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ABSTRACT

In Vertical Federated Learning, a server coordinates a group of

clients to perform forward and backward propagation through a

neural network. The server and clients exchange intermediate em-

bedding and gradient data, which results in high communication

cost. Traditional approaches trade off the amount of data exchanged

with the model accuracy. In this work, we propose the SparseVFL

algorithm in order to reduce the amount of exchanged data, while

maintaining the model accuracy. In both the forward and backward

propagation, SparseVFL makes sparse embeddings and gradients

based on the combination of ReLU activation, L1-norm of embed-

ding vectors, masked-gradient, and run-length coding. Our simu-

lation results show that SparseVFL outperforms existing methods.

SparseVFL can reduce the data size by 68–81% and the training time

by 63% at a communication throughput of 10 Mbps between the

server and clients.

CCS CONCEPTS

• Computing methodologies→ Neural networks; Distributed

algorithms; • Networks→ Cloud computing.
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1 INTRODUCTION

Federated Learning (FL) has attracted a lot of attention in recent

years, for secure use of private data held on thousands of mobile

devices or held across tens or hundreds of organizations [14, 25].

In Vertical Federated Learning (VFL) [23], clients can have dis-

tributed different features and a server can have labels as long as

they have a common sample set. The server coordinates a group of

the clients to perform forward and backward propagation through

a neural network. In forward propagation, each client uploads the

embedding vectors to the server. In backward propagation, the

server returns the gradient vectors to each client. This process is

repeated to minimize the loss.

A key challenge for VFL is to reduce the communication costs,

which can be achieved by reducing the data size (i.e., embeddings

and gradients) exchanged between the server and clients. Reducing

the data size also leads to a reduction in the overall training time.

In this work, we focus on the sparsification of embedding and

gradient vectors to reduce communication costs, and propose a

communication-efficient VFL scheme called SparseVFL. We hypoth-

esize that sparsification, i.e., increasing the number of zeros, would

allow for significant data reduction through run-length coding.

SparseVFL achieves data reduction by simply making partial mod-

ifications to the neural networks and loss function that make up

the VFL.

2 RELATEDWORKS

Data Size. Run-length coding [16] and Huffman coding [12] and

basic approaches to data size reduction. Quantization also reduces

data size and training time while maintaining model quality [6, 24],

however, a shorter bit length causes quantization errors. Retaining

only a limited number of gradient elements that are considered im-

portant, such as elements whose absolute magnitude is in the top-k,

can reduce data size while maintaining model quality [15, 17, 18, 22].

These approaches discard small gradients and may degrade accu-

racy. Dimension reduction directly reduces the data size. Khan et
al. [13] apply PCA or autoencoder to the client input data and sends

the embedding to the server only once. Feng et al. [9] select impor-

tant features by adding the L2,1-norm of the model parameters to

the loss function, and this feature selection process is performed

inside the client by using locally predicted labels. However, these

approaches [9, 13] do not necessarily optimize the entire model

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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consisting of the client and server models. Another approach is

to reduce the number of clients communicating with the server

by evaluating the contribution of each client [8, 21], however, it

doesn’t reduce the data size for the clients with high contribution.

Reuse. Communication costs can be reduced by reusing old em-

beddings. Chen et al. [3] propose asynchronous VFL, where clients
upload embeddings asynchronously, and the server uses the latest

embeddings for active clients and the old embeddings for inactive

clients. Fu et al. [10] propose CELU-VFL, where the server caches
embeddings and gradients from the previous round and reuses

such old data for some rounds. These approaches would slow down

the convergence, however, they can be integrated with the data

size reduction methods mentioned above, including our proposed

method.

Methods under Different Assumptions. C-VFL [2] assumes

that embeddings, labels, and server model parameters are shared

among all parties, including from one client to another client, so

that each client model can be trained in the local iterations in

each global round without additional communication costs. Xing et
al. [4] reduces communication costs by using asynchronous training

and quantization over the SplitNN model [11], where one client

sends the latest client model parameters to the other client. C-

VFL and SplitNN-based approaches are not fairly comparable to

our proposed method because they make different information

management assumptions than our work. Our assumptions are

described in Section 3.1.

3 VERTICAL FEDERATED LEARNING
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Figure 1: VFL architecture.

Figure 1 shows a typical VFL architecture. Let𝑀 be the number

of clients, and each client𝑚 ∈ [1, 𝑀] has 𝑁 samples in the same

order. 𝑁 can be regarded as either the total number of samples

or the batch size. Each sample 𝑛 ∈ [1, 𝑁 ] has a feature vector

x𝑛,𝑚 ∈ R𝐷𝑥,𝑚
stored in client𝑚, where 𝐷𝑥,𝑚 is a dimension of the

feature vector.

In the forward-propagation, a client model ℎ𝑚 parameterized by

𝜃𝑚 maps the input feature vector x𝑛,𝑚 into an embedding vector

h𝑛,𝑚 ∈ R𝐷ℎ,𝑚
, i.e., h𝑛,𝑚 := ℎ𝑚 (𝜃𝑚 ; x𝑛,𝑚), where 𝐷ℎ,𝑚 is a dimen-

sion of the embedding vector. Meanwhile, a server model ℎ0 param-

eterized by 𝜃0 maps the set of embedding vectors {h𝑛,1, ..., h𝑛,𝑀 }
into a predicted vector ỹ𝑛 ∈ R𝐷𝑦

, i.e., ỹ𝑛 := ℎ0 (𝜃0;h𝑛,1, ..., h𝑛,𝑀 ).
Then, using a label vector y𝑛 ∈ R𝐷𝑦

, the server minimizes a loss

function 𝐿 := 1

𝑁

∑𝑁
𝑛=1 𝑙 (𝜃0, h𝑛,1, ..., h𝑛,𝑀 ; y𝑛).

In the back-propagation, the server sends the following gradient

vector for h𝑛,𝑚 to client𝑚.

𝜕𝐿

𝜕h𝑛,𝑚
=

[
𝜕𝐿

𝜕ℎ𝑛,𝑚,1
, ...,

𝜕𝐿

𝜕ℎ𝑛,𝑚,𝐷ℎ,𝑚

]
∈ R𝐷ℎ,𝑚

(1)

Once client𝑚 gets the gradient 𝜕𝐿/𝜕h𝑛,𝑚 , client𝑚 computes an-

other gradient 𝜕ℎ𝑛,𝑚,𝑘/𝜕𝜃𝑚 and combines the two gradients to

compute the other gradient 𝜕𝐿/𝜕𝜃𝑚 by using chain rule.

𝜕𝐿

𝜕𝜃𝑚
=

𝑁∑︁
𝑛=1

𝜕𝐿

𝜕ℎ𝑛,𝑚,𝑘

𝜕ℎ𝑛,𝑚,𝑘

𝜕𝜃𝑚
(2)

Each party, server or client, has its own optimizer, and the optimizer

updates the model parameter 𝜃0 or 𝜃𝑚 based on its gradients.

3.1 Information Management Assumptions

To reduce the risk of privacy leakage among clients and to reduce

the system complexity at the clients, this work assumes a server-

centric star network as shown in Figure 1, where clients trust with

servers, but clients do not trust with other clients because they may

be competitors of each other. In this work, available information is

defined as follows: (1) each party shares sample indices 𝑛 (e.g., user

id) and the number of samples 𝑁 among all parties through the

server, (2) each client𝑚 shares dimension 𝐷ℎ,𝑚 and embeddings

h𝑛,𝑚 only with the server, and (3) the server shares gradients
𝜕𝐿

𝜕h𝑛,𝑚
only with client𝑚. Except for information necessary to synchronize

training, the exchange of other information (e.g., labels, features,

model parameters) and the use of other communication channels

are prohibited.

4 SPARSEVFL

In this section, we explain the SparseVFL algorithm
1
, including

embedding sparsification, gradient sparsification, and coding. Al-

gorithm 1 shows the workflow of SparseVFL, including training,

coding, and communication steps.

4.1 Embedding Sparsification

ReLU activation produces sparse embeddings by replacing all neg-

ative values with zeros. Other activation functions, e.g., SELU or

ELU, retain negative values. Let 𝜎 (·) ≥ 0 be the ReLU activation,

an embedding vector h𝑛,𝑚 is represented as follows:{
𝑥 > 0 ⇒ 𝜎 (𝑥) = 𝑥, 𝜕𝜎/𝜕𝑥 = 1

𝑥 ≤ 0 ⇒ 𝜎 (𝑥) = 0, 𝜕𝜎/𝜕𝑥 = 0

(3)

h𝑛,𝑚 =[ℎ𝑛,𝑚,1, ..., ℎ𝑛,𝑚,𝐷ℎ
]

=[𝜎 (𝜃𝑚,1 (x𝑛,𝑚)), ..., 𝜎 (𝜃𝑚,𝐷ℎ,𝑚
(x𝑛,𝑚))], (4)

where 𝜃𝑚,𝑘 is a function. This ReLU activation is included in the

fwdSparseEmb function at Line 7 in Algorithm 1. Client𝑚 sparsifies

h𝑛,𝑚 and sends E′𝑚 = {ℎ𝑛,𝑚,𝑘 |ℎ𝑛,𝑚,𝑘 > 0} to the server, instead of

1
https://github.com/docomoinnovations/SparseVFL
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Algorithm 1: SparseVFL

1 Input:x1, ..., x𝑀 , y
2 Parameter: 𝜆,𝑄

3 Output: server 𝑠𝑣 , list of clients 𝑐𝑙

4 while not converged do

5 for each 𝑐𝑙𝑚 ∈ 𝑐𝑙 do in parallel

6 // Client

7 E𝑚 ← 𝑐𝑙𝑚 .fwdSparseEmb(x𝑚)

8 E′𝑚,H𝑚,T𝑚 ← 𝑐𝑙𝑚 .encode(E𝑚, 𝑄)

9 𝑐𝑙𝑚 .storage.save(H𝑚,T𝑚)

10 𝑐𝑙𝑚 .send(𝑚, E′𝑚,H𝑚,T𝑚)

11 // Server

12 E′𝑚,H𝑚,T𝑚 ← 𝑠𝑣 .receive(𝑚)

13 E𝑚 ← 𝑠𝑣 .decode(E′𝑚,H𝑚,T𝑚, 𝑄)

14 𝑠𝑣 .storage.save(𝑚, E𝑚,H𝑚,T𝑚)

15 end for

16 // Server

17 ỹ← 𝑠𝑣 .forward(𝑠𝑣 .storage)

18 𝑙 ← 𝑠𝑣 .loss(ỹ, y)+𝜆 × 𝑠𝑣 .normL1(𝑠𝑣 .storage)

19 for each 𝑐𝑙𝑚 ∈ 𝑐𝑙 do in parallel

20 // Server

21 G𝑚 ← 𝑠𝑣 .backward(𝑙,𝑚)

22 H𝑚,T𝑚 ← 𝑠𝑣 .storage.load(𝑚)

23 G′𝑚 ← 𝑠𝑣 .encSparseGrad(G𝑚,H𝑚,T𝑚, 𝑄)

24 𝑠𝑣 .send(𝑚,G′𝑚)

25 // Client

26 G′𝑚 ← 𝑐𝑙𝑚 .receive()

27 H𝑚,T𝑚 ← 𝑐𝑙𝑚 .storage.load()

28 G𝑚 ← 𝑐𝑙𝑚 .decode(G′𝑚,H𝑚,T𝑚, 𝑄)

29 𝑐𝑙𝑚 .backward(G𝑚)

30 end for

31 end while

E𝑚 = {ℎ𝑛,𝑚,𝑘 }, where |E′𝑚 | ≤ |E𝑚 | holds, where | · | is the number

of elements.

Unlike the typical L1-regularization [9, 20], which adds the L1-

norm of the model parameters | |𝜃𝑚 | |1 to produce sparse model

parameters, SparseVFL adds the L1-norm of the embedding vec-

tors | |h𝑛,𝑚 | |1 to the loss function and produces sparse embedding

vectors as output. Our loss function is written as

𝐿 :=
1

𝑁

𝑁∑︁
𝑛=1

𝑙 (𝜃0, h𝑛,1, ..., h𝑛,𝑀 ; y𝑛) +
𝜆

𝑀𝑁

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

| |h𝑛,𝑚 | |1, (5)

where 𝜆 is a hyperparameter to control embedding sparsity. Equa-

tion 5 is at Line 18 in Algorithm 1.

4.2 Gradient Sparsification

In back-propagation, a gradient element 𝜕𝐿/𝜕ℎ𝑛,𝑚,𝑘 corresponding

to an embedding element ℎ𝑛,𝑚,𝑘 = 0 can be ignored. We call this

masked-gradient. Masked-gradient is implemented in the enc-

SparseGrad function at Line 23 in Algorithm 1. Typical optimizers

such as Adam, SGD, and RMSprop [19] can use masked-gradient

for the following reason.

Proof. According to Equations 3 and 4, under the condition

that ReLU is used in the last layer of the client model, the gradient

element corresponding to the embedding element ℎ𝑛,𝑚,𝑘 at the

parameter 𝜃𝑚 is represented as follows.

𝜃𝑚,𝑘 (x𝑛,𝑚) > 0⇒ ℎ𝑛,𝑚,𝑘 > 0,
𝜕ℎ𝑛,𝑚,𝑘

𝜕𝜃𝑚
∈ R (6)

𝜃𝑚,𝑘 (x𝑛,𝑚) ≤ 0⇒ ℎ𝑛,𝑚,𝑘 = 0,
𝜕ℎ𝑛,𝑚,𝑘

𝜕𝜃𝑚
= 0 (7)

Therefore, Equation 2 sums up for the subset {𝑛 |ℎ𝑛,𝑚,𝑘 > 0}.

𝜕𝐿

𝜕𝜃𝑚
=

∑︁
𝑛∈{𝑛 |ℎ𝑛,𝑚,𝑘>0}

𝜕𝐿

𝜕ℎ𝑛,𝑚,𝑘

𝜕ℎ𝑛,𝑚,𝑘

𝜕𝜃𝑚
(8)

In other words, instead of G𝑚 = {𝜕𝐿/𝜕ℎ𝑛,𝑚,𝑘 }, the server can just

return masked-gradient G′𝑚 = {𝜕𝐿/𝜕ℎ𝑛,𝑚,𝑘 |ℎ𝑛,𝑚,𝑘 > 0} to each

client𝑚, where |G′𝑚 | ≤ |G𝑚 | holds. □

4.3 Coding

We propose an efficient coding scheme for SparseVFL based on

run-length coding [16]. Figure 2 shows the coding procedure as

an example. First, we traverse the matrix of the embedding batch

vertically (or horizontally), with indexing from 0 to 𝐷ℎ,𝑚𝑁 , and

reshape the matrix into a list. Then we extract the head indices,

where non-zero values start, and the tail indices, where zero values

start. The minimum information needed for decoding is as follows:

• Common in both forward and backward

– 𝑁 : #Samples of the batch (𝑞0-bit int scalar)

– 𝐷ℎ,𝑚 : Dimension of the batch (𝑞1-bit int scalar)

• In forward

– E′𝑚 : Non-zero embedding values (𝑄-bit float array)

– H𝑚 : Head indices (𝑞2-bit int array)

– T𝑚 : Tail indices (𝑞2-bit int array)

• In backward

– G′𝑚 : Masked-gradient values (𝑄-bit float array)

Here, 𝑞0 = ⌈log
2
(𝑁 )⌉, 𝑞1 = ⌈log

2
(𝐷ℎ,𝑚)⌉, 𝑞2 = ⌈log

2
(𝐷ℎ,𝑚𝑁 )⌉,

and 𝑄 is a hyperparameter. In the example of Figure 2, the original

data (E𝑚 , G𝑚) has 16 elements, while, the encoded data (E′𝑚 , H𝑚 ,

T𝑚 , G′𝑚) has only 11 elements in total. In Algorithm 1, these coding

methods are defined at Lines 8, 13, 23 and 28.

4.4 Communication Costs

Let 𝐼 be the number of epochs, the data size 𝑆𝑚 [byte] transferred

between the server and client𝑚 for 𝐼 epochs is represented by the

following equations. For the original VFL (Algorithm 𝛼),

𝑆
(𝛼 )
𝑚 =


2|E𝑚 |𝐼𝑄/8 (train)
|E𝑚 |𝐼𝑄/8 (valid)
|E𝑚 |𝑄/8 (test)

(9)

and for SparseVFL (Algorithm 𝛽),

𝑆
(𝛽 )
𝑚 =


(2|E′𝑚 | + |H𝑚 | + |T𝑚 |)𝐼𝑄/8 (train)
( |E′𝑚 | + |H𝑚 | + |T𝑚 |)𝐼𝑄/8 (valid)
( |E′𝑚 | + |H𝑚 | + |T𝑚 |)𝑄/8 (test)

(10)
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Figure 2: Coding scheme (𝑁 = 4 and 𝐷ℎ,𝑚 = 2).

Table 1: Dataset size and label setting.

Dataset Training Validation Test Label

Adult 29,304 3,257 16,281 Income>50K

Wine Quality 5,197 650 650 Quality>6

Covertype 464,809 58,101 58,102 7 classes

where Valid mode is used for validation steps that involve only

forward-propagation for each epoch, and Test mode is used for the

inference step with the trained models. The worst case of 𝑆
(𝛽 )
𝑚 is

when zeros and non-zeros alternate in an embedding batch, i.e.,

|E′𝑚 | = |H𝑚 | = |T𝑚 | = |E𝑚 |/2. In this case, Equation 10 would be

𝑆
(𝛽 )
𝑚 =


2|E𝑚 |𝐼𝑄/8 (train)

3/2 × |E𝑚 |𝐼𝑄/8 (valid)
3/2 × |E𝑚 |𝑄/8 (test)

(11)

Therefore, 𝑆
(𝛽 )
𝑚 ≤ 𝑆

(𝛽 )
𝑚 = 𝑆

(𝛼 )
𝑚 always holds for train mode. How-

ever, for the valid and test modes, 𝑆
(𝛽 )
𝑚 is 3/2 times larger than 𝑆

(𝛼 )
𝑚 .

In this case, the coding step should be disabled for the valid and

test modes.

Unlike the asynchronous VFL [3], the synchronous VFL requires

the server to wait for the slowest client. Let 𝑇0 [s] be the compu-

tation time in the server, 𝑇𝑚 [s] be the computation time in each

client𝑚, and 𝐵 [bps] be the throughput of the communication line,

the training time 𝜏𝐵 [s] is represented as 𝜏𝐵 = 𝑇0 + 𝑇�̂� + 8𝑆�̂�/𝐵,
where �̂� = argmax𝑚∈[1,...,𝑀 ] {𝑇𝑚 + 8𝑆𝑚/𝐵}.

5 EXPERIMENTS

In this section, we evaluate the performance of our proposed Spar-

seVFL in terms of model accuracy and communication costs. We use

three real-world datasets described in Table 1, which are publicly

available [1, 5, 7]. Assuming that the three clients have exclusive

sets of columns, the columns are split into three sets to make them

as balanced as possible. See Appendix A for details. SparseVFL does

not care how the columns are divided. In this experiment, each of

the client models has a single linear layer with ReLU activation. The

server model has a 2-layer MLP. We use four Adam optimizers for

each model and a cross-entropy loss function for 𝑙 (·) in Equation 5.

In this experiment, we run the algorithms (including both server

and client) in a single process in a single machine. The server

Table 2: Ablation experiments for SparseVFL-16.

Activation Norm Traversal Size ROC-AUC

ReLU L1 Vertical 223 0.9067

SeLU L1 Vertical 594 0.9063

eLU L1 Vertical 594 0.9067

ReLU L2 Vertical 302 0.9056

ReLU - Vertical 351 0.9077

ReLU L1 Horizontal 277 0.9067

procedure and the client procedure exchange intermediate data by

saving and loading the data on the SSD. The machine specifications

are as follows: Ubuntu 18.04.6 LTS, Intel Xeon CPU E5-2620 v4 @

2.10 GHz, 32 CPUs, RAM 251 GB, NVIDIA GeForce GTX 1080 (GPU

8 GB), CUDA 11.6. One process uses one CPU and one GPU.

5.1 Results

Table 2 shows the result of the ablation experiments for SparseVFL

with quantization bits𝑄 = 16 (SparseVFL-16) on Adult dataset. We

can see that the data size more than doubles when ReLU is replaced

by SeLU. ReLU has the largest contribution (−371) in terms of data

reduction, followed by L1-norm (−128), and vertical traversal used

in run-length coding (−54), while maintaining almost the same

ROC-AUC. Figure 4 shows the embeddings of the first 32 samples

from client 1. In this example, all samples have non-zero values

in one or more dimensions. In particular, all but one sample have

zero in the 4th dimension. For this reason, vertical traversal is more

efficient than horizontal traversal. Although order randomness is

necessary for learning stability, compression efficiency increases

as the same input features become more consecutive.

We compare the performance of SparseVFL-16 with several

existing algorithms. Original is the VFL algorithm described in

Section 3 with 𝑄 = 32 and 𝐷ℎ,𝑚 = 8 (Adult) or 𝐷ℎ,𝑚 = 4 (the

other datasets). Q-16 and Q-8 quantizes Original to 16-bit and

8-bit, respectively. Dim-𝐷ℎ,𝑚 is the same as Original but takes

𝐷ℎ,𝑚 ∈ {2, 3, 4, 6}. PCA and AutoEncoder use the methods pro-

posed in [13] with 𝑄 = 32, where AutoEncoder has two lin-

ear layers for encoder and decoder, respectively. Top-W-16 uses

our proposed techniques described in Sections 4.1 and 4.3 for em-

beddings. While, for gradients, Top-W-16 uses the approach pro-

posed in [15, 17, 22], which keeps the𝑊 ∈ {1024, 2048, 4096} el-
ements with the largest absolute magnitudes in a gradient batch

and sends the𝑊 elements and their indices. SparseVFL-16 is our

proposed approach. For Top-W-16 and SparseVFL-16, 𝑄 = 16 and

𝜆 ∈ {0.01, 0.0158, 0.0251, 0.0398, 0.0631, 0.1, 0.1585}. Other hyperpa-
rameters are set as follows: learning rate = 0.01, batch size = 1024,

and the number of epochs = 200. These hyperparameters are the

same for all the parties.

Figure 3 shows the experimental results. The 𝑥-axis represents

the total data size [byte] transferred between the server and the

clients for 200 epochs, and the 𝑦-axis is the accuracy (ROC-AUC or

macro f1-score) on the test data, i.e., the upper left corner indicates

an efficient algorithm. For all the three datasets, SparseVFL-16

outperforms the other algorithms in terms of (1) more accurate
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Figure 3: Comparison of data reduction algorithms.
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Figure 4: Embeddings by SparseVFL-16 on Adult dataset.

with the same data size or (2) same accuracy with less data size.

For example, in the Adult dataset, SparseVFL-16 with 𝜆 = 0.01

could produce a model with ROC-AUC 0.9067 with 223 MB, while

Top-W-16with𝑊 = 2048 and 𝜆 = 0.0251 has the lower score 0.8900

with almost the same size 226 MB, and Q-8 has the lower score

0.9065 with the larger size 342 MB. For each dataset, SparseVFL-

16 with the highest score could reduce 68–81% of the data size

of Original. Therefore, we can see that SparseVFL is effective in

reducing the communication data size. PCA and AutoEncoder

require very little data because they send embeddings only once and

no gradients between the server and clients, however, the accuracy

is worse than the other algorithms because the client models are

not optimized.

Table 3 shows the comparison of training time for Original

and SparseVFL-16 for the Adult dataset. SparseVFL-16 can reduce

the training time 𝜏𝐵 by 63% when 𝐵 = 10 Mbps and by 4% when

𝐵 = 100Mbps.

6 CONCLUSION AND FUTUREWORK

In this work, we proposed a communication-efficient VFL called

SparseVFL, which exploits the properties of ReLU, L1-norm for

embedding vectors, and masked gradient to produce sparse embed-

dings and gradients. SparseVFL doesn’t depend on the neural net-

work architecture, as long as it meets the SparseVFL requirements.

Table 3: Computation time𝑇𝑚 , data size 𝑆𝑚 , and training time

𝜏𝐵 for the Adult dataset.

Algorithm 𝑚 𝑇𝑚 [s] 𝑆𝑚 [MB] 𝜏10𝑀 [s] 𝜏100𝑀 [s]

Original

0 34.9 –

365.0 80.0

1 12.4 396

2 13.4 396

3 12.4 396

0 50.9 –

135.5 77.1

SparseVFL-16 1 16.6 85

(𝜆 = 0.01) 2 19.6 80

3 17.9 58

We expect that SparseVFL will facilitate data sharing between orga-

nizations and contribute to social value.

In subsequent research, we will deploy the parties on the dis-

tributed machines to evaluate the communication costs in our real-

world environment. In addition, the current SparseVFL uses syn-

chronous FL, where the slowest client affects the overall training

time. In order to further reduce the training time, we will work on

the asynchronous SparseVFL.
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Table A1: Definition of feature columns.

Adult

Client 1

age, workclass <9>, fnlwgt, education <16>,

education_num

Client 2

marital_status <7>, occupation <15>,

relationship <6>, race <5>, sex <2>

Client 3

capital_gain, capital_loss, hours_per_week,

native_country <42>

Wine Quality

Client 1

fixed_acidity, volatile_acidity, citric_acid,

residual_sugar

Client 2

chlorides, free_sulfur_dioxide,

total_sulfur_dioxide, density

Client 3 ph, sulphates, alcohol, color

Covertype

Client 1

elevation, aspect, slope,

horizontal_distance_to_hydrology,

horizontal_distance_to_roadways,

horizontal_distance_to_fire_points,

vertical_distance_to_hydrology

Client 2

hillshade_9am, hillshade_noon,

hillshade_3pm, wilderness_area <4>

Client 3 soil_type <40>

A APPENDIX: DEFINITION OF FEATURE

COLUMNS

The feature columns x𝑛,𝑚 of each client𝑚 ∈ {1, 2, 3} are defined in

Table A1. The column names with angle brackets represent categori-

cal columns and its number of classes, otherwise numerical columns.

For example, Column “workclass” has 9 classes. In this work, the

categorical columns and numerical columns are preprocessed using

one-hot encoding and min-max encoding, respectively.

B APPENDIX: MATH NOTATIONS

Tables A2 and A3 show summary of math notations.

Received 18 May 2023; revised 18 May 2023; accepted 18 May 2023

Table A2: Sample-level math notations.

Symbol Meaning

𝑀 The number of clients

𝑚 Client id

𝑁 The number of samples

𝑛 Sample id

x𝑛,𝑚 Feature vector

𝐷𝑥,𝑚 Dimension of x𝑛,𝑚
ℎ𝑚 Model of client𝑚

𝜃𝑚 Parameter of client model ℎ𝑚
h𝑛,𝑚 Embedding vector

𝐷ℎ,𝑚 Dimension of h𝑛,𝑚
ℎ0 Server model

𝜃0 Parameter of server model ℎ0
ỹ𝑛 Predicted vector

y𝑛 Label vector

𝐿, 𝑙 Loss function

𝜎 ReLU activation

𝜆 Sparsification parameter

Table A3: Batch-level math notations.

Symbol Meaning

E𝑚 Batch of ℎ𝑛,𝑚,𝑘

E′𝑚 Subset of E𝑚 where ℎ𝑛,𝑚,𝑘 > 0

G𝑚 Batch of 𝜕𝐿/𝜕ℎ𝑛,𝑚,𝑘

G′𝑚 Subset of G𝑚 where ℎ𝑛,𝑚,𝑘 > 0

𝑞0, 𝑞1, 𝑞2 Bit length

𝑄 Quantization parameter

H𝑚 Head indices

T𝑚 Tail indices

𝐼 The number of epochs

𝑆𝑚 Data size transferred between the server and client𝑚

𝑇0 Computation time in the server

𝑇𝑚 Computation time in client𝑚

𝐵 Throughput of the communication line

𝜏𝐵 Training time

𝑊 The number of remaining gradients
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