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Abstract

We present Pre-trained Machine Reader (PMR), a novel method for retrofitting
pre-trained masked language models (MLMs) to pre-trained machine reading
comprehension (MRC) models without acquiring labeled data. PMR can resolve
the discrepancy between model pre-training and downstream fine-tuning of ex-
isting MLMs. To build the proposed PMR, we constructed a large volume of
general-purpose and high-quality MRC-style training data by using Wikipedia
hyperlinks and designed a Wiki Anchor Extraction task to guide the MRC-style pre-
training. Apart from its simplicity, PMR effectively solves extraction tasks, such
as Extractive Question Answering and Named Entity Recognition. PMR shows
tremendous improvements over existing approaches, especially in low-resource sce-
narios. When applied to the sequence classification task in the MRC formulation,
PMR enables the extraction of high-quality rationales to explain the classification
process, thereby providing greater prediction explainability. PMR also has the po-
tential to serve as a unified model for tackling various extraction and classification
tasks in the MRC formulation.2

1 Introduction

Span extraction, such as Extractive Question Answering (EQA) and Named Entity Recognition
(NER), is a sub-topic of natural language understanding (NLU) with the goal of detecting token
spans from the input text according to specific requirements like task labels or questions [45, 54].
Discriminative methods were used to execute such tasks and achieved state-of-the-art performance.
As shown in the left part of Figure 1, these works tailored a task-specific fine-tuning head on top of
pre-trained language models (PLMs) to perform sequence tagging or machine reading comprehension
(MRC) [12, 36, 27]. The base PLMs are usually selected from pre-trained masked language models
(MLM), such as RoBERTa [36] or BART [29] due to their comprehensive bi-directional modeling
for the input text in the encoder. However, given the disparate nature of the learning objectives and
different model architectures of MLM pre-training and task-specific fine-tuning, the discriminative
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37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/DAMO-NLP-SG/PMR


P
re
-
tr
a
in
in
g

F
in
e
-
tu
n
in
g

Vanilla Discriminative  

Fine-tuning 

Fine-tuning  

with PMR

Generative  

Fine-tuning 

It is a chemical element with the
symbol Si and a semiconductor .
Tom develops silicon technology .

15, 15 (silicon)

MLM

MRC Head
PMRMLM

Tom [Mask] silicon
technology .

MLM

Tom [Mask] silicon
technology .

developsdevelops

MLM MLM

MRC Head

Tom will fly to London . Who is the father of Tom ? 
Tom's father is Bob . 

B-PER O O O B-LOC O 10, 10 (Bob)

Tagging Head

MLM

Tom will fly to London . 
"Tom" is a [Mask] entity.

person  -> PER  
location -> LOC  

none -> O 

MLM

Tom's father is Bob.  
Who is the father of Tom?  

The answer is [Mask]

Bob

("will", "Tom will", ...)
Person ?  Tom will fly  

to London .

2, 2 (Tom)

Who is the father of Tom ? 
Tom's father is Bob .

10, 10 (Bob)

MLM

MRC Head

MLM

MRC Head
PMR PMR

Figure 1: Comparison among three fine-tuning strategies for NER and EQA, namely, vanilla discrim-
inative fine-tuning, generative fine-tuning, and fine-tuning by using the proposed PMR.

methods are less effective for adapting MLMs to downstream tasks when there is limited fine-tuning
data available, leading to poor low-resource performance [6].

As shown in the middle part of Figure 1, generative fine-tuning is a popular solution to mitigate the
gap between pre-training and fine-tuning [49, 50, 34]. This solution achieves remarkable few-shot
performance in various span extraction tasks [10, 6, 38]. Specifically, generative methods formulate
the downstream tasks as a language modeling problem in which PLMs generate response words for a
given prompt (i.e., a task-specific template) as task prediction. Despite its success, tackling extraction
tasks in a generative manner leads to several disadvantages. First, if it is used to generate the label
token (e.g., “person” for PER entities) for a candidate span, the generative method needs to enumerate
all possible span candidates to query PLMs [10]. This requirement can be computationally expensive
for tasks with a long input text, such as EQA. Second, if the desired predictions are target spans (e.g.,
the “answer” in the EQA task), generative methods usually need to explore a large search space to
generate span tokens. Moreover, it is also challenging to accurately generate structured outputs, e.g.,
the span-label pairs in the NER task, with PLMs originally trained on unstructured natural language
texts. These limitations impede PLMs from effectively learning extraction patterns from increased
volumes of training data. As a result, even instruction-tuned large language models like ChatGPT3 are
less effective than discriminative methods with smaller MLMs on extraction tasks [41, 43, 60, 31].

To bridge the gap between pre-training and fine-tuning without suffering from the aforementioned
disadvantages, we propose a novel Pre-trained Machine Reader (PMR) as a retrofit of pre-trained
MLM for more effective span extraction. As shown in the right part of Figure 1, PMR resembles
common MRC models and introduces an MRC head on top of MLMs. But PMR is further enhanced
by a comprehensive continual pre-training stage with large-scale MRC-style data. By maintaining the
same MRC-style learning objective and model architecture as the continual pre-training during fine-
tuning, PMR facilitates effective knowledge transfer in a discriminative manner and thus demonstrates
great potential in both low-resource and rich-resource scenarios. Given that MRC has been proven
as a universal paradigm [32, 33, 63, 23], our PMR can be directly applied to a broad range of span
extraction tasks without additional task design.

To establish PMR, we constructed a large volume of general-purpose and high-quality MRC-style
training data based on Wikipedia anchors (i.e., hyperlinked texts). As shown in Figure 2, for each
Wikipedia anchor, we composed a pair of correlated articles. One side of the pair is the Wikipedia
article that contains detailed descriptions of the hyperlinked entity, which we defined as the definition

3https://chat.openai.com
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Figure 2: Construction of MRC-style data by using Wikipedia anchors.

article. The other side of the pair is the article that mentions the specific anchor text, which we
defined as the mention article. We composed an MRC-style training instance in which the anchor
is the answer, the surrounding passage of the anchor in the mention article is the context, and the
definition of the anchor entity in the definition article is the query. Based on the above data, we then
introduced a novel Wiki Anchor Extraction (WAE) problem as the pre-training task of PMR. In this
task, PMR determines whether the context and the query are relevant. If so, PMR extracts the answer
from the context that satisfies the query description.

We evaluated PMR on two representative span extraction tasks: NER and EQA. The results show
that PMR consistently obtains better extraction performance compared with the vanilla MLM and
surpasses the best baselines by large margins under almost all few-shot settings (up to 6.3 F1 on
EQA and 16.3 F1 on NER). Additionally, we observe that sequence classification can be viewed
as a special case of extraction tasks in our MRC formulation. In this scenario, it is surprising that
PMR can identify high-quality rationale phrases from input text as the justifications for classification
decisions. Furthermore, PMR has the potential to serve as a unified model for addressing various
extraction and classification tasks in the MRC formulation.

In summary, our contributions are as follows. Firstly, we constructed a large volume of general-
purpose and high-quality MRC-style training data to retrofit MLMs to PMRs. Secondly, by unifying
pre-training and fine-tuning as the same discriminative MRC process, the proposed PMR obtains
state-of-the-art results under all few-shot NER settings and three out of four few-shot EQA settings.
Thirdly, with a unified MRC architecture for solving extraction and classification tasks, PMR also
shows promising potential in explaining the sequence classification predictions and unifying NLU
tasks.

2 PMR

This section describes PMR from the perspectives of model pre-training and downstream fine-tuning.
For pre-training, we first introduce the proposed model with the training objective of WAE and
then describe the curation procedure of WAE pre-training data from Wikipedia. For fine-tuning, we
present how PMR can seamlessly be applied to various extraction tasks and solve them in a unified
MRC paradigm.

2.1 Pre-training of PMR

PMR receives MRC-style data in the format of (Q, C, {Ak}Kk=1), where Q is a natural language
query and C is the input context that contains the answers {Ak}Kk=1 to the query. Each answer is a
consecutive token span in the context, and zero (K = 0) or multiple (K > 1) answers may exist.

Model Architecture. PMR has two components: an MLM encoder and an extractor (Figure 3).
The encoder receives the concatenation of query Q and context C as input X and represents each
input token as hidden states H .

X = [[CLS], Q, [SEP], C, [SEP]]

H = MLM(X) ∈ RM×d
(1)
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Figure 3: Model architecture of PMR. “-” indicates illegal candidate spans.

where [CLS] and [SEP] are special tokens inserted into the sequence, M is the sequence length, and d
is the dimension of the hidden states. The encoder MLM(·) denotes any pre-trained text encoder for
retrofitting, e.g. RoBERTa.

The extractor receives the hidden states of any two tokens and predicts the probability score that tells
if the span between the two tokens should be output as an answer. We applied the general way to
compute the score matrix S [39]:

S = sigmoid(FFN(H)TH) ∈ RM×M (2)

where FFN is the feed-forward network [57], and Si,j is the probability to extract the span Xi:j as
output. The general way avoids creating a large RM×M×2d-shape tensor of the concatenation way
[32], achieving higher training efficiency with fewer resources.

Training Objective. PMR is pre-trained with the WAE task, which checks the existence of answers
in the context and extracts the answers if they exist. For the first goal, PMR determines whether the
context contains spans that can answer the query:

Lcls = CE(S1,1, Y
cls) (3)

where CE is the cross-entropy loss and S1,1 at the [CLS] token denotes the query-context relevance
score. If Y cls = 1, the query and the context are relevant (i.e. answers exist). This task mimics the
downstream situation in which there may be no span to be extracted in the context (e.g. NER) and
encourages the model to learn through the semantic relevance of two pieces of text to recognize the
unextractable examples.

Secondly, the model is expected to extract all correct spans from the context as answers, which can
be implemented by predicting the answer positions:

Lext =
∑

N<i≤j<M

CE(Si,j , Y
ext
i,j ) (4)

where Y ext
i,j = 1 indicates that Xi:j is an answer to Q, and N is the positional offset of the context

in X . Note that only Xi:j with N < i ≤ j < M are legal answer span candidates (i.e., spans from
the context). MRC-NER [32] predicted the start and end probabilities as two additional objectives.
However, we find that these objectives are redundant for our matrix-based objective and incompatible
with multi-span extraction.

The overall pre-training objective Lwae is:

Lwae = Lcls + Lext (5)
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Data Preparation. MLM training can be easily scaled to millions of raw texts with a self-supervised
learning objective [12]. In contrast, training PMR in the MRC paradigm requires labeled triplets
(query, context, and answers) as supervision signals, which is expensive to prepare for large-scale
pre-training. To address this limitation, we automated the construction of general-purpose and
high-quality MRC-style training data by using Wikipedia anchors.

As illustrated in Figure 2, a Wikipedia anchor hyperlinks two Wikipedia articles: the definition article
that provides detailed descriptions of the anchor entity “Silicon”, and the mention article where the
anchor is mentioned. We leveraged the large scale of such hyperlink relations in Wikipedia as the
distant supervision to automatically construct the MRC triplets. Specifically, we regarded an anchor
as the MRC answer for the following context and query pair. The sentences surrounding the anchor
in the mention article serve as the MRC context. The sentences from the first section of the definition
article, which usually composes the most representative summary for the anchor entity [7], comprise
the query. The query provides a precise definition of the anchor entity, and thus serves as a good
guide for PMR to extract answers (i.e., anchor text) from the context.

Concretely, we considered sentences within a window size W of the anchor as the MRC context and
used the first T sentences from the definition article as the query. Note that the context may cover
multiple mentions of the same anchor entity. In this case, we treated all mentions as valid answers (i.e.,
K > 1) to avoid confusing the model training. More importantly, the preceding scenario naturally
resembles multi-span extraction tasks like NER. To prevent information leakage, we anonymized the
anchor entity in the query by using “it” to substitute text spans that overlapped more than 50% with
the anchor entity name. we did not use the “[MASK]” token because it does not exist in the data of
downstream tasks.

In addition to the above answerable query and context pairs prepared through hyperlink relation,
we introduced unanswerable examples by pairing a context with an irrelevant query (i.e., query and
context pairs without the hyperlink association). The unanswerable examples are designed to help
the model learn the ability to identify passage-level relevance and avoid extracting any answer (i.e.,
K = 0) for such examples.

2.2 Fine-tuning PMR for Extraction Tasks

We unified downstream span extraction tasks in our MRC formulation, which typically falls into two
categories: (1) span extraction with pre-defined labels (e.g., NER) in which each task label is treated
as a query to search the corresponding answers in the input text (context) and (2) span extraction
with natural questions (e.g., EQA) in which the question is treated as the query for answer extraction
from the given passage (context). Then, in the output space, we tackled span extraction problems by
predicting the probability Si,j of context span Xi:j being the answer. The detailed formulation and
examples are provided in Appendix A.2.

3 Experimental Setup

Implementation. We used the definition articles of the entities that appear as anchors in at least
10 other articles to construct the query. As mentioned in Sec. 2, we prepared 10 answerable query
and context pairs for each anchor entity. Then, we paired the query with 10 irrelevant contexts to
formulate unanswerable MRC examples. The resulting pre-training corpus consists of 18 million
MRC examples (6.4 billion words). We also tried various advanced data construction strategies, such
as relevance-driven and diversity-driven ones, to construct query and context pairs. However, no
significant performance gain is observed. A detailed comparison is provided in Appendix A.4.

The encoder of PMR is initialized with RoBERTa, a popular MLM with competitive downstream
performance. The extractor is randomly initialized, introducing additional 1.6M parameters. In terms
of the pre-training efficiency, with four A100 GPUs, it only takes 36 and 89 hours to complete 3-epoch
training of PMR for base-sized and large-sized models, respectively. Additional data preprocessing
details and hyper-parameter settings can be found in Appendix A.3.

Downstream Extraction Tasks. We evaluated two extraction tasks: EQA and NER.

EQA: We evaluated PMR on MRQA benchmark [15]. For the few-shot setting, we used the few-shot
MRQA datasets sampled by Splinter [46]. Although BioASQ and TbQA are originally used for OOD
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Model Size Unified SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TbQA Avg.
RoBERTa 125M

16
-s

ho
t

7.74.3 7.54.4 17.33.3 1.40.8 6.92.7 10.52.5 16.77.1 3.32.1 8.9
RBT-Post 125M 8.81.2 11.93.4 15.25.6 2.61.2 12.42.5 7.03.5 22.85.1 5.31.5 10.8
SpanBERT 110M 18.26.7 11.62.1 19.63.0 7.64.1 13.36.0 12.55.5 15.94.4 7.52.9 13.3
Splinter 125M 54.66.4 18.94.1 27.44.6 20.82.7 26.33.9 24.05.0 28.24.9 19.44.6 27.5
FewshotBART 139M 55.52.0 50.51.0 46.72.3 38.90.7 39.80.04 45.11.5 49.40.02 19.91.3 43.2
PMRbase 125M 46.54.0 47.73.7 32.63.0 26.22.7 50.13.2 32.92.9 49.14.1 27.93.3 39.1
PMRlarge 355M 60.34.0 56.23.1 43.61.7 30.13.7 58.25.0 46.14.7 54.23.4 31.01.8 47.5

RoBERTa 125M

32
-s

ho
t

18.25.1 10.51.8 22.90.7 3.21.7 13.51.8 10.41.9 23.36.6 4.30.9 13.3
RBT-Post 125M 12.73.7 13.42.5 20.73.0 2.90.6 13.42.5 10.80.8 26.05.2 5.31.2 13.2
SpanBERT 110M 25.67.7 15.16.4 25.11.6 7.24.6 14.68.5 13.23.5 25.13.3 7.62.3 16.7
Splinter 125M 59.22.1 28.93.1 33.62.4 27.53.2 34.81.8 34.73.9 36.53.2 27.64.3 35.4
FewshotBART 139M 56.82.1 52.50.7 50.11.1 40.41.5 41.80.02 47.91.4 52.30.02 22.72.3 45.6
PMRbase 125M 61.02.9 55.62.7 41.63.6 31.22.7 58.02.8 43.50.8 58.93.1 35.13.5 48.1
PMRlarge 355M 70.03.2 66.32.5 48.53.5 36.62.1 64.82.2 52.92.5 62.92.4 36.43.2 54.8

RoBERTa 125M
12

8-
sh

ot
43.07.1 19.12.9 30.11.9 16.73.8 27.82.5 27.33.9 46.11.4 8.21.1 27.3

RBT-Post 125M 11.01.0 26.90.9 24.64.9 4.81.3 27.81.9 13.51.8 30.21.6 8.91.3 18.5
SpanBERT 110M 55.83.7 26.32.1 36.01.9 29.57.3 26.34.3 36.63.4 52.23.2 20.95.1 35.5
Splinter 125M 72.71.0 44.73.9 46.30.8 43.51.3 47.24.5 54.71.4 63.24.1 42.62.5 51.9
FewshotBART 139M 68.00.3 50.11.8 53.90.9 47.91.2 58.11.4 54.80.8 68.51.0 29.72.4 53.9
PMRbase 125M 73.10.9 63.61.9 51.91.7 46.90.6 67.51.2 56.41.5 79.21.3 42.72.2 60.2
PMRlarge 355M 81.71.2 70.30.5 57.42.6 52.31.4 70.01.1 65.91.0 78.80.5 45.11.2 65.2

RoBERTa 125M

10
24

-s
ho

t

73.80.8 46.80.9 54.21.1 47.51.1 54.31.2 61.81.3 84.11.1 35.82.0 57.3
RBT-Post 125M 73.00.4 49.91.2 48.12.6 46.80.9 54.81.0 59.70.8 86.40.3 37.31.3 57.0
SpanBERT 110M 77.80.9 50.34.0 57.50.9 49.32.0 60.12.2 67.41.6 89.30.6 42.31.9 61.8
Splinter 125M 82.80.8 64.80.9 65.50.5 57.30.8 67.31.3 70.30.8 91.01.0 54.51.5 69.2
FewshotBART 139M 76.70.8 52.83.2 58.71.4 56.81.6 69.51.0 63.10.8 91.30.5 47.91.9 64.6
PMRbase 125M 82.80.2 69.50.6 66.61.1 59.20.3 74.60.6 69.90.3 94.40.5 54.51.0 71.4
PMRlarge 355M 87.60.7 73.70.8 71.81.2 64.40.9 76.00.9 74.70.9 94.70.2 60.81.6 75.5

Table 1: EQA results (F1) in four few-shot settings. In each setting, we reported the mean and
standard deviation over five splits of training data. The results of PMRlarge are written in blue for
demonstration purposes because it has more parameters than others (all base-sized.) The Size column
indicates the parameter size of models. The Unified column indicates if the model bridges the gaps
between pre-training and fine-tuning ( ) or not ( ). The results of the best base-sized models are
written in bold.

evaluation, Splinter [46] constructed few-shot training sets for both datasets by sampling examples
from their original dev sets. We followed FewshotQA [6] to build the dev set that has the same size
as the training set for model selection. For the full-resource experiments, we followed MRQA [15] in
both in-domain and OOD evaluations.

NER: We evaluated PMR on two flat NER datasets, namely, CoNLL and WNUT, and two nested
NER datasets, namely, ACE04 and ACE05 [54, 11, 42, 58]. For the few-shot setting, we constructed
five splits of K-shot training data, where K∈{4,8,32,64} sentences are sampled for each tag [38]. We
also constructed the dev set that has the same size as the training set.

Baselines. We compared PMR with (1) vanilla MLMs: RoBERTa [36] and SpanBERT [20] with a
randomly-initialized extractor, (2) RBT-Post, a continually pre-trained RoBERTa using our Wikipedia
data but with the MLM objective; and (3) models bridging the gaps between pre-training and fine-
tuning, namely, Splinter [46], FewshotBART [6], EntLM [40], T5-v1.1 [44], and UIE [38], where the
latter four are generative methods.

4 Main Results

Few-shot Results. The few-shot results of EQA and NER are presented in Tables 1 and 2. The
poor few-shot capability of RoBERTa suggests that fine-tuning an MRC extractor from scratch with
limited data is extremely challenging. Our PMR achieves notably better results on all few-shot levels
of the two tasks than RoBERTa, obtaining an average improvement of 34.8 F1 and 18.6 F1 on 32-shot
EQA and 4-shot NER, respectively. Other models that bridge the gaps between pre-training and
fine-tuning also perform much better than RoBERTa and RBT-Post, which is consistent with our
findings. For EQA, although FewshotBART benefits from a larger output space of the generative
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Model Size Unified CoNLL WNUT ACE04 ACE05 Avg. CoNLL WNUT ACE04 ACE05 Avg.
RoBERTa 125M

4-
sh

ot

32.47.2 29.73.8 47.54.5 48.13.7 39.4

8-
sh

ot

47.27.4 35.12.0 63.72.4 58.82.7 51.2
RBT-Post 125M 31.87.8 28.73.6 48.74.3 44.34.7 38.4 43.77.1 35.04.8 61.82.2 58.32.6 49.7
EntLM 125M 67.62.2 27.21.8 - - - 71.30.7 33.30.8 - - -
UIE 220M 52.03.3 28.33.1 45.22.3 41.33.0 41.7 66.52.0 39.31.6 52.41.8 51.81.2 52.5
PMRbase 125M 65.14.2 40.83.1 65.32.5 60.72.9 58.0 73.93.2 41.13.9 70.71.8 68.01.3 63.4
PMRlarge 355M 65.74.5 40.53.3 65.23.5 66.12.8 59.4 70.34.4 46.42.5 71.71.5 69.92.1 64.6

RoBERTa 125M

32
-s

ho
t

77.81.8 47.91.6 76.80.3 74.40.6 69.2

64
-s

ho
t

80.81.1 50.61.1 78.71.3 77.90.6 72.0
RBT-Post 125M 77.10.7 45.81.9 75.70.7 73.60.9 68.1 80.91.0 49.82.8 79.21.4 77.51.1 71.9
EntLM 125M 78.90.9 42.40.9 - - - 82.11.1 46.21.1 - - -
UIE 220M 79.61.1 46.21.2 68.00.5 66.30.8 65.0 83.20.8 48.41.2 74.70.6 72.20.4 69.6
PMRbase 125M 81.71.2 50.31.4 79.01.1 76.91.3 72.0 84.40.9 51.52.2 81.60.8 79.50.5 74.3
PMRlarge 355M 83.20.6 50.41.6 79.81.2 77.21.5 72.7 84.51.7 53.12.8 81.21.2 79.71.1 74.6

Table 2: NER results (F1) in four few-shot settings. EntLM is not applicable for nested NER tasks.

Size SQuAD BioASQ DROP DuoRC RACE RE TbQA Avg.
T5-v1.1 800M 93.9 72.8 47.3 63.9 57.5 87.1 61.5 65.0
RoBERTa 355M 94.2 65.8 54.8 58.6 49.0 88.1 54.7 61.8
PMR 355M 94.5 71.4 62.7 64.1 53.6 88.2 57.5 66.3

Table 3: Performance on OOD EQA. We used the SQuAD training data to train the models and
evaluate them on MRQA OOD dev sets.

model to achieve better transferability in an extremely low-resource EQA setting (i.e., 16 shot),
processing such large output is far more complicated than the discriminative MRC and thus is prone
to overfitting. MRC-based PMR demonstrates higher effectiveness in learning extraction capability
from more training examples than FewshotBART, consequently yielding better performance on EQA
when at least 32 examples are provided. Note that the compared baselines for EQA and NER are
slightly different due to their different applicability. For example, UIE mainly emphasizes a structured
prediction and is not applicable to complicated extraction tasks like EQA. EntLM, which aims to
generate label tokens, is also not applicable to EQA. The findings further reveal that PMR can work
reasonably well as a zero-shot learner (Appendix A.5).

OOD Generalization. Domain generalization is another common low-resource scenario in which
the knowledge can be transferred from a resource-rich domain to a resource-poor domain. We
evaluated the domain generalization capability of the proposed PMR on the MRQA benchmark. The
MRQA benchmark provides meaningful OOD datasets that are mostly converted from other tasks
(e.g., multi-choice QA) and substantially differ from SQuAD in terms of text domain.

Table 3 shows that PMR significantly surpasses RoBERTa on all six OOD datasets (+4.5 F1 on
average), although they have similar in-domain performance on SQuAD. This finding verifies that
our PMR with MRC-style pre-training can help capture QA patterns that are more generalizable to
unseen domains. In addition, PMR with less than half the parameters of T5-v1.1, achieves a better
generalization capability.

Model Size Unified EQA NER

RBT-Post 355M 81.9 79.8
SpanBERT 336M 81.7 77.3
T5-v1.1 800M 82.0 76.0
UIE 800M - 79.6

RoBERTa 355M 84.0 80.8
PMR 355M 84.9 82.3

Table 4: Full-resource results on EQA and NER.
For EQA, we reported the average F1 score on six
MRQA in-domain dev sets. For NER, we used
four datasets.

Full-resource Results. Although using the
full-resource training data can alleviate the
pretraining-finetuning discrepancy, MRC-style
continual pre-training still delivers reasonable
performance gains. As shown in Table 4, PMR
achieves 0.9 and 1.5 F1 improvements over
RoBERTa on EQA and NER, respectively. Fur-
ther analysis shows that PMR can do better at
comprehending the input text (Appendix 5.3).
We also explore the upper limits of PMR by
employing a larger and stronger MLM, i.e.
ALBERTxxlarge [27], as the backbone. The re-
sults show additional improvements of our PMR
over ALBERTxxlarge on EQA (Appendix A.6).
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Size RACE DREAM MCTest SST-2 MNLI Avg.

T5-v1.1 800M 81.7 75.7 86.7 96.7 90.4 86.2
RBT-Post 355M 80.6 81.3 86.9 96.1 89.7 86.9
RoBERTa 355M 83.2 84.2 89.3 96.4 90.1 88.6
PMR 355M 82.8 83.8 92.3 96.5 89.9 89.1

Table 5: Full-resource performance (Acc.) on sequence classification tasks.

Input and extracted rationales Label
It’s all pretty cynical and condescending, too. Negative
Perhaps the heaviest, most joyless movie ever made about giant dragons taking over the world. Negative
This is the best American movie about troubled teens since 1998’s whatever. Positive
An experience so engrossing it is like being buried in a new environment. Positive

Table 6: Case study on SST-2. PMR can additionally extract token-level rationales (in red and bold)
to support the sequence classification. A total of 224 rationales out of 300 (74%) are reasonable.

5 Discussions

5.1 Explainable Sequence Classification

Settings. The relevance classification between the query and the context in our WAE objective can
be inherited to tackle downstream sequence classification problems, another important topic of NLU.
To demonstrate, we considered two major sequence classification tasks in our MRC formulation.
The first is sequence classification with pre-defined task labels, such as sentiment analysis. Each
task label is used as a query for the input text (i.e. the context in PMR)4; The second is sequence
classification with natural questions on multiple choices, such as multi-choice QA (MCQA). We
treated the concatenation of the question and one choice as the query for the given passage (i.e., the
context). In the output space, these problems are tackled by conducting relevance classification on
S1,1 (extracting [CLS] if relevant). Examples are included in Appendix A.2. We tested PMR on (1)
three MCQA tasks: DREAM [53], RACE [26], and MCTest [47]; (2) a sentence-pair classification
task: MNLI [61]; and (3) a sentence classification task: SST-2 [52].

Results. Table 5 presents the results of PMR and previous strong baselines on the above-mentioned
tasks. Compared with RoBERTa, PMR exhibits comparable results on all tasks and achieved slightly
better average performance. This indicates that solving sequence classification in an MRC manner is
feasible and effective.

Explainability. In sequence classification, we restricted the extraction space to the [CLS] token
and used the extraction probability of this token to determine which class label (i.e. the query) the
input text (i.e. the context) corresponds to. Note that while predicting the extraction probability of
[CLS], PMR also calculates the extraction scores of context spans, just as done for the span extraction
tasks. Therefore, we leveraged the fine-tuned PMR to additionally extract a span with the highest
Si,j score from the input of SST-2, as exemplified in Table 6. The extracted spans are clear rationales
that support the sequence-level prediction (i.e., the overall sentiment of the input sentence). To verify
this, we conducted a quantitative analysis by randomly checking 300 test instances. The results show
that approximately 74% of the extracted spans are reasonable rationales for sentiment prediction.
These findings suggest that the fine-tuned PMR on SST-2 effectively preserves the conditional
span extraction capability inherited from the MRC pre-training. Such a capability shows that the
model captures the semantic interactions between relevant context spans and the label-encoded query
(e.g., “Negative. Feeling bad.”). In addition to the performance improvement, PMR provides high
explainability for the classification results.

4Sentence-pair classification is classified into this type, where the concatenation of two sentences denotes the
context.
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5.2 Unifying Extraction and Classification with PMR

In the previous sections, we demonstrate that various extraction and classification tasks can be
separately tackled in the same MRC formulation. We further explore the potential that fine-tuning a
unified model for solving multiple tasks of different types.

Settings. We use two datasets, one from CoNLL NER (of extraction type) and the other from
DREAM (of classification type), to train a multi-task model. For evaluation, we conduct three groups
of experiments, where the models are evaluated on (1) Held-in: testing sets from training tasks, (2)
Held-out Datasets: testing sets from other tasks of the same type with training tasks, and (3) Held-out
Tasks: testing sets from unseen tasks

CoNLL DREAM WNUT RACE SQuAD SST-2
Datasets
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Held-in Held-out Datasets Held-out Tasks
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PMR_large

Figure 4: The results of Held-in, Held-out Datasets,
and Held-out Tasks evaluation. The six data points in
the Held-in group denote the single-task fine-tuned
performance of three models on two tasks respec-
tively.

Results. As shown in Figure 4, the held-
in results show that the multi-task fine-tuned
RoBERTa suffers from a significant perfor-
mance drop on DREAM compared to the
single-task fine-tuned RoBERTa. This indi-
cates that multi-task learning is difficult for
a discriminative model if the task head is not
well-trained. In contrast, the multi-task PMR
is on par with PMR on CoNLL and slightly
underperforms PMR on DREAM. Such a find-
ing suggests that the MRC-style pre-training
enhances PMR’s capability to learn extraction
and classification patterns from downstream
NLU tasks, enabling PMR to serve as a unified
model for solving various NLU tasks. Though
generative models like T5-v1.1 (800M) could
also unify NLU tasks through a conditional generation manner [44, 38], the overall performance,
especially the held-out performance, is lower than the smaller-sized PMR (355M). This suggests that
the discriminative PMR may be better than generative models at unifying NLU tasks.

5.3 Better Comprehending capability

To verify that PMR can better comprehend the input text, we feed the models with five different query
variants during CoNLL evaluation. The five variants are:

• Defaulted query:
"[Label]". [Label description]

• Query template (v1):
What is the "[Label]" entity, where [Label description]?

• Query template (v2):
Identify the spans (if any) related to "[Label]" entity. Details: [Label
description]

• Paraphrasing label description with ChatGPT (v1):
"[Label]". [Paraphrased Label description v1]

• Paraphrasing label description with ChatGPT (v1):
"[Label]". [Paraphrased Label description v2]

In Figure 5, we show the statistic results of the three models on CoNLL when five different query
templates are used respectively during evaluation. Among the models, PMR demonstrated signifi-
cantly higher and more stable performance than RoBERTa and T5-v1.1. Such a finding verifies our
assumption that PMR can effectively comprehend the latent semantics of the input text despite being
rephrased with varying lexical usage from the default query used for fine-tuning models.

6 Related Work

Gaps between Pre-training and Fine-tuning. The prevailing approaches tackle span extraction
tasks in a discriminative manner with tailored task-specific classifiers (e.g. tagging or MRC head)
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Figure 5: CoNLL performance when the models are fed with five different templates respectively
during evaluation.

[19, 9, 12]. Recent research reported that generative fine-tuning methods can effectively bridge the
gaps between pre-training and fine-tuning and achieve remarkable few-shot NLU performance by
representing downstream NLU tasks as the same language model pre-training problem [49, 50, 34,
16, 35]. In the scope of span extraction, these works can be classified into three categories: generating
label tokens based on the prompt span [10, 40], generating span tokens based on the prompt label
[6, 38], and directly generating label-span pairs with soft prompt [8]. Another way to mitigate the
gap is to adapt MLMs into an appropriate paradigm for solving span extraction. Typically, this can
be achieved through the use of task-specific data from similar tasks, referred to as “pre-finetuning”
[24, 1, 68]. However, these methods may not be effective in domain-specific tasks or for non-English
languages due to the lack of labeled data. Several studies leveraged abundant raw text to construct
MRC examples for retrofitting MLMs [30, 18, 46]. By contrast, PMR employs ubiquitous hyperlink
information to construct MRC data, which guarantees highly precise MRC triplets. In addition, PMR
also provides a unified model for both sequence classification and span extraction, thereby enabling
strong explainability through the extraction of high-quality rationale phrases.

Hyperlinks for NLP. Hyperlinks are utilized in two ways. First, hyperlinks can be regarded as
a type of relevance indicator in model pre-training [67], passage retrieval [7, 51], and multi-hop
reasoning [2, 66]. Second, the anchors labeled by hyperlinks can serve as entity annotations for
representation learning [64, 5]. PMR is the first one to combine the advantages of both scenarios. In
this work, we paired MRC query and context based on the relevance of hyperlinks and automatically
labeled the anchors as MRC answers.

7 Conclusions

This work presents a novel MRC-style pre-training model called PMR. PMR can fully resolve the
learning objective and model architecture gaps that frequently appear in fine-tuning existing MLMs.
Experimental results from multiple dimensions, including effectiveness in solving few-shot tasks and
OOD generalization, show the benefits of bridging the gap between pre-training and fine-tuning for
span extraction tasks. PMR also shows promising potential in explaining the sequence classification
process and unifying NLU tasks.
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A Appendix

A.1 Limitations

Multilinguality Although constructing large-scale MRC-style training data is feasible for resource-
rich languages, such as English, extending this idea to resource-poor languages might be difficult due
to the relatively small amount of anchors in their corresponding Wikipedia articles. Exploring other
data resources to automatically construct large-scale pre-training data can remedy this issue. For
example, given a word in the monolingual dictionaries, we can regard the word itself, the definition of
this word, and the example sentence of this word as the MRC answer, query, and context respectively.
We believe our MRC-style pre-training is still applicable for low-resource languages with such
dictionaries.

Comparison with Large Language Models In this paper, we did not compare PMR with large
language models (LLM) for the following two reasons. First, existing MLMs are small in scale.
Therefore, we are unable to find a suitable MLM to make a fair comparison with LLMs. Second,
studies have shown that LLMs yield inferior results compared to smaller MLMs on span extraction
tasks, particularly those involving structured prediction [41, 43, 60, 31]. Based on this fact, we mainly
compare with existing strong generative methods of comparable model size.

Few-shot NER results of SpanBERT We ran SpanBERT [20] in our NER few-shot settings.
However, its performance was below our expectations. In all our few-shot settings, SpanBERT
achieved an F1 score of 0 on CoNLL and WNUT datasets. Additionally, its performance on ACE04
and ACE05 datasets was significantly lower than RoBERTa [36]. Based on these outcomes, we only
compare PMR with SpanBERT in the NER full-resource setting.

A.2 Fine-tuning Tasks

For EQA, we use the MRQA benchmark [15], including SQuAD [45], TriviaQA [21], NaturalQues-
tion [25], NewQA [55], SearchQA [14], HotpotQA [66], BioASQ [56], DROP [13], DuoRC [48],
RACE [26], RelationExtraction [28], TextbookQA [22]. EQA has always been treated as an MRC
problem, where the question serves as the MRC query, and the passage containing the answers serves
as the MRC context. For NER, We follow MRC-NER [32] to formulate NER into the MRC paradigm,
where the entity label together with its description serves as the MRC query, and the input text serves
as the MRC context. The goal is to extract the corresponding entities as answers. We use the Eq. 4 as
the learning objective, where Y ext

i,j indicates that the input span Xi:j is an answer/entity.

For sequence classification tasks, we construct the MRC query and context as followed. MCQA:
The query is the concatenation of the question and one choice, and the context is the supporting
document. MNLI: The query is the entailment label concatenated with the label description, and
the context is the concatenation of the premise and hypothesis. SST-2: The query is the sentiment
label concatenated with the label description, and the context is the input sentence. We use Eq. 3 to
fine-tune the classification tasks. Note that only the correct query-context pair would get Y cls = 1.
Otherwise, the supervision is Y cls = 0. During inference, we select the query-context pair with the
highest S1,1 among all MRC examples constructed for the sequence classification instance as the
final prediction. We show concrete examples for each task in Table 7 and Table 8.

A.3 Implementations

We download the 2022-01-01 dump5 of English Wikipedia. For each article, we extract the plain text
with anchors via WikiExtractor [3] and then preprocess it with NLTK [4] for sentence segmentation
and tokenization. We consider the definition articles of entities that appear as anchors in at least 10
other articles to construct the query. Then, for each anchor entity, we pair its query from the definition
article with 10 relevant contexts from other mention articles that explicitly mention the corresponding
anchors and construct answerable MRC examples as described in Sec. 2. Unanswerable examples are
formed by pairing the query with 10 irrelevant contexts.

5https://dumps.wikimedia.org/enwiki/latest
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Task Example Input Example Output

EQA
(SQuAD)

O
ri

.

Question: Which NFL team represented the NFC at Super
Bowl 50? Context: Super Bowl 50 was an American
football game to determine the champion of the National
Football League (NFL) for the 2015 season. The American
Football Conference (AFC) champion Denver Broncos de-
feated the National Football Conference (NFC) champion
Carolina Panthers to earn their third Super Bowl title.

Answer: "Carolina Panthers"

PM
R

[CLS] Which NFL team represented the NFC at Super Bowl
50 ? [SEP] [SEP] Super Bowl 50 was an American football
game to determine the champion of the National Football
League (NFL) for the 2015 season . The American Football
Conference (AFC) champion Denver Broncos defeated the
National Football Conference (NFC) champion Carolina
Panthers to earn their third Super Bowl title . [SEP]

(53,54) - "Carolina Panthers"

NER
(CoNLL)

O
ri

. Two goals in the last six minutes gave holders Japan an
uninspiring 2-1 Asian Cup victory over Syria on Friday.

("Japan", LOC);
("Syria", LOC);
("Asian Cup", MISC)

PM
R

[CLS] "ORG" . Organization entities are limited to named
corporate, governmental, or other organizational entities.
[SEP] [SEP] Two goals in the last six minutes gave holders
Japan an uninspiring 2-1 Asian Cup victory over Syria on
Friday . [SEP]

∅

[CLS] "PER" . Person entities are named persons or family .
[SEP] [SEP] Two goals in the last six minutes gave holders
Japan an uninspiring 2-1 Asian Cup victory over Syria on
Friday . [SEP]

∅

[CLS] "LOC" . Location entities are the name of politically
or geographically defined locations such as cities , countries .
[SEP] [SEP] Two goals in the last six minutes gave holders
Japan an uninspiring 2-1 Asian Cup victory over Syria on
Friday . [SEP]

(32,32) - "Japan";
(40,40) - "Syria"

[CLS] "MISC" . Examples of miscellaneous entities include
events , nationalities , products and works of art . [SEP]
[SEP] Two goals in the last six minutes gave holders Japan
an uninspiring 2-1 Asian Cup victory over Syria on Friday .
[SEP]

(34,35) - "Asian Cup"

Table 7: MRC examples of span extraction. Ori. indicates the original data format of these NLU
tasks.

We use Huggingface’s implementations of RoBERTa [62] as the MLM backbone. During the pre-
training stage, the window size W for choosing context sentences is set to 2 on both sides. We use
the first T = 1 sentence as the MRC query. Sometimes, the sentence segmentation would wrongly
segment a few words to form a sentence, which is not meaningful enough to serve as an MRC query.
Therefore, we continue to include subsequent sentences to form the query as long the query length is
short than 30 words. The learning rate is set to 1e-5, and the training batch size is set to 40 and 24 for
PMRbase and PMRlarge respectively in order to maximize the usage of the GPU memory. We follow
the default learning rate schedule and dropout settings used in RoBERTa. We use AdamW [37] as
our optimizer. We train both PMRbase and PMRlarge for 3 epochs on 4 A100 GPU. Since the WAE
is a discriminative objective, the pre-training is extremely efficient, which tasks 36 and 89 hours
to finish all training processes for two model sizes respectively. We also reserve 1,000 definition
articles to build a dev set (20,000 examples) for selecting the best checkpoint. Since the queries
constructed by these definition articles have never been used in training, they can be used to estimate
the general language understanding ability of the model instead of hand match. The hyper-parameters
of PMRlarge on downstream NLU tasks can be found in Table 9 and Table 11 for full-supervision
and few-shot settings respectively.
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Task Example Input Example Output

MCQA
(OBQA)

O
ri

.

Question: A positive effect of burning biofuel is:
(A) shortage of crops for the food supply.
(B) an increase in air pollution
(C) powering the lights in a home.
(D) deforestation in the amazon to make room for crops.

Context: Biofuel is used to produce electricity by burning.

Answer Choice: C

PM
R

[CLS] A positive effect of burning biofuel is shortage of
crops for the food supply . [SEP] [SEP] Biofuel is used to
produce electricity by burning . [SEP]

∅

[CLS] A positive effect of burning biofuel is an increase
in air pollution . [SEP] [SEP] Biofuel is used to produce
electricity by burning . [SEP]

∅

[CLS] A positive effect of burning biofuel is powering the
lights in a home . [SEP] [SEP] Biofuel is used to produce
electricity by burning . [SEP]

(0,0) - "[CLS]"

[CLS] A positive effect of burning biofuel is deforestation in
the amazon to make room for crops . [SEP] [SEP] Biofuel
is used to produce electricity by burning . [SEP]

∅

Sentence
Classification

(SST-2)

O
ri

.

This is one of Polanski’s best films. Positive

PM
R

[CLS] Negative , feeling not good . [SEP] [SEP] This is
one of Polanski ’s best films . [SEP] ∅

[CLS] Positive , having a good feeling . [SEP] [SEP] This
is one of Polanski ’s best films . [SEP] (0,0) - "[CLS]"

Sen. Pair
Classification

(MNLI)

O
ri

. Hypothesis: You and your friends are not welcome here, said Severn.
Premise: Severn said the people were not welcome there. Entailment

PM
R

[CLS] Neutral. The hypothesis is a sentence with mostly the
same lexical items as the premise but a different meaning
. [SEP] [SEP] Hypothesis : You and your friends are not
welcome here, said Severn . Premise : Severn said the people
were not welcome there . [SEP]

∅

[CLS] Entailment . The hypothesis is a sentence with a
similar meaning as the premise . [SEP] [SEP] Hypothesis
: You and your friends are not welcome here, said Severn .
Premise : Severn said the people were not welcome there .
[SEP]

(0,0) - "[CLS]"

[CLS] Contradiction . The hypothesis is a sentence with
a contradictory meaning to the premise . [SEP] [SEP]
Hypothesis : You and your friends are not welcome here,
said Severn . Premise : Severn said the people were not
welcome there . [SEP]

∅

Table 8: MRC examples of sequence classification.

A.4 Analysis of Data Construction

In addition to the defaulted way of constructing MRC examples (the first sentence in the definition
article is the query, and randomly find 10 contexts for pairing 10 MRC examples), we compare with
some advanced strategies to pair the query and the context, including:

• Q-C Relevance: We still use the first sentence from the definition article as the query, but
we only select the top P% or top P most similar contexts to the query, where the similarity
score is computed as the combination of BM25 and SimCSE [17].
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Dataset CoNLL03 WNUT ACE04 ACE05 MRQA RACE DREAM MCTest MNLI SST-2

Query Length 32 32 64 64 64 128 128 128 64 64
Input Length 192 160 192 192 384 512 512 512 192 192
Batch Size 32 16 64 32 16 8 2 2 16 16
Learning Rate 2e-5 1e-5 2e-5 2e-5 2e-5 2e-5 2e-5 1e-5 1e-5 2e-5
Epoch 10 5 10 5 4 4 3 8 3 2

Table 9: Hyper-parameters settings in fine-tuning downstream tasks in full-supervision settings.

ID Strategy Query Context CoNLL SQuAD DREAM SST-2

0 RoBERTabase N.A. N.A. 92.3 91.2 66.4 95.0

1 Random First 1 Random 10 93.2 92.2 66.7 94.8
2 Q-C Relevance (top P%) First 1 top 30% 93.0 91.9 65.5 95.3
3 Q-C Relevance (top P) First 1 top 10 93.2 92.1 65.8 94.8

4 Random (Defaulted) First 1 Random 10 + Unanswerable 93.1 92.1 70.7 94.6
5 Q-C Relevance (top P) First 1 top 10 + Unanswerable 93.1 92.2 69.7 94.7
6 Q Diversity Random 5 Random 10 + Unanswerable 93.2 92.2 70.6 94.8
7 C Diversity First 1 Cluster 10 + Unanswerable 92.8 92.2 70.5 95.1

Table 10: We try various advanced strategies to pair the query and the context to form an MRC
example. the Query and Context columns indicate how to select possible query and context for
pairing. + Unanswerable indicates that PMR also uses Unanswerable examples and is also trained
with Lcls. Models are base-sized.

• Q Diversity: In searching for an anchor, we hope the query should be diverse enough
such that the model would not make a hard match between the fixed query and the anchor.
Therefore, we randomly select one sentence from the first P sentences in the definition article
to serve as the query for the anchor, while we keep the same context selection strategy.

• C Diversity: We hope the contexts should also be diverse enough such that they provide
more possible usages of an anchor. Therefore, We use K-means6 to cluster all contexts
containing the anchor into P clusters and randomly select 1 context in each cluster. Similar
scores in K-means are also obtained via SimCSE.

We compare those advanced strategies with our defaulted one in Table 10, where two span extraction
and sequence classification tasks are selected for evaluating the effectiveness of these strategies.
First, we make a fast evaluation with only Lext without unanswerable examples (i.e. Strategy 1,2,3).
Comparing Q-C Relevance (top P%) against Q-C Relevance (top P), we can observe that it is better to
sample contexts based on absolute values. In Wikipedia, the reference frequency of anchor entities is
extremely unbalanced, where some frequent anchor entities such as "the United States" are referenced
more than 200,000 times, while other rare anchor entities are only mentioned once or twice in other
articles. Therefore, Q-C Relevance (top P%) would waste too much focus on the well-learned frequent
anchor entities and affect the learning of other less frequent anchor entities.

Then, when trained on both answerable and unanswerable examples as well well guided with both
Lcls and Lext, we only sample an absolute number of contexts. However, comparing among Strategy
4,5,6,7, no significant difference between these strategies and our random sampling is observed. We

6https://github.com/subhadarship/kmeans_pytorch

Dataset EQA NER

Query Length 64 32
Input Length 384 192
Batch Size 12 12
Learning Rate {5e-5,1e-4} {5e-5,1e-4}
Max Epochs/Steps 12/200 20/200

Table 11: Hyper-parameters settings in fine-tuning downstream tasks in few-shot settings.
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1. How many solo tackles did Von Miller make at Super Bowl 50?
Gold: five solo tackles
RoBERTa: forced him into three turnovers, including 
T5-v1.1: context: context: context: context: context: context: context: 
FewshotBART: 
PMR: five solo tackles 

( × )
( × )

∅
(✓)

The Broncos took an early lead in Super Bowl 50 and never 
trailed. Newton was limited by Denver's defense, which 
sacked him seven times and forced him into three turnovers, 
including a fumble which they recovered for a touchdown. 
Denver linebacker Von Miller was named Super Bowl MVP, 
recording five solo tackles, 2½ sacks, and two forced fumbles.

F1 EM
RoBERTa 7.3 0.1
T5-v1.1 12.6 0.0
FewshotBART 0.8 0.3
PMR 17.2 10.4

2. Which Newton turnover resulted in seven points for Denver?
Gold: a fumble
RoBERTa: trailed. Newton was limited by Denver's defense, which sacked 
him seven times and forced him into three turnovers, including a fumble 
which they recovered 
T5-v1.1: . context: Newton's first Super Bowl touchdown came in Super Bowl 
50. context: 
FewshotBART: Denver linebacker Von 
PMR: two forced fumbles 

( × )
( × )

( × )
( × )

Figure 6: Zero-shot performance on SQuAD and a case study. The F1/EM scores are shown in the
left-top corner.

suggest that the benefits from these heuristic strategies are marginal in the presence of large-scale
training data. Therefore, in consideration of the implementation simplicity, we just use the Random
strategy as our final PMR implementation.

A.5 Zero-shot Learning

To reveal PMR’s inherent capability from its MRC-style pretraining, we show its zero-shot per-
formance in Figure 6, where the F1 and Exact Match (EM) scores on the entire SQuAD dev set
and a case study in answering several questions are presented. Without any fine-tuning, our PMR
achieves 10.4 EM, whereas T5 and RoBERTa can barely provide a meaningful answer, as shown by
their near-zero EM scores. In the case study, our PMR correctly answers the first question. For the
second question, although PMR gives an incorrect answer, the prediction is still a grammatical phrase.
In contrast, RoBERTa and T5-v1.1 always perform random extractions and generations. Such a
phenomenon verifies that PMR obtains a higher-level language digest capability from the MRC-style
pretraining and can directly tackle downstream tasks to some extent.

A.6 Fully-Resource Results

Table 12 compares PMR with strong approaches in full-resource settings. On EQA and NER, PMR
can significantly and consistently outperform previous approaches, where PMRlarge achieves up to
3.7 and 2.6 F1 improvements over RoBERTalarge on WNUT and SearchQA, respectively. For the
base-sized models, the advantage of PMR is more obvious, i.e. 1.4 F1 over RoBERTabase. Apart
from those, we also observe that: (1) PMR can also exceed strong generative approaches (i.e. UIE,
T5-v1.1) on most tasks, demonstrating that the MRC paradigm is more suitable to tackle NLU
tasks. (2) RoBERTa-Post, which leverages our Wikipedia corpus (a subset of its original pre-training
data) for MLM-style continued-pretraining, performs poorly on most tasks, especially those with
natural-question queries (i.e. EQA and MCQA). (3) PMR can be applied on even larger MLM such as
ALBERTxxlarge [27] to gain stronger representation capability and further improve the performance
of downstream tasks. Such findings suggest that with our MRC data format and WAE objective, PMR
can leverage the same data to learn a high level of language understanding ability, beyond language
representation.
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EQA Size Unified SQuAD NewsQA TriviaQA SearchQA HotpotQA NQ Avg.

RBT-Postlarge 355M 93.0 70.9 80.9 86.8 79.8 79.9 81.9
SpanBERTlarge [20] 336M 93.1 72.3 78.1 83.2 80.9 82.3 81.7
LUKElarge [64] 483M 94.5 72.1 NA NA 81.9 83.3 -
T5-v1.1large [44] 800M 93.9 69.8 77.8 87.1 81.9 81.6 82.0

RoBERTabase 125M 91.2 69.0 79.3 85.0 77.9 79.7 80.4
PMRbase (OURS) 125M 92.1 71.9 81.5 86.4 80.6 81.0 82.3
RoBERTalarge 355M 94.2 73.8 85.1 85.7 81.6 83.3 84.0
PMRlarge (OURS) 355M 94.5 74.0 85.1 88.3 83.6 83.8 84.9
ALBERTxxlarge 223M 94.7 75.3 86.0 89.4 83.8 83.8 85.5
PMRxxlarge (OURS) 223M 95.0 75.4 86.7 89.6 84.5 84.8 86.0

NER Size Unified CoNLL WNUT ACE04 ACE05 Avg.

Robertalarge+Tagging [36] 355M 92.4 55.4 - - -
RBT-Postlarge 355M 92.7 53.8 86.6 86.2 79.8
SpanBERTlarge 336M 90.3 47.2 86.4 85.4 77.3
LUKElarge [64] 483M 92.4† 55.2† - - -
CL-KLlarge [59] 550M 93.2† 59.3† - - -
BARTNERlarge [65] 406M 93.2‡ - 86.8‡ 84.7‡ -
T5-v1.1large [44] 800M 90.5 46.7 83.9 82.8 76.0
UIElarge [38] 800M 93.2♠ 52.5 86.9♠ 85.8♠ 79.6

RoBERTabase 125M 92.3 53.9 85.8 85.2 79.3
PMRbase (OURS) 125M 93.1 57.6 86.1 86.1 80.7
RoBERTalarge 355M 92.6 57.1 86.3 87.0 80.8
PMRlarge (OURS) 355M 93.6 60.8 87.5 87.4 82.3
ALBERTxxlarge 223M 92.8 54.0 86.8 87.7 80.3
PMRxxlarge (OURS) 223M 93.2 58.3 88.4 87.9 82.0

Table 12: Performance on EQA (F1), and NER (F1). The best models are bolded. For EQA, as
done in MRQA [15], we report the F1 on dev set and produce the results of SpanBERT and LUKE
following the same protocol. Although we try hard to produce the results of LUKE for TriviaQA
and SearchQA, its performance is unreasonably low. For CoNLL, we assume there is no additional
context available and therefore we retrieve the results of CL-KL w/o context from [59]. Results
labeled by †, ‡, and ♠ are cited from [59, 65, 38], respectively.
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