
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS UNDERSTANDING WHY FIXMATCH GENER-
ALIZES BETTER THAN SUPERVISED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Semi-supervised learning (SSL), exemplified by FixMatch (Sohn et al., 2020), has
shown significant generalization advantages over supervised learning (SL), particu-
larly in the context of deep neural networks (DNNs). However, it is still unclear,
from a theoretical standpoint, why FixMatch-like SSL algorithms generalize better
than SL on DNNs. In this work, we present the first theoretical justification for the
enhanced test accuracy observed in FixMatch-like SSL applied to DNNs by taking
convolutional neural networks (CNNs) on classification tasks as an example. Our
theoretical analysis reveals that the semantic feature learning processes in FixMatch
and SL are rather different. In particular, FixMatch learns all the discriminative
features of each semantic class, while SL only randomly captures a subset of fea-
tures due to the well-known lottery ticket hypothesis. Furthermore, we show that
our analysis framework can be applied to other FixMatch-like SSL methods, e.g.,
FlexMatch, FreeMatch, Dash, and SoftMatch. Inspired by our theoretical analysis,
we develop an improved variant of FixMatch, termed Semantic-Aware FixMatch
(SA-FixMatch). Experimental results corroborate our theoretical findings and the
enhanced generalization capability of SA-FixMatch.

1 INTRODUCTION

Deep learning has made significant strides in various domains, showcasing applications in computer
vision and natural language modeling (He et al., 2016; Vaswani et al., 2017; Radford et al., 2018;
Dosovitskiy et al., 2020; Ho et al., 2020; Mildenhall et al., 2021; Ouyang et al., 2022; Schick
et al., 2023). These advances stem from the scalable supervised learning where simultaneously
scaling network size and labeled dataset size often enjoys better performance compared with small-
scale network and dataset. Unfortunately, in real-world scenarios, labeled data are often scarce.
Accordingly, the performance benefits given by a larger dataset can therefore come at a significant
cost, since labeling data often requires human efforts and is very expensive, especially for the
scenarios where experts are needed for labeling (Sohn et al., 2020; Ouali et al., 2020; Zhou et al.,
2020; Zhang et al., 2021a; Pan et al., 2022).

To address this challenge, semi-supervised learning (SSL) (Berthelot et al., 2019b; Sohn et al., 2020;
Zhang et al., 2021a) has emerged as a promising solution, demonstrating effectiveness across various
tasks. The methodology of SSL involves training a network on both labeled and unlabeled data,
where pseudo-labels for the unlabeled data are generated during training. As a leading SSL approach,
FixMatch (Sohn et al., 2020) first generates a pseudo-label using the current model’s prediction
on a weakly augmented unlabeled image. It then selects the highly-confident pseudo-label as the
training label of the strongly-augmented version of the same image, and trains the model together
with the vanilla labeled data. By accessing large amount of cheap unlabeled data with minimal
human effort, FixMatch has effortlessly and greatly improved supervised learning. Moreover, thanks
to its effectiveness and simplicity, FixMatch has inspired many SoTA FixMatch-like SSL works,
e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), and is seeing increasing applications across many deep learning
tasks (Xie et al., 2020; Xu et al., 2021; Schmutz et al., 2022; Wang et al., 2022b; Chen et al., 2023).

Despite FixMatch’s practical success, its theoretical foundations have not kept pace with its applica-
tions. Specifically, it remains unclear how FixMatch and its SL counterpart perform on deep neural
networks, though heavily desired. Moreover, few theoretical studies explore the reasons for the
practical superiority in test performance of SSL over SL on networks, let alone FixMatch. Most

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

existing theoretical works (He et al., 2022; Ţifrea et al., 2023) focus on analyzing the over-simplified
models, e.g., linear learning models, which, however, differ significantly from the highly nonlinear
and non-convex neural networks used in real-world SSL scenarios. Due to this gap, these works
cannot well reveal the learning mechanism of SSL like FixMatch on networks. Some of other
works (Rigollet, 2007; Van Engelen & Hoos, 2020; Guo et al., 2020) view the model as a black-box
function under certain restrictive conditions, and their results do not reveal the dependence on the
CNN models which is key for the superiority of FixMatch.

Contributions. To solve these issues, we theoretically justify the superior test performance of
FixMatch-like SSL over SL in classification tasks, using FixMatch as a case study. We analyze the
semantic learning processes in FixMatch and SL, elucidating their test performance differences and
motivating the development of an enhanced FixMatch variant. Key contributions are summarized.

Firstly, we prove that on a three-layered CNN, FixMatch achieves better test accuracy than SL.
Specifically, under the widely acknowledged multi-view data assumption (Allen-Zhu & Li, 2023),
where multiple/single discriminative features exist in multi/single-view data, FixMatch consistently
achieves zero training and test classification errors on both multi-view and single-view data. In
contrast, while SL achieves zero test classification error on multi-view data, it suffers up to 50% test
error on single-view data, showcasing FixMatch’s superior generalization capacity compared to SL.

Secondly, our analysis highlights distinct feature learning processes between FixMatch and SL,
directly affecting their test performance. We show that FixMatch comprehensively captures all
semantic features within each class, virtually eliminating test classification errors. But SL learns only
a partial set of these semantic features, and often fails on single-view samples due to the unlearned
features, explaining its poor test classification accuracy on single-view data.

Finally, inspired by these insights, we introduce an improved version of FixMatch termed Semantic-
Aware FixMatch (SA-FixMatch). This variant enhances FixMatch by masking learned semantics in
unlabeled data, compelling the network to learn the remaining features missed by the current network.
Our experimental evaluations confirm that SA-FixMatch achieves better generalization performance
than FixMatch across various classification benchmarks.

2 RELATED WORKS

Modern Deep SSL Algorithms. Pseudo-labeling (Scudder, 1965; McLachlan, 1975) and consis-
tency regularization (Bachman et al., 2014; Sajjadi et al., 2016; Laine & Aila, 2016) are the two
important principles responsible for the success of modern deep SSL algorithms (Berthelot et al.,
2019b;a; Xie et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen et al., 2023).
FixMatch (Sohn et al., 2020), as a remarkable deep SSL algorithm, combines these principles with
weak and strong data augmentations, achieving competitive results especially when labeled data
is limited. Following FixMatch, several works, e.g., FlexMatch (Zhang et al., 2021a), Dash (Xu
et al., 2021), FreeMatch (Wang et al., 2022b), and SoftMatch (Chen et al., 2023), try to improve
FixMatch by adopting a flexible confidence threshold rather than the hard and fixed threshold adopted
by FixMatch. These modern deep SSL algorithms can achieve remarkable test accuracy even trained
with one labeled sample per semantic class (Sohn et al., 2020; Zhang et al., 2021a; Xu et al., 2021;
Wang et al., 2022b; Chen et al., 2023).

SSL Generalization Error. Previous works on generalization capacity of SSL focus on a general
machine learning setting (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020; Wei et al.,
2020; Guo et al., 2020; Mey & Loog, 2022). In particular, the authors here view the model as a
black-box function under certain assumptions which does not reveal the dependence on model design.
Some recent works (He et al., 2022; Ţifrea et al., 2023) analyze the generalization performance of SSL
under the binary Gaussian mixture data distribution for linear learning models. The over-simplified
model is significantly different from the highly nonlinear and non-convex neural networks.

Feature Learning Analysis Previous works on feature learning analysis have provided valuable
insights into how neural networks learn and represent data (Wen & Li, 2021; 2022; Allen-Zhu &
Li, 2022; 2023). For instance, Allen-Zhu & Li (2023) investigated the mechanisms through which
ensemble method and knowledge distillation improve generalization performance, Wen & Li (2021)
explained why contrastive learning can effectively capture true sparse features and avoid spurious
dense features. Despite these advances, to the best of our knowledge, this work is the first to analyze
the feature learning process of neural networks in the context of semi-supervised learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Visualization of pretrained ResNet-50 (He et al., 2016) using Grad-CAM. ResNet-50
locates different regions for different car images, e.g., wheel, rearview mirror, front light, and door.

3 PROBLEM SETUP

Here we first introduce the necessary multi-view data assumption used in this work, and then present
FixMatch, a popular and classic SSL approach, to train a three-layered CNN on a k-class classification
problem. For brevity, we use O(·),Ω(·),Θ(·) to hide constants w.r.t. k and use Õ(·), Ω̃(·), Θ̃(·) to
hide polylogarithmic factors. Let poly(k) and polylog(k) respectively denote Θ(kC) and Θ(logC k)
with a constant C > 0. We use [n] to denote the set of {1, 2, . . . , n}.

3.1 MULTI-VIEW DATA DISTRIBUTION

Following Allen-Zhu & Li (2023), we employ the multi-view data assumption that suggests each
semantic class possesses multiple distinct features—such as car lights and wheels—that can indepen-
dently facilitate correct classification. To empirically validate this hypothesis, we utilize Grad-CAM
(Selvaraju et al., 2017) to identify class-specific regions within images. As shown in Figure 1,
Grad-CAM distinctly highlights separate and non-overlapping regions, such as different parts of a car,
that contribute to its recognition. These results corroborate the findings of Allen-Zhu & Li (2023),
confirming the presence of multiple independent discriminative features within each semantic class.

Now we introduce the multi-view data assumption in Allen-Zhu & Li (2023), which considers a
dataset with k semantic classes. Let each sample pair (X, y) consists of the sample X , which is
comprised of a set of P patches {xp ∈ Rd}Pp=1, and y ∈ [k] as the class label. We assume each
class i has two discriminative features, vi,1 and vi,2 in Rd, capable of independently ensuring correct
classification. While this analysis focuses on two features per class, the methodology extends to
multiple features. Below we define V as the set of all discriminative features across the k classes:

V={vi,1, vi,2 | ∥vi,1∥2 = ∥vi,2∥2 = 1, vi,l ⊥ vi′,l′ if (i, l) ̸= (i′, l′)}ki=1 , (1)
where the conditions ensure the discrimination of each class and each feature in the data. Accordingly,
we define the multi- and singe- view distribution Dm and Ds, where data from Dm has two features,
and data from Ds have one single feature. Set sparsity parameter s = polylog(k) and constant Cp.

Definition 1 (Informal, Data distribution (Allen-Zhu & Li, 2023)). The data distribution D contains
data from the multi-view data distribution Dm with probability 1− µ, and data from the single-view
data distribution Ds with probability µ = 1

poly(k) . We define (X, y) ∼ D by randomly uniformly
selecting a label y∈ [k] and generate data X accordingly as follows.

(a) Sample a set of noisy features V ′ uniformly at random from {vi,1, vi,2}i ̸=y , each with probability
s/k. Then the whole feature set of X is V(X) = V ′ ∪ {vy,1, vy,2}, i.e., the noisy feature set V ′ plus
the main features {vy,1, vy,2}.

(b) For each v ∈ V(X), pick Cp disjoint patches in [P] and denote them as Pv(X). For a patch
p ∈ Pv(X), we set xp = zpv + “noises” ∈ Rd, where the coefficients zp ≥ 0 satisfy:
(b1) For “multi-view" data (X, y) ∈ Dm,

∑
p∈Pv(X) zp ∈ [1, O(1)] when v ∈ {vy,1, vy,2} and∑

p∈Pv(X) zp ∈ [Ω(1), 0.4] when v ∈ V(X) \ {vy,1, vy,2}.

(b2) For “single-view" data (X, y) ∈ Ds, pick a value l̂ ∈ [2] randomly uniformly as the index of the
main feature. Then

∑
p∈Pv(X) zp ∈ [1, O(1)] when v = vy,l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)] (ρ = k−0.01)

when v = vy,3−l̂, and
∑

p∈Pv(X) zp = 1
polylog(k) when v ∈ V(X) \ {vy,1, vy,2}.

(c) For each purely noisy patch p ∈ [P] \ ∪v∈VPv(X), we set xp = “noises”.

For the details of Def. 1, please see Def. 7 in Appendix A. According to the definition, a multi-view
sample (X, y) ∈ Dm has patches with two main features vy,1 and vy,2 plus some noises, while a
single-view sample (X, y) ∈ Ds has patches with only one primary feature vy,1 or vy,2 plus noises.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 FIXMATCH FOR TRAINING NEURAL NETWORKS

Here we introduce the representative SSL approach, FixMatch and its variants, on a k-class classifica-
tion problem, the most popular task in SSL.

Neural Network For the network, we assume it as a three-layer CNN which has mk convolutional
kernels {wi,r}i∈[k],r∈[m]. Its classification probability logiti(F,X) on class i ∈ [k] is defined as

logiti(F,X) = exp(Fi(X))/
∑

j∈[k]
exp(Fj(X)), (2)

where F (X) = (F1(X), · · · , Fk(X)) ∈ Rd is defined as

Fi(X) =
∑

r∈[m]

∑
p∈[P]

ReLU(⟨wi,r, xp⟩), (∀i ∈ [k]). (3)

Here ReLU (Allen-Zhu & Li, 2023) is a smoothed ReLU that outputs zero for negative values, reduces
small positive values to diminish noises, and maintains a linear relationship for larger inputs. This
ensures ReLU to focus on important features while filtering out noises. See details in Appendix A.

This three-layer network contains the essential components of neural networks, including linear
mapping, activation, and a softmax layer, and thus its analysis provides valuable insights into
understanding networks trained using SSL. Notably, many other theoretical works also ultilize
shallow networks (e.g., two-layer models) to derive insights into deep networks, as seen in the
analyses of Li & Yuan (2017); Arora et al. (2019); Zhang et al. (2021b). Additionally, this setup
precisely matches the network architecture in Allen-Zhu & Li (2023), enabling direct comparisons
between our FixMatch results and the SL findings in Allen-Zhu & Li (2023) in Sec. 4.2.

SSL Training For FixMatch-like SSLs, at t-th iteration, it has two types of losses: 1) a supervised
one L(t)

s on labeled data, and 2) an unsupervised one L(t)
u on unlabeled data. For L(t)

s , it is cross-
entropy loss on labeled dataset Zl:

L(t)
s =E(Xl,y)∼Zl

L(t)
s (Xl, y) = E(Xl,y)∼Zl

[− log logity(F
(t), α(Xl))], (4)

where α(X) is a weak augmentation applied to input X . In practice, α(X) includes a random
horizontal flip and a random crop that retains most region of the image (Sohn et al., 2020; Zhang
et al., 2021a) which often do not alter the semantic features. So we treat the weak augmentation as an
identity map to simplify our analysis. Additionally, experiments in Appendix K.2 also verify that
weak augmentation does not have significant effect on the training of SSL.

For the unsupervised loss L(t)
u (Xu), it feeds a weakly-augmented unlabeled sample α(Xu) into

the network to get the model classification probability logiti(F
(t), α(Xu)) (i∈ [k]). Next, if the

maximal classification probability is highly-confident, i.e., maxi logiti(F
(t), α(Xu))≥Tt with a

confidence threshold Tt ∈ (0, 1], FixMatch-like SSLs use it as the pseudo-label to supervise the
corresponding strongly-augmented image A(Xu):

L(t)
u =EXu∼Zu

L(t)
u (Xu) = EXu∼Zu

[−I{logitb(F (t),α(Xu))≥Tt} log logitb(F
(t),A(Xu))], (5)

where b is the pseudo-label b = argmaxi∈[k]{logiti(F (t), α(Xu))}. Here, FixMatch-like SSLs use
pseudo-labels generated from weakly-augmented samples to supervise the corresponding strongly-
augmented ones, enforcing consistency regularization on model predictions, which we will show in
Sec. 4.2 is crucial for the superior generalization performance of SSL compared to SL. For threshold
Tt, FixMatch (Sohn et al., 2020) sets it as a constant threshold Tt = τ (e.g. 0.95) for high pseudo-label
quality. Current SoTA SSLs, e.g., FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b),
Dash (Xu et al., 2021), and SoftMatch (Schick et al., 2023), follow FixMatch framework, and often
design their own confidence threshold Tt in Eq. (5). This decides the applicability of our theoretical
results on FixMatch in Sec. 4 to these FixMatch-like SSLs. See details in Appendix G.

For strong augmentation A(·), it often uses CutOut (DeVries & Taylor, 2017) and RandAugment
(Cubuk et al., 2020). CutOut randomly masks a large square region of the input image, potentially
removing some semantic features. Experimental results in Appendix K.1 confirm the significant
impact of CutOut on image semantics and model performance. RandAugment includes various trans-
formations, e.g., rotation, translation, solarization. Appendix K.1 reveals that those augmentations
that may remove data semantics also have a large impact on model performance. Based on these
findings, we model the probabilistic feature removal effect of A(·) for our analysis in Sec. 4.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Now given the training loss L(t) = L
(t)
s + λL

(t)
u at the t-th iteration, we adopt the widely used

gradient descent (GD) to update the model parameters {wi,r}i∈[k],r∈[m] in the network:

w
(t+1)
i,r = w

(t)
i,r − η∇wi,rL

(t)
s − λη∇wi,rL

(t)
u , (6)

where η ≥ 0 is a learning rate, and λ > 0 is the weight to balance the two losses. According to the
common practice (Sohn et al., 2020; Zhang et al., 2021a; Xu et al., 2021; Wang et al., 2022b; Chen
et al., 2023), we set λ = 1 in both our theoretical analysis and experiments.

4 MAIN RESULTS

In this section, we first prove the superior generalization performance of FixMatch compared with
SL. Next we analyze the intrinsic reasons for its superiority over SL via revealing and comparing
the semantic feature learning process. Finally, inspired by our theoretical insights, we propose a
Semantic-Aware FixMatch (SA-FixMatch) to better learn the semantic features.

4.1 RESULTS ON TEST PERFORMANCE

Here we analyze the performance of FixMatch, and compare it with its SL counterpart, whose
implementation is simply setting the weight λ = 0 for the unsupervised loss in Eq. (6).

As discussed in Sec. 3.1, we assume that the training dataset Z follows the multi-view distribution
D as defined in Def. 1, with multi-view and single-view sample ratios of 1− µ and µ, respectively.
Each class i ∈ [k] in Z is associated with two i.i.d. semantic features vi,1 and vi,2, both of which are
capable of predicting label i. Multi-view samples contain both semantics, while single-view samples
contain only one. For clarity, we denote the labeled multi-view and single-view subsets of Z as Zl,m

and Zl,s, respectively, and the corresponding unlabeled subsets as Zu,m and Zu,s. Below, we outline
the necessary assumptions on the dataset and model initialization.

Assumption 2. (a) The training dataset Z follows the distribution D, and the size of the unlabeled
data satisfies Nc = |Zu,m ∪ Zu,s| = |Zl,m ∪ Zl,s| · poly(k).
(b) Each convolution kernelw(0)

i,r (i ∈ [k], r ∈ [m]) is initialized by a Gaussian distribution N (0, σ2
0I),

where σq−2
0 = 1/k and q ≥ 3 is given in the definition of ReLU.

Assumption 2(a) indicates that number of unlabeled data significantly exceeds that of the labeled data,
a common scenario given the lower cost of acquiring unlabeled versus labeled data. The Gaussian
initialization in Assumption 2(b) accords with the standard initialization in practice, and is mild.
Moreover, we also need assumptions on the strong augmentation A(·) to formulate the effect of
consistency regularization in unsupervised loss (5).

Assumption 3. Suppose for a given image, strong augmentation A(·) randomly removes its semantic
patches and noisy patches with probabilities π2 and 1− π2, respectively.
(1) For a single-view image, the sole semantic feature is removed with probability π2.
(2) For a multi-view image, either of the two features, vi,1 or vi,2, is removed with probabilities π1π2
and (1− π1)π2, respectively. We define strong augmentation A(·) for multi-view data: for p ∈ [P],

A(xp)=


max(ϵ1, ϵ2)xp, if vy,1 is in the patch xp,
max(1− ϵ1, ϵ2)xp, if vy,2 is in the patch xp,
(1− ϵ2)xp, otherwise (noisy patch),

(7)

where ϵ1 and ϵ2 are i.i.d. Bernoulli variables, respectively equaling to 0 with probabilities π1 and π2.

As discussed in Sec. 3, for strong augmentation A(·), we focus on its probabilistic feature removal
effect on the input image, caused by techniques like CutOut and certain operations in RandAugment,
such as solarization. The use of the max function ensures that ϵ1 is active when ϵ2 = 0, indicating
that A(·) removes one feature at a time. Further details are provided in Appendix A.

Based on the above assumptions, we analyze the training and test performance of FixMatch, and
summarize our main results in Theorem 4 with its proof in Appendix F.

Theorem 4. Suppose Assumptions 2,3 holds. For sufficiently large k and m=polylog(k), by setting
η≤1/poly(k), after running FixMatch for T =poly(k)/η iterations, we have:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Training performance is good. For all training samples (X, y) ∈ Z , with probability at least
1− e−Ω(log2 k), we have

F (T)
y (X) ≥ maxj ̸=y F

(T)
j (X) + Ω(log k).

(b) Test performance is good. With probability at least 1 − e−Ω(log2 k) over the selection of any
multi-view test sample (X, y) ∼ Dm and single-view test sample (X, y) ∼ Ds, we have

F (T)
y (X)≥maxj ̸=yF

(T)
j (X)+Ω(log k).

Theorem 4(a) shows that after T = poly(k)/η training iterations, the network F (T) trained by
FixMatch can well fit the training dataset Z , and achieves zero classification error. This is because for
any training sample (X, y), the predicted value Fy(X) for the true label y consistently exceeds the
predictions Fj(X) (j ̸= y) for other class labels, ensuring correct classification. More importantly,
Theorem 4(b) establishes that the trained network F (T) can also accurately classify test samples
(X, y) ∼ Dm ∪ Ds, validating the generalization performance of FixMatch.

Now we compare FixMatch with SL (i.e. λ = 0 in Eq. (6)) under the same data distribution and the
same network. According to Allen-Zhu & Li (2023), under the same assumption of Theorem 4, after
running standard SL for T = poly(k)/η iterations, SL can achieve good training performance as in
Theorem 4(a). However, SL exhibits inferior test performance compared to FixMatch. Specifically,
both methods achieve zero classification error on multi-view samples (X, y) ∼ Dm, while on single-
view data (X, y) ∼ Ds, SL achieves only about 50% classification accuracy, significantly lower than
FixMatch’s nearly 100% accuracy. See Appendix B for more details on SL.

For other FixMatch-like SSLs such as FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al.,
2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), our theoretical results in Theorem 4
and the comparison with SL are also broadly applicable. Due to space limitations, we defer the
discussions to Appendix G. These theoretical results justify the superiority of FixMatch-like SSLs
over SL, aligning with empirical evidence from several studies (Sohn et al., 2020; Zhang et al., 2021a;
Wang et al., 2022b; Xu et al., 2021; Chen et al., 2023).

4.2 RESULTS ON FEATURE LEARNING PROCESS

Here we analyze the feature learning process in FixMatch and SL, and explain their rather different
test performance as shown in Sec. 4.1. To monitor the feature learning process, we define

Φ
(t)
i,l :=

∑
r∈[m]

[⟨w(t)
i,r , vi,l⟩]

+, (i ∈ [k], l ∈ [2])

as a feature learning indicator of feature vi,l in class i (i ∈ [k], l ∈ [2]), since it denotes the total
positive correlation score between the l-th feature vi,l of class i and all the m convolution kernels
wi,r (r ∈ [m]) at the t-th iteration. Larger Φ(t)

i,l means the network can better capture the feature vi,l,
and thus can better use feature vi,l for classification. See more discussion in Appendix D.

Next, FixMatch uses a confidence threshold (τ) to govern the usage of unsupervised loss as in Eq. (5),
delineating its feature learning process into Phase I and II. For Phase I, the network relies primarily on
supervised loss due to its inability to generate highly confident pseudo-labels. As training continues,
the network learns partial feature and becomes better at predicting highly confident pseudo-labels for
unlabeled data. This marks the transition to Phase II, where unsupervised loss begins to contribute,
driven by consistency regularization between weakly and strongly augmented samples.

Now we are ready to present the feature learning process of FixMatch and SL in Theorem 5.

Theorem 5. Suppose Assumptions 2,3 holds. For sufficiently large k and m = polylog(k), by setting
η ≤ 1/poly(k) and τ = 1− Õ(1/s2), with probability at least 1− e−Ω(log2 k):
(a) FixMatch. At the end of Phase I which continues for T = poly(k)

η iterations, we have

Φ
(T)
i,l ≥ Ω(log k), Φ

(T)
i,3−l ≤ 1/polylog(k), (∀i ∈ [k],∃l ∈ [2]). (8)

At the end of its Phase II which continues another T ′ = poly(k)
η iterations, we have

Φ
(T+T ′)
i,l ≥ Ω(log k), (∀i ∈ [k],∀l ∈ [2]). (9)

(b) Supervised Learning. After running T ≥ poly(k)
η iterations, Eq. (8) always holds.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

See its proof in Appendix F. Theorem 5(a) indicates that Phase I in FixMatch continues for T =
poly(k)/η iterations. During this phase, the network learns only one of the two semantic features per
class. Specifically, in Eq. (8), for any class i ∈ [k], there exists an index l ∈ [2] so that the correlation
score Φ

(T)
i,l exceeds Ω(log k), showing feature vi,l is captured; and the score Φ

(T)
i,3−l remains low,

indicating failure of learning vi,3−l. Then we analyze classification performance when Eq. (8) holds.
Corollary 6. Under the same conditions as Theorem 5. Assume Eq. (8) holds for the trained network
F (T). For any sample X from class i containing the feature vi,l, the network F (T) can correctly
predict label i. Conversely, if X contains only the feature vi,3−l, F (T) would misclassify X .

See its proof in Appendix D. According to Corollary 6, after Phase I, the network can correctly
classify the multi-view data, since each contains two features and the network has learned one of them.
However, for single-view samples that possess only one of the features, the network’s classification
accuracy is only around 50% since it may not have learned the specific feature present in the sample.
Then by running another T ′ iterations in Phase II, as shown in Theorem 5(a), FixMatch enables the
network to capture both two features vi,1 and vi,2 in class i (∀i ∈ [k]). As indicated in Eq. (9), all
features have large correlation scores Φ(T+T ′)

i,l (∀i ∈ [k],∀l ∈ [2]). By Corollary 6, for all training
and test data, the network trained by FixMatch can correctly classify them with high probability. This
explains the good classification performance of FixMatch in Theorem 4.

For Phase II of FixMatch, the reason for it to learn the semantics missed in Phase I is as follows.
Having learned one feature per class in Phase I, the network is capable of generating highly confident
pseudo-labels for weakly-augmented multi-view samples. As the confidence threshold τ = 1 −
Õ(1/s2) is close to 1 (e.g., τ = 0.95), it ensures the correctness of these pseudo-labels. Then,
FixMatch uses these correct pseudo-labels to supervise the corresponding strongly-augmented
samples via consistency regularization. As shown in Eq. (7), strong augmentation A(·) randomly
removes the learned features in unlabeled multi-view samples with probabilities π1π2 or (1− π1)π2,
effectively converting these samples into single-view data containing the unlearned feature. Given
the large volume of unlabeled data as specified in Assumption 2, these transformed single-view
samples are significant in their size. Accordingly, they dominate the unsupervised loss, since the rest
samples containing the learned feature are already correctly classified by the network after Phase
I and contribute minimally to the training loss. Consequently, the unsupervised loss enforces the
network to learn the unlearned feature in Phase II.

For supervised learning (SL), Theorem 5(b) shows that with high probability, SL can only learn one
of the two features for each class. This result accords with Phase I in FixMatch. Then according to
Corollary 6, SL can correctly classify multi-view data using the single learned feature, but achieves
only about 50% test accuracy on single-view data due to the unlearned feature, aligning with Sec. 4.1.
By comparison, FixMatch achieves nearly 100% test accuracy on multi-view and single-view data, as
it learns both semantic features for each class.

Comparison to Other SSL Analysis. This work differs from previous works from two key aspects.
a) Our work provides the first analysis for FixMatch-like SSLs on CNNs. In contrast, many other
works (He et al., 2022; Ţifrea et al., 2023) analyze over-simplified models, e.g., linear learning
models, that differs substantially from the highly nonlinear and non-convex networks used in SSL.
Some other works (Rigollet, 2007; Singh et al., 2008; Van Engelen & Hoos, 2020) view the model as
a black-box function and do not reveal insights to model design. b) This work is also the first one to
reveal the feature learning process of SSL, deepening the understanding to SSL and unveiling the
intrinsic reasons of the superiority of SSL over its SL counterpart.

4.3 SEMANTIC-AWARE FIXMATCH

The analysis of feature learning Phase II in Sec. 4.2 shows the crucial role of strong augmentation A(·)
via consistency regularization in Eq. (5) to learn the features missed in Phase I. However, according to
Eq. (7), A(·) only removes the learned feature with probabilities π1π2 or (1−π1)π2. This means given
Nu,m unlabeled multi-view samples, A(·) can generate at most NA = max(π1π2, (1− π1)π2)Nu,m

samples containing only the missed features to enforce the network to learn them in Phase II. So
FixMatch does not fully utilize unlabeled data in Phase II to learn comprehensive features, especially
when π2 is small, which usually happens when semantics only occupy a small portion of the image
so that strong augmentation A(·) like CutOut (DeVries & Taylor, 2017) and RandAugment has small
probability to remove semantics (e.g., in ImageNet, see Appendix K.6).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of Test accuracy (%) on CIFAR-100 and STL-10.
CIFAR-100 STL-10

Label Amount 400 2500 10000 40 250 1000

SL 11.45 ± 0.12 40.45 ± 0.50 63.77 ± 0.29 23.61 ± 1.62 38.83 ± 1.12 64.08 ± 0.47
FixMatch 55.16 ± 0.63 71.36 ± 0.44 77.25 ± 0.22 70.00 ± 4.02 88.73 ± 0.92 93.45 ± 0.19
SA-FixMatch 55.57 ± 0.43 72.12 ± 0.20 77.46 ± 0.16 71.81 ± 4.23 89.45 ± 1.19 94.04 ± 0.19

Motivated by this finding, we propose Semantic-Aware FixMatch (SA-FixMatch) to improve the
probability of removing learned features by replacing random CutOut in FixMatch’s strong augmen-
tation A(·) with Semantic-Aware CutOut (SA-CutOut). Specifically, if the unlabeled sample X has
highly confident pseudo-label, SA-CutOut first performs Grad-CAM (Selvaraju et al., 2017) on the
network F to localize the learned semantic regions which contribute to the network’s class prediction
and can be regarded as features. Then for each semantic region, SA-CutOut finds its region center,
i.e., the point with highest attention score in the region, and then averages attention score within a q×q
bounding box centered at this point (e.g., q=16). Finally, SA-CutOut selects one semantic region
with the highest average score for masking. Here masking semantic region with the highest score can
enforce the network to learn the remaining features that are not well learned or missed in Phase I,
as they will not be detected by Grad-CAM or detected with relatively low attention scores. In this
way, SA-FixMatch can enhance vanilla FixMatch to better use unlabeled data to learn comprehensive
semantic features. For analysis, see our formulation of A(·) with SA-CutOut in Appendix E.

In Theorem 13 of Appendix A, we prove that SA-FixMatch enjoys the same good training and
test accuracy in Theorem 4, but reduces the required number of unlabeled data samples Nc in
vanilla FixMatch to Nu =max{π1π2, (1 − π1)π2}Nc, where Nc is given in Assumption 2. This
data efficiency stems from SA-FixMatch’s use of SA-CutOut, which selectively removes the well-
learned features, thereby compelling the network to focus on learning previously missed or unlearned
features. Detailed theoretical discussions and proofs are presented in Appendix E, illustrating how
SA-FixMatch outperforms vanilla FixMatch in terms of data efficiency and better test performance.

As discussed in Sec. 3.2, SoTA deep SSLs, including FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), of-
ten build upon FixMatch, and only modify the confidence threshold Tt in Eq. (5). Hence, SA-CutOut
is also applicable to these FixMatch-like SSLs to enhance performance. Experimental results in
Sec. 5.3 validates the effectiveness and compatibility of SA-CutOut.

5 EXPERIMENTS

To corroborate our theoretical results, we evaluate SL, FixMatch, and SA-FixMatch on several
image classification benchmarks, including CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates
et al., 2011), Imagewoof (Howard & Gugger, 2020), and ImageNet (Deng et al., 2009). Following
standard SSL evaluation protocols (Sohn et al., 2020; Zhang et al., 2021a; Wang et al., 2022a), we
use WRN-28-8 (Zagoruyko & Komodakis, 2016) for CIFAR-100, WRN-37-2 (Zhou et al., 2020) for
STL-10 and Imagewoof, and ResNet50 (He et al., 2016) for ImageNet. We also apply SA-CutOut
to other FixMatch-like SSL methods and compare their performance with the original algorithms.
All experiments are run three times, and we report the mean and standard deviation. Additional
experimental details are provided in Appendix K.4 and K.5. Our code is included in the supplementary
material and will be publicly released.

5.1 CLASSIFICATION RESULTS

Here we evaluate SL, FixMatch, and SA-FixMatch by using different number of labeled data on
CIFAR-100, STL-10, Imagewoof, and ImageNet. Table 1 shows that on STL-10, FixMatch and
SA-FixMatch improve SL by a significant 28%+ of test accuracy under all three settings. From
Tables 1 and 2, one can also observe very similar big improvement on other datasets, e.g., 13%+
on CIFAR-100 and Imagewoof, and 6%+ on ImageNet. These results verify the superiority of SSL
methods over conventional SL methods, and are consistent with our theoretical findings in Sec. 4.1.

Meanwhile, from Tables 1 and 2, we find that our proposed SA-FixMatch outperforms vanilla Fix-
Match. For example, on Imagewoof, SA-FixMatch has a 1.5%+ average test accuracy improvement

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of Test accuracy (%) on Imagewoof and ImageNet.

Imagewoof ImageNet
Label Amount 250 1000 2000 100K

SL 25.94 ± 1.54 42.04 ± 0.90 60.77 ± 1.04 44.62 ± 1.16
FixMatch 43.00 ± 1.46 64.91 ± 1.18 74.05 ± 0.15 50.80 ± 0.73
SA-FixMatch 46.73 ± 1.36 67.76 ± 1.29 75.62 ± 0.13 52.18 ± 0.32

Figure 2: Visualization of WRN-28-8 via Grad-CAM on CIFAR-100. For each group of three images,
the left, middle and right one are the visualization of the models trained with SL, FixMatch, and
SA-FixMatch, respectively.

on FixMatch; on ImageNet, SA-FixMatch has a 1.38% higher average test accuracy than FixMatch;
on CIFAR-100 and STL-10, SA-FixMatch also consistently outperforms FixMatch, albeit with
a smaller performance gap. The reason behind this different improvement is that for samples in
CIFAR-100 and STL-10, the semantic subject in the image occupies the majority of the image (see
Appendix K.6). Accordingly, a random square mask in CutOut can well remove the semantic features
with high probability, and thus has very similar masking effects as our SA-CutOut. Indeed, if we
reduce the mask size in CutOut, random mask has less chance to well mask the semantic features and
its performance degrades as observed in Table 4. For the Imagewoof and ImageNet datasets, most
semantic subject only occupies less than a quarter of the image (see Appendix K.6). Therefore, a
random square mask in CutOut only has small probability to remove the semantic features compared
with SA-CutOut, and SA-FixMatch has much better test performance than FixMatch.

The superior test accuracy of SA-FixMatch compared to FixMatch is consistent with our theoretical
analysis in Sec. 4.3. The reason behind this improvement is that to achieve good test performance
in Theorem 4, the Phase II of SSL algorithms need to effectively remove well-learned features for
enforcing the network to learn missed semantic features in Phase I. While FixMatch uses CutOut
to randomly mask learned features in unlabeled data, SA-FixMatch always well masks the learned
semantic feature because it adopts SA-CutOut as discussed in Sec. 4.3. Therefore, with a fixed
number of images in unlabeled dataset, SA-FixMatch can more effectively use unlabeled data for
feature learning, and thus achieve better test performance.

5.2 SEMANTIC FEATURE LEARNING

To visualize the semantic features learned by networks trained by SL, FixMatch, and SA-FixMatch,
we use Grad-CAM (Selvaraju et al., 2017) to highlight regions of input images that contribute to the
model’s class-specific predictions. For SL, FixMatch, and SA-FixMatch, we follow the default setting
of Grad-CAM, and apply it to the last convolutional layer of the WRN-28-8 network on CIFAR-100.

Figure 2 shows that the network trained by SL often captures a single semantic feature since Grad-
CAM only localizes one small image region, e.g., bicycle front wheel. Differently, networks trained
by FixMatch can often grab multiple features for some classes, e.g., bicycle front and back wheels, but
still misses some features for certain classes, e.g., bus compartment. By comparison, networks trained
by SA-FixMatch reveals better semantic feature learning performance, since it often captures multiple
semantic features, e.g., bicycle front and back wheels, bus front and compartment. The reason
behind these phenomena is that as theoretically analyzed in Sec. 4.2, for classes which have multiple
semantic features, SL can only learn a single semantic feature, while FixMatch and SA-FixMatch
are capable of learning all the semantic features via the two-phase (supervised and unsupervised)
learning process. Moreover, as shown in Sec. 4.3, compared with FixMatch, SA-FixMatch can more
effectively use unlabeled data as it better removes well-learned features for enforcing network to
learn missed features in data. Thus, SA-FixMatch is more likely to capture all semantic features of
the data in practice with a fix number of unlabeled training data as observed in Figure 2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 SA-CUTOUT ON FIXMATCH VARIANTS

SA-CutOut is compatible with other deep SSL methods, such as FlexMatch (Zhang et al., 2021a),
FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and SoftMatch (Chen et al., 2023), since as
discussed in Sec. 3.2, the main difference between these deep SSL methods and FixMatch is their
choice of confidence threshold Tt. Here we apply SA-CutOut to these algorithms and compare their
test accuracies with the original methods on STL-10 and CIFAR-100 dataset. From Table 3, one can
observe that on STL-10, application of SA-CutOut increases the test accuracies of FlexMatch and
FreeMatch by 2.6%+, and the test accuracies of Dash and SoftMatch by 5.4%+. On CIFAR-100, SA-
CutOut increases the test accuracies of FreeMatch and Dash by 0.65%+, SoftMatch and FlexMatch
by 0.5%+. This validates our analysis in Sec. 4.3 that SA-CutOut can more effectively use unlabeled
data to learn comprehensive semantic features and thereby achieve higher test accuracy.

Table 3: Comparison of Test accuracy (%) of SSL algorithms with CutOut and SA-CutOut on STL-10
with 40 labeled data and CIFAR-100 with 400 labeled data.

Dataset STL-10 CIFAR-100

Algorithm FlexMatch FreeMatch Dash SoftMatch FlexMatch FreeMatch Dash SoftMatch

CutOut 72.13 ± 5.66 75.29 ± 1.29 67.51 ± 1.47 78.55 ± 2.90 59.65 ± 1.14 58.44 ± 1.92 48.56 ± 2.16 60.16 ± 2.22
SA-CutOut 75.91 ± 5.59 77.91 ± 2.01 78.41 ± 1.91 84.04 ± 4.67 60.16 ± 1.06 59.12 ± 1.69 50.24 ± 1.82 60.69 ± 1.95

5.4 ABLATION STUDY

Table 4: Effect of (SA-)CutOut mask size to test
accuracy (%) on CIFAR-100 with 400 labeled data.

Mask Size 4 8 12 16

FixMatch 48.65 50.11 53.48 55.23
SA-FixMatch 52.71 52.95 55.37 55.78

Here we investigate the effect of the mask size
in (SA-)CutOut on the performance of (SA-
)FixMatch. For CIFAR-100 whose image size is
32× 32, we set the mask size in (SA-)CutOut as
4, 8, 12, and 16 to train the WRN-28-8 network.
Table 4 shows that 1) as mask size grows, both
the test accuracy of FixMatch and SA-FixMatch
improves; 2) when mask size is small, SA-FixMatch makes significant improvement over FixMatch,
e.g., 4%+ when using a mask size of 4; 3) as mask size grows, the improvement of SA-FixMatch
over FixMatch becomes reduced, e.g., 0.55% when using a mask size of 16. For 1), as mask size
in (SA-)CutOut increases, the learned features in the image are more likely to be removed, which
is the key for (SA-)FixMatch to learn comprehensive semantics in Phase II as analyzed in Sec. 4.2.
This explains the better performance of FixMatch and SA-FixMatch when their mask sizes increase.
For 2), when using small masks, a random mask in CutOut has much lower probability to remove
learned features compared with SA-CutOut. Thus, SA-FixMatch has much better performance than
FixMatch. For 3), as mask size grows, a random mask in CutOut also has large probability to mask
learned features in the image. This explains the reduced gap between SA-FixMatch and FixMatch.

6 CONCLUSION

By examining the classical FixMatch, we first provide theoretical justifications for the superior test
performance of SSL over SL on neural networks. Then we uncover the differences in the feature
learning processes between FixMatch and SL, explaining their distinct test performances. Inspired by
theoretical insights, a practical enhancement called SA-FixMatch is proposed and validated through
experiments, showcasing the potential for our newly developed theoretical understanding to inform
improved SSL methodologies. Apart from FixMatch-like SSL, there are also other effective SSL
frameworks whose analyses and comparisons are left as our future work.

Limitations. (a) Apart from FixMatch-like SSLs, we did not analyze other SSL frameworks, like
MeanTeacher (Tarvainen & Valpola, 2017) and MixMatch (Berthelot et al., 2019b). However,
current SoTA deep SSLs like FlexMatch, FreeMatch, Dash, and SoftMatch all follow the FixMatch
framework, indicating the generalizability of our theoretical analysis on them. See details in Sec. 3.2
and Appendix G. (b) Due to limited GPU resources, we use small datasets, e.g. STL-10 and CIFAR-
100, instead of large datasets like ImageNet to test SA-CutOut on other SoTA SSLs. Future work
involves testing SA-CutOut on other SSLs methods (other than FixMatch) and on larger datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022. 2

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. In The Eleventh International Conference on Learning Representations,
2023. 2, 3, 4, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019. 4

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. Advances in
neural information processing systems, 27, 2014. 2

David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and Colin
Raffel. Remixmatch: Semi-supervised learning with distribution alignment and augmentation
anchoring. arXiv preprint arXiv:1911.09785, 2019a. 2

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural information
processing systems, 32, 2019b. 1, 2, 10

Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing Xie, Bhiksha Raj,
and Marios Savvides. Softmatch: Addressing the quantity-quality trade-off in semi-supervised
learning. arXiv preprint arXiv:2301.10921, 2023. 1, 2, 5, 6, 8, 10, 32, 36

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011. 8

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020. 4, 16, 34

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. 8

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017. 4, 7, 16

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi-
supervised learning for unseen-class unlabeled data. In International Conference on Machine
Learning, pp. 3897–3906. PMLR, 2020. 2

Haiyun He, Hanshu Yan, and Vincent YF Tan. Information-theoretic characterization of the general-
ization error for iterative semi-supervised learning. The Journal of Machine Learning Research,
23(1):13041–13092, 2022. 2, 7

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 1, 3, 8

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 1

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jeremy Howard and Sylvain Gugger. Fastai: A layered api for deep learning. Information, 11(2):108,
2020. 8

Jungdae Kim. Pytorch implementation of fixmatch. https://github.com/kekmodel/
FixMatch-pytorch, 2020. 36

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
8

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016. 2

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
Advances in neural information processing systems, 30, 2017. 4

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 36

Geoffrey J McLachlan. Iterative reclassification procedure for constructing an asymptotically optimal
rule of allocation in discriminant analysis. Journal of the American Statistical Association, 70
(350):365–369, 1975. 2

Alexander Mey and Marco Loog. Improved generalization in semi-supervised learning: A survey
of theoretical results. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):
4747–4767, 2022. 2

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 1

Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-supervised learning.
arXiv preprint arXiv:2006.05278, 2020. 1

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022. 1

Jiachun Pan, Pan Zhou, and Shuicheng Yan. Towards understanding why mask-reconstruction
pretraining helps in downstream tasks. arXiv preprint arXiv:2206.03826, 2022. 1

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. 1

Philippe Rigollet. Generalization error bounds in semi-supervised classification under the cluster
assumption. Journal of Machine Learning Research, 8(7), 2007. 2, 7

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transfor-
mations and perturbations for deep semi-supervised learning. Advances in neural information
processing systems, 29, 2016. 2

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023. 1, 4

Hugo Schmutz, Olivier Humbert, and Pierre-Alexandre Mattei. Don’t fear the unlabelled: safe
semi-supervised learning via debiasing. In The Eleventh International Conference on Learning
Representations, 2022. 1

Henry Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE Transac-
tions on Information Theory, 11(3):363–371, 1965. 2

12

https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. In Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.
3, 8, 9

Aarti Singh, Robert Nowak, and Jerry Zhu. Unlabeled data: Now it helps, now it doesn’t. Advances
in neural information processing systems, 21, 2008. 2, 7

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in neural information processing systems, 33:596–608,
2020. 1, 2, 4, 5, 6, 8, 34, 36

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013. 36

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in neural information processing
systems, 30, 2017. 10

Alexandru Ţifrea, Gizem Yüce, Amartya Sanyal, and Fanny Yang. Can semi-supervised learning use
all the data effectively? a lower bound perspective. arXiv preprint arXiv:2311.18557, 2023. 2, 7

Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine learning,
109(2):373–440, 2020. 2, 7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 1

Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie Wang, Linyi Yang,
Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi Nakamura, Wei Ye, Marios
Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt Schiele, Jindong Wang, Xing Xie, and Yue
Zhang. Usb: A unified semi-supervised learning benchmark for classification. In Thirty-sixth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022a.
doi: 10.48550/ARXIV.2208.07204. URL https://arxiv.org/abs/2208.07204. 8, 36

Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios
Savvides, Takahiro Shinozaki, Bhiksha Raj, et al. Freematch: Self-adaptive thresholding for
semi-supervised learning. arXiv preprint arXiv:2205.07246, 2022b. 1, 2, 4, 5, 6, 8, 10, 32, 36

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training with
deep networks on unlabeled data. arXiv preprint arXiv:2010.03622, 2020. 2

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122. PMLR,
2021. 2

Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised
learning. Advances in Neural Information Processing Systems, 35:24794–24809, 2022. 2

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
for consistency training. Advances in neural information processing systems, 33:6256–6268, 2020.
1, 2

Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash:
Semi-supervised learning with dynamic thresholding. In International Conference on Machine
Learning, pp. 11525–11536. PMLR, 2021. 1, 2, 4, 5, 6, 8, 10, 32, 36

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016. 8

13

https://arxiv.org/abs/2208.07204

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro
Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling.
Advances in Neural Information Processing Systems, 34:18408–18419, 2021a. 1, 2, 4, 5, 6, 8, 10,
32, 36

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021b. 4

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Time-consistent self-supervision for semi-supervised
learning. In International Conference on Machine Learning, pp. 11523–11533. PMLR, 2020. 1, 8

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THEOREM STATEMENT

In this section, we formally state the relevant data assumptions and theorems. Building on the proof
framework of Allen-Zhu & Li (2023), our results extend their findings from supervised learning (SL)
to semi-supervised learning (SSL). To maintain consistency, we adopt their notation throughout our
proof. Specifically, we follow their data distribution assumptions and extend their analysis from SL
to SSL through a two-phase learning process.

To formally define the data distribution, we set global constantCp, sparsity parameter s = polylog(k),
feature noise parameter γ = 1

poly(k) , and random noise parameter σp = 1√
d polylog(k)

to control
noises in data. Here, feature noise implies that a sample from class i primarily exhibits feature
vi,l (with l ∈ [2]), but also includes minor scaled features vj,l (with j ̸= i) from other classes.
Each sample pair (X, y) consists of the sample X , which is comprised of a set of P = k2 patches
{xi ∈ Rd}Pi=1, and y ∈ [k] as the class label. The following describes the data generation process.

Definition 7 (data distributions for single-view Ds and multi-view data Dm (Allen-Zhu & Li, 2023)).
Data distribution D consists of data from multi-view data Dm with probability 1−µ and from
single-view data Ds with probability µ = 1/poly(k). We define (X, y)∼D by randomly uniformly
selecting a label y∈ [k] and generating data X as follows.

1) Sample a set of noisy features V ′ uniformly at random from {vi,1, vi,2}i ̸=y each with
probability s/k.

2) Denote V(X) = V ′ ∪ {vy,1, vy,2} as the set of feature vectors used in data X .

3) For each v ∈ V(X), pick Cp disjoint patches in [P] and denote it as Pv(X) (the distribution
of these patches can be arbitrary). We denote P(X) = ∪v∈V(X)Pv(X).

4) If D = Ds is the single-view distribution, pick a value l̂ = l̂(X) ∈ [2] uniformly at random.

5) For each p ∈ Pv(X) for some v ∈ V(X), given feature noise αp,v′ ∈ [0, γ], we set

xp = zpv +
∑

v′∈V
αp,v′v′ + ξp,

where ξp ∈ N (0, σ2
pI) is an independent random Gaussian noise. The coefficients zp ≥ 0

satisfy

– For “multi-view” data (X, y) ∈ Dm, when v ∈ {vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [1, O(1)]

and
∑

p∈Pv(X) z
q
p ∈ [1, O(1)] for an integer q ≥ 3, and the marginal distribution of∑

p∈Pv(X) zp is left-close. When v ∈ V(X)\{vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [Ω(1), 0.4],
and the marginal distribution of

∑
p∈Pv(X) zp is right-close.

– For “single-view” data (X, y) ∈ Ds, when v = vy,l̂,
∑

p∈Pv(X) zp ∈ [1, O(1)] for
the integer q ≥ 3. When v = vy,3−l̂,

∑
p∈Pv(X) zp ∈ [ρ,O(ρ)] (we set ρ = k−0.01

for simplicity). When v ∈ V(X) \ {vy,1, vy,2},
∑

p∈Pv(X) zp ∈ [Ω(Γ),Γ], where
Γ = 1/polylog(k), and the marginal distribution of

∑
p∈Pv(X) zp is right-close.

6) For each p ∈ [P]\P(X), with an independent random Gaussian noise ξp ∼ N (0, γ
2k2

d I),

xp =
∑

v′∈V
αp,v′v′ + ξp,

where each αp,v′ ∈ [0, γ] is the feature noise.

Based on the definition of data distribution D, we define the training dataset Z as follows.

Definition 8. Assume the distribution D consists of samples from Dm w.p. 1− µ and from Ds w.p.
µ. We are given Nl labeled training samples and Nu unlabeled training samples from D, where
typically Nu ≫ Nl. The training dataset is denoted as Z = Zl,m ∪Zl,s ∪Zu,m ∪Zu,s, where Zl,m

and Zl,s represent the multi-view and single-view labeled data, respectively, and Zu,m and Zu,s

represent the multi-view and single-view unlabeled data, respectively. We denote (X, y) ∼ Z as a
pair (X, y) sampled uniformly at random from the empirical training dataset Z .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then, we introduce the smoothed ReLU function ReLU (Allen-Zhu & Li, 2023) in detail: for an
integer q ≥ 2 and a threshold ϱ = 1

polylog(k) ,ReLU(z) = 0 if z ≤ 0,ReLU(z) = zq

(qϱq−1) if
z ∈ [0, ϱ] and ReLU(z) = z − (1− 1

q)ϱ if z ≥ ϱ. This configuration ensures a linear relationship
for large z values while significantly reducing the impact of low-magnitude noises for small z values,
thereby enhancing the separation of true features from noises.

We also introduce our assumption on FixMatch’s strong augmentation A(·), which is composed by
CutOut (DeVries & Taylor, 2017) and RandAugment (Cubuk et al., 2020). As discussed in Sec. 3.2
and Appendix K.1, we focus on its probabilistic feature removal effect.

Assumption 9. Suppose that for a given image, strong augmentation A(·) randomly removes its
semantic patches and noisy patches with probabilities π2 and 1− π2, respectively. For a single-view
image, the sole semantic feature is removed with probability π2. For a multi-view image, either of the
two features, vi,1 or vi,2, is removed with probabilities π1π2 and (1− π1)π2, respectively. We define
the strong augmentation A(·) for multi-view data as follows: for p ∈ [P],

A(xp)=


max(ϵ1, ϵ2)xp, if vy,1 is in the patch xp,
max(1− ϵ1, ϵ2)xp, if vy,2 is in the patch xp,
(1− ϵ2)xp, otherwise (noisy patch),

(10)

where ϵ1 and ϵ2 are independent Bernoulli random variables, each equal to 0 with probabilities π1
and π2, respectively.

Here we use the "max" function to ensure ϵ1 is active when ϵ2 = 0, which implies that A(·) selects
one feature to remove at a time. The reason behind this assumption is that as we can observe from
Figure 1 and 2, different semantic features in a multi-view image are spatially distinct. Consequently,
the likelihood of a square patch from random CutOut and transformations from RandAugment to
remove both features is substantially lower than removing just one. To simplify our theoretical
analysis, we therefore assume that A(·) targets a single feature for removal in each instance.

Then we introduce the parameter assumption necessary to the proof. As we follow the proof
framework of Allen-Zhu & Li (2023), the assumptions on most of the parameters are similar.

Parameter Assumption 10. We assume that

• q ≥ 3 and σq−2
0 = 1/k, where σ0 gives the initialization magnitude.

• γ ≤ Õ(σ0

k) and γq ≤ Θ̃(1
kq−1mP), where γ controls the feature noise.

• The size of single-view labeled training data Nl,s = õ(k/ρ) and Nl,s ≤ k2

s ρ
q−1.

• Nl ≥ Nl,s · poly(k), ηT ≥ Nl · poly(k), and
√
d ≥ ηT · poly(k).

• The weight for unsupervised loss λ = 1 and the confidence threshold τ = 1− Õ(1
s2).

• The number of unlabeled data for FixMatch Nc ≥ ηT ′ · poly(k) with ηT ′ ≥ poly(k), and
the ratio of single-view unlabeled data Nc,s

Nc
≤ k2

ηsT ′ .

Here the first four parameter assumptions are followed from Allen-Zhu & Li (2023) for supervised
learning Phase I, and the last two parameter assumptions are specific to the unsupervised loss Eq.
(5) in learning Phase II. Define Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l . We have the

following theorem for vanilla FixMatch under CutOut:

Theorem 11 (Peformance on FixMatch). For sufficiently large k > 0, for every m = polylog(k),
η ≤ 1

poly(k) , setting T = poly(k)
η and T ′ = poly(k)

η , when Parameter Assumption 10 is satisfied, with

probability at least 1− e−Ω(log2 k),

• (training accuracy is perfect) for every (X, y) ∈ Z:

∀i ̸= y : F (T+T ′)
y (X) ≥ F

(T+T ′)
i (X) + Ω(log k).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• (multi-view testing is good) for every i, j ∈ [k], we have Õ(1) ≥ Φ
(T+T ′)
i ≥ 0.4Φ

(T+T ′)
j +

Ω(log k), and thus

Pr
(X,y)∈Dm

[
F (T+T ′)
y (X) ≥ max

j ̸=y
F

(T+T ′)
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

• (single-view testing is good) for every i ∈ [k] and l ∈ [2], we have Φ
(T+T ′)
i,l ≥ Ω(log k),

and thus

Pr
(X,y)∈Ds

[
F (T+T ′)
y (X) ≥ max

j ̸=y
F

(T+T ′)
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

For Semantic-Aware FixMatch (SA-FixMatch), we denote the number of unlabeled data in this case
as Nu. Then we have the following assumption on Nu.
Parameter Assumption 12. Nu = max{π1π2, (1− π1)π2}Nc.

Here π1 ∈ (0, 1) and π2 ∈ (0, 1) are the probabilities defined in Assumption 9, where π2 is typically
small (1/poly(k)), as explained in Appendix H. From Parameter Assumption 12, we observe that the
requirement for the number of unlabeled samples in SA-FixMatch is significantly smaller compared
to that in FixMatch.

Under Parameter Assumptions 10 and 12, SA-FixMatch achieves the same performance results as
Theorem 11, but with a reduced requirement for the number of unlabeled data, decreasing from Nc to
Nu. Thus, we state the following theorem regarding the performance of SA-FixMatch.
Theorem 13 (Performance on SA-FixMatch). Under Parameter Assumption 10 and 12, we can
achieve the same training and test performance as FixMatch in Theorem 11.

Our main proof of Theorem 11 and Theorem 13 for FixMatch and SA-FixMatch includes analyses on
a two-phase learning process. In Phase I, the network relies primarily on the supervised loss due to
its inability to generate highly confident pseudo-labels and the large confidence threshold τ in Eq. (5).
According to the results in Allen-Zhu & Li (2023), partial features are learned during the supervised
learning Phase I. We review the results on supervised training in Appendix B.

Then in Phase II, the network predicts highly confident pseudo-labels for weakly-augmented samples
and uses these correct pseudo-labels to supervise the corresponding strongly-augmented samples via
consistency regularization. To theoretically analyze the learning process in Phase II, we build on the
proof framework of Allen-Zhu & Li (2023) and demonstrate how the network learns the unlearned
features while preserving the learned features during Phase II. Specifically, we present the induction
hypothesis for Phase II in Appendix C, along with gradient calculations and function approximations
for the unsupervised loss in Eq. (5) in Appendix D. We then provide a detailed proof of SA-FixMatch
in Appendix E and extend the results to FixMatch in Appendix F. Finally, we generalize our proof to
other FixMatch-like SSL methods in Appendix G.

B RESULTS ON SUPERVISED TRAINING

In this section, we first recall the results in supervised training that were derived in Allen-Zhu & Li
(2023). Before showing their main results, we first introduce some necessary notations. For every
i ∈ [k], define Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l . Define

Λ
(t)
i := max

r∈[m],l∈[2]
[⟨w(t)

i,r , vi,l⟩]
+ and Λ

(t)
i,l := max

r∈[m]
[⟨w(t)

i,r , vi,l⟩]
+,

where Λi,l indicates the largest correlation between the feature vector vi,l and all neurons wi,r (r ∈
[m]) from class i. Then we define the "view lottery winning" set:

MF :=

{
(i, l∗) ∈ [k]× [2]

∣∣∣∣Λ(0)
i,l∗ ≥ Λ

(0)
i,3−l∗

(
1 +

2

log2m

)}
.

The intuition behind MF is that if (i, l) ∈ MF , then the feature vi,l is likely to be learned by the
model and the feature vi,3−l is likely to be missed due to model initialization and data distribution.
MF satisfies the following property (refer to the Proposition C.2. of Allen-Zhu & Li (2023)):

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proposition 14. Suppose m ≤ poly(k). For every i ∈ [k], Pr[(i, 1) ∈ MF or (i, 2) ∈ MF] ≥
1− o(1).

Based on Theorem 1 of Allen-Zhu & Li (2023), after training for T iterations with the supervised
training loss L(t)

s

L(t)
s = E(X,y)∼Zl

[
− log logity(F

(t), X)
]
,

the training accuracy on labeled samples is perfect and L(T)
s approaches zero, i.e., for every (X, y) ∈

Zl,

∀i ̸= y : F (T)
y (X) ≥ F

(T)
i (X) + Ω(log k),

and we have L(T)
s ≤ 1

poly(k) . Besides, it satisfies that 0.4Φ(T)
i − Φ

(T)
j ≤ −Ω(log k) for every pair

i, j ∈ [k]. This means that at least one of Φ(T)
i,1 or Φ(T)

i,2 for all i ∈ [k] increase to a large scale of
Θ(log(k)), which means at least one of vi,1 and vi,2 for all i ∈ [k] is learned after supervised training
for T iterations. Thus, all multi-view training data are classified correctly. For single-view training
data without the learned features, they are classified correctly by memorizing the noises in the data
during the supervised training process. Then for the test accuracy, for the multi-view data point
(X, y) ∼ Dm, with the probability at least 1− e−Ω(log2 k), it has

logity(F
(T), X) ≥ 1− Õ

(
1

s2

)
,

and

Pr
(X,y)∼Dm

[
F (T)
y (X) ≥ max

j ̸=y
F

(T)
j (X) + Ω(log k)

]
≥ 1− e−Ω(log2 k).

This means that the test accuracy of multi-view data is good. However, for the single-view data
(X, y) ∼ Ds, whenever (i, l∗) ∈ MF , we have Φ

(T)
i,3−l∗ ≪ 1

polylog(k) and

Pr
(X,y)∼Ds

[
F (T)
y (X) ≥ max

j ̸=y
F

(T)
j (X)− 1

polylog(k)

]
≤ 1

2
(1 + o(1)),

which means that the test accuracy on single-view data is nearly 50%.

The results in Allen-Zhu & Li (2023) fully indicate the feature learning process of supervised learning.
The main reason for the imperfect performance of SL is that, due to "lottery winning", it only captures
one of the two features for each semantic class during the supervised training process. Therefore for
single-view data without this feature, it has low test accuracy.

In the following, we will consider the effect of loss L(t)
u on unlabeled data for training:

L(t)
u = E(X,y)∼Zu

[
I{maxi logiti(F

(t),α(X))≥τ} · − log logitb(F
(t),A(X))

]
.

where b = argmaxi∈[k] logiti(F
(t), α(X)), τ is the confidence threshold and α,A are the weak

and strong augmentations, respectively. For the simplicity of proof, we set α to be identity mapping.
In the following, we will prove Theorem 11. By setting τ = 1− Õ(1/s2), we will show that after
we train the network F (T) combining the loss L(t)

u for another T ′ = poly(k)
η epochs, the network

can learn complete semantic features for all classes, resulting in perfect test performance on both
multi-view and single-view data.

C INDUCTION HYPOTHESIS

In this section, to prove our theorem, similar to Allen-Zhu & Li (2023), we present an induction
hypothesis for every training iteration t in learning Phase II. We first show the loss function in learning
Phase II.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Loss Function. Recall logiti(F,X) := eFi(X)∑
j∈[k] e

Fj(X) . In learning Phase I, before the network

learned partial features to make confident prediction, only the supervised loss L(t)
s takes effect

L(t)
s = E(X,y)∼Zl

[
− log logity(F

(t), X)
]
.

In Phase II, after we train the network F for T = poly(k)
η epochs using L(t)

s in the Phase I, according
to the results in Appendix B, one of the features in each class is captured. Then we consider to
optimize the network F (T) using the following combination of losses:

L(t) =E(X,y)∼Zl

[
− log logity(F

(t), X)
]

+ λEX∼Zu

[
I{maxi logiti(F

(t),α(X))≥τ} · − log logitb(F
(t),A(X))

]
,

where b = argmaxi∈[k] logiti(F
(t), α(X)). Recall τ = 1− Õ(1/s2), when t ≥ T and we use F (t)

to classify the unlabeled data X ∼ Zu, we will get a correct pseudo-label with high probability, i.e.,
b = y, where y denotes the ground truth label of X . This means that for X ∼ Zu,m, with probability
at least 1− e−Ω(log2 k), logity(F

(t), X) ≥ τ and for X ∼ Zu,s, when (y, l∗) ∈ MF and l̂(X) = l∗,
with the probability at least 1− e−Ω(log2 k), logity(F

(t), X) ≥ τ . We denote the samples in Zu that
satisfy logity(F

(t), X) ≥ τ as Z̃u and let Ñu = |Z̃u|. In this way, we can further simplify the loss
as

L(t) =L(t)
s + λL(t)

u

=E(X,y)∼Zl

[
− log logity(F

(t), X)
]
+ λEX∼Z̃u

[
− log logitb(F

(t),A(X))
]
.

(11)

We introduce the following induction hypothesis:

Induction Hypothesis 15. For every l ∈ [2], for every r ∈ [m], for every X ∈ Z̃u and i ∈ [k],

(a) For every p ∈ Pvi,l(X), we have: ⟨w(t)
i,r , xp⟩ = ⟨w(t)

i,r , vi,l⟩zp ± õ(σ0).

(b) For every p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have: |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0).

(c) For every p ∈ [P] \ P(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0γk).

Moreover, we have for every i ∈ [k], every l ∈ [2],

(d) Φ
(t)
i,l ≥ Ω(σ0) and Φ

(t)
i,l ≤ Õ(1).

(e) for every r ∈ [m], it holds that ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0).

Recall that Φ(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+ and Φ

(t)
i :=

∑
l∈[2] Φ

(t)
i,l .

The intuition behind Induction Hypothesis 15 is that training with semi-supervised loss (11) filters out
feature noises and background noises for both multi-view data and single-view data. This can be seen
in comparison with Induction Hypothesis C.3 of Allen-Zhu & Li (2023). With the help of Induction
Hypothesis 15, we can prove that the correlations between wi,r and learned features in Phase I are
retained in Phase II, and the correlations between wi,r and unlearned features will increase to a large
scale (log(k)) in the end of learning Phase II.

D GRADIENT CALCULATIONS AND FUNCTION APPROXIMATION

Gradient Calculation. We present the gradient calculations for the cross-entropy loss
Lu(F ;X, y) = − log logity(F,A(X)) on unlabeled data X with correctly predicted pseudo-label
y. With a slight abuse of notation, we use (X, y) ∼ Z̃u to denote unlabeled data X ∼ Z̃u along with
its corresponding ground truth label y.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fact 16. Given data point (X, y) ∼ Z̃u, for every i ∈ [k], r ∈ [m],

−∇wi,rLu(F ;X, y) = (1− logiti(F,A(X)))
∑
p∈[P]

ReLU
′
(⟨wi,r,A(xp)⟩)A(xp), when i = y,

(12)

−∇wi,rLu(F ;X, y) = −logiti(F,A(X))
∑
p∈[P]

ReLU
′
(⟨wi,r,A(xp)⟩)A(xp), when i ̸= y.

(13)

Definition 17. For each data point X , we define a value Vi,r,l(X) as

Vi,r,l(X) := Ivi,l∈V(X)

∑
p∈Pvi,l

(X)

ReLU
′
(⟨wi,r,A(xp)⟩)A(zp).

Definition 18. We also define small error terms which will be frequently used:

E1 := Õ(σq−1
0)γs E2,i,r(X) := O(γ(Vi,r,1(X) + Vi,r,2(X)))

E3 := Õ(σ0γk)
q−1γP E4,j,l(X) := Õ(σq−1

0)Ivj,l∈V(X).

Then we have the following bounds for positive gradients, i.e., when i = y:
Claim 19 (positive gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X, y) ∈ Z̃u, every r ∈ [m], every l ∈ [2], and i = y, we have

(a) ⟨−∇wi,rLu(F
(t);X, y), vi,l⟩ ≥

(
Vi,r,l(X)− Õ(σpP)

) (
1− logiti(F

(t),A(X))
)
.

(b) ⟨−∇wi,r
Lu(F

(t);X, y), vi,l⟩ ≤ (Vi,r,l(X) + E1 + E3) (1− logiti(F
(t),A(X))).

(c) For every j ∈ [k] \ {i},

|⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩| ≤ (E1 + E2,i,r(X) + E3 + E4,j,l(X)) (1− logiti(F
(t),A(X))).

We also have the following claim about the negative gradients (i.e., i ̸= y). The proof of positive and
negative gradients is identical to the proof in Allen-Zhu & Li (2023), except that in our case, we have
the augmentation operations on the data patches.
Claim 20 (negative gradients). Suppose Induction Hypothesis 15 holds at iteration t. For every
(X, y) ∼ Z̃u, every r ∈ [m], every l ∈ [2], and i ∈ [k] \ {y}, we have

(a) ⟨−∇wi,r
Lu(F

(t);X, y), vi,l⟩ ≥ −logiti(F
(t),A(X)) (E1 + E3 + Vi,r,l(X)) .

(b) For every j ∈ [k]: ⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩ ≤ logiti(F
(t),A(X))Õ(σpP).

(c) For every j ∈ [k] \ {i}:⟨−∇wi,r
Lu(F

(t);X, y), vj,l⟩ ≥
−logiti(F

(t),A(X)) (E1 + E3 + E4,j,l(X)) .

Function Approximation. Let us denote Z(t)
i,l (X) := Ivi,l∈V(X)

(∑
p∈Pvi,l

(X) A(zp)
)

, we can
easily derive the following result on function approximation.
Claim 21 (function approximation). Suppose Induction Hypothesis 15 holds at iteration t and
suppose s ≤ Õ(1

σq
0m

) and γ ≤ Õ(1
σ0k(mP)1/q

), we have:

• for every t, every (X, y) ∈ Z̃u and i ∈ [k], we have

F
(t)
i (X) =

∑
l∈[2]

(
Φ

(t)
i,l × Z

(t)
i,l (X)

)
±O(

1

polylog(k)
).

• for every (X, y) ∼ D, with probability at least 1− e−Ω(log2 k), it satisfies for every i ∈ [k],

F
(t)
i (X) =

∑
l∈[2]

(
Φ

(t)
i,l × Z

(t)
i,l (X)

)
±O(

1

polylog(k)
).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Claim 22 (classification test performance). Suppose Parameter Assumption 10 holds. Assume for
∀i ∈ [k],∃l ∈ [2] such that Φi,l≥Ω(log k) and Φi,3−l ≤ 1

polylog(k) in the trained network F . Then

the following statements hold with probability at least 1− e−Ω(log2 k):

• For any (X, y) ∼ D which contains vy,l as the main semantic feature, network F can
correctly predict the label y of X .

• For any (X, y) ∼ D only with vy,3−l as the main semantic feature, the network F would
mistakenly predict the label of X .

Proof. Based on our definition of multi-view and single-view data, for any multi-view data (X, y) ∼
Dm, when we have Φi≥Ω(log k) (∀i ∈ [k]), according to Claim 21 and Claim D.16 in Allen-Zhu &
Li (2023), we have 0.4Φi − Φj ≤ −Ω(log k), which means Fy(X) ≥ maxj ̸=y Fj(X) + Ω(log k).
For any single-view data (X, y) ∼ Ds with vy,l as the main semantic feature, according to Claim 21,
Fy(X) ≥ Ω(log k) and for i ̸= y, Fi(X) ≤ O(Γ). Thus, we have Fy(X) ≥ maxj ̸=y Fj(X) +
Ω(log k). In the above two cases, the network F can correctly predict the label y of X .

For any single-view data (X, y) ∼ Ds with vy,3−l as the main semantic feature, according to
Claim 21, Fy(X) ≤ Õ(ρ) + 1

polylog(k) and with probability at least 1 − e−Ω(log2 k) there exists

i ∈ [k] and i ̸= y such that Fi(X) ≥ Ω̃(Γ). This means that Fy(X) ≤ maxi ̸=y Fi(X)− 1
polylog(k) .

In this case, the network F will mistakenly predict the label of X .

E PROOF FOR SEMANTIC-AWARE FIXMATCH

Here we consider to prove the SA-FixMatch case first. SA-FixMatch replaces CutOut operation
in strong augmentation of FixMatch with SA-CutOut, which deterministically removes the learned
features in Phase I. This helps to reduce the number of unlabeled samples needed during the Phase
II training as shown in Assumption 12. Since the learned features of Phase I are deterministically
removed in SA-FixMatch, for the simplicity of theoretical analysis, we first prove the results under
SA-FixMatch and then we can easily generalize the results to FixMatch.

For theoretical proof, we assume that Grad-CAM in SA-CutOut can correctly identify the learned
feature after the first stage. In this case, the formulation of strong augmentation A(·) with SA-CutOut
for X ∼ Z̃u and (i, l∗) ∈ MF ∩ V(X) (l∗ varies depending on i) is

A(xp) =

{
0, if p ∈ Pvi,l∗ (X),

xp, otherwise.
(14)

In the following, we will begin to prove Theorem 13. We first introduce some useful claims as
consequences of the Induction Hypothesis 15.

E.1 USEFUL CLAIMS

Based on the results from Allen-Zhu & Li (2023), at the end of learning Phase I, for (i, l∗) ∈ MF ,
we have Φ

(T)
i,l∗ ≥ Ω(log k) while Φ

(T)
i,3−l∗ ≤ 1/polylog(k). Below the first claim addresses the initial

growth of the correlations between wi,r and the unlearned feature (Φ(t)
i,3−l∗) in learning Phase II,

and the second claim asserts that the correlations between wi,r and the learned feature (Φ(t)
i,l∗) are

preserved during learning Phase II. Here we first give a naive bound on the logit function based on
function approximation result Claim 21.

Claim 23 (approximation of logits). Suppose Induction Hypothesis 15 holds at iteration t, and
suppose s ≤ Õ(1

σq
0m

) and γ ≤ Õ(1
σ0k(mP)1/q

), then

• for every (X, y) ∼ Z̃u,m and (i, l∗) ∈ MF : logiti(F
(t),A(X)) = O

(
e
O(Φi,3−l∗)

e
O(Φi,3−l∗)

+k

)
.

• for every (X, y) ∼ Z̃u,s and every i ∈ [k]: logiti(F
(t),A(X)) = O

(
1
k

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Recall F (t)
i (A(X)) =

∑
r∈[m]

∑
p∈[P] ReLU(⟨wi,r,A(xp)⟩). According to Claim 21, data

assumption 7 and data augmentation defined in (14), we have that for (X, y) ∼ Z̃u,m and (i, l∗) ∈
MF (l∗ varies depending on i),

0 ≤ F (t)
y (A(X)) ≤ Φ

(t)
y,3−l∗ ·O(1) +O(

1

polylog(k)
),

and for i ∈ [k] \ {y},

0 ≤ F
(t)
i (A(X)) ≤ Φ

(t)
i,3−l∗ · 0.4 +O(

1

polylog(k)
).

Thus, combining the above results, for every (X, y) ∼ Z̃u,m and (i, l∗) ∈ MF , we have for every
i ∈ [k],

logiti(F
(t),A(X)) = O

(
eO(Φ

(t)

i,3−l∗)

eO(Φ
(t)

i,3−l∗) + k

)
.

On the other hand, for the single-view data in Z̃u,s, as the only class-specific semantic feature is
masked after we conduct strong augmentation, only noisy unlearned features and background noises
remain. Thus, for (X, y) ∼ Z̃u,s and (i, l∗) ∈ MF , we have for i ̸= y,

0 ≤ F (t)
y (A(X)) ≤ O(1) and 0 ≤ F

(t)
i (A(X)) ≤ Φ

(t)
i,3−l∗ ·O(Γ) +O(

1

polylog(k)
) ≤ O(1),

and thus we have for every i ∈ [k],

logiti(F
(t),A(X)) = O

(
1

k

)
.

Now we are ready to prove the following claim on the initial growth of Φ(t)
i,3−l∗ with (i, l∗) ∈ MF .

Claim 24 (initial growth). Suppose Induction Hypothesis 15 holds at iteration t, then for every
i ∈ [k] with (i, l∗) ∈ MF , suppose Φ

(t)
i,3−l∗ ≤ O(1), then it satisfies

Φ
(t+1)
i,3−l∗ = Φ

(t)
i,3−l∗ + Θ̃

(η
k

)
ReLU

′
(Φ

(t)
i,3−l∗).

Proof. For any wi,r and vi,3−l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,3−l∗⟩ = ⟨w(t)

i,r , vi,3−l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,r

Lu(F
(t);X, y), vi,3−l∗⟩].

For the loss term on Zl, we have

− E(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,3−l∗⟩]

=E(X,y)∼Zl

[
Ii=y(1− logiti(F,X))

∑
p∈[P]

ReLU
′
(⟨wi,r, xp⟩)⟨xp, vi,3−l∗⟩−

Ii ̸=ylogiti(F,X)
∑

p∈[P]
ReLU

′
(⟨wi,r, xp⟩)⟨xp, vi,3−l∗⟩

]
.

Based on the results from Allen-Zhu & Li (2023), when t ≥ T , we have

E(X,y)∼Zl

[
(1− logity(F,X))

]
≤ 1

poly(k)
and E(X,y)∼Zl

[
Ii̸=ylogiti(F,X)

]
≤ 1

poly(k)
,

which means

−E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩] ≤

1

poly(k)
,

i.e., the supervised loss is fully minimized in the first stage and contributes little in the second stage.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then, from Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,3−l∗(X)− Õ(σpP))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X)Vi,r,3−l∗(X))logiti(F
(t),A(X))].

Consider r = argmaxr∈[m]{⟨w
(t)
i,r , vi,3−l∗⟩}, then as m = polylog(k), we know ⟨w(t)

i,r , vi,3−l∗⟩ ≥
Ω̃(Φ

(t)
i,3−l∗). Recall Vi,r,3−l∗(X) := Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp),
according to Induction Hypothesis 15(a) and definition in (14), we have

Vi,r,3−l∗(X) = Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X)

ReLU
′
(⟨w(t)

i,r , vi,3−l∗⟩zp + õ(σ0))zp.

• When i = y, at least for (X, y) ∼ Z̃u,m, we have
∑

p∈Pvi,3−l∗ (X) zp ≥ 1, and together

with |Pvi,3−l∗ | ≤ Cp, we know Vi,r,3−l∗ ≥ Ω(1) · ReLU′
(⟨w(t)

i,r , vi,3−l∗⟩).

• When i ̸= y and when vi,3−l∗ ∈ P(X), we can use
∑

p∈Pvi,3−l∗ (X) zp ≤ 0.4 to derive that

Vi,r,3−l∗ ≤ 0.4 · ReLU′
(⟨w(t)

i,r , vi,3−l∗⟩).

Moreover, when Φ
(t)
i,3−l∗ ≤ O(1), by Claim 23, we have logiti(F

(t),A(X)) ≤ O(1k). Then we can
derive that

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,l⟩+ ηE(X,y)∼Z̃u
[Iy=i · Ω(1)−O(1) · Iy ̸=iIvi,3−l∗∈P(X) ·

1

k
]

· ReLU′⟨w(t)
i,r , vi,3−l∗⟩ − ηÕ(

σpP + E1 + E3
k

).

Finally, recall that Pr(vi,3−l∗ ∈ P(X)|i ̸= y) = s
k ≪ o(1), we have that

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥ ⟨w(t)

i,r , vi,3−l∗⟩+ Ω̃
(η
k

)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩).

Similarly, using Claim 19 and 20, we can derive:

⟨w(t+1)
i,r , vi,3−l∗⟩ ≤ ⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u

[
Iy=i(Vi,r,3−l∗(X) + E1 + E3)(1− logiti(F

(t), X))

− Iy ̸=iÕ(σpP)logiti(F
(t), X)

]
.

With similar analyses to the upper bound, we can derive the lower bound

⟨w(t+1)
i,r , vi,3−l∗⟩ ≤ ⟨w(t)

i,r , vi,3−l∗⟩+ Õ
(η
k

)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩).

With initial growth analysis in Claim 24, similar to Claim D.11 in Allen-Zhu & Li (2023), we can
obtain the following result:

Claim 25. Define iteration threshold T0 := Θ̃
(

k

ησq−2
0

)
, then for every i ∈ [k], (i, l∗) ∈ MF and

t ≥ T + T0, it satisfies that Φ(t)
i,3−l∗ = Θ(1).

As we stated in Claim 23, model prediction for the augmented single-view data in Z̃u,s are kept to
the scale of O

(
1
k

)
, since after strong augmentation there remains only noises. Now we present the

convergence of multi-view data in Z̃u,m from T + T0 till the end.
Claim 26 (multi-view error till the end). Suppose that the Induction Hypothesis 15 holds for every
iteration T < t ≤ T + T ′, and suppose Ñu,s

Ñu
≤ k2

ηsT ′ , then

T+T ′∑
t=T+T0

E(X,y)∼Z̃u,m
[1− logity(F

(t),A(X))] ≤ Õ

(
k

η

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof. For any wi,r and vi,3−l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,3−l∗⟩ = ⟨w(t)

i,r , vi,3−l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,3−l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,r

Lu(F
(t);X, y), vi,3−l∗⟩].

For the loss term on Zl, as discussed above, we have

−E(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,3−l∗⟩] ≤
1

poly(k)
.

Again, by Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,3−l∗⟩ ≥⟨w(t)

i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,3−l∗(X)− Õ(σpP))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X)Vi,r,3−l∗(X))logiti(F
(t),A(X))].

Take r = argmaxr∈[m]{⟨w
(t)
i,r , vi,3−l∗⟩}, then by m = polylog(k) we know ⟨w(t)

i,r , vi,3−l∗⟩ ≥
Ω̃(Φ

(t)
i,3−l∗) = Ω̃(1) for t ≥ T + T0.

Recall Vi,r,3−l∗(X) := Ivi,3−l∗∈V(X)

∑
p∈Pvi,3−l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp) and our defini-

tion of A, using the Induction Hypothesis 15, we have that for (X, y) ∼ Z̃u,m, it satisfies

Vi,r,3−l∗(X) =
∑

p∈Pvi,3−l∗ (X)
ReLU

′
(⟨w(t)

i,r , vi,3−l∗⟩zp ± õ(σ0))zp.

Since we have ⟨w(t)
i,r , vi,3−l∗⟩ ≥ Ω̃(1) ≫ ϱ and |Pvi,3−l∗ (X)| ≤ O(1), for most of p ∈ Pvi,3−l∗ , we

have alreadly in the linear regime of ReLU so

0.9
∑

p∈Pvi,3−l∗ (X)
zp ≤ Vi,r,3−l∗(X) ≤

∑
p∈Pvi,3−l∗ (X)

zp.

Thus, when (X, y) ∼ Z̃u,m and y = i, we have Vi,r,3−l∗(X) ≥ 0.9; when (X, y) ∼ Z̃u,m, y ̸= i

and vi,3−l∗ ∈ P(X), we have Vi,r,3−l∗(X) ≤ 0.4. When (X, y) ∼ Z̃u,s and y = i, we have
Vi,r,3−l∗(X) ≥ 0; when (X, y) ∼ Z̃u,s, y ̸= i and vi,3−l∗ ∈ P(X), we have Vi,r,3−l∗(X) ≤
O(Γ) ≪ o(1). Then we can derive that

⟨w(t+1)
i,r ,vi,3−l∗⟩

≥ ⟨w(t)
i,r , vi,3−l∗⟩+ ηE(X,y)∼Z̃u,m

[
0.89 · Iy=i(1− logiti(F

(t),A(X)))
]

− ηE(X,y)∼Z̃u,m

[
Iy ̸=i(E1 + E3 + 0.4Ivi,3−l∗∈P(X))logiti(F

(t),A(X))
]

−O

(
ηÑu,s

Ñu

)
E(X,y)∼Z̃u,s

[
Õ(σpP)Iy=i(1− logiti(F

(t),A(X)))
]

−O

(
ηÑu,s

Ñu

)
E(X,y)∼Z̃u,s

[
Iy ̸=i(E1 + E3 + Ivi,3−l∗∈P(X))logiti(F

(t),A(X))
]

≥ ⟨w(t)
i,r , vi,3−l∗⟩+Ω

(η
k

)
E(X,y)∼Z̃u,m

[
(1− logity(F

(t),A(X)))
]
−O

(
ηsÑu,s

k2Ñu

)
,

where the last step is based on Claim 23 and the fact that Pr(vi,l ∈ P(X)|i ̸= y) = s
k ≪ o(1). Thus,

when summing up all r ∈ [m], and telescoping from T + T0 to T + T ′, we have

Φ
(T ′+T)
i,3−l∗ ≥ Φ

(T+T0)
i,3−l∗ + Ω̃

(η
k

) T+T ′∑
t=T+T0

E(X,y)∼Z̃u,m

[
(1− logity(F

(t),A(X)))
]
− Õ

(
T ′ηsÑu,s

k2Ñu

)
.

Then combining that Φ(t)
i,3−l∗ ≤ Õ(1) from the Induction Hypothesis 15(d), we have:

T+T ′∑
t=T+T0

E(X,y)∼Z̃u,m

[
(1− logiti(F

(t),A(X)))
]
≤ Õ

(
k

η

)
+ Õ

(
T ′sÑu,s

kÑu

)
≤ Õ

(
k

η

)
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Now we are ready to prove the following claim on the correlations between model kernels and the
learned feature Φ

(t)
i,l∗ is retained during learning Phase II.

Claim 27 (learned is retained). Suppose that the Induction Hypothesis 15 holds for every iteration
T < t ≤ T+T ′, under Parameter Assumption 10 and 12, we have for every iteration T < t ≤ T+T ′:

∀(i, l∗) ∈ MF , Φ
(t)
i,l∗ ≥ Ω(log(k).

Proof. For any wi,r and vi,l∗ (i ∈ [k], r ∈ [m]), we have

⟨w(t+1)
i,r , vi,l∗⟩ = ⟨w(t)

i,r , vi,l∗⟩ − ηE(X,y)∼Zl
[⟨∇wi,rLs(F

(t);X, y), vi,l∗⟩]

− ηE(X,y)∼Z̃u
[⟨∇wi,rLu(F

(t);X, y), vi,l∗⟩].

For the loss term on Zl, as discussed in Claim 24, we have

−E(X,y)∼Zl
[⟨∇wi,r

Ls(F
(t);X, y), vi,l∗⟩] ≤

1

poly(k)
.

Again, by Claim 19 and Claim 20, we know

⟨w(t+1)
i,r , vi,l∗⟩ ≥⟨w(t)

i,r , vi,l∗⟩+ ηE(X,y)∼Z̃u
[Iy=i(Vi,r,l∗(X)− Õ(σpP))(1− logiti(F

(t),A(X)))

− Iy ̸=i(E1 + E3 + Ivi,l∗∈P(X)Vi,r,l∗(X))logiti(F
(t),A(X))].

Recall Vi,r,l∗(X) := Ivi,l∗∈V(X)

∑
p∈Pvi,l∗ (X) ReLU

′
(⟨w(t)

i,r ,A(xp)⟩)A(zp) and our definition of

strong augmentation in (14), we have Vi,r,l∗(X) = 0, so we have by Claim 23 that

⟨w(t+1)
i,r , vi,l∗⟩ ≥⟨w(t)

i,r , vi,l∗⟩ − Õ

(
ησpP

k

)
E(X,y)∼Z̃u

[1− logiti(F
(t),A(X))]−O

(
η(E1 + E3)

k

)
.

Summing up all r ∈ [m] and using m = polylog(k), we have

Φ
(t+1)
i,l∗ ≥Φ

(t−1)
i,l∗ − Õ

(
ησpP

k

)
E(X,y)∼Z̃u

[1− logiti(F
(t),A(X))]− Õ

(
ηγ(σq−1

0 s+ (σ0γk)
q−1P)

k

)
.

In the following, we separate the process into T ≤ t ≤ T + T0 and t ≥ T0 + T .

When T < t ≤ T + T0. Recall at the end of learning Phase I, we have Φ
(T)
i,l∗ ≥ Ω(log(k). Using

T0 = Θ̃
(

k

ησq−2
0

)
and our parameter assumption 10, we have Φ

(t)
i,l∗ ≥ Ω(log(k) for every iteration of

T < t ≤ T + T0.

When T + T0 < t ≤ T + T ′. By the upper bound on multi-view error in Claim 26, we know
Φ

(t)
i,l∗ ≥ Ω(log(k) for every iteration of T + T0 < t ≤ T + T ′.

Next, we present our last claim on individual error similar to Claim D.16 in Allen-Zhu & Li (2023).
It states that when training error on Z̃u,m is small enough, the model has high probability to correctly
classify any individual data.

Claim 28 (individual error). When E(X,y)∼Z̃u,m

[
1− logity

(
F (t), X

)]
≤ 1

k4 is sufficiently small,
we have for any (i, 3− l), (j, 3− l′) /∈ MF ,

0.4Φ
(t)
i,3−l − Φ

(t)
j,3−l′ ≤ −Ω(log(k)), Φ

(t)
i,3−l,Φ

(t)
j,3−l′ ≥ Ω(log(k)),

and therefore for every (X, y) ∈ Z (and every (X, y) ∈ D w.p. 1− e−Ω(log2(k))),

F (t)
y (X) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof. Denote by Z̃∗
u,m for the sample (X, y) ∈ Z̃u,m such that

∑
p∈Pvy,3−l∗ (X) zp ≤ 1+ 1

100 log(k)

where (y, l∗) ∈ MF . For a sample (X, y) ∈ Z̃∗
u,m, denote by H(X) as the set of all i ∈ [k] \ {y}

such that
∑

p∈Pvi,3−l
(X) zp ≥ 0.4− 1

100 log(k) where (i, l) ∈ MF .

Now, suppose 1− logity(F
(t), X) = E(X), with min(1, β) ≤ 2(1− 1

1+β), we have

min(1,
∑

i∈[k]\{y}
eF

(t)
i (X)−F (t)

y (X)) ≤ 2E(X)

By Claim 21 and our definition of H(X), this implies that

min(1,
∑

i∈H(X)
e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗) ≤ 4E(X).

If we denote by ψ = E(X,y)∼Z̃u,m
[1− logity

(
F (t), X

)
], then

E(X,y)∼Z̃u,m

[
min(1,

∑
i∈H(X)

e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗)

]
≤ O(ψ),

=⇒ E(X,y)∼Z̃u,m

[∑
i∈H(X)

min(
1

k
, e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗)

]
≤ O(ψ).

Notice that we can rewrite the LHS so that

E(X,y)∼Z̃u,m

[∑
j∈[k]

Ij=y

∑
i∈[k]

Ii∈H(X) min(
1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′)

]
≤ O(ψ),

=⇒
∑

j∈[k]

∑
i∈[k]

Ii ̸=yE(X,y)∼Z̃u,m

[
Ij=yIi∈H(X)

]
min(

1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′) ≤ O(ψ),

where (j, l′) ∈ MF . Note for every the probability for every i ̸= j ∈ [k], the probability of
generating a sample (X, y) ∈ Z̃∗

u,m with y = j and i ∈ H(X) is at least Ω̃(1k · s2

k2). This implies∑
i∈[k]\{j}

min(
1

k
, e

0.4Φ
(t)
i,3−l−Φ

(t)

j,3−l′) ≤ Õ

(
k3

s2
ψ

)
.

Then, with 1− 1
1+β ≤ min(1, β), we have for every (X, y) ∈ Z̃u,m,

1− logity(F
(t), X) ≤min(1,

∑
i∈[k]\{y}

2e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗)

≤k ·
∑

i∈[k]\{y}
min(

1

k
, e0.4Φ

(t)
i,3−l−Φ

(t)

y,3−l∗) ≤ Õ

(
k4

s2
ψ

)
.

(15)

Thus, we can see that when ψ ≤ 1
k4 is sufficiently small, we have for any i ∈ [k] \ {y}

e0.4Φ
(t)
i,3−l−Φ

(t)

y,3−l∗ ≤ 1

k
=⇒ 0.4Φ

(t)
i,3−l − Φ

(t)
y,3−l∗ ≤ −Ω(log(k)).

By symmetry and non-negativity of Φ(t)
i,3−l, we know for any (i, 3− l), (j, 3− l′) /∈ MF , we have:

0.4Φ
(t)
i,3−l − Φ

(t)
j,3−l′ ≤ −Ω(log(k)), Φ

(t)
i,3−l,Φ

(t)
j,3−l′ ≥ Ω(log(k)). (16)

Since (16) holds for any (i, 3 − l), (j, 3 − l′) /∈ MF at iteration t such that
E(X,y)∼Z̃m

[
1− logity

(
F (t), X

)]
≤ 1

k4 , and from Claim D.16 in Allen-Zhu & Li (2023) we
know (16) also holds for Φi,l,Φj,l′ for any (i, l), (j, l′) ∈ MF during learning Phase II, so we have

• for every (X, y) ∼ Zm, by Claim 21 we have

F (t)
y (X) ≥ 1 · Φy −O(

1

polylog(k)
) ≥ 0.4max

j ̸=y
Φj +Ω(log(k)) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• for every (X, y) ∼ Zs, suppose vy,l is its only semantic feature, by Claim 21 we have

F (t)
y (X) ≥ 1 · Φy,l −O(

1

polylog(k)
) ≥ Ω(log(k)),

F
(t)
j (X) ≤ O(Γ) · Φj,l +O(

1

polylog(k)
) ≤ O(1) for j ̸= y.

Therefore, we have

F (t)
y (X) ≥ max

j ̸=y
F

(t)
j (X) + Ω(log k).

Let T + T1 be the first iteration that E(X,y)∼Z̃u,m

[
1− logity

(
F (t), X

)]
≤ 1

k4 , then we know for

t ≥ T + T1 (16) always holds, since the objective L(t) = L
(t)
s + λL

(t)
u (λ = 1) is O(1)-Lipschitz

smooth and we are using full gradient descent, which means the objective value is monotonically
non-increasing. Since in Phase II, L(t)

s is kept at a small value, L(t)
u is monotonically non-increasing.

E.2 MAIN LEMMAS TO PROVE THE INDUCTION HYPOTHESIS 15

In this section, we show lemmas that when combined together, shall prove the Induction Hypothesis 15
holds for every iteration.

E.2.1 CORRELATION GROWTH

Lemma 29. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T . Then, letting Φ

(t)
i,l :=

∑
r∈[m][⟨w

(t)
i,r , vi,l⟩]+, we have for every i ∈ [k], l ∈ [2],

Φ
(t)
i,l ≤ Õ(1).

Proof. For every i ∈ [k] and every (i, l) ∈ MF , after the first stage, we have Φ
(T)
i,l ≤ Õ(1). In

the second stage, as in Semantic-Aware CutOut, the learned features (i, l) are masked and so the
correlations between gradients and learned features are kept small. This means that Φ(t)

i,l ≤ Õ(1)

holds true in learning Phase II for T < t ≤ T + T ′.

Then for the unlearned feature (i, 3− l), we suppose t > T + T1 is some iteration so that Φ(t)
i,3−l ≥

polylog(k). We will prove that if we continue from iteration t for at most T ′ iterations, we still have
Φ

(t)
i,3−l ≤ Õ(1). Based on Claim 19, we have that

⟨w(t+1)
i,r ,vi,3−l⟩

≤ ⟨w(t)
i,r , vi,3−l⟩+ ηE(X,y)∼Z̃u

[
Ii=y(E1 + E3 + Vi,r,3−l)(1− logiti(F

(t),A(X)))
]

≤ ⟨w(t)
i,r , vi,3−l⟩+O(η)E(X,y)∼Z̃u,m

[
Ii=y(1− logiti(F

(t),A(X)))
]
+O

(
ηρÑu,s

kÑu

)
.

This is because that when (X, y) ∼ Z̃u,m, we have Vi,r,3−l ≤ O(1) and when (X, y) ∼ Z̃u,s, we
have Vi,r,3−l ≤ O(ρ). For every (X, y) ∼ Z̃u,m, when y = i, we have

F
(t)
i (A(X)) ≥ Φ

(t)
i,3−l ·

∑
p∈Pvi,3−l

zp −O(
1

polylog(k)
) ≥ Φ

(t)
i,3−l −O(

1

polylog(k)
).

Then when j ̸= y and (j, l′) ∈ MF , we have

F
(t)
j (A(X)) ≤ Φ

(t)
j,3−l′ ·

∑
p∈Pv

j,3−l′
zp +O(

1

polylog(k)
) ≤ 0.4Φ

(t)
j,3−l′ +O(

1

polylog(k)
).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

So by (16), we have

1− logity(F ;A(X), y) ≤ 1

kΩ(log k)
.

Summing up over all r ∈ [m], we have

Φ
(t+1)
i,3−l ≤ Φ

(t)
i,3−l +

ηm

kΩ(log k)
+ Õ

(
ηρÑu,s

kÑu

)
.

Therefore, if we continue for T ′ iterations, we still have Φ
(T+T ′)
i,3−l∗ ≤ Õ(1).

E.2.2 OFF-DIAGONAL CORRELATIONS ARE SMALL

Lemma 30. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T . Then,

∀i ∈ [k],∀r ∈ [m],∀j ∈ [k] \ {i}, |⟨w(t)
i,r , vj,l⟩| ≤ Õ(σ0).

Proof. In Phase I when t ≤ T , from Lemma D.22 in Allen-Zhu & Li (2023), we have
|⟨w(t)

i,r , vj,l⟩| ≤ Õ(σ0). Now we consider Phase II when t > T , and denote by R
(t)
i :=

maxr∈[m],j∈[k]\{i} |⟨w
(t)
i,r , vj,l⟩|. According to Claim 19 and Claim 20, we have

R
(t+1)
i ≤R(t)

i + ηE(X,y)∼Z̃u

[
Iy=i(E2,i,r(X) + E1 + E3 + E4,j,l(X))(1− logiti(F

(t), X))
]

+ ηE(X,y)∼Z̃u

[
Iy ̸=i (E1 + E3 + E4,j,l(X)) logiti(F

(t), X)
]
.

For single-view data (X, y) ∼ Z̃u,s, by Claim 23, we have logiti(F
(t),A(X)) = O

(
1
k

)
for every

i ∈ [k]. In the following, we separate the process into T < t ≤ T + T0 and T + T0 < t ≤ T + T ′.

When T < t ≤ T + T0. During this stage, by Claim 23 we know logiti(F
(t), X) = O(1k)

(∀i ∈ [k]) for any (X, y) ∼ Z̃u. We also have E2,i,r(X) ≤ Õ(γ(Φ
(t)
i,3−l∗)

q−1) with (i, l∗) ∈
MF , and have E4,j,l(X) ≤ Õ(σ0)

q−1Ivj,l∈V(X) by definition. Recall when T < t ≤ T + T0, by

Claim 24, we have Φ
(t+1)
i,3−l∗ = Φ

(t)
i,3−l∗ + Θ̃

(
η
k

)
ReLU

′
(Φ

(t)
i,3−l∗), so

∑
T<t≤T+T0

η(Φ
(t)
i,3−l∗)

q−1 ≤
Õ(k). Also, Pr(vi,3−l∗ ∈ P(X)|i ̸= y) = s

k . Therefore, for every T < t ≤ T + T0 with
T0 = Θ̃(k

ησq−2
0

), we have

R
(t)
i ≤ R

(T)
i + Õ(σ0) + Õ

(η
k
T0

)(
(σq−1

0)γs+ (σ0γk)
q−1γP + (σ0)

q−1 s

k

)
≤ Õ(σ0).

When T + T0 < t ≤ T + T ′. During this stage, we have the naive bound on E2,i,r(X) ≤ γ, so
again by Claim 19 and Claim 20, we have

R
(t+1)
i ≤ R

(t)
i +

η

k
E(X,y)∼Z̃u

[
(γ + (σq−1

0)γs+ (σ0γk)
q−1γP + (σ0)

q−1 s

k
)(1− logiti(F

(t), X))
]
.

Therefore, by the upper bound on multi-view error in Claim 26 and Ñu,s

Ñu
≤ k2

ηsT ′ , we know R
(t)
i ≤

Õ(σ0) for T + T0 < t ≤ T + T ′.

E.2.3 NOISE CORRELATION IS SMALL

Lemma 31. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T . For every l ∈ [2], for every r ∈ [m], for every (X, y) ∈ Z̃u and i ∈ [k]:

(a) For every p ∈ Pvi,l(X), we have: |⟨w(t)
i,r , ξp⟩| ≤ õ(σ0).

(b) For every p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have: |⟨w(t)
i,r , ξp⟩| ≤ Õ(σ0).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(c) For every p ∈ [P] \ P(X), we have: |⟨w(t)
i,r , ξp⟩| ≤ Õ(σ0γk).

Proof. Based on gradient calculation Fact 16 and |⟨x′p′ , ξp⟩| ≤ Õ(σp) ≤ o(1√
d
) ifX ′ ̸= X or p′ ̸= p,

we have that for every (X, y) ∼ Z̃u and p ∈ [P], if i = y

⟨w(t+1)
i,r , ξp⟩ = ⟨w(t)

i,r , ξp⟩+ Θ̃(
η

Ñu

)ReLU
′
(⟨w(t)

i,r , xp⟩)(1− logiti(F
(t), X))± η√

d
.

Else if i ̸= y,

⟨w(t+1)
i,r , ξp⟩ = ⟨w(t)

i,r , ξp⟩ − Θ̃(
η

Ñu

)ReLU
′
(⟨w(t)

i,r , xp⟩)logiti(F
(t), X)± η√

d
.

Suppose that it satisfies that |⟨w(t)
i,r , xp⟩| ≤ A for every t < t0 where t0 is any iteration T ≤ t0 ≤

T + T ′. When T ≤ t ≤ T + T0, we have that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T)

i,r , ξp⟩+ Õ

(
T0ηA

q−1

Ñu

)
+
T0η√
d

≤ õ(σ0) + Õ

(
kAq−1

Ñuσ
q−2
0

)
+
T0η√
d
,

where the last step is because T0 = Θ̃(k

ησq−2
0

). When T + T0 ≤ t ≤ T + T ′, for multi-view data

(X, y) ∼ Z̃u,m, based on (15) in Claim 28, we can obtain that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T+T0)

i,r , ξp⟩+ Õ

(
k5Aq−1

s2Ñu

)
+

(T ′ − T0)η√
d

≤ Õ

(
kAq−1

Ñuσ
q−2
0

+
k5Aq−1

s2Ñu

)
+
T ′η√
d
.

For single-view data (X, y) ∼ Z̃u,s, we have that

⟨w(t)
i,r , ξp⟩ ≤ ⟨w(T+T0)

i,r , ξp⟩+ Õ

(
T ′ηAq−1

Ñu

)
+

(T ′ − T0)η√
d

≤ Õ

(
kAq−1

Ñuσ
q−2
0

+
T ′ηAq−1

Ñu

)
+
T ′η√
d
.

When p ∈ Pvi,l(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(1) from Induction Hypothesis 15. Then plug-

ging in A = Õ(1), Ñu ≥ Ω̃
(

k

σq−1
0

)
, Ñu ≥ Ω̃

(
k5

σ0

)
and Ñu ≥ ηT ′poly(k), we can obtain that

|⟨w(t)
i,r , ξp⟩| ≤ õ(σ0).

When p ∈ P(X) \ (Pvi,1(X) ∪ Pvi,2(X)), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0) from the Induction

Hypothesis 15. Then plugging in A = Õ(σ0), Ñu ≥ k5 and Ñu ≥ ηT ′poly(k), we can obtain that
|⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0).

When p ∈ [P] \ P(X), we have |⟨w(t)
i,r , xp⟩| ≤ Õ(σ0γk) from Induction Hypothesis 15. Then

plugging in A = Õ(σ0γk), Ñu ≥ k5 and Ñu ≥ ηT ′poly(k), we can obtain that |⟨w(t)
i,r , ξp⟩| ≤

Õ(σ0γk).

E.2.4 DIAGONAL CORRELATIONS ARE NEARLY NON-NEGATIVE

Lemma 32. Suppose Parameter 10 holds and suppose Induction Hypothesis 15 holds for all iteration
< t starting from T . Then,

∀i ∈ [k], ∀r ∈ [m], ∀l ∈ [2], ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proof. From Lemma D.27 in Allen-Zhu & Li (2023), we know ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0) for every

iteration t ≤ T . Now we consider any iteration t > T so that ⟨w(t)
i,r , vi,l⟩ ≤ −Ω̃(σ0). We start from

this iteration to see how negative the next iterations can be. Without loss of generality, we consider
the case when ⟨w(t′)

i,r , vi,l⟩ ≤ −Ω̃(σ0) holds for every t′ ≥ t. By Claim 19 and Claim 20,

⟨w(t+1)
i,r , vi,l⟩ ≥⟨w(t)

i,r , vi,l⟩+ ηE(X,y)∼Z̃u

[
Iy=i(Vi,r,l(X)− Õ(σpP))(1− logiti(F

(t), X))

− Iy ̸=i

(
E1 + E3 + Ivi,l∈P(X)Vi,r,l(X)

)
logiti(F

(t), X)
]

Recall by Induction Hypothesis 15(a),

Vi,r,l(X) =
∑

p∈Pvi,l
(X)

ReLU
′
(⟨w(t)

i,r , xp⟩)zp =
∑

p∈Pvi,l
(X)

ReLU
′
(⟨wi,r, vi,l⟩zp ± õ(σ0)) zp.

Since we have assumed ⟨w(t)
i,r , vi,l⟩ ≤ −Ω̃(σ0), so Vi,r,l(X) = 0, and we have

⟨w(t+1)
i,r , vi,l⟩ ≥⟨w(t)

i,r , vi,l⟩ − ηE(X,y)∼Z̃u

[
Iy=iÕ(σpP)(1− logiti(F

(t), X))

+ Iy ̸=i (E1 + E3) logiti(F (t), X)
]
.

(17)

We first consider every t ≤ T + T0. Using Claim 23 we have logiti(F
(t), X) = O

(
1
k

)
, which

implies

⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0)−O

(
ηT0
k

)
(E1 + E3) ≥ −Õ(σ0).

As for t > T+T0, combining with Claim 26 and the fact that logiti(F
(t), X) ≤ 1−logity(F

(t), X)
for i ̸= y, we have

⟨w(t)
i,r , vi,l⟩ ≥ ⟨w(T0)

i,r , vi,l⟩ − Õ(k)(E1 + E3) ≥ ⟨w(T0)
i,r , vi,l⟩ − Õ (σ0) ≥ −Õ(σ0).

E.2.5 PROOF OF INDUCTION HYPOTHESIS 15

Now we are ready to prove our Induction Induction Hypothesis 15, the proof is similar to Theorem
D.2 in Allen-Zhu & Li (2023).
Lemma 33. Under Parameter Assumption 10, for any m = polylog(k) and sufficiently small
η ≤ 1

poly(k) , our Induction Hypothesis 15 holds for all iterations t = T, T + 1, . . . , T + T ′.

Proof. At iteration t, we first calculate

∀p ∈ Pvj,l(X) : ⟨w(t)
i,r , xp⟩ = ⟨w(t)

i,r , vj,l⟩zp +
∑
v′∈V

αp,v′⟨w(t)
i,r , v

′⟩+ ⟨w(t)
i,r , ξp⟩, (18)

∀p ∈ [P] \ P (X) : ⟨w(t)
i,r , xp⟩ =

∑
v′∈V

αp,v′⟨w(t)
i,r , v

′⟩+ ⟨w(t)
i,r , ξp⟩. (19)

By Allen-Zhu & Li (2023) we already know Induction Hypothesis 15 holds at iteration t = T .
Suppose Induction Hypothesis C.3 holds for all iterations < t starting from T . We have established
several lemmas:

Lemma 29 =⇒ ∀i ∈ [k],∀r ∈ [m],∀l ∈ [2] : ⟨w(t)
i,r , vi,l⟩ ≤ Õ(1), (20)

Lemma 30 =⇒ ∀i ∈ [k],∀r ∈ [m],∀j ∈ [k] \ {i} : |⟨w(t)
i,r , vj,l⟩| ≤ Õ(σ0), (21)

Lemma 32 =⇒ ∀i ∈ [k],∀r ∈ [m],∀l ∈ [2] : ⟨w(t)
i,r , vi,l⟩ ≥ −Õ(σ0). (22)

• To prove 15(a), it suffices to plug (21), (22) into (18), use αp,v′ ∈ [0, γ], use |V| = 2k, and
use |⟨w(t)

i,r , ξp⟩| ≤ õ(σ0) from Lemma 31.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

• To prove 15(b), it suffices to plug (20), (21) into (18), use αp,v′ ∈ [0, γ], use |V| = 2k, and
use |⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0) from Lemma 31.

• To prove 15(c), it suffices to plug (20), (21) into (19), use αp,v′ ∈ [0, γ], use |V| = 2k, and
use |⟨w(t)

i,r , ξp⟩| ≤ Õ(σ0γk) from Lemma 31.

• To prove 15(d), it suffices to note that (20) implies Φ(t)
i,l ≤ Õ(1), and note that Claim 24

implies Φ(t)
i,l ≥ Ω(Φ

(0)
i,l) ≥ Ω̃(σ0).

• To prove15(e), it suffices to invoke (22).

E.3 PROOF OF THEOREM 13

During the proof of Induction Hypothesis 15, i.e., the proofs of Lemma 29 to Lemma 32, we need
the size of Ñu = |Z̃u| larger than ηT ′ · poly(k). As the probability that a sample X ∼ Zu after
SA-CutOut belongs to Z̃u is 1− 1

poly(k) (based on our definition of SA-CutOut and threshold τ), we
set the size of unlabeled dataset Nu ≥ ηT ′ · poly(k) in Parameter Assumption 10. Then recall our
training objective is

L(t) = L(t)
s + λL(t)

u = E(X,y)∼Zl
[− log logity(F

(t), X)] + EX∼Z̃u
[− log logitb(F

(t),A(X))].

From Allen-Zhu & Li (2023) we know E(X,y)∼Zl
[− log logity(F

(t), X)] ≤ 1
poly(k) at the end of

learning Phase I, and according to Claim 27 we now this continues to hold true during learning Phase
II. For EX∼Z̃u

[− log logitb(F
(t),A(X))], since we have for every data (X, y) ∼ Z̃u (y = b):

• if logity(F
(t),A(X)) ≥ 1

2 , then we know − log logity(F
(t),A(X)) ≤

O
(
1− logity(F

(t),A(X))
)
;

• if logity(F
(t),A(X)) ≤ 1

2 , this cannot happen for too many tuples (X, y, t) thanks to
Claim 26, and when this happens we have a naive bound − log logity(F

(t),A(X)) ∈
[0, Õ(1)] using Claim 23.

Therefore, by Claim 26, we know when T ′ ≥ poly(k)
η ,

1

T ′

∑T+T ′

t=T+T0

E(X,y)∼Z̃u

[
− log logity(F

(t), X)
]
≤ 1

poly(k)
.

Moreover, since we are using full gradient descent and the objective function is O(1)-Lipschitz
continuous, the objective value decreases monotonically. Specifically, this implies that

E(X,y)∼Z̃u
[1−logity(F

(T+T ′),A(X))] ≤ E(X,y)∼Z̃u
[− log logity(F

(T+T ′),A(X))] ≤ 1

poly(k)
.

for the last iteration T + T ′, which directly implies that the training accuracy is perfect.

As for the test accuracy, from Claim 28 and Claim D.16 in Allen-Zhu & Li (2023), we have for every
i, j ∈ [k],

Φ
(T+T ′)
i − 0.4Φ

(T+T ′)
j ≥ Ω(log(k)), Φ

(T+T ′)
i,1 ,Φ

(T+T ′)
i,2 ,Φ

(T+T ′)
j,1 ,Φ

(T+T ′)
j,2 ≥ Ω(log(k)).

This combined with the function approximation Claim 21 shows that with high probability
F

(T)
y (X) ≥ maxj ̸=y F

(T)
j (X) + Ω(log k) for every (X, y) ∈ Dm,Ds, which implies that the

test accuracy on both multi-view data and single-view data is perfect.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F PROOF FOR FIXMATCH

In this section, we consider proving Theorem 11 on FixMatch. In this case, the formulation of
strong augmentation A(·) is defined in (10). For (X, y) ∈ Z̃u,s with l̂(X) = l∗, the feature vy,l∗
is masked with the probability π2. When the patches of learned feature are masked, the left part
is pure noise. In this way, same as Claim 23, for every i ∈ [k], logiti(F

(t),A(X)) = O(1k), and
Vi,r,l = Ivi,l∈V(X)

∑
p∈Pvi,l

(X) ReLU
′
(⟨wi,r, xp⟩)zp = o(1

polylog(k)). When the patches of noises
are masked, the left part is semantic patches of feature vy,l∗ . Since we have already captured this
feature in learning Phase I, we have logity(F

(t),A(X)) ≥ 1 − Õ(1
s2). In both above cases, by

Claim 19 and Claim 20, the training samples (X, y) ∈ Z̃u,s contributes little to the weight update
process.

For multi-view data (X, y) ∈ Z̃u,m, when the patches of noises are masked with probability 1− π2,
since the learned feature vy,l∗ of Phase I is still in the data, we have logity(F

(t),A(X)) ≥ 1−Õ(1
s2).

When the patches of unlearned feature vy,3−l∗ are masked with probability π1π2 or (1 − π1)π2
(depending on the value of 3− l∗), the learned feature of Phase I is also still in the data. Thus we
also have logity(F

(t),A(X)) ≥ 1− Õ(1
s2). In this way, the loss on all data points (X, y) ∈ Z̃u,m

that belongs to the above two cases keeps small (≤ 1
poly(k)) and contributes negligible to the learning

of unlearned features in Phase II. Finally, when the patches of learned feature vy,l∗ are masked with
probability π1π2 or (1−π1)π2 (depending on the value of l∗), the remaining patches of feature vy,3−l∗

are unlearned and the approximation of initial loss on this part of samples is the same as Claim 23.
The loss on samples (X, y) ∼ Z̃u,m with learned features masked dominates the training objective in
learning Phase II, and the rest proof schedule is the same as the proof of SA-FixMatch. However, now
the size of data with learned features masked for class i ∈ [k] is either π1π2 · Ñ i

u or (1− π1)π2 · Ñ i
u.

Thus, similar to the proof of Theorem 13 and for the simplicity of notation, the requirement on the size
of unlabeled data for FixMatch should be Ñc ≥ ηT ′ ·poly(k)/min{π1π2, (1−π1)π2}. Accordingly,
we can derive that the relationship between the size of the unlabeled data in SA-FixMatch Nu and
FixMatch Nc is given by Nu = max{π1π2, (1− π1)π2}Nc.

G PROOF FOR FLEXMATCH, FREEMATCH, DASH, AND SOFTMATCH

Our analysis framework and theoretical results are also applicable to other FixMatch-like SSL, e.g.,
FlexMatch (Zhang et al., 2021a), FreeMatch (Wang et al., 2022b), Dash (Xu et al., 2021), and
SoftMatch (Chen et al., 2023), since the main difference is the choice of confidence threshold Tt
in unsupervised loss Eq. (5). Here we first introduce their choice of Tt and then explain how our
theoretical results in Sec. 4 can be generalized to their case.

FlexMatch (Zhang et al., 2021a) designs an adaptive class-specific threshold Tt = βt(b)τ at iteration
t, where βt(b) ∈ [0, 1] is the model’s prediction confidence for class b (L1 normalized). FreeMatch
(Wang et al., 2022b) replaces τ in FlexMatch with an adaptive τt, which is the average prediction
confidence of the model on unlabeled data and increases as the training progresses. SoftMatch uses
the average prediction confidence τt of the model as the threshold and sets the sample weight as 1.0
if logitb(F

(t), α(Xu)) ≥ τt, otherwise a smaller constant according to a Gaussian function. Dash
adopts the cross-entropy loss to design the indicator function I{− log logitb(F

(t),α(Xu))<ρt}, where ρt
decreases as training processes. This is equivalent to a dynamically increasing threshold Tt in Eq. (5).
Below we detail how our theoretical findings apply to each of these SSL algorithms.

FlexMatch (Zhang et al., 2021a) differentiates itself from FixMatch by modifying the constant
threshold τ to include an adaptive class-specific threshold βt(b) for each class b. Under our multi-
view data assumption as defined in Definition 7, the data distribution for each class is the same.
Consequently, as suggested by Claim 24 and Claim D.10 in Allen-Zhu & Li (2023), all classes
progress at a similar rate during training. This uniformity over all classes allows us to standardize
βt(b) = 1, ∀b ∈ [k], thereby aligning the proof for FlexMatch with that of FixMatch.

For FreeMatch (Wang et al., 2022b) and SoftMatch (Chen et al., 2023), instead of applying a large
constant threshold τ during the training process, they use an adaptive τt to involve more unlabeled
data with correctly-predicted pseudo-label in the training of the network. Under our multi-view

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

data assumption 7, the majority of the data in training dataset is of multi-view (with probability
1− 1

poly(k)), so we only consider the network’s prediction confidence for multi-view data to determine
τt. We set the adaptive threshold τt as follows:

τt=

{
maxX∈Zu,m

[logitb(F
(t), X)], t = T0,

βτt−1 + (1− β)maxX∈Zu,m
[logitb(F

(t), X)], t > T0,
(23)

where β is the momentum parameter, b = argmaxi logiti(F
(t), X), and T0 = Θ(k

ησq−2
0

). Here
we do not consider the unsupervised loss term Eq. (5) before T0-th iteration in our analysis, since
the model is bad at generating correct pseudo-label at the initial phase of training. We use max
function here to ensure the high quality of unlabeled data involved at each training step. After
T0-th iteration, according to Claim D.11 and Lemma D.22 in Allen-Zhu & Li (2023), the feature
correlations increase to Λ

(t)
i = Θ̃(1) for t ≥ T0, while the off-diagonal correlations ⟨wi,r, vj,l⟩

(i ̸= j) keep small at the scale of Õ(σ0). Denote Φ(t) = maxi∈[k],l∈[2] Φ
(t)
i,l , recall from Claim D.9

in Allen-Zhu & Li (2023), for every X ∈ argmaxX∈Zu,m
[logitb(F

(t), X)] with ground truth label

y, we have F (t)
j (X) ≤ 0.8001Φ(t) for j ̸= y and F (t)

y (X) ≥ 0.9999Φ(t) with probability at least

1− e−Ω(log2 k). Accordingly, we have F (t)
y (X) ≥ maxj ̸=y F

(t)
j (X) + Θ̃(1), which means that F (t)

can correctly classify the unlabeled data with high probability (i.e., b = y). Therefore, when t ≥ T0,
both the supervised loss Eq. (4) and unsupervised loss Eq. (5) take effect. Same as in Sec. 4, we use
Φ

(t)
i,l here to monitor the feature learning process. For (i, l) ∈ MF , feature vi,l is partially learned

during the first T0 iterations in that Φ(T0)
i,l = Θ̃(1) < Ω(log(k)), while feature vi,3−l is missed in that

Φ
(T0)
i,3−l = Õ(σ0) ≪ Θ̃(1). Start from T0, feature vi,l is continued to be better learned with the help

of supervised loss and unsupervised loss until Φ(t)
i,l ≥ Ω(log k), and feature vi,3−l start to be learned

with the help of unsupervised loss. We can analyze this feature learning process using a similar
approach as in Sec. E. The key intuition for the extension of the proof of FixMatch to FreeMatch
and SoftMatch is that by setting an adaptive confidence threshold, the learning process of unlearned
features begin at T0 instead of T = O(poly(k)/η) > T0 in FixMatch.

For Dash, it uses cross-entropy loss as the threshold indicator function rather than prediction confi-
dence I{− log logitb(F

(t),α(Xu))<ρt}, where ρt decreases as the training progresses. Since we have

− log logitb(F
(t), α(Xu)) < ρt ⇐⇒ logitb(F

(t), α(Xu)) > e−ρt ,

we can set ρt = − log τt and the rest of the analysis is the same as in SoftMatch and FreeMatch.

H EFFECT OF STRONG AUGMENTATION ON SUPERVISED LEARNING

In this section, we show why using strong augmentation with probabilistic feature removal effect,
such as CutOut, in supervised learning (SL) has minimal alternation to the feature learning process. In
SL, strong augmentation A(·) is utilized at the start of training, before any feature has been effectively
learned, corresponding to Phase I of SSL. According to Assumption 9, A(·) randomly removes its
semantic patches and noisy patches with probabilities of π2 and 1 − π2, respectively. Then for a
single-view image, its only semantic feature is masked with probability π2. For a multi-view image,
one of the two features, vi,1 or vi,2 is masked with probabilities π1π2 and (1− π1)π2, respectively.
Thus, the size of single-view data in training dataset Zl is increased, as A(·) transfers π2Nl,m

multi-view samples to single-view.

However, π2 ∈ (0, 1) is small, since based on our data assumption in Def. 7, the number of
patches associated with certain semantic feature is constant Cp while the total number of patches is
P = k2. Therefore, when we do random masking in A(·) (usually masks 1/4 of all patches), we can
approximate π2 as (Cp/P)

Cp , which is O(1/kCp) based on our definition of A(·) in Eq. (10).

Consequently, strong augmentation A(·) only slightly increases the proportion of single-view data,
and the majority of the training dataset remains multi-view, which dominates the supervised training
loss Eq. (4) since no feature has been learned. The assumptions on the number of labeled single-
view data Nl,s ≤ õ(k/ρ) and Nl ≥ Nl,s · poly(k) still hold after strong augmentation A(·). Thus,
according to Allen-Zhu & Li (2023) and Appendix B, the network learns one feature per class to

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

correctly classify the majority multi-view data due to "view lottery winning", and memorizes the
single-view data without learned feature during the training process of SL. We also validate the
limited effect of CutOut on SL through experimental results in Appendix K.3.

I COMPARISON WITH PIONEERING WORK

While this work follows the data assumption and proof framework of Allen-Zhu & Li (2023), analysis
of the feature learning process is significantly different. Firstly, this work focuses on SSL, where
supervised loss on labeled data and unsupervised loss on unlabeled data result in rather different
feature learning processes compared with supervised distillation loss on only labeled data in Allen-
Zhu & Li (2023). Secondly, SSL uses the on-training model as an online teacher which varies along
training iterations, while the SL setting in Allen-Zhu & Li (2023) uses a well-trained and fixed model
as an offline teacher. Indeed, the online teacher in SSL setting is more challenging to analyze, as the
evolution of its performance is harder to characterize, and has a rather different learning process.

J (SA-)FIXMATCH ALGORITHM

In this section, we present the detailed algorithm framework for FixMatch (Sohn et al., 2020) and
SA-FixMatch. At iteration t, we first sample a batch of B labeled data X (t) from labeled dataset Zl,
and a batch of µB unlabeled data U (t) from unlabeled dataset Zu. Then, according to Algorithm 1,
we calculate the loss for current iteration, and use it for the update of the neural network model F (t).
The only difference between FixMatch and SA-FixMatch is in line 6, where FixMatch adopts CutOut
in its strong augmentation of unlabeled data A, while SA-FixMatch adopts SA-CutOut.

Algorithm 1 (SA-)FixMatch algorithm.

1: Input: Labeled batch X (t) = {(Xi, yi) : i ∈ (1, . . . , B)}, unlabeled batch U (t) =
{Ui : i ∈ (1, . . . , µB)}, confidence threshold τ , unlabeled data ratio µ, unlabeled loss weight λ.

2: L(t)
s = 1

B

∑B
i=1

(
− log logityi

(F (t), α(Xi))
)

{Cross-entropy loss for labeled data}
3: for i = 1 to µB do
4: vi = argmaxj{logitj(F (t), α(Ui))} {Compute prediction after applying weak data augmen-

tation of Ui}
5: end for
6: L(t)

u = 1
µB

∑µB
i=1

(
−I{logitvi (F (t),α(Ui))≥τ} log logitvi(F

(t),A(Ui))
)

{Cross-entropy loss
with pseudo-label and confidence for unlabeled data}

7: return: L(t)
s + λL

(t)
u

K EXPERIMENTAL DETAILS

K.1 EFFECT OF STRONG AUGMENTATION

In this section, we conduct experiments to evaluate the impact of different strong augmentation
operations employed in FixMatch (Sohn et al., 2020). We assess their effects by applying these
strong augmentations to test images and observing the resulting changes in test accuracy. To ensure a
fair comparison, we train neural networks using weakly-augmented labeled data, where the weak
augmentation consists of a random horizontal flip and a slight extension of the image around its edges
before cropping the main portion. Subsequently, we apply a single strong augmentation operation at a
time to the test dataset and record the corresponding test accuracy on the pretrained model. The pool
of strong augmentation operations from RandAugment (Cubuk et al., 2020) includes: Colorization,
Equalize, Posterize, Solarize, Rotate, Sharpness, ShearX, ShearY, TranslateX, and TranslateY. The
experimental results are summarized in Tables 5 and 6.

From Tables 5 and 6, we observe that CutOut is the strong augmentation operation with the most
significant impact on model performance. Additionally, transformations such as Solarize and Equalize
from RandAugment also have a noticeable effect on model performance. To better understand the
influence of these transformations on input images, we visualize the effects of CutOut, Solarize,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Original CutOut ShearX Solarize TranslationX
80.95 38.67 78.38 52.70 80.69

Sharpness Posterize Equalize Rotate Color
72.99 76.17 60.14 67.97 69.71

Table 5: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on CIFAR-100.

Original CutOut ShearX Solarize TranslationX
86.44 62.94 85.01 78.94 84.44

Sharpness Posterize Equalize Rotate Color
82.17 86.19 80.74 82.29 84.34

Table 6: Pretrained model test accuracies (%) with different strong augmentation operations for test
images on STL-10.

and Equalize on CIFAR-100 images in Figure 3. From the first and second rows of Figure 3, we
can see that both CutOut and Solarize have the potential to remove semantic features by masking
parts of the images. From the third row of Figure 3, we observe that Equalize tends to remove color
features of images while retaining shape features. In all cases, these effective strong augmentation
operations have the potential to remove partial semantic features. Therefore, in Assumption 3 for
strong augmentation A(·), we focus on its probabilistic feature removal effect.

Figure 3: Visualization of the effects of CutOut (first row), Solarize (second row), and Equalize (third
row) on CIFAR-100 images.

K.2 EFFECT OF WEAK AUGMENTATION

Since weak augmentation consists only of a random horizontal flip and a random crop with a small
padding of 4 pixels, followed by cropping the padded image back to the original size, it minimally
alters the semantic features of the image. This allows us to treat weak augmentation α(·) as an
identity mapping for our theoretical analysis in Sec. 4. In this section, we conduct experiments
by training FixMatch without weak augmentation on CIFAR-100 with 10000 labeled samples and
STL-10 with 1000 labeled samples, comparing the test performance to that of the original FixMatch.
As shown in Table 7, weak augmentation does not significantly impact the model’s performance.

K.3 COMPARISON OF CUTOUT IN SL AND FIXMATCH

Data augmentation operations like CutOut can help supervised learning (SL), but cannot improve as
much as in deep SSL with limited labeled data. On STL-10 dataset with 40 labeled data, when we
remove CutOut from SL, the test accuracy (%) does not drop a lot as shown in Table 8. In contrast,
removing CutOut from the strong augmentation A(·) in FixMatch’s unsupervised loss L(t)

u leads to a
severe performance degradation.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Dataset STL-10 CIFAR-100
Weak Augmentation 92.65 77.27
No Weak Augmentation 91.83 77.19

Table 7: Comparison of test accuracies (%) of FixMatch with and without weak augmentation.

Method SL FixMatch
CutOut 23.98 68.30
No CutOut 22.88 53.64

Table 8: Comparison of test accuracies (%) of SL and FixMatch with and without CutOut.

K.4 DATASET STATISTICS

For each experiment in Sec. 5, following Sohn et al. (2020); Zhang et al. (2021a); Xu et al. (2021);
Wang et al. (2022b); Chen et al. (2023), we randomly select image-label pairs from the entire training
dataset according to labeled data amount, set images from the whole training dataset without labels as
unlabeled dataset, and we use the standard test dataset. The table below details data statistics across
different datasets.

Dataset Total Training Data Total Labeled Data in Training Data Test Data
STL-10 105000 5000 8000

CIFAR-100 50000 50000 10000
ImageWoof 9025 9025 3929
ImageNet 1281167 1281167 50000

Table 9: Summary of Datasets.

K.5 TRAINING SETTING AND HYPER-PARAMETERS

All the experiments are conducted on four RTX 3090 GPU (24G memory). Due to limited resources,
we did not train the models for 1024 epochs with 1024 iterations per epoch (in total 220 iterations) as
in Sohn et al. (2020), but run 150 epochs with 2048 iterations per epoch (in total 307200 iterations).
According to our experimental results in Sec. 5, the test accuracy results of our training setting
approximates the results obtained by Sohn et al. (2020). For the experiments on FixMatch, our
code is based on Kim (2020); for all other experiments, our code is based on Wang et al. (2022a).
Each individual SSL experiment requires 48 to 120 hours to complete on a single RTX 3090 GPU,
depending on the model and dataset.

For CIFAR-100, STL-10, Imagewoof, and ImageNet, their input image size are respectively 32× 32,
96×96, 96×96, 224×224 and their mask size in CutOut are respectively 16×16, 48×48, 48×48,
112 × 112. For the application of SA-CutOut, according to our theoretical analysis in Sec. 4 and
Appendix G, we only need it after partial feature already been learned to learn comprehensive features
in the dataset. Therefore, in practice, we only apply SA-CutOut to deep SSL methods in the last 32
epochs of training, and the total running time of SA-FixMatch is roughly 1.15 times of FixMatch.

For hyper-parameters, we use the same setting following FixMatch (Sohn et al., 2020). Concretely,
the optimizer for all experiments is standard stochastic gradient descent (SGD) with a momentum
of 0.9 (Sutskever et al., 2013). For all datasets, we use an initial learning rate of 0.03 with a cosine
learning rate decay schedule (Loshchilov & Hutter, 2016) as η = η0 cos

(
7πk
16K

)
, where η0 is the

initial learning rate, k is the current training step and K is the total training step that is set to 307200.
We also perform an exponential moving average with the momentum of 0.999. The hyper-parameter
settings are summarized in Table 10.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Dataset CIFAR-100 STL-10 Imagewoof ImageNet
Model WRN-28-8 WRN-37-2 WRN-37-2 ResNet-50

Weight Decay 1e-3 5e-4 5e-4 3e-4
Batch Size 64 128

Unlabeled Data Raion µ 7 1
Threshold τ 0.95 0.7

Learning Rate η 0.03
SGD Momentum 0.9
EMA Momentum 0.999

Unsupervised Loss Weight λ 1

Table 10: Complete hyperparameter setting.

K.6 SAMPLES IN CIFAR-100, STL-10, IMAGEWOOF, AND IMAGENET

As we can observe from Figure 4, for images in CIFAR-100 and STL-10, the semantic subject in the
image occupies the majority of the image. On the other hand, for images in Imagewoof and ImageNet
dataset, most semantic subject only occupies less than a quarter of the image.

Figure 4: Samples from CIFAR-100, STL-10, Imagewoof, and ImageNet datasets. Samples in the
first row are from CIFAR-100, samples in the second row are from STL-10, samples in the third row
are from Imagewoof, and samples in the last row are from ImageNet.

K.7 SAME TRAINING DATASET FOR SL AND SA-FIXMATCH

With the same labeled training dataset D, SSL still outperforms SL both theoretically and empirically.
In this setting, SL uses D for supervised training, while SSL uses D as its labeled dataset and
simultaneously treats the label-ignored D as its unlabeled dataset.

Theoretically, our analysis for SA-FixMatch can be extended to this scenario where SL and SSL
share the same data. This is because SA-FixMatch assumes that the strong augmentation ASA(·)
deterministically removes semantic features learned during Phase I from the unlabeled images (see
Appendix E). As a result, even with the same labeled and unlabeled dataset, SA-FixMatch can
still exploit the two-phase feature learning process to learn a more comprehensive set of semantic
features compared to SL, ultimately achieving better generalization performance. This conclusion is
rigorously supported by our proof in Appendix E.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

To validate this theory empirically, we conducted experiments comparing SA-FixMatch with SL
under controlled settings. Following the experimental protocols of our manuscript and FixMatch,
we trained WRN-28-8 on CIFAR-100 with 10,000 labeled samples and WRN-37-2 on STL-10 with
1,000 labeled samples. In both cases, SL and SA-FixMatch shared the same labeled dataset D, with
SA-FixMatch treating the label-ignored D as unlabeled dataset.

The test accuracy (%) results in Table 11 demonstrate that SA-FixMatch significantly outperforms SL
even when both using the same training dataset. This not only highlights the superiority of SSL over
SL but also further validates our theoretical insights.

CIFAR-100 STL-10
SL 63.48 67.29
SA-FixMatch 68.30 79.74

Table 11: Test accuracy (%) of SL and SA-FixMatch with same training dataset.

38

	Introduction
	Related Works
	Problem Setup
	Multi-View Data Distribution
	FixMatch for Training Neural networks

	Main Results
	Results on Test Performance
	Results on Feature Learning Process
	Semantic-Aware FixMatch

	Experiments
	Classification Results
	Semantic Feature Learning
	SA-CutOut on FixMatch Variants
	Ablation Study

	Conclusion
	Theorem Statement
	Results on Supervised Training
	Induction Hypothesis
	Gradient Calculations and Function Approximation
	Proof for Semantic-Aware FixMatch
	Useful Claims
	Main lemmas to prove the Induction Hypothesis 15
	Correlation Growth
	Off-Diagonal Correlations are Small
	Noise Correlation is Small
	Diagonal Correlations are Nearly Non-Negative
	Proof of Induction Hypothesis 15

	Proof of Theorem 13

	Proof for FixMatch
	Proof for FlexMatch, FreeMatch, Dash, and SoftMatch
	Effect of Strong Augmentation on Supervised Learning
	Comparison with Pioneering Work
	(SA-)FixMatch Algorithm
	Experimental Details
	Effect of Strong Augmentation
	Effect of Weak Augmentation
	Comparison of CutOut in SL and FixMatch
	Dataset Statistics
	Training Setting and Hyper-parameters
	Samples in CIFAR-100, STL-10, Imagewoof, and ImageNet
	Same Training Dataset for SL and SA-FixMatch

