06 59.69 60.67 51.48 53.75 56.56 60.66

LLaMA-13B 30.83 41.78 51.49 54.41 49.74 55.41 57.18 60.69 54.49

WiCE
OpenLLaMA-3B 64.72 66.36 67.65 75.00 68.18 64.71 85.71 66.67 –
OpenLLaMA-7B 72.96 75.00 50.00 55.88 47.37 90.00 100.0 90.00 –

LLaMA-13B 56.89 57.39 63.33 45.45 44.44 100.0 82.35 90.00 –

FEVER
OpenLLaMA-3B 39.74 41.97 60.24 62.50 41.72 82.40 79.23 83.90 –

LLaMA-7B 35.99 40.89 43.92 50.94 51.38 28.69 33.12 33.27 –
LLaMA-13B 32.15 41.25 38.74 42.48 46.07 49.92 54.17 52.23 –

Table 2: The Type I error of FACTTEST on question-answering and multiple-choice datasets when 𝛼 = 0.05.

Dataset Model FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel
OpenLLaMA-3B 0.0508 0.0467 0.0513 0.0479 0.0520 0.0486 0.0342
OpenLLaMA-7B 0.0225 0.0093 0.0145 0.0393 0.0394 0.0435 0.0400

OpenLLaMA-13B 0.0192 0.0087 0.0302 0.0341 0.0477 0.0337 0.0331

HotpotQA
OpenLLaMA-3B 0.0242 0.0247 0.0272 0.0289 0.0319 0.0297 0.0309
OpenLLaMA-7B 0.0273 0.0298 0.0295 0.0344 0.0298 0.0308 0.0266

LLaMA-13B 0.0200 0.0226 0.0367 0.0278 0.0300 0.0286 0.0353

WiCE
OpenLLaMA-3B 0.0325 0.0089 0.0207 0.0175 0.0029 0.0118 –
OpenLLaMA-7B 0.0694 0.0579 0.0617 0.0077 0.0 0.0039 –

LLaMA-13B 0.0266 0.0290 0.0363 0.0 0.0072 0.0024 –

FEVER
OpenLLaMA-3B 0.0164 0.0005 0.0217 0.0570 0.0471 0.0496 –

LLaMA-7B 0.0598 0.0081 0.0329 0.0392 0.0495 0.0495 –
LLaMA-13B 0.0172 0.0383 0.0293 0.0459 0.0518 0.0552 –

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Significance Level 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ty
pe

 I 
Er

ro
r

Calibrated Type I Error
FactTest ve10
FactTest ve15
FactTest se10
FactTest se15

(a) ParaRel-3B
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Significance Level 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ty
pe

 I 
Er

ro
r

Calibrated Type I Error
FactTest ve10
FactTest ve15
FactTest se10
FactTest se15

(b) WiCE-3B
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Significance Level 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ty

pe
 I 

Er
ro

r
Calibrated Type I Error
FactTest ve10
FactTest ve15
FactTest se10
FactTest se15

(c) FEVER-3B

Figure 1: FACTTEST can control the Type I error given a significance level 𝛼. The caption of each
sub-figure consists of the dataset name and the model size.
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Figure 2: The Type II error, or FNR, of FACTTEST given different significance levels. The caption of
each sub-figure consists of the dataset name and the model size.

FACTTEST can yield an over 40% accuracy improvement on ParaRel, WiCE and FEVER. These
results demonstrate that FACTTEST is more reliable when making predictions and is capable of
refusing unknown answers.

Type I Error. Table 2 represents the Type I error, or FPR, of FACTTEST when 𝛼 is set to 0.05.
Figure 1 depicts the FPR-𝛼 curve. For a given significance level 𝛼, we enforce an upper bound on
the FPR at 𝛼 with a high probability guarantee. Analysis of these figures confirms that our method
reliably controls the Type I error, thereby validating the theoretical results presented in Section 2.2.
Due to space constraints, additional error control results for FACTTEST are available in Appendix E.3.
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(a) ParaRel

(b) WiCE

Figure 3: The Accuracy-Threshold curve. The title of each sub-figure consists of the dataset name,
the model size and the certainty function.

ParaRel HotpotQA WiCE FEVER
25

50
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100
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ur
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OpenLLaMA-3b

ParaRel HotpotQA WiCE FEVER

LLaMA-7b
FactTest-t R-Tuning Finetune All Finetune Half Pretrained

Figure 4: The Accuracy performance (%) of FACTTEST trained on half of the data, comparing with
training-based baselines. Both R-Tuning and Finetune All utilize all training data for finetuning,
while Finetune Half uses the same half of the finetuning data as FACTTEST.

Type II Error. Figure 2 shows the FNR-𝛼 curve. In this paper, we minimize the Type II error while
enforcing the upper bound of Type I error at 𝛼. The performance of Type II error cannot be fully
controlled, which mainly depends on how well the score function can quantify model’s ability to
answer correctly. More FNR results regarding FACTTEST can be seen in Appendix E.3.

Maximizing Accuracy. Given a significance level 𝛼, we can determine the threshold 𝜏𝛼 that
minimizes Type II error while ensuring that the Type I error remains within the specified upper
bound. For 𝜏 > 𝜏𝛼, the Type I error decreases monotonically, whereas the Type II error increases
monotonically. Figure 3 presents the accuracy-𝜏 curve, where 𝜏 begins at 𝜏0.1. This curve can be
utilized to maximize accuracy, which does not follow a monotonic trend as the threshold 𝜏 increases,
while ensuring that the Type I error is controlled below 0.10.

4.3 COMPARING WITH FINETUNED MODELS

Figure 4 illustrates the accuracy performance of FACTTEST-t compared to the baseline methods
R-Tuning, Finetune-All, and Finetune-Half. We randomly divide D into two equal parts: D𝐼 for
instruction-tuning and D𝐶 for constructing the calibration dataset. The pretrained model is finetuned
on D𝐼 to obtain Finetune-Half, while Finetune-All is obtained by training on the entire dataset D.
For R-Tuning, we also utilize the entire dataset to finetune the model. It is evident that FACTTEST-t
consistently outperforms R-Tuning by a large margin, while utilizing only half of the available
training data, thereby reducing training costs by 50%. Notably, FACTTEST-t yields 34% and 28%
accuracy improvement over R-Tuning on HotpotQA and FEVER, respectively. Despite the reduced
size of the calibration dataset, FACTTEST-t maintains effective control over Type I error, with further
details provided in Appendix E.3.
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(a) (b) (c)

Figure 5: (a) The Accuracy performance (%) of FACTTEST on ParaRel-OOD testing dataset. (b)(c)
FACTTESTO maintains its ability to control Type I error given a significance level 𝛼 when distribution
shifts exist.

Table 3: The accuracy performance (%) of FACTTEST applied to GPT-4o-mini. The significance
level is chosen as 5%. The number in parentheses is Type I error. GPT + OpenLLaMA-7B means
utilizing OpenLLaMA-7B to calculate certainty scores for GPT-4o mini.

Dataset Model FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel
GPT-4o mini 52.83

GPT + OpenLLaMA-7B 77.78 (0.03) 77.31 (0.03) 83.88 (0.05)
GPT + OpenLLaMA-13B 76.91 (0.04) 77.67 (0.05) 85.84 (0.04)

WiCE
GPT-4o mini 75.67

GPT + OpenLLaMA-7B 81.82 (0.02) 76.67 (0.03) –
GPT + OpenLLaMA-13B 86.95 (0.01) 81.77 (0.02) –

4.4 EXTENSION TO COVARIATE SHIFTS

In this subsection, we evaluate the extension of our framework, denoted as FACTTESTO (FACTTEST
for Out-of-distribution domains), on the dataset containing distribution shifts.

Setup. We utilize ParaRel for training, consistent with the aforementioned experiments. We randomly
split ParaRel-OOD into a validation dataset comprising 1,000 samples and a testing dataset containing
12k samples. To calculate the density ratio in Section 3 between the target distribution and the source
distribution, we employ the training data from the source domain and the validation data from the
target domain to train a binary classifier and utilize the predicted probability for approximating density
ratios. Subsequently, we select 𝐵 as the 𝛾 upper quantile of density ratios to filter out anomalous
values. We set the default value of 𝛾 as 90%.

Experimental Results. Figure 5 depicts the performance of FACTTESTO on the ParaRel-OOD
testing dataset, alongside the Type I error-𝛼 curve. The results demonstrate that FACTTESTO-t
significantly outperforms baseline methods by a large margin. Notably, when utilizing OpenLLaMA-
3B as the pretrained model, both FACTTESTO-se and FACTTESTO-kle outperform training-based
methods without fine-tuning. Additionally, FACTTESTO effectively enforces the upper bound on the
Type I error, thereby maintaining its efficacy in out-of-distribution scenarios.

4.5 EXTENSION TO BLACK-BOX APIS

We further evaluate our framework on black-box models, such as GPT-4o Mini (OpenAI, 2024b), to
broaden the applicability of our framework. Experiments with more black-box models are provided in
App. E.4. While score functions like SE and KLE require token probabilities, which are unavailable
for black-box APIs, we utilize open-source models to calculate the scores on calibration datasets
constructed by black-box models. Table 3 illustrates the performance of FACTTEST on GPT-4o
Mini. The results demonstrate that the scores derived from open-source models are effective for
black-box APIs, achieving a 33% accuracy improvement on ParaRel and an 11% improvement on
WiCE, while maintaining control over Type I error. These findings illustrate that our framework
provides a practical and effective solution for detecting hallucinations in closed-box models. More
results involving Claude-3.5, Gemini-1.5 and GPT-4o are provided in App. E.4.

5 RELATED WORK

Factuality of LLMs. The factuality of LLMs is a major problem and of significant research interest (Ji
et al., 2023; Maynez et al., 2020a; Li et al., 2023) , including hallucination detection, mitigation
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and evaluation (Huang et al., 2023; Wang et al., 2023). Our work relates more to hallucination
detection, which is imperative for assuring the reliability of the generated content. Kadavath et al.
(2022) proposes self-evaluation to verify the prediction. Azaria & Mitchell (2023) trains a classifier
based on hidden layer activations. Lee et al. (2023) uses factual and nonfactual prompts and
creates a benchmark for measuring the factuality of generations. Manakul et al. (2023) introduces
SelfCheckGPT to fact-check the responses of LLMs in a zero-resource fashion. Zhang et al. (2023)
instructs LLMs to refuse unknown questions by refusal-aware instruction tuning. However, none of
these works have provided theoretical guarantees. QuaCer-C (Chaudhary et al., 2024a;b) provides
verification in LLMs with guarantees, but is limited to knowledge comprehension task.

Uncertainty Quantification of LLMs. Our work relates to a line of work on uncertainty quantifi-
cation (UQ) for LLMs, as we employ these functions to assess models’ ability to reliably give an
answer. Predictive entropy that measures the entropy of the model’s predicted token distribution
has been used as a simple baseline for UQ in LLMs (Braverman et al., 2019). Kuhn et al. (2023)
introduced Semantic Entropy, which incorporates linguistic invariances to measure uncertainty. Most
recently, Nikitin et al. (2024) introduced Kernel Language Entropy (KLE), which defines positive
semidefinite unit trace kernels and quantifies uncertainty using the von Neumann entropy.

These works are complementary to ours, as our contribution is a meta-algorithm that works with
any uncertainty quantification method to serve as score functions and assess the factuality. Future
developments in this line of work can greatly improve the performance of our framework.

Distribution-Free and Finite-Sample Inference. Recent works have extended conformal prediction
to provide guarantees on the outputs of LLMs (Kang et al., 2024; Quach et al., 2024; Mohri &
Hashimoto, 2024). While these methods focus on improving model outputs, FACTTEST is designed to
verify correctness and decline unknown questions. Our framework leverages principles from Neyman-
Pearson (NP) classification. The NP classification paradigm differs from standard classification
and cost-sensitive learning, where the goal is to minimize a weighted combination of Type I and II
errors. Instead, it prioritizes controlling the Type I error while minimizing the Type II error, ensuring
that the Type I error remains below a user-specified threshold 𝛼. To this end, Rigollet & Tong
(2011) and Scott & Nowak (2005) proposed using empirical risk minimization, and Tong (2013)
employed plug-in approaches to construct NP classifiers. A more related work by Tong et al. (2018)
introduced an umbrella algorithm that achieves Type I error control for any pretrained classifier, while
similar techniques were also proposed in the PAC-style conformal prediction literature (Vovk, 2012).
However, the methods in Tong et al. (2018) and Vovk (2012) do not provide Type II error guarantees.

Our work takes an initial step to use the NP classification idea to conduct factuality testing for LLMs.
Furthermore, the Type II error analysis of our method can be directly applied to the standard NP
umbrella algorithm, which is of independent interest. Additionally, we extend the NP classification
framework to account for covariate shifts, enabling it to address more practical, real-world problems.

6 CONCLUSION: SUMMARY AND LIMITATIONS

In this paper, we introduced FACTTEST, a novel framework for factuality testing in Large Language
Models (LLMs) that leverages the principles of Neyman-Pearson (NP) classification to provide
statistical guarantees. By formulating factuality testing as a hypothesis testing problem, FACTTEST
effectively enforces an upper bound on Type I errors. We prove that our framework ensures strong
power control under mild conditions and can be extended to maintain its effectiveness in the presence
of covariate shifts. These theoretical analyses can be seamlessly integrated with the standard NP
umbrella algorithm, not limited to our framework. Our approach is distribution-free and works
for any number of human-annotated samples. It applies to any LLM including closed-box models.
Empirical evaluations have demonstrated that FACTTEST consistently outperforms both pretrained
and fine-tuned baselines. Besides, FACTTEST maintained superior performance under distribution
shifts, ensuring its robustness and reliability in real-world scenarios. Additionally, our framework
effectively enhanced the reliability of black-box APIs, highlighting its practical applicability.

One limitation of our work is the current implementation of only three entropy-based certainty
functions. Exploring additional score functions could further enhance the framework’s performance.
Furthermore, our framework constructs the predictor in an offline manner. Future work could extend
FACTTEST to support online testing, thereby enabling real-time factuality assessments.
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ETHICS STATEMENT

We affirm that our work complies with the ICLR Code of Ethics, and we have actively considered
ethical implications throughout the research process.

Our work aims to enhance the reliability of large language models (LLMs) by statistically evaluating
their factuality. The primary objective is to reduce the risk of misinformation and non-factual content,
especially in high-stakes domains where inaccuracies can lead to significant harm. We acknowledge
the ethical challenges associated with AI models, including the risk of their misuse to produce
misleading or harmful content. By offering a method for factuality assessment, we seek to promote
the responsible use of AI, prioritizing transparency, trustworthiness, and accountability. Furthermore,
we have taken steps to ensure that our research minimizes any privacy or security risks. All datasets
used in this study are publicly available and do not contain personally identifiable information, thereby
safeguarding user privacy and adhering to data security standards.

REPRODUCIBILITY STATEMENT

We are dedicated to ensuring the reproducibility of our research findings. In this paper, we provide
a complete proof of all theoretical results in Appendix A. Comprehensive details of our proposed
framework, FACTTEST, including dataset construction, certainty function selection, threshold deter-
mination and other extensions are shown in Section 2.2. We also provide detailed descriptions of
our experimental setups including datasets, evaluation metrics and other implementation details in
Section 4.1 and Appendix D.2. Additionally, we will release the code, along with instructions for
running experiments and reproducing the results, upon receiving the review result.
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A DERIVATION AND PROOF

Proof 1 (Proof of Equation 4) Assume that when (𝑞, 𝑀 (𝑞)) ∼ 𝑃0, 𝜂(𝑞, 𝑀 (𝑞)) has CDF 𝐹. We
denote the 1 − 𝛼 quantile of 𝐹 as 𝐹−1 (1 − 𝛼) = inf{𝑥 ∈ R | 𝐹 (𝑥) ≥ 1 − 𝛼}. Then we can show that:

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇(𝑘 ) ) > 𝛼) = PD (𝑇(𝑘 ) < 𝐹−1 (1 − 𝛼)) (8)

Considering the property of the order statistics, we have that

PD (𝑇(𝑘 ) < 𝐹−1 (1 − 𝛼)) = PD

(
𝑛0∑︁
𝑖=1
I
(
𝜂(𝑞 (0)

𝑖
, 𝑀 (𝑞 (0)

𝑖
)) < 𝐹−1 (1 − 𝛼)

)
≥ 𝑘

)
(9)

≤
𝑛0∑︁
𝑗=𝑘

(
𝑛0
𝑗

)
(1 − 𝛼) 𝑗𝛼𝑛− 𝑗 △

= 𝑣(𝑘) (10)

where I(·) is the indicator function, defined as:

I(𝜂(𝑞 (0)
𝑖
, 𝑀 (𝑞 (0)

𝑖
)) < 𝑄𝛼) =

{
1 if 𝜂(𝑞 (0)

𝑖
, 𝑀 (𝑞 (0)

𝑖
)) > 𝑄𝛼

0 otherwise

Proof 2 (Proof of Theorem 1) Theorem 1 follows from the definition of �̂� .

Lemma 1 (Theorem 1 in Skorski (2023)) Suppose 𝑋1, . . . , 𝑋𝑛 are i.i.d. continuous random vari-
ables with CDF 𝐹, denote

𝜖𝑘 =
4(𝑛 − 2𝑘 + 1)

3(𝑛 + 1) (𝑛 + 3) log
2
𝛿
∨ 0 +

√︄
2𝑘 (𝑛 − 𝑘 + 1)
(𝑛 + 1)2 (𝑛 + 2)

log
2
𝛿
,

then

P

( ����𝐹 (𝑋(𝑘 ) ) −
𝑘

𝑛 + 1

���� ≤ 𝜖𝑘) ≥ 1 − 𝛿.

Proof 3 (Proof of Theorem 2) At first, to simplify the notations in the proof, we argue that the
function 𝐻 can be assumed to be identity without the loss of generality. To see this, note that �̂� does
not depend on the choice of 𝜂 and I(𝜂 > 𝑇( �̂� ) ) = I(𝐻 ◦ 𝜂 > (𝐻 (𝑇)) ( �̂� ) ) with (𝐻 (𝑇)) ( �̂� ) to be the 𝑘-th
smallest order statistic of {𝐻 (𝑇𝑖) : 𝑖 ∈ [𝑛0]}, therefore, 𝑓𝛼 is invariant if we replace 𝜂 in Section 2 by
𝐻 ◦ 𝜂. Consequently, without the loss of generality, we assume 𝐻 is the identity function. Then the
proof of Theorem 2 consists of three parts.

1) Firstly, we show that R0 ( 𝑓𝛼) is not much smaller than 𝛼. To see this, since we assume 𝜂(𝑞, 𝑀 (𝑞))
with (𝑞, 𝑀 (𝑞)) ∼ 𝑃0 is a continuous random variable, it follows from the definition of �̂� that

P(𝐹 (𝑇( �̂�−1) ) < 1 − 𝛼) = P
(
P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂�−1) ) > 𝛼

)
> 𝛿.

Here we only consider the case where �̂� > 1, as will be shown in Equation equation 11, it holds as
long as 𝑛0 is not too small. Since �̂� is deterministic given 𝑛0, it follows from Lemma 1 that

P

(
𝐹 (𝑇( �̂�−1) ) ≤

�̂� − 1
𝑛0 + 1

− 𝜖 �̂�−1

)
≤ 𝛿.

Therefore we have
�̂� − 1
𝑛0 + 1

− 𝜖 �̂�−1 < 1 − 𝛼.

Denote the event 𝐸1 as

𝐸1 =

{
𝐹 (𝑇( �̂� ) ) ≤

�̂�

𝑛0 + 1
+ 𝜖 �̂�

}
,
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it follows from Lemma 1 that P(𝐸1) ≥ 1 − 𝛿. Under 𝐸1, we know

𝐹 (𝑇( �̂� ) ) ≤
�̂�

𝑛0 + 1
+ 𝜖 �̂� < 1 − 𝛼 + 1

𝑛0 + 1
+ 𝜖 �̂�−1 + 𝜖 �̂� ,

which implies

P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂� ) ) = 1 − 𝐹 (𝑇( �̂� ) ) > 𝛼 − 1
𝑛0 + 1

− 𝜖 �̂�−1 − 𝜖 �̂� .

Similarly, since

P(𝐹 (𝑇( �̂� ) ) ≥ 1 − 𝛼) ≥ 1 − 𝛿, P

(
𝐹 (𝑇( �̂� ) ) ≤

�̂�

𝑛0 + 1
+ 𝜖 �̂�

)
≥ 1 − 𝛿,

we know

1 − 𝛼 ≤ �̂�

𝑛0 + 1
+ 𝜖 �̂� ,

which concludes that
�̂� ≳ (1 − 𝛼)𝑛0. (11)

Thus we have

𝜖 �̂�−1 + 𝜖 �̂� ≲
√︂
𝛼

𝑛0
log

1
𝛿
,

and

P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂� ) ) > 𝛼 − 𝑐
√︂
𝛼

𝑛0
log

1
𝛿
. (12)

2) Secondly, we show 𝑇( �̂� ) is close to 𝜏𝛼. Denote 𝛼′ = 𝛼 − 𝑐
√︃

𝛼
𝑛0

log 1
𝛿

, it follows from Equation
equation 12 that under 𝐸1, we have

P(𝑞,𝑀 (𝑞) )∼𝑃0

(
𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂� )

)
> 𝛼′ = P(𝑞,𝑀 (𝑞) )∼𝑃0

(
𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼′

)
≥ P(𝑞,𝑀 (𝑞) )∼𝑃0

(
𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼′ + 𝜖𝜂

)
,

so
𝑇( �̂� ) < 𝜏𝛼′ + 𝜖𝜂 .

Denote 𝐸2 as
𝐸2 = {P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂� ) ) ≤ 𝛼},

we know P(𝐸2) ≥ 1 − 𝛿. Under 𝐸2, we have

P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝑇( �̂� ) ) ≤ 𝛼 = P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼)
≤ P(𝑞,𝑀 (𝑞) )∼𝑃0 (𝜂(𝑞, 𝑀 (𝑞)) > 𝜏𝛼 − 𝜖𝜂),

so
𝑇( �̂� ) ≥ 𝜏𝛼 − 𝜖𝜂 .

Then we conclude that
|𝑇( �̂� ) − 𝜏𝛼 | ≤ 𝜏𝛼′ − 𝜏𝛼 + 𝜖𝜂 = 𝜖𝜏 .

3) Now we are able to control the excess risk of 𝑓𝛼. For any (𝑞, 𝑀 (𝑞)), if we use 𝑌 = 0 (resp. 𝑌 = 1)
to denote the model 𝑀 is uncertain (resp. certain) of 𝑞, and denote 𝑝𝑦 = P(𝑌 = 1) to be the marginal
distribution for 𝑀 to be certain, then

𝑑𝑃1
𝑑𝑃0

(𝑞, 𝑀 (𝑞)) =
𝜂(𝑞, 𝑀 (𝑞)) (1 − 𝑝𝑦)
(1 − 𝜂(𝑞, 𝑀 (𝑞)))𝑝𝑦

,

which is increasing in 𝜂(𝑞, 𝑀 (𝑞)). Denote 𝜉𝛼 =
𝜏𝛼 (1−𝑝𝑦 )
(1−𝜏𝛼 ) 𝑝𝑦

, if |𝜂(𝑞, 𝑀 (𝑞)) − 𝜏𝛼 | ≤ 𝜖𝜏 + 𝜖𝜂 and
𝜏𝛼 + 𝜖𝜏 + 𝜖𝜂 < 1, then ����𝑑𝑃1

𝑑𝑃0
(𝑞, 𝑀 (𝑞)) − 𝜉𝛼

���� ≤ (1 − 𝑝𝑦) (𝜖𝜏 + 𝜖𝜂)
𝑝𝑦 (1 − 𝜏𝛼 − 𝜖𝜏 − 𝜖𝜂)2 .
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Then under 𝐸1 ∩ 𝐸2, we can control the excess risk as

R1 ( 𝑓𝛼) − R1 ( 𝑓 ∗𝛼)

=E(𝑞,𝑀 (𝑞) )∼𝑃0

𝑑𝑃1
𝑑𝑃0

(𝑞, 𝑀 (𝑞))
(
I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝑇( �̂� ) ) − I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝜏𝛼)

)
=E(𝑞,𝑀 (𝑞) )∼𝑃0

(
𝑑𝑃1
𝑑𝑃0

(𝑞, 𝑀 (𝑞)) − 𝜉𝛼
) (
I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝑇( �̂� ) ) − I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝜏𝛼)

)
+ 𝜉𝛼E(𝑞,𝑀 (𝑞) )∼𝑃0

(
I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝑇( �̂� ) ) − I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝜏𝛼)

)
=E(𝑞,𝑀 (𝑞) )∼𝑃0

����𝑑𝑃1
𝑑𝑃0

(𝑞, 𝑀 (𝑞)) − 𝜉𝛼
��������I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝑇( �̂� ) ) − I(𝜂(𝑞, 𝑀 (𝑞)) ≤ 𝜏𝛼)

����
+ 𝜉𝛼

(
R0 ( 𝑓 ∗𝛼) − R0 ( 𝑓𝛼)

)
≤E(𝑞,𝑀 (𝑞) )∼𝑃0

����𝑑𝑃1
𝑑𝑃0

(𝑞, 𝑀 (𝑞)) − 𝜉𝛼
����I( |𝜂(𝑞, 𝑀 (𝑞)) − 𝜏𝛼 | ≤ 𝜖𝜏 + 𝜖𝜂

)
+ 𝑐𝜉𝛼

√︂
𝛼

𝑛0
log

1
𝛿

≲
(1 − 𝑝𝑦) (𝜖𝜏 + 𝜖𝜂)

𝑝𝑦 (1 − 𝜏𝛼 − 𝜖𝜏 − 𝜖𝜂)2𝐺𝛼 (𝜖𝜏 + 𝜖𝜂) + 𝜉𝛼
√︂
𝛼

𝑛0
log

1
𝛿
.

Proof 4 (Proof of Theorem 3) Note that once we show D̃0 | I i.i.d.∼ 𝑃0, then similar to Theorem 1,

PD (P(𝑞,𝑀 (𝑞) )∼𝑃0 ( 𝑓𝛼 (𝑞, 𝑀 (𝑞)) = 1) ≤ 𝛼 | I) ≥ 1 − 𝛿.
Taking expectation with respect to I concludes the result.

It remains to prove D̃0 | I i.i.d.∼ 𝑃0. To this end, it suffices to show (𝑞, 𝑀 (𝑞)) |{𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞))} ∼
𝑃𝑞,𝑀 (𝑞) |𝑦=0 = 𝑃0 with (𝑞, 𝑀 (𝑞)) ∼ �̃�0. For any measurable set 𝐶 ⊂ Q × A, the conditional
distribution of (𝑞, 𝑀 (𝑞)) |{𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞))} can be expressed as

P
(
(𝑞, 𝑀 (𝑞)) ∈ 𝐶 |𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞))

)
=
P
(
(𝑞, 𝑀 (𝑞)) ∈ 𝐶,𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞))

)
P
(
𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞))

)
=
E𝑤 (𝑞,𝑀 (𝑞) )

𝐵
I
(
(𝑞, 𝑀 (𝑞)) ∈ 𝐶

)
E𝑤 (𝑞,𝑀 (𝑞) )

𝐵

=P(𝑞,𝑀 (𝑞) )∼𝑃𝑞,𝑀 (𝑞) |𝑦=0

(
(𝑞, 𝑀 (𝑞)) ∈ 𝐶

)
,

where we have use the facts that P(𝑈 ≤ 𝑤(𝑞, 𝑀 (𝑞)) |𝑞, 𝑀 (𝑞)) =
𝑤 (𝑞,𝑀 (𝑞) )

𝐵
,

E(𝑞,𝑀 (𝑞) )∼�̃�0
𝑤(𝑞, 𝑀 (𝑞)) = 1 and E(𝑞,𝑀 (𝑞) )∼�̃�0

𝑤(𝑞, 𝑀 (𝑞))I((𝑞, 𝑀 (𝑞)) ∈ 𝐶) =

P(𝑞,𝑀 (𝑞) )∼𝑃0 ((𝑞, 𝑀 (𝑞)) ∈ 𝐶).

B MORE RELATED WORKS

Conformal Prediction. Conformal prediction enables the construction of confidence sets that
contain the true outcome with a specified probability (Shafer & Vovk, 2007; Angelopoulos &
Bates, 2022; Barber et al., 2023). It has been successfully applied to various black-box machine
learning models (Angelopoulos & Bates, 2022) but has limited application in language models
(LMs). Specifically, Kumar et al. (2023) provides conformal guarantees on multiple-choice datasets.
C-RAG (Kang et al., 2024) provides conformal risk analysis for RAG models and certifies an upper
confidence bound. CLM (Quach et al., 2024) extends conformal prediction for LLM generations
and provide coverage guarantees. Conformal Factuality (Mohri & Hashimoto, 2024) enables the
application of conformal prediction in improving model performance. However, traditional CP
methods in LLMs focus primarily on coverage guarantees without differentiating between correct and
incorrect samples, thereby lacking explicit error rate controls essential for hallucination detection. In
contrast, FACTTEST differs from those works in that it aims to evaluate the model’s ability to answer
correctly, detect hallucinations and explicitly control both Type I and Type II errors.
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Uncertainty Quantification and Confidence Calibration. Lin et al. (2024) identifies that existing
methods treat all tokens equally when estimating uncertainty and proposed a simple supervised
approach for uncertainty estimation in black-box LLMs using labeled datasets. Duan et al. (2024)
proposes jointly shifting attention to more relevant (SAR) components. Besides, recent research on
confidence calibration for LLMs has explored several innovative approaches. For example, Tian et al.
(2023) elicits verbalized confidences to improve calibration. Huang et al. (2024) proposes confidence
elicitation methods for long-form generations. Multicalibration (Detommaso et al., 2024) aims to
ensure LLM confidence scores accurately reflect the true likelihood of predictions being correct.

C MORE DISCUSSION ON PRIOR WORKS

In the main text, we formulate our method within the Neyman-Pearson (NP) classification framework,
where we define an NP classifier to control Type I error. In this section, we explore the inherent
relationship between NP classification (Tong et al., 2018) and PAC-style conformal prediction (Vovk,
2012), demonstrating that our framework can also be interpreted through the lens of conformal
prediction.

PAC-style conformal prediction. Suppose we are given a dataset Dcp = {𝑋𝑖 : 𝑖 ∈ [𝑛]} i.i.d.∼ 𝑃
cp
𝑋

where each sample 𝑋𝑖 ∈ X follows distribution 𝑃cp
𝑋

, PAC-style conformal prediction (Vovk, 2012)
aims to construct a predictive set Γ for an independent random element 𝑋 ∼ 𝑃cp

𝑋
such that

PDcp
(
P𝑋∼𝑃cp

𝑋
(𝑋 ∉ Γ) > 𝛼

)
≤ 𝛿. (13)

To this end, Vovk (2012) proposes to use a conformity score 𝐴 : X → R for measuring how well
𝑋 conforms to the dataset Dcp. Given any conformity score 𝐴, we define the conformity scores of
samples 𝑋𝑖 in Dcp as 𝑆𝑖 = 𝐴(𝑋𝑖). Then a 𝑝-value 𝑝(𝑋) is defined by

𝑝(𝑋) = |{𝑆𝑖 : 𝑆𝑖 ≤ 𝑆(𝑋)}| + 1
𝑛 + 1

.

Finally, for some 𝜖 > 0, the predictive set Γ is defined by
Γ𝜖 (Dcp) = {𝑥 ∈ X : 𝑝(𝑥) > 𝜖}. (14)

It follows from Vovk (2012) that as long as
⌊ 𝜖 (𝑛+1)−1⌋∑︁

𝑗=0

(
𝑛

𝑗

)
𝛼 𝑗 (1 − 𝛼)𝑛− 𝑗 ≤ 𝛿,

the coverage guarantee 13 is satisfied.

Connection between PAC-conformal prediction and our approach. If we set the conformity score
𝐴 to be −𝜂, where 𝜂 is introduced in Sec. 2.2 and construct the predictive set Γ𝜖 defined in 14 using
data Dcp = D0, then the predictive set Γ𝜖 (D0) for (𝑞, 𝑀 (𝑞)) and the classifier 𝑓 in Sec. 2.2 are
closely related as stated in the following lemma:

Lemma 2 If we set 𝜖 such that ⌊𝜖 (𝑛0 + 1) − 1⌋ = 𝑛0 − �̂� , then
𝑓 (𝑞, 𝑀 (𝑞)) = I

(
(𝑞, 𝑀 (𝑞)) ∉ Γ𝜖 (D0)

)
.

The proof of this lemma is straightforward and thus omitted. This equivalence highlights that NP
classification-based threshold selection aligns with the membership determination in PAC-style
conformal prediction, which is akin to the well-known duality between confidence interval and
hypothesis testing. Under our setting, conformal prediction aims to construct a confidence set for
(𝑞, 𝑀 (𝑞)) |𝑦 = 0, while Neyman-Pearson classification aims to test whether 𝑦 = 0 or not given
(𝑞, 𝑀 (𝑞)).
Distinctive Features of FACTTEST. Although FACTTEST can be interpreted both through NP
classification and PAC-style conformal prediction, our distinct difference is that we provide detailed
analysis on Type II error, facilitating dual error control. Besides, we identify the optimal score
function for constructing the optimal classifier with minimum type II error, which has not yet been
explored in the PAC conformal prediction literature.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D IMPLEMENTATION DETAILS

D.1 DETAILS ABOUT BASELINES

We provide a detailed explanation of the settings used for the baseline.

• SelfCheckGPT: We implement SelfCheckGPT with NLI Manakul et al. (2023) as recommended
by the authors. It utilizes Natural Language Inferencce (NLI) model to predict entailment or
contradiction. We sample five answers and the model will output a probability of contradiction
from 0 to 1. We evaluate the base models on questions with the contradiction score less than 0.5.

• R-Tuning: We follow the settings in the original paper (Zhang et al., 2023): We first construct a
refusal-aware dataset by adding prompt ‘Are you sure you accurately answered the question based
on your internal knowledge?’ and the corresponding ‘Sure’ or ‘Unsure’ to each question-answer
pair, and then finetune the model on this dataset. We evaluate the finetuned model on questions
that the model is certain.

D.2 DETAILS ABOUT DATASETS

We conduct our experiments on four datasets and follow the same train/test split in Zhang et al.
(2023), which are described as follows.

• ParaRel (Elazar et al., 2021): This dataset comprises factual knowledge with various prompts
and relations initially designed for mask prediction. It is utilized to evaluate the model’s ability
to comprehend paraphrased relational facts. To adapt ParaRel for autoregressive models, Zhang
et al. (2023) reformatted it into a question-answering format. Duplicate prompts with different
templates but identical entities were removed for our question-answering task, resulting in 25,133
prompt-answer pairs across 31 domains. Zhang et al. (2023) divided ParaRel into two subsets:
the first 15 domains serve as in-domain data, and the remaining 16 domains as out-of-domain
data (13974 samples). The in-domain data is further split equally into training and testing sets,
consisting of 5575 and 5584 samples.

• HotpotQA (Yang et al., 2018): It is a question-answering dataset that necessitates complex
reasoning across multiple documents. We evaluate the model by providing the relevant context
documents and questions to assess its ability to generate correct answers. The development set
is used as the testing set for our evaluations. The training set contains 10K samples randomly
selected from the original dataset while the testing set contains 7405 samples.

• WiCE (Kamoi et al., 2023): It is a natural language inference (NLI) dataset focused on textual
entailment. Each data sample consists of an evidence statement and a claim, and the model must
determine whether the evidence supports, partially supports, or does not support the claim. We
utilize this dataset as multiple-choice questions with three options for each question. The training
and testing sets contain 3470 and 958 samples, respectively.

• FEVER (Thorne et al., 2018a): FEVER consists of claims paired with supporting evidence from
Wikipedia. Each claim is classified as SUPPORTED, REFUTED, or NOT ENOUGH INFO. This
dataset is employed to assess the models’ capability to verify the factual accuracy of statements
against Wikipedia documents. We utilize FEVER as a multiple-choice NLI task with three options
for each question: (A) SUPPORTED, (B) REFUTED, (C) NOT ENOUGH INFO. The training set
contains 10K samples randomly selected from the original dataset while the testing set contains
9999 samples.

Detailed information about the original datasets and the data preprocessing procedures can be found
in Zhang et al. (2023). In Figure 6, we illustrate the distribution of correct and incorrect data within
the constructed datasets 𝐷0, 𝐷1.

D.3 DETAILS ABOUT SCORE FUNCTIONS

We implement our framework with three entropy-based certainty functions. Details are described as
follows.

• Vanilla Entropy: The frequency of a predicted answer 𝑀 (𝑞) 𝑗 in Equation. 6 is calculated by 𝑚
𝑘

,
where 𝑚 is the number of times 𝑀 (𝑞) 𝑗 exists in 𝑘 generations.
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Correct Incorrect

Figure 6: The certain and uncertain data distribution of the originated datasets obtained from
supervised identification strategy. The title of each sub-figure consists of the dataset name and the
size of the pre-trained model used to evaluate.

• Semantic Entropy: Semantic entropy is an entropy which incorporates linguistic invariances
created by shared meanings Kuhn et al. (2023), which is computed by the probability distribution
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over meanings.

𝑆𝐸 (𝑞, 𝑀 (𝑞)) = −
∑︁
𝑐

𝑝(𝑐 |𝑞) log 𝑝(𝑐 |𝑞) = −
∑︁
𝑐

((∑︁
a∈𝑐

𝑝(a | 𝑞)
)

log
[∑︁

a∈𝑐
𝑝(a | 𝑞)

] )
(15)

where 𝑐 represents possible meaning-class and 𝑝(a|𝑞) is the probability of the entire answer
sequence, that is, the product of the conditional probabilities of new tokens given past tokens. This
can be approximated by:

𝑆𝐸 (𝑞, 𝑀 (𝑞)) ≈ −|𝐶 |−1
|𝐶 |∑︁
𝑖=1

log 𝑝(𝐶𝑖 | 𝑞), 𝜂(𝑞, 𝑀 (𝑞)) = −𝑆𝐸 (𝑞, 𝑀 (𝑞)). (16)

We follow Kuhn et al. (2023) to estimate the expectation of 16 given that we cannot have access
to all possible 𝑐. We query 𝑀 𝑘 times and divide the answers into semantic classes 𝐶 based on
semantic equivalence.
Notably, for multiple-choice datasets including WiCE and FEVER, the outputs are among three
choices. In this case, we view different tokens as having different semantic meanings, and the
semantic entropy is thus reduced to predictive entropy.

• Kernel Language Entropy: Kernel language entropy (KLE) is a generalization of semantic
entropy (Nikitin et al., 2024), providing more detailed uncertainty estimates by considering
pairwise semantic dependencies between answers or semantic clusters. It quantifies uncertainty
by constructing a semantic kernel from the model’s 𝑘 generated answers and computing its von
Neumann entropy. Specifically, for a given input 𝑞, we generate 𝑘 responses, build a positive
semidefinite semantic kernel 𝐾sem that captures the semantic relationships among these answers,
and then calculate the von Neumann entropy (VNE) of this kernel. The KLE can be defined as:

KLE(𝑞, 𝑀 (𝑞)) = VNE(𝐾𝑠𝑒𝑚) = −Tr[𝐾sem log𝐾sem], 𝜂(𝑞, 𝑀 (𝑞)) = −𝐾𝐿𝐸 (𝑞, 𝑀 (𝑞)). (17)

where, 𝐾𝑠𝑒𝑚 is the semantic kernel which can be implemented from semantic graphs over the LLM
outputs.

D.4 DETAILS ABOUT FACTTESTO

In order to approximate the density ratio, we randomly split 1000 samples from ParaRel-OOD as
validation samples and the remaining 12k samples as testing samples. We then utilize the supervised
identification strategy to divide the validation samples into D ′

0 and D ′

1, and the training dataset into
D0 and D1. We extract the features from the questions in D ′

0, D0 by a TfidfVectorizer, and label them
as 1 (target data) and 0 (source data). We then utilize logistic regression to train a binary classifer and
use the predicted probability to approximate density ratios.

E MORE EXPERIEMNT RESULTS

In this section, we provide more experiment results, including experiments with more significance
levels, answer rate analysis, more error control analysis, experiments with more base models and
certainty distribution visualizations.

E.1 MORE SIGNIFICANCE LEVELS.

Table 4 presents the accuracy performance of FACTTEST in comparison with base pretrained models
at a significance level of 𝛼 = 0.10. Similarly, Table 5 reports the corresponding Type I error rates
under the same significance level. The results show that Type I error remains effectively controlled
with the adjusted 𝛼. While the accuracies at 𝛼 = 0.10 are slightly lower than those at 𝛼 = 0.05,
FACTTEST continues to significantly outperform base models and maintains a lower Type II error
rate.
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Table 4: The accuracy performance (%) of FACTTEST compared to Pretrained models on question-
answering and multiple-choice datasets using a significance level of 𝛼 = 0.10.

Dataset Model Pretrained FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel
OpenLLaMA-3B 36.66 60.54 67.22 67.10 61.01 62.32 63.05 75.51
OpenLLaMA-7B 40.38 74.92 77.84 76.89 69.00 68.78 64.97 75.36

OpenLLaMA-13B 42.21 77.37 75.17 79.25 68.93 68.45 68.82 79.55

HotpotQA
OpenLLaMA-3B 25.72 50.81 49.84 51.68 45.41 45.23 46.88 52.70
OpenLLaMA-7B 28.63 56.06 56.23 55.77 51.10 51.63 52.33 56.73

LLaMA-13B 30.83 51.49 51.45 51.61 53.42 53.12 55.38 53.34

WiCE
OpenLLaMA-3B 64.72 67.65 64.40 76.27 61.54 64.71 64.86 –
OpenLLaMA-7B 72.96 50.00 63.77 57.32 83.33 85.71 74.19 –

LLaMA-13B 56.89 63.33 50.00 57.14 75.00 67.44 77.42 –

FEVER
OpenLLaMA-3B 39.74 60.24 53.06 52.00 80.71 82.00 82.29 –

LLaMA-7B 35.99 43.92 43.33 47.73 28.69 31.49 32.82 –
LLaMA-13B 32.15 38.74 42.48 46.79 51.95 53.01 50.92 –

Table 5: The Type I error of FACTTEST on question-answering and multiple-choice datasets, with a
significance level 𝛼 = 0.10.

Dataset Model FTEST-ve5 FTEST-ve10 FTEST-ve15 FTEST-se5 FTEST-se10 FTEST-se15 FTEST-kle15

ParaRel
OpenLLaMA-3B 0.0455 0.0732 0.0783 0.0851 0.0865 0.0905 0.0795
OpenLLaMA-7B 0.0225 0.0240 0.0348 0.0799 0.0886 0.0829 0.0781

OpenLLaMA-13B 0.0192 0.0226 0.0325 0.0849 0.0706 0.0589 0.0709

HotpotQA
OpenLLaMA-3B 0.0276 0.0585 0.0521 0.0660 0.0678 0.0651 0.0605
OpenLLaMA-7B 0.0295 0.0597 0.0637 0.0631 0.0643 0.0616 0.0590

LLaMA-13B 0.0222 0.0556 0.0675 0.0611 0.0675 0.0503 0.0667

WiCE
OpenLLaMA-3B 0.0325 0.0621 0.0414 0.0443 0.0355 0.0325 –
OpenLLaMA-7B 0.0694 0.0965 0.1151 0.0347 0.0154 0.0308 –

LLaMA-13B 0.0266 0.0532 0.0799 0.0169 0.0338 0.0169 –

FEVER
OpenLLaMA-3B 0.0164 0.0418 0.0600 0.1039 0.1053 0.1042 –

LLaMA-7B 0.0598 0.0617 0.0556 0.0928 0.1027 0.1091 –
LLaMA-13B 0.0172 0.0828 0.0709 0.0944 0.1059 0.1136 –

Table 6: The answer rate and accuracy performance (%) of FACTTEST-t. The number in parenthese
is Answer Rate, which means the percentage of willingly answered questions.

Dataset Model Finetuned R-Tuning FTEST-t (𝛼 = 0.15) FTEST-t (𝛼 = 0.10) FTEST-t (𝛼 = 0.05)

ParaRel OpenLLaMA-3B 61.73 ( 100% ) 87.42 ( 37% ) 89.91 ( 46% ) 92.73 ( 31% ) 94.26 ( 17% )
LLaMA-7B 67.73( 100% ) 89.65 ( 42% ) 92.76 ( 47% ) 95.04 ( 31% ) 96.01 ( 18% )

FEVER OpenLLaMA-3B 65.56 ( 100% ) 67.19 ( 11% ) 92.58 ( 38% ) 94.88 ( 36% ) 97.82 ( 33% )
LLaMA-7B 66.24 ( 100% ) 66.19 ( 49% ) 95.41 ( 28% ) 95.83 ( 24% ) 96.79 ( 16% )

E.2 ANSWER RATE ANALYSIS

Table 6 presents the answer rate and corresponding accuracy performance (%) of FACTTEST-t in
comparison with baseline methods across multiple datasets and models. The findings demonstrate
that FACTTEST-t consistently achieves higher accuracy while effectively managing the answer rate
through varying significance levels (𝛼). Specifically, FACTTEST-t with 𝛼 = 0.15 answers 47%
questions on ParaRel and acheives 92.76% accuracy, outperforming R-Tuning, which answers 42%
of the questions with an accuracy of 89.65%. Similarly, FACTTEST-t maintains superior accuracy
performance on FEVER compared to baseline models while managing the answer rate through
different significance levels.

E.3 ERROR CONTROL ANALYSIS

Figure 7 illustrates the error control analysis on HotpotQA, highlighting FACTTEST’s capability
to control the Type I error effectively. Figure 8 presents the Type I error calibration results of
FACTTEST-t across four datasets, complementing the experiments discussed in Section 4.3.

E.4 ADDITIONAL RESULTS WITH MORE BASE MODELS

To further verify the effectiveness of FACTTEST, we additionally evaluate the performance of
FACTTEST on more base models, including more pretrained models, instruction-tuned models and
black-box models.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8
Significance Level 

0.0

0.2

0.4

0.6

0.8

Ty
pe

 I 
E

rr
or

FactTest se15
Calibrated Type I Error
OpenLLaMA-3B
OpenLLaMA-7B
LLaMA-13B

(a) FPR-𝛼 curve on HotpotQA

0.2 0.4 0.6 0.8
Significance Level 

0.2

0.4

0.6

0.8

Ty
pe

 II
 E

rr
or

FactTest se15
OpenLLaMA-3B
OpenLLaMA-7B
LLaMA-13B

(b) FNR-𝛼 curve on HotpotQA

Figure 7: The Type I error and Type II error of FACTTEST given different significance levels on
HotpotQA using semantic entropy as the score function. The legend represents the base pretrained
model.
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Figure 8: The Type I error calibration results of FACTTEST-t given different significance levels using
semantic entropy as the certainty function. The legend represents the dataset name.

• Pretrained Model. In Table 7, we employ Mistral-7B (Jiang et al., 2023) as the pretrained base
model to supplement the results in Table 1.

• Instruction-tuned Model. In Table 8, we employ LLaMA-3.2-3B-Instruct (Dubey et al., 2024)
and Tulu2-7B (Ivison et al., 2023) as base models to evaluate the performance of FACTTEST on
instruction-tuned models.

• Black-box Model. In Table 9, we employ Claude-3.5-Sonnet (Anthropic, 2024) and GPT-4o (Ope-
nAI, 2024b) as base models to evaluate the performance of FACTTEST, with OpenLLaMA-3B
serving as the open-source model to calculate scores.

Our findings reveal that incorporating FACTTEST significantly reduces hallucinations, achieving an
average accuracy improvement of 24% while maintaining Type I errors below the specified 𝛼.

E.5 ADDITIONAL RESULTS WITH MORE SCORE FUNCTIONS

In this section, we present results using additional score functions, including FACTTEST-kle5 and
FACTTEST-kle10, to complement the findings in Table 1.

Besides, we implement FACTTEST-scgpt to illustrate how our framework can integrate various uncer-
tainty or hallucination quantification methods. For FACTTEST-scgpt, we utilize the negative value of
the SelfCheckGPT-NLI score as the score function. The accuracy and Type I error performance for
this implementation are summarized in Table 12.

Moreover, to highlight that our framework extends beyond uncertainty-based approaches, we develop
a classifier-based variant, FACTTEST-cls, and compare it with uncertainty-based ones in Table 13.
This variant employs a random forest classifier trained on hidden layer activations from both the
question and answer, along with probabilistic statistics of the generated answer, to predict the correct-
ness of question-generated answer pairs. The results indicate that FactTest-cls achieves competitive
accuracy, maintains Type I error below the specified threshold, and demonstrates improved Type II
error rates compared to uncertainty-based score functions.
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Table 7: The accuracy performance (%) of FACTTEST on four question-answering datasets using
Mistral-7B as the base model. The significance level for FACTTEST is set to 0.1. The percentages
inside the parentheses are the Type I error.

Dataset Base SelfCheckGPT FACTTEST-ve15 FACTTEST-se15 FACTTEST-kle15

ParaRel 39.79 57.01 (0.25) 65.63 (0.07) 70.20 (0.08) 72.78 (0.08)
HotpotQA 36.48 46.01 (0.46) 61.81 (0.06) 63.06 (0.05) 65.59 (0.05)
FEVER 35.47 41.76 (0.05) 22.99 (0.08) 51.05 (0.08) -
WiCE 55.85 56.24 (0.47) 68.81 (0.08) 68.64 (0.08) -

Table 8: The accuracy performance (%) of FACTTEST using Llama-3.2-3B-Instruct and Tulu-2-7B as
base models. The 𝛼 is set to 0.10. The percentages inside the parentheses are the Type I error.

Dataset Model Base FACTTEST-se15 FACTTEST-kle15

ParaRel Llama-3.2-3B-Instruct 39.34 72.79 (0.08) 80.01 (0.08)
ParaRel Tulu-2-7B 43.89 75.47 (0.06) 78.49 (0.07)

HotpotQA Llama-3.2-3B-Instruct 33.40 57.75 (0.06) 60.38 (0.07)
HotpotQA Tulu-2-7B 32.91 53.54 (0.05) 45.89 (0.10)

WiCE Llama-3.2-3B-Instruct 55.11 75.16 (0.09) -
WiCE Tulu-2-7B 57.20 63.22 (0.08) -

FEVER Llama-3.2-3B-Instruct 33.33 68.48 (0.10) -
FEVER Tulu-2-7B 47.87 69.40 (0.09) -

E.6 ADDITIONAL ANALYSIS ABOUT UNWILLING ANSWERED QUESTIONS

We perform additional analyses to evaluate the effectiveness of FACTTEST. Table 14 presents the
performance of base models on subsets of questions that the model is either unwilling or willing to
answer on ParaRel, using FACTTEST-kle15. Notably, the results for the ”Willing” subset correspond
directly to the performance of FACTTEST-kle15. The results show that accuracy on unwilling samples
is significantly lower than on the entire dataset and willing samples, highlighting FACTTEST’s
capability to decline unknown questions effectively.

E.7 SCORE DISTRIBUTION

Figure 9 represents the certainty distributions of correct subset and incorrect subset using semantic
entropy as the score function.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 9: The accuracy performance (%) of FACTTEST on ParaRel using OpenLlama-7B as an
open-source model. The significance level is set to 0.1. The percentages inside the parentheses are
the Type I error.

Model Base SelfCheckGPT FACTTEST-se15 FACTTEST-kle15

Claude-3.5-Sonnet 58.25 58.96 (0.92) 73.29 (0.08) 79.86 (0.08)
Gemini-1.5-Flash-8B 64.23 65.92 (0.86) 76.87 (0.07) 80.01 (0.08)
GPT-4o 66.39 69.71 (0.83) 80.70 (0.07) 82.76 (0.08)

Table 10: The accuracy and answer rate performance (%) of FACTTEST with a significance level
𝛼 = 0.1 using 5-generation and 10-generation KLE as score functions.

Dataset Model Base FACTTEST-kle5 FACTTEST-kle10

ParaRel OpenLLAMA-3B 36.66 71.65 (18%) 74.72 (20%)
ParaRel OpenLLAMA-7B 40.38 72.99 (20%) 75.90 (20%)

Hotpot OpenLLAMA-3B 25.72 52.34 (11%) 51.82 (12%)
Hotpot OpenLLAMA-7B 28.63 52.45 (11%) 55.92 (13%)

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Incorrect
Correct

Figure 9: The certainty distribution of the training datasets on certain set and uncertain set. The title
of each sub-figure consists of the dataset name, the size of the pre-trained model used to evaluate, the
certainty function and the number of generations.
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Table 11: The Type I Error of FactTest with a significance level 𝛼 = 0.1 using 5-generation and
10-generation KLE as score functions.

Dataset Model FACTTEST-kle5 FACTTEST-kle10

ParaRel OpenLLAMA-3B 0.0783 0.0778
ParaRel OpenLLAMA-7B 0.0880 0.0787

Hotpot OpenLLAMA-3B 0.0656 0.0643
Hotpot OpenLLAMA-7B 0.0643 0.0654

Table 12: The accuracy and Type I Error performance of FACTTEST-scgpt evaluated on ParaRel with
OpenLLaMA-3B serving as the base model.

𝛼 0.05 0.1 0.2
Accuracy 61.82 62.92 59.26

Type I error 0.04 0.09 0.17

Table 13: The accuracy, Type I Error and Type II Error performance of FACTTEST-cls evaluated on
ParaRel with 𝛼 = 0.05.

Base Model Metric FactTest-ve15 FactTest-se15 FactTest-cls

OpenLlama-3B
Accuracy (%) 67.28 67.26 85.13
Type I error 0.05 0.05 0.04
Type II error 0.86 0.85 0.35

OpenLlama-7B
Accuracy (%) 80.29 65.23 89.50
Type I error 0.01 0.04 0.03
Type II error 0.92 0.87 0.44

OpenLlama-13B
Accuracy (%) 79.41 73.09 88.37
Type I error 0.03 0.03 0.04
Type II error 0.91 0.87 0.42

Table 14: The accuracy performance (%) of base models on the subset of questions that the model is
unwilling or willing to answer on ParaRel using FACTTEST-kle15. The 𝛼 is set to 0.1.

Model Base Unwilling Willing
OpenLlama-3B 36.66 27.90 75.51
OpenLlama-7B 40.38 32.93 75.36
OpenLlama-13B 42.21 32.81 79.55
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