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Abstract—Graph neural networks (GNNs) are powerful tools
for developing scalable, decentralized artificial intelligence in
large-scale networked systems, such as wireless networks, power
grids, and transportation networks. Currently, GNNs in net-
worked systems mostly follow a paradigm of ‘centralized training,
distributed execution’, which limits their adaptability and slows
down their development cycles. In this work, we fill this gap
for the first time by developing a communication-efficient, fully
distributed online training approach for GNNs applicable to
large networked systems. For a mini-batch with B samples, our
approach of training an L-layer GNN only adds L rounds of
message passing to the LB rounds required by GNN inference,
with doubled message sizes. Through numerical experiments in
graph-based node regression, power allocation, and link schedul-
ing in wireless networks, we demonstrate the effectiveness of our
approach in training GNNs under supervised, unsupervised, and
reinforcement learning paradigms.

Index Terms—Distributed optimization, graph neural net-
works, wireless networks, distributed gradient descent.

I. INTRODUCTION

Graph neural networks (GNNs) hold the promise of em-
powering networked artificial intelligence in communication
networks, smart grids, and transportation networks, due to
several unique features [1], [2]: 1) permutation equivariance
as an important inductive bias for tasks in networks, 2) local
message passing (MP) that naturally promotes distributed exe-
cutions, and 3) shared trained model among all nodes, which
allows GNNs to generalize and scale up to large, dynamic
networks much easier than, e.g., multi-agent reinforcement
learning (MARL) [3]. GNNs have been applied to enhance
resource allocation and decision-making in wireless networks,
such as power allocation, link scheduling, packet routing,
network simulation and management, and computation of-
floading [4]–[10], by leveraging their ability to exploit the
topological information of the connectivity and interference
relationships among wireless devices.

Current applications of GNNs in networked systems follow
a paradigm of ‘centralized training, distributed execution’. In
particular, the centralized training of GNNs can only be done
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offline in simulated environments, requiring extensive efforts
in data collection and environment modeling as well as com-
puting resources. Moreover, the distribution and deployment
of trained models may cause downtime and disruptions to
the networked system. After deployment, the trained models
would also likely experience distribution shifts due to mis-
matched training settings, changing real-world environments,
and application scenarios. Therefore, fully distributed online
training of GNNs could simplify the development of intelligent
networked systems and improve their adaptivity.

Existing approaches in distributed machine learning [11]
are inadequate for fully distributed online training of GNNs.
For example, with MARL [3], each agent has a different
trained model rather than a common trained model shared
among all nodes as in GNNs. Although federated learning
seeks to train a common model for many clients with the
help of a central server [12], neither the training nor inference
requires any interactions between these clients, which is in
contrast with GNNs where the inference requires synchronized
message exchanging between each node and its neighbors.
Distributed optimization (DO) [13]–[16] leverages many con-
nected workers to accelerate the training of a model by
splitting the training dataset and exchanging gradients among
the workers. However, each worker in DO can perform model
inference and backpropagation individually, which is differ-
ent from GNNs where both inference and backpropagation
require synchronized collaboration among all nodes in the
network. Existing works on distributed training of GNNs can
be categorized as DO, where large graphs are divided into
smaller subgraphs, which are distributed to different servers
for memory and computing efficiencies [17], [18]. By contrast,
in our fully distributed training, every node in the graph is its
own computing server. Thus, communication across servers is
required for both inference and training.

To fill the gap of training GNNs online in a fully distributed
manner, we take the supervised learning in graph convolutional
neural networks (GCNNs) [19], [20] as an example, trans-
form it into a variation of the DO framework, and develop
communication-efficient implementations based on local MP.
These principles of distributed training can serve as the basis
for other types of GNNs [1], such as edge-featured GNNs
and graph attention networks (GATs), as well as unsupervised
training and reinforcement learning for GNNs in sophisticated
algorithmic frameworks [4], [8].
Contributions: Our contributions are as follows:

• We show that GNN training can be reformulated as a



DO problem by decomposing the global objective, loss
function, and gradient of GNNs into linear combinations
of the corresponding local ones, and deriving a local form
of backpropagation for GCNNs.

• We develop a communication-efficient approach for dis-
tributed training of GNNs, by incorporating distributed
gradient descent schemes, rearranging gradient aggrega-
tion, and message piggybacking in mini-batch settings.

• Through numerical experiments, we demonstrate that our
distributed training scheme not only achieves a con-
vergence behavior very close to that of the classical,
centrally-trained approach in supervised learning, but is
also effective in more sophisticated ML pipelines such as
graph-based algorithmic unfolding [4] and graph-based
actor-critic reinforcement learning frameworks [8].

Notational convention: (·)⊤, ⊙, and | · | represent the trans-
pose operator, Hadamard (element-wise) product operator,
and the cardinality of a set (or dimensionality of a vector),
respectively. E(·) stands for expectation. Calligraphic symbols,
e.g., V , denote a set. Upright bold lower-case symbols, e.g.,
z, denote a column vector and zi denotes the i-th element of
vector z. Upright bold upper-case symbols, e.g., Z denote a
matrix, of which the element at row i and column j is denoted
by Zij , the row i by Zi∗, and the column j by Z∗j .

II. PROBLEM FORMULATION

Consider a connected and undirected graph G = (V, E),
where V is the set of nodes, E is the set of edges, matrix
X ∈ R|V|×g0 collects node features (e.g., the type or queueing
state of a transmitter), and vector y ∈ R|V| collects node-wise
labels (e.g., optimal transmit power). An L-layer GCNN is a
parameterized function ŷ = ΨG(X;θ) defined on G, where
vector ŷ ∈ R|V| is the node-wise prediction, and θ collects
all the trainable parameters. Centralized training of the GCNN
with supervised learning can be formulated as minimizing the
expected loss over the distribution of node-featured graphs and
the corresponding label vectors, (G,X,y) ∈ Ω, as

θ∗ = argmin
θ∈R|θ|

J(θ) (1a)

s.t. J(θ) = E(G,X,y)∈Ω [ℓ(y,G,X;θ)] , (1b)

ℓ(θ) = ℓ(y,G,X;θ) =
1

|V|
∑
i∈V

(yi − ŷi)
2 , (1c)

ŷ = ΨG(X;θ), (1d)

where (1c) defines the mean-squared-error (MSE) loss func-
tion. Problem (1) can be solved with stochastic gradient
descent (SGD) with a learning rate of α,

θ←θ−α∇̂J(θ), ∇̂J(θ)=∇ℓ(θ)=
[
∂ℓ(θ)

∂θ

]⊤
∈ R|θ| . (2)

The local implementation of a GCNN comprises synchronized
parallel executions of the same parameterized local function
on every node, where each local function performs L iter-
ations of a local neighborhood aggregation followed by a
dense layer. Thus, the L-layer GCNN can be denoted as

ŷ = ΨG(X; {θi}i∈V), where θi = θ is a local copy of the
global parameters on node i ∈ V . The backward pass of a
GCNN first computes the partial derivatives ∂ℓ(θ)/∂θi for all
i ∈ V , and then the total derivative as

∂ℓ(θ)

∂θ
=

∑
i∈V

∂ℓ(θ)

∂θi
. (3)

For the centralized training of a GCNN, the operation in
(3) is straightforward since the global loss function ℓ(θ) and
all local gradients reside on the same server. However, for
GCNNs in fully distributed systems, where each node i ∈ V
is an individual device in the network, online training becomes
challenging as it requires a central server to host the global
loss function in (1c), perform the summation operation in (3),
SGD in (2), and redistribution of θ to θi for all i ∈ V .

To transform the centralized training in (1) into a distributed
problem, we define the local loss ℓi(θ) and local objective
Ji(θ) for all i ∈ V as follows,

ℓ(θ) =
1

|V|
∑
i∈V

ℓi(θ) ,where ℓi(θ) = (yi − ŷi)
2 , (4)

J(θ) =
1

|V|
∑
i∈V

Ji(θ) ,where Ji(θ) = EΩ [ℓi(θ)] . (5)

With (4), (5), and a small ϵ > 0, we reformulate (1) for a
sampling distribution ΩV conditioned on a vertex set V as

{θi}∗i∈V = argmin
θi∈R|θ|,i∈V

1

|V|
∑
i∈V

Ji(θ) (6a)

s.t. Ji(θ) = EΩV [ℓi(θ)] , (6b)

ℓi(θ) = (yi − ŷi)
2 ,∀ i ∈ V , (6c)

ŷ = ΨG(X; {θi}i∈V), (G,X,y) ∈ ΩV , (6d)

θ =
1

|V|
∑
i∈V

θi, ∥θi − θ∥22 < ϵ, ∀ i ∈ V. (6e)

Based on (3) and (4), the total derivative becomes

∂ℓ(θ)

∂θ
=

1

|V|
∑
i∈V

∑
j∈V

∂ℓj(θ)

∂θi
. (7)

Consequently, the SGD in (2) can be implemented in a
distributed manner as

θi ← θi − α∇̂J(θ) ,∀ i ∈ V , (8a)

∇̂J(θ) = 1

|V|
∑
i∈V
∇̂Ji(θ) , (8b)

∇̂Ji(θ) =

∑
j∈V

∂ℓj(θ)

∂θi

⊤

,∀ i ∈ V , (8c)

given that θi = θ, for all i ∈ V upon initialization.
Unlike the centralized training in (1), the distributed op-

timization in (6) no longer requires a server to host the
global loss function ℓ(θ) or global objective function J(θ).
Moreover, as long as (8b) and (8c) can be computed in a fully



distributed manner, the centralized SGD in (2) and (3) can be
attained via (8) without the need of a central server.
Key departure from classical DO. It is essential to notice that
in a local implementation of an L-layer GCNN where every
node i ∈ V has a copy of the parameters θi, the estimate ŷi

at node i is not only a function of (Xi∗,θ
i) but also those of

its L-hop neighbors,

ŷi = flocal

({
Xj∗;θ

j
}
j∈NL

G (i)∪{i}

)
,

where NL
G (i) denotes the set of L-hop neighbors of node i

on graph G. This follows immediately from the fact that ŷi

depends on messages that node i receives from its neighbors
j, and these messages are functions of their parameters {θj}.
This dependence cascades over the L layers, as later illustrated
in (10) for the specific case of GCNNs. Consequently, unlike
in classical DO [13]–[16], node i cannot immediately compute
the local gradient since ∂ℓ(θ)

∂θi ̸= 1
|V|

∂ℓi(θ)
∂θi . In this context, the

local gradient computation requires further consideration. In
the next section, we introduce our fully distributed solution to
implement (8). Our objective is twofold: first, we want to min-
imize the global objective function in (6a) in a fully distributed
manner. Second, we aim to minimize the communication costs
of our fully distributed training.

III. FULLY DISTRIBUTED TRAINING OF GNNS

Our solution comprises three components: 1) fully-
distributed backpropagation for local gradient estimation (8c)
in Section III-A; 2) joint implementation of (8b) and (8a)
based on distributed gradient descent approaches in Section
III-B; and 3) systematic schemes to reduce the communication
rounds for mini-batch training in Section III-C.

A. Fully Distributed Backpropagation

The lth layer of the GCNN ŷ = ΨG(X;θ) introduced in
Section II, where l ∈ {1, . . . , L}, can be expressed as

Xl = σl

(
Xl−1Θl

0 + SXl−1Θl
1

)
, l ∈ {1, . . . , L}, (9)

where Xl ∈ R|V|×gl collects the output node features of layer
l, matrices Θl

0,Θ
l
1 ∈ Rgl−1×gl are the trainable parameters

of the lth layer, σl is an element-wise activation function, and
S ∈ R|V|×|V| is the graph shift operator. S can be selected
as the adjacency matrix A, the graph Laplacian L, or their
normalized versions [19]. For the GCNN, the input node
feature X0 = X, and prediction ŷ = XL where gL = 1.

The local form of the GCNN layer in (9) on node i ∈ V is

Xl
i∗=σl(H

l
i∗) , H

l
i∗=Xl−1

i∗ Θli
0 +

∑
j∈N+

G (i)

SijX
l−1
j∗ Θli

1 , (10)

where Xl
i∗ ∈ R1×gl captures the output features of layer l

on node i, Θli
0 and Θli

1 are local copies at node i of Θl
0 and

Θl
1, and N+

G (i) = NG(i) ∪ {i} with NG(i) = N 1
G(i). The

distributed execution of a GCNN layer can be implemented in
two steps: first, node i ∈ V exchanges its input node feature
Xl−1

i∗ with its neighbors j ∈ NG(i); second, each node locally
computes (10). The L-layer GCNN requires L rounds of MP.

To find the messages passed in backpropagation, we define
Zl = ∂ℓ(θ)/∂Xl and Ql = ∂ℓ(θ)/∂Hl for l ∈ {1, . . . , L},
where Zl,Ql ∈ Rgl×|V|. For node i ∈ V , we have

Zl
∗i=

∂ℓ(θ)

∂Xl
i∗
∈ Rgl×1, ZL

∗i=
∂ℓ(θ)

∂ŷi
=2(ŷi−yi) , (11)

Ql
∗i =

∂ℓ(θ)

∂Xl
i∗

∂Xl
i∗

∂Hl
i∗

= Zl
∗i ⊙ σ′

l(H
l
i∗) ∈ Rgl×1, (12)

where σ′
l(·) is the element-wise derivative function of the

activation σl(·). Based on (10), the local partial derivatives
for the trainable parameters at node i ∈ V are:

∂ℓ(θ)

∂Θli
0

=
∂ℓ(θ)

∂Hl
i∗

∂Hl
i∗

∂Θli
0

= Ql
∗iX

l−1
i∗ ∈ Rgl×gl−1 , (13a)

∂ℓ(θ)

∂Θli
1

=
∂ℓ(θ)

∂Hl
i∗

∂Hl
i∗

∂Θli
1

= Ql
∗i

∑
j∈N+

G (i)

SijX
l−1
j∗ . (13b)

According to the chain rule, we can find Zl−1
∗i ∈ Rgl−1×1 as

Zl−1
∗i =

∂ℓ(θ)

∂Xl−1
i∗

=
∑
j∈V

∂ℓ(θ)

∂Hl
j∗

∂Hl
j∗

∂Xl−1
i∗

=
(
Θli

0 + SiiΘ
li
1

)
Ql

∗i +
∑

j∈NG(i)

SjiΘ
lj
1 Q

l
∗j,

(14)

since, based on (10), we have the following[
∂Hl

j∗

∂Xl−1
i∗

]⊤

=


Θli

0 + SiiΘ
li
1 if j = i ,

SjiΘ
lj
1 if j ∈ NG(i) ,

0gl−1×gl if j /∈ N+
G (i).

Equations (11)-(14) show the local form of backpropagation
for all layers l ∈ {1, . . . , L}. Notice that the sum operation
in (13b) is already done in the forward pass in (10). Only
the second term in (14) requires an additional round of MP,
i.e., each node i broadcasts Θli

1Q
l
∗i to all its neighbors as

Sji can be found from the forward pass. Based on (11)-(14),
L−1 rounds of MP are required to estimate the local gradient
∇̂Ji(θ) in (8c).

B. Distributed Stochastic Gradient Descent

A naive approach for implementing (8b) is to perform
K ≥ 1 rounds of distributed consensus on the local gra-
dient estimates {∇̂Ji(θ)}i∈V . The kth round of distributed
consensus on a set of node-specific vectors {xj(k)}j∈V can
be expressed as

xi(k + 1) =
∑

j∈N+
G (i)

Wijx
j(k) , k ∈ {1, . . . ,K}, (15)

where matrix W ∈ R|V|×|V| collects the consensus weights.
Denoting the degree of node i by d(i), a good candidate for
W is the Metropolis-Hasting weights [21]

Wij =


1

1+max{d(i),d(j)} {i, j} ∈ E ,

1−
∑

v∈NG(i) Wiv i = j ,

0 otherwise.

(16)



Algorithm 1 Distributed Training of GCNNs
Input: V,Ω,α,B
Output: {θi}∗i∈V ,θ

∗

1: Initialize θ randomly, t=0, {θi(t)}i∈V ={θ}i∈V , αt=α
2: while not converged do
3: Draw graph G(t)=(V, E(t)) from Ω conditioned on V
4: Compute W using (16)
5: for b = 1, . . . , B do
6: Draw node features and labels (X(b),y(b))∼ΩG(t)
7: for all i ∈ V do
8: Compute ŷi(b) using (10) for all l ∈ {1, . . . , L}.
9: Compute ∇̂Ji(θ)(b) using (11)–(14)

10: end for
11: end for
12: Update {θi(t+ 1)}i∈V using (17)
13: t = t+ 1, update αt, e.g., via exponential decay
14: end while
15: Return {θi}∗i∈V = {θi(t)}i∈V , θ∗ = 1

|V|
∑

i∈V θi(t)

However, this naive approach has a high communication
cost since a large K is required for the convergence of the
consensus operation in each gradient step.

Notice that the formulation in (6a) can be considered as a
form of DO but where the local gradient estimate ∇̂Ji(θ) is
obtained as described in Section III-A. Thus, we can employ
efficient approaches such as D-SGD [14], D-Adam [15], and
D-AMSGrad [16]. In the context of the popular mini-batch
gradient descent, where the network topology is assumed to be
static during a mini-batch, each local update in DO comprises
one round of distributed consensus on θi and an application
of local gradient,

θi(t+1) =
∑

j∈N+
G (i)

Wijθ
j(t)−αtf

({
∇̂Ji(θ)(b)

}B

b=1

)
, (17)

where the function f(·) aggregates local gradients over a
mini-batch of B samples. To estimate the gradients of B

samples, {∇̂J(θ)(b)}Bb=1, we require B forward passes of
the GCNN for the inference of {ŷ(b)}Bb=1 and B passes
of backpropagation. For D-SGD, function f(·) is simply a
summation

f

({
∇̂Ji(θ)(b)

}B

b=1

)
=

B∑
b=1

∇̂Ji(θ)(b) .

However, for D-Adam and D-AMSGrad, f(·) is based on the
momentum of the local gradients from graph data samples.

The entire procedure of DO-based distributed training on a
network of a fixed set of vertices V with dynamic topology,
i.e., edge set E(t), is illustrated in Algorithm 1, where Ω is
the sampling distribution for (G,X,y), and ΩV (or ΩG) is the
conditional distribution for a given V (or G).

C. Communication-efficient Mini-Batch Training

If we approach (8b) naively by running distributed consen-
sus on local gradients for each sample (X(b),y(b)), the whole

𝜽! 𝑡 𝜽! 𝑡 + 1 𝜽! 𝑡 + 2

time𝑡 𝑡 + 1 𝑡 + 2

Forward passing𝐵𝑏1

𝑏 − 1

𝐿

Mini-batch

Backward passing

Fig. 1: Timeline of fully-distributed training of GCNN in mini-
batches. By piggybacking messages in the backward pass of sample
b − 1 into the messages of the forward pass of sample b, a mini-
batch requires only L(B + 1) rounds of MP. Notice that most
communication and computation for the consensus step and local
gradient aggregation (line 12 in Algo 1) can be piggybacked to the
messages of B forward passes and carried out in parallel with the
processing of data samples (lines 5− 11 in Algo 1).

mini-batch requires B(2L− 1+K) rounds of MP. Moreover,
messages exchanged in distributed consensus are of large size,
e.g., |θ|. We can reduce the communication cost by i) re-using
information from the forward pass, ii) rearranging the mini-
batch update, and iii) piggybacking messages for backward
and forward passes, as we discuss next.

Information reuse: In the GCNN forward pass for sample b,
node i ∈ V can save the intermediate variables Hl

i∗(b), X
l
i∗(b)

and
∑

j∈N+
G (i) SijX

l−1
j∗ (b) in (10) for all l ∈ {1, . . . , L},

which can be reused in (12) and (13) for the following
backward pass, without retransmission and recomputing.

Mini-batch rearrangement: Instead of running expensive
distributed consensus for every sample, we can first aggregate
B local gradients at each node and then run K rounds
of distributed consensus once per mini-batch. The latter is
mathematically equivalent to the former under basic SGD,

B∑
b=1

[
1

|V|
∑
i∈V
∇̂Ji(θ)(b)

]
=

1

|V|
∑
i∈V

[
B∑

b=1

∇̂Ji(θ)(b)

]
,

but cuts the total rounds per mini-batch to B(2L − 1) + K.
Furthermore, the DO-based gradient descent in (17) requires
only 1 round of consensus per mini-batch, where each node
i only needs to broadcast θi(t) ∈ R|θ| to its neighbors j ∈
NG(i) once. Since local aggregation f(·) needs no MP, the
required communication rounds is further reduced to B(2L−
1) + 1 per mini-batch. In addition, for momentum-based DO,
consensus on momentum parameters is also needed to ensure
convergence, as in D-AMSGrad [16].

Piggybacking: Since it is more efficient to transmit a larger
message than multiple smaller messages in wireless networks
due to the signaling overhead of each transmission, we can
piggyback the message of the backward pass for sample b−1
to the forward pass of the next sample b, as shown in Fig. 1.
For example, in the MP of layer l < L in the forward pass
for sample b, each node i ∈ V sends a message containing
Xl−1

i∗ (b) ∈ R1×gl and [Θl̄i
1Q

l̄i
∗i(b−1)]⊤ ∈ R1×gl̄ , where l̄ =

L−l+1, to all its neighbors j ∈ NG(i), which can be achieved
by a single broadcast transmission with an omnidirectional
antenna. When l = L or b = 1, only Xl−1

i∗ (b) is exchanged.
Once per mini-batch, each node i also needs to send d(i) ∈
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Fig. 2: The evolution of objective values over the course of training: (a) Node regression, where a marker is placed every 200 mini-batches.
(b) Power allocation for a network of 25 transmitter-receiver pairs. (c) Distributed link scheduling in conflict graphs of 100 nodes (links).

TABLE I: Communication cost of a mini-batch in GCNN training
Accumulated Measures Total Msg. Rounds Message size
Forward pass (FWD) only LB gl
FWD + D-naive (grad. con-
sensus per sample) + reuse

B(2L− 1)
+BK

gl,
|θ|

FWD + Grad. consensus per
batch + Info. reuse

2BL−B
+K

gl,
|θ|

FWD + Grad. consensus per
batch + reuse + piggyback

LB + L− 1
+K

gl + gL−l+1,
|θ|

FWD + Dist. Opt. in (17) +
reuse + piggyback

LB + L− 1 gl + gL−l+1+
|θ|/LB

R and θi(t) to all its neighbors j ∈ NG(i), which can be
broken up and piggybacked in the messages of b = 1 and
l = L, b > 1. As a result, the total rounds of MP for a mini-
batch are reduced to LB + L − 1, where L − 1 rounds are
for the backward pass of the last sample b = B. The detailed
communication costs for these approaches are listed in Table I.

IV. NUMERICAL SIMULATIONS

To evaluate the effectiveness of our proposed distributed
training scheme, we compare it with centralized training (and
naive distributed training) under supervised learning for node
regression on a synthetic dataset (Section IV-A), unsupervised
learning in UWMMSE wireless power allocation [4] (Sec-
tion IV-B), and graph-based actor-critic reinforcement learning
for distributed link scheduling [8] (Section IV-C).

A. Supervised Learning on Synthetic Graph Data

In this experiment, we train a 2-layer GCNN to predict a set
of graph data {(X(n),y(n)) ∈ ΩG}Nn=1 under a given random
graph G drawn from a Barabási-Albert model (m = 2) with
|V| = 100 nodes. The input X ∈ R|V|×10 comprises a com-
bination of continuous, binary, and discrete (one-hot) features
drawn from uniform and normal distributions. The labels are
generated by a non-linear process as y = ΦG(X;ω) + n,
where ΦG(·) is a 2-layer GCNN parameterized by a set of
random weights ω, and n is Gaussian noise with a variance
of 0.01. With a set of training samples N = 1000, batch size
of B = 100, a learning rate α = 10−3, and a total of 1000
epochs, we train a GCNN ΨG(·;θ) with supervised learning
using different approaches.

The MSE loss as a function of MP rounds for 1000 epochs
under 7 different training approaches are presented in Fig. 2(a),
where the differences in message sizes are ignored. For

centralized training (with SGD and Adam optimizers), only
the cost of forward passing is considered such that processing
each data sample requires L = 2 rounds of communication.
The number of consensus rounds was set to K = 1 for
naive distributed approaches (D-naive and D-naive-PB, where
PB stands for piggybacking). After 1000 epochs, the MSE
losses under all methods approach the noise floor of 0.01.
We consider centralized training with the SGD optimizer as
the baseline. The centralized Adam converges to the lowest
MSE due to its momentum-based strategy. D-SGD [14] and
D-naive-PB converge almost as well as the baseline, whereas
D-naive takes twice as many rounds to achieve the same MSE.
D-Adam [15] shows signs of overfitting after quick initial
convergence due to the divergence of local momentum across
nodes. Among the distributed approaches, D-AMSGrad [16]
achieves the best convergence by incorporating distributed
consensus on the local momentum terms. Although D-naive-
PB with K = 1 requires a similar total number of rounds
of MP as D-AMSGrad, there is one round of MP with large
messages of size |θ| at the end of each mini-batch, which
may be translated to more rounds of exchanging normal-
sized messages. This result shows that D-AMSGrad is a good
candidate for distributed training of GCNNs.

B. Unsupervised Learning for UWMMSE Power Allocation

A 4-layer neural architecture (UWMMSE) is constructed by
unfolding 4 iterations of the weighted minimum mean-squared
error (WMMSE) algorithm for power allocation, in which
two constants are parameterized by two 2-layer GCNNs [4].
Trained with unsupervised learning, the UWMMSE seeks to
maximize the total throughput (sum rate) of 25 transmitter-
receiver pairs by computing their transmit powers based on
channel state information (CSI). These 50 transceivers are
randomly scattered in a 2D square with a width of 1km, and
operating on a 5MHz band at the center frequency of 900MHz,
with a maximum power of 5W. The training dataset contains
640,000 realizations of CSI matrices under 100 realizations of
transceiver locations, generated from the urban macro path loss
model [22] with Rayleigh fading, representing a wireless net-
work with node mobility. We evaluate centralized (Adam) and
distributed (D-Adam) training with a batch size of B = 64,
and a learning rate of α = 10−2. As shown in Fig. 2(b),
UWMMSE outperforms the baseline WMMSE-Tr (WMMSE



truncated to 4 iterations) in sum rate as training proceeds,
showing the value of the learnable unfolded architecture. The
effectiveness of distributed training is demonstrated by its
similar sum rate as that of the centralized training.

C. Graph-based Policy Gradient Descent for Link Scheduling

We train GCNNs applied to distributed link scheduling in
wireless multihop networks with orthogonal access [5], [8].
This task is formulated as finding the maximum weighted
independent set (MWIS) on the conflict graph of a wireless
network, in which each vertex represents a wireless link (with
weights representing the utility of scheduling that link), and
an edge indicates that two links cannot be activated at the
same time. The MWIS problem is known to be NP-hard [23],
and heuristics are used in practical link schedulers. In this
application, an actor GCNN is trained to indirectly improve
the quality of the solution by modifying the input vertex
weights of a distributed local greedy solver (LGS) [24], which
guarantees that the solution is always an independent set.

We follow the configuration and training process in [8],
which involves alternatively training a 5-layer GCNN (twin)
and a 3-layer actor GCNN with a set of random graphs drawn
from the Erdős-Rényi model with 100 nodes and average
node degree ranging from 2 to 25. Within each mini-batch
(B = 100), the graph remains the same, and the vertex weights
are drawn online from U(0, 1.0), emulating the online training
of GCNN in a dynamic network with a topology that changes
per mini-batch. The actor is trained in a fully distributed
manner, while the critic GCNN is trained in a centralized
manner. We use the Adam optimizer with the learning rate
α = 5 × 10−5, and the remaining hyperparameters are as
in [8]. In Fig. 2(c), the ratio between the total utility achieved
by the GCNN-LGS w.r.t. that of the basic LGS as a function of
the number of mini-batches is presented. Although the GCNN-
LGS trained in a fully distributed manner underperforms its
centralized counterpart, it still outperforms the baseline LGS,
demonstrating the effectiveness of our distributed training
approach in a more challenging graph-based ML pipeline.

V. CONCLUSION AND FUTURE STEPS

We presented a methodology for online training of GNNs
applied to fully distributed networked systems. This approach
was illustrated with examples of GCNNs, including local
implementations of inference and backpropagation, as well
as communication-efficient mini-batch training based on in-
formation reuse, distributed gradient descent algorithms, and
message piggybacking. The effectiveness of our approach was
demonstrated numerically in supervised, unsupervised, and re-
inforcement learning for GCNNs in wireless ad-hoc networks.
Future work includes theoretical proofs of convergence, and
studying the impacts of communication errors and network
mobility on training performance, and potential improvements.
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