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ABSTRACT

Some of the most popular methods for improving the stability and performance
of GANs involve constraining or regularizing the discriminator. In this paper we
consider a largely overlooked regularization technique which we refer to as the
Adversary’s Assistant (AdvAs). We motivate this using a different perspective to
that of prior work. Specifically, we consider a common mismatch between theo-
retical analysis and practice: analysis often assumes that the discriminator reaches
its optimum on each iteration. In practice, this is essentially never true, often
leading to poor gradient estimates for the generator. To address this, AdvAs is a
theoretically motivated penalty imposed on the generator based on the norm of the
gradients used to train the discriminator. This encourages the generator to move
towards points where the discriminator is optimal. We demonstrate the effect of
applying AdvAs to several GAN objectives, datasets and network architectures.
The results indicate a reduction in the mismatch between theory and practice and
that AdvAs can lead to improvement of GAN training, as measured by FID scores.

1 INTRODUCTION

The generative adversarial network (GAN) framework (Goodfellow et al., 2014) trains a neural
network known as a generator which maps from a random vector to an output such as an image.
Key to training is another neural network, the adversary (sometimes called a discriminator or critic),
which is trained to distinguish between “true” and generated data. This is done by maximizing
one of the many different objectives proposed in the literature; see for instance Goodfellow et al.
(2014); Arjovsky et al. (2017); Nowozin et al. (2016). The generator directly competes against the
adversary: it is trained to minimize the same objective, which it does by making the generated data
more similar to the true data. GANs are efficient to sample from, requiring a single pass through a
deep network, and highly flexible, as they do not require an explicit likelihood. They are especially
suited to producing photo-realistic images (Zhou et al., 2019) compared to competing methods like
normalizing flows, which impose strict requirements on the neural network architecture (Kobyzev
et al., 2020; Rezende & Mohamed, 2015) and VAEs (Kingma & Welling, 2014; Razavi et al., 2019;
Vahdat & Kautz, 2020). Counterbalancing their appealing properties, GANs can have unstable
training dynamics (Kurach et al., 2019; Goodfellow, 2017; Kodali et al., 2017; Mescheder et al.,
2018).

Substantial research effort has been directed towards improving the training of GANs. These en-
deavors can generally be divided into two camps, albeit with significant overlap. The first develops
better learning objectives for the generator/adversary to minimize/maximize. These are designed to
have properties which improve training (Arjovsky et al., 2017; Li et al., 2017; Nowozin et al., 2016).
The other camp develops techniques to regularize the adversary and improve its training dynam-
ics (Kodali et al., 2017; Roth et al., 2017; Miyato et al., 2018). The adversary can then provide a
better learning signal for the generator. Despite these contributions, stabilizing the training of GANs
remains unsolved and continues to be an active research area.

An overlooked approach is to train the generator in a way that accounts for the adversary not being
trained to convergence. One such approach was introduced by Mescheder et al. (2017) and later built
on by Nagarajan & Kolter (2017). The proposed method is a regularization term based on the norm
of the gradients used to train the adversary. This is motivated as a means to improve the convergence
properties of the minimax game. The purpose of this paper is to provide a new perspective as to why

1



Under review as a conference paper at ICLR 2021

this regularizer is appropriate. Our perspective differs in that we view it as promoting updates that
lead to a solution that satisfies a sufficient condition for the adversary to be optimal. To be precise,
it encourages the generator to move towards points where the adversary’s current parameters are
optimal. Informally, this regularizer “assists” the adversary, and for this reason we refer to this
regularization method as the Adversary’s Assistant (AdvAs).

We additionally propose a version of AdvAs which is hyperparameter-free. Furthermore, we release
a library which makes it simple to integrate into existing code. We demonstrate its application to a
standard architecture with the WGAN-GP objective (Arjovsky et al., 2017; Gulrajani et al., 2017);
the state-of-the-art StyleGAN2 architecture and objective introduced by Karras et al. (2020); and
the AutoGAN architecture and objective introduced by Gong et al. (2019). We test these on the
MNIST (Lecun et al., 1998), CelebA (Liu et al., 2015), CIFAR10 (Krizhevsky et al., 2009) datasets
respectively. We show that AdvAs improves training on all datasets, as measured by the Fréchet
Inception Distance (FID) (Heusel et al., 2017), and the inception score (Salimans et al., 2016) where
applicable.

2 BACKGROUND

A generator is a neural network g : Z → X ⊆ Rdx which maps from a random vector z ∈ Z
to an output x ∈ X (e.g., an image). Due to the distribution over z, the function g induces a
distribution over its output x = g(z). If g is invertible and differentiable, the probability density
function (PDF) over x from this “change of variables” could be computed. This is not necessary
for training GANs, meaning that no such restrictions need to be placed on the neural network g. We
denote this distribution pθ(x) where θ ∈ Θ ⊆ Rdg denotes the generator’s parameters. The GAN is
trained on a dataset x1, . . . ,xN , where each xi is in X . We assume that this is sampled i.i.d. from
a data-generating distribution ptrue. Then the aim of training is to learn θ so that pθ is as close as
possible to ptrue. Section 2.1 will make precise what is meant by “close.”

The adversary aφ : X → A has parameters φ ∈ Φ ⊆ Rda which are typically trained alternately
with the generator. It receives as input either the data or the generator’s outputs. The set that it maps
to, A, is dependent on the GAN type. For example, Goodfellow et al. (2014) define an adversary
which maps from x ∈ X to the probability that x is a “real” data point from the dataset, as opposed
to a “fake” from the generator. They therefore choose A to be [0, 1] and train the adversary by
maximizing the associated log-likelihood objective,

h(pθ, aφ) = Ex∼ptrue [log aφ(x)] + Ex∼pθ [log(1− aφ(x))] . (1)

Using the intuition that the generator should generate samples that seem real and therefore “fool” the
adversary, the generator is trained to minimize h(pθ, aφ). Since we find θ to minimize this objective
while fitting φ to maximize it, training a GAN is equivalent to solving the minimax game,

min
θ

max
φ

h(pθ, aφ). (2)

Eq. (1) gives the original form for h(pθ, aφ) used by Goodfellow et al. (2014) but this form varies
between different GANs, as we will discuss in Section 2.1. The minimization and maximization
in Eq. (2) are performed with gradient descent in practice. To be precise, we define Lgen(θ, φ) =
h(pθ, aφ) and Ladv(θ, φ) = −h(pθ, aφ). These are treated as losses for the generator and adversary
respectively, and both are minimized. In other words, we turn the maximization of h(pθ, aφ) w.r.t. φ
into a minimization of Ladv(θ, φ). Then on each iteration, θ and φ are updated one after the other
using gradient descent steps along their respective gradients:

∇θLgen(θ, φ) = ∇θh(pθ, aφ), (3)
∇φLadv(θ, φ) = −∇φh(pθ, aφ). (4)

2.1 GANS MINIMIZE DIVERGENCES

A common theme in the GAN literature is analysis based on what we call the optimal adversary
assumption. This is the assumption that, before each generator update, we have found the adversary
aφ which maximizes h(pθ, aφ) given the current value of θ. To be precise, we define a class of
permissible adversary functions F . This is often simply the space of all functions mapping X → A
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(Goodfellow et al., 2014), but is in some GAN variants constrained by, e.g., a Lipschitz constant (Ar-
jovsky et al., 2017). Then we call the adversary aφ optimal for a particular value of θ if and only if
h(pθ, aφ) = maxa∈F h(pθ, a).

In practice, the neural network aφ cannot represent every a ∈ F and so it may not be able to
parameterize an optimal adversary for a given θ. As is common in the literature, we assume that
the neural network is expressive enough that this is not an issue, i.e., we assume that for any θ,
there exists at least one φ ∈ Φ resulting in an optimal adversary. Then, noting that there may be
multiple such φ ∈ Φ, we define Φ∗(θ) to be the set of all optimal adversary parameters. That is,
Φ∗(θ) = {φ ∈ Φ | h(pθ, aφ) = maxa∈F h(pθ, a)} and the optimal adversary assumptions says that
before each update of θ we have found φ ∈ Φ∗(θ). We emphasize that, in part due to the limited
number of gradient updates performed on φ, this assumption is essentially never true in practice.
This paper presents a method to improve the training of GANs by addressing this issue.

The optimal adversary assumption simplifies analysis of GAN training considerably. Instead of
being a two-player game, it turns into a case of minimizing an objective with respect to θ alone. We
denote this objective

M(pθ) = max
a∈F

h(pθ, a) = h(pθ, aφ∗) where φ∗ ∈ Φ∗(θ). (5)

For example, Goodfellow et al. (2014) showed that using the objective presented in Eq. (1) results in
M(pθ) = 2 · JSD(ptrue||pθ)− log 4, where JSD is the Jensen-Shannon divergence. By making the
optimal adversary assumption, they could prove that their GAN training procedure would converge,
and would minimize the Jensen-Shannon divergence between ptrue and pθ.

A spate of research following the introduction of the original GAN objective has similarly made
use of the optimal adversary assumption to propose GANs which minimize different divergences.
For example, Wasserstein GANs (WGANs) (Arjovsky et al., 2017) minimize a Wasserstein dis-
tance. MMD GANs (Li et al., 2017) minimize a distance known as the maximum mean discrep-
ancy. Nowozin et al. (2016) introduce f-GANs which minimize f-divergences, a class including the
Kullback-Leibler and Jensen-Shannon divergences. We emphasize that this is by no means an ex-
haustive list. Like these studies, this paper is motivated by the perspective that, under the optimal
adversary assumption, GANs minimize a divergence. However, the GAN framework can also be
viewed from a more game-theoretic perspective (Kodali et al., 2017; Grnarova et al., 2018).

3 DOES AN OPTIMAL ADVERSARY LEAD TO OPTIMAL GRADIENTS?

As introduced above, the training of an adversary does not need to be considered in any analysis
if it is simply assumed to always be optimal. From this perspective, the goal of training GANs
can be seen as learning the generator to minimize M(pθ). This leads to the question: assuming
that we have an optimal adversary, can we compute the gradient required for the generator update,
∇θM(pθ)? To clarify, assume that we have generator parameters θ′, and have found φ∗ ∈ Φ∗(θ′)
such that h(pθ′ , aφ∗) and M(pθ′) are equal in value. We then want to take a gradient step on θ′
to minimizeM(pθ′). Virtually all GAN methods do this by assuming thatM(pθ′) and h(pθ′ , aφ∗)
have equal gradients with respect to θ at θ′. That is, it is assumed that ∇θM(pθ) |θ=θ′ is equal to
the partial derivative1 D1h(pθ, aφ∗) |θ=θ′ . It is not immediately obvious that this is true.

In the GAN literature this concern has largely been overlooked, with a few treatments for spe-
cific GAN types, see e.g. Arjovsky et al. (2017); Goodfellow et al. (2014). In particular, Arjovsky
et al. (2017) invoke (but do not explicitly prove) an extension of Theorem 1 in Milgrom & Segal
(2002) to prove that the Wasserstein GAN has optimal gradients if the adversary is optimal, i.e.
D1h(pθ, aφ∗) |θ=θ′= ∇θM(pθ) |θ=θ′ . We note that this extension can, in fact, be used to prove
that GANs in general have this property under fairly weak assumptions:

Theorem 1. Let M(pθ) = h(pθ, aφ∗) for any φ∗ ∈ Φ∗(θ), as defined in Eq. (5). Assuming that
M(pθ) is differentiable w.r.t. θ and h(pθ, aφ) is differentiable w.r.t. θ for all φ ∈ Φ∗(θ), then if
φ∗ ∈ Φ∗(θ) we have

∇θM(pθ) = D1h(pθ, aφ∗). (6)

1We use D1h(pθ, aφ) to denote the partial derivative of h(pθ, aφ) with respect to θ with φ kept constant.
Similarly, we will useD2h(pθ, aφ) to denote the derivative of h(pθ, aφ) with respect to φ, with θ held constant.
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See Appendix D.1 for a proof. We emphasize Theorem 1 applies only if the adversary is optimal.
If this is not the case we cannot quantify, and so cannot directly minimize or account for, the dis-
crepancy between ∇θM(pθ) and D1h(pθ, aφ∗). Instead of attempting to do so, we consider an
approach that drives the parameters towards regions where φ∗ ∈ Φ∗(θ) so that Theorem 1 can be
invoked.

3.1 ADVERSARY CONSTRUCTORS

To see how we may impose the constraint that Eq. (6) is true, we consider a trivial relationship
between any generator and the corresponding optimal adversary. If an optimal adversary exists for
every θ ∈ Θ then there exists some, possibly non-unique, function f : Θ → Φ that maps from
any generator to a corresponding optimal adversary. That is, for all θ ∈ Θ, f(θ) = φ∗ ∈ Φ∗(θ)
in which case h(pθ, af(θ)) = maxa∈F h(pθ, a). We refer to such a function as an adversary con-
structor. In an ideal scenario, we could compute the output of an adversary constructor, f(θ), for
any θ. We could then invoke Theorem 1 and the generator could be updated with the gradient
∇θM(pθ) = D1h(pθ, af(θ)). In practice, computing f(θ) is infeasible and we can only approxi-
mate the optimal adversary parameters with gradient descent. There is therefore a mismatch between
GAN theory, where Theorem 1 is often invoked, and practice, where the conditions to invoke it are
essentially never satisfied. How then, can we address this problem? We look to the adversary con-
structors, which provide a condition that must be satisfied for the optimal adversary assumption to
be true. Adversary constructors allow us to account for the influence of θ on φ by considering the
total derivative ∇θh(pθ, af(θ)). We prove in Appendix D.2 that a comparison with the result of
Theorem 1 leads to Corollary 1. In the next section, we motivate AdvAs as an attempt to fulfill a
condition suggested by this corollary.
Corollary 1. Let f : Θ → Φ be a differentiable mapping such that for all θ ∈ Θ, M(pθ) =
h(pθ, af(θ)). If the conditions in Theorem 1 are satisfied and the Jacobian matrix of f with respect
to θ, Jθ(f) exists for all θ ∈ Θ then

D2h(pθ, af(θ))
TJθ(f) = 0. (7)

4 ASSISTING THE ADVERSARY

Corollary 1 tells us that D2h(pθ, aφ)TJθ(f) will be zero whenever Theorem 1 can be invoked.
This makes Eq. (7) a necessary, but not sufficient, condition for the invocation of Theorem 1.
This suggests that the magnitude of D2h(pθ, aφ)TJθ(f) could be a measure of how “close”
D1h(pθ, aφ∗) is to the desired gradient ∇θM(pθ). However, the Jacobian Jθ(f) is not tractable
so D2h(pθ, aφ)TJθ(f) cannot be computed. The only term we can calculate in practice is
D2h(pθ, aφ), exactly the gradient used to train the adversary. If D2h(pθ, aφ) is zero, then
D2h(pθ, aφ)TJθ(f) is zero. The magnitude of D2h(pθ, aφ) could therefore be an approximate
measure of “closeness” instead of D2h(pθ, aφ)TJθ(f). This leads to an augmented generator loss,
which regularizes generator updates to reduce the magnitude of D2h(pθ, aφ). It has a scalar hy-
perparameter λ ≥ 0, but Section 4.3 provides a heuristic which can remove the need to set this
hyperparameter.

LAdvAs
gen (θ, φ) = Lgen(θ, φ) + λr(θ, φ), (8)

with
r(θ, φ) = ‖∇φLadv(θ, φ)‖22 , (9)

recalling that ∇φLadv(θ, φ) = −D2h(pθ, aφ). We emphasize that r(θ, φ) is the same as that found
in previous work (Mescheder et al., 2017; Nagarajan & Kolter, 2017).

Figuratively, AdvAs changes the generator updates to move in a conservative direction that does not
over-exploit the adversary’s sub-optimality. Consider the generator and adversary as two players
attempting to out-maneuver one another. From Eq. (2), we see that the generator should learn to
counteract the best possible adversary, rather than the current adversary. If the current adversary is
sub-optimal, allowing it to catch up would yield better updates to the generator. One way to achieve
this is to update the generator in a way that helps make the current adversary optimal. This behavior
is exactly what AdvAs encourages. In this sense, it assists the adversary, leading to it’s name, the
Adversary’s Assistant. We emphasize that using AdvAs involves making only a small modification
to a GAN training algorithm, but for completeness we include pseudocode in Appendix A.
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Figure 1: FID scores throughout training for the WGAN-GP objective on MNIST, estimated using
60 000 samples from the generator. We plot up to a maximum of 40 000 iterations. When plotting
against time (right), this means some lines end before the two hours we show. The blue line shows
the results with AdvAs, while the others are baselines with different values of nadv.

4.1 ADVAS PRESERVES CONVERGENCE RESULTS

AdvAs has several desirable properties which support its use as a regularizer: (1) it does not interfere
with the update on φ, and recall that perfectly optimizing φ leads to h(pθ, aφ) =M(pθ). (2) Under
mild conditions, ∇φr(θ;φ) |φ=φ∗ is zero for an optimal φ∗ and so ∇θL

AdvAs
gen (θ, φ∗) = ∇θM(pθ).

These properties imply that, under the optimal adversary assumption, optimizing LAdvAs
gen is in fact

equivalent to optimizing Lgen. See Appendix D.4 for a proof. Therefore any convergence analysis
which relies on the optimal adversary assumption is equally applicable when AdvAs is included in
the loss. Regarding the mild conditions in property (2), we require that φ∗ be a stationary point
of h(pθ, aφ). This is true as long as h is differentiable w.r.t. φ at (θ, φ∗) and φ∗ does not lie on a
boundary of Φ. The optimal adversary parameters, φ∗, cannot lie on a boundary unless, for example,
weight clipping is used as in Arjovsky et al. (2017). In such cases, we cannot speak to the efficacy
of applying AdvAs.

We make the additional observation that for some GAN objectives, minimizing r(θ, φ) alone (as
opposed to Lgen or LAdvAs

gen ) may match pθ and ptrue. We show this in Appendix D.3 for the WGAN
objective (Arjovsky et al., 2017). In particular, for all φ ∈ Φ, r(θ, φ) is zero and at a global minimum
whenever pθ = ptrue. Experimental results in Appendix C.3 support this observation. However, the
results appear worse than those obtained by optimizing either Lgen or LAdvAs

gen .

4.2 ESTIMATING THE ADVAS LOSS

It is not always possible, and seldom computationally feasible, to compute the AdvAs regularization
term r(θ, φ) exactly. We instead use a stochastic estimate. This is computed by simply estimating
the gradient ∇φLadv(θ, φ) with a minibatch and then taking the squared L2-norm of this gradient
estimate. That is, defining L̃adv(θ, φ) as an unbiased estimate of the adversary’s loss, we estimate
r(θ, φ) with

r̃(θ, φ) =
∥∥∥∇φL̃adv(θ, φ)

∥∥∥2

2
. (10)

Although the gradient estimate is unbiased, taking the norm results in a biased estimate of r(θ, φ).
However, comparisons with a more computationally expensive unbiased estimate2 did not reveal a
significant difference in performance.

2Computing an unbiased estimate can be done using the following: consider two independent and unbiased
estimates of ∇φLadv(θ, φ) denoted X,X ′. Then E

[
XTX ′] = E [X]T E [X ′] = ‖∇φLadv(θ, φ)‖22. This

implies that multiplying two estimates using independent samples is unbiased.
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4.3 REMOVING THE HYPERPARAMETER λ

Table 1: FID and IS scores on CIFAR10 using Au-
toGAN with and without AdvAs.

IS ±σ FID ±σ
AdvAs (nadv = 2) 8.4± 0.1 14.5± 1.0
Baseline (nadv = 5) 8.3± 0.1 15.0± 0.7
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Figure 2: FID scores on CIFAR10 using Auto-
GAN from baselines and AdvAs plotted with a
log y-axis against running time for different val-
ues of nadv. We see that AdvAs with nadv = 2
yields the lowest FID scores at every point during
training.

Eq. (8) introduces a hyperparameter, λ, which
we would prefer not to perform a grid-search
on. Setting λ to be too great can destabilize
training. Conversely, setting it to be too small
gives similar results to not using AdvAs. We
therefore introduce a heuristic which can be
used to avoid setting the hyperparameter. Our
experiments suggests that this is often a good
choice, although manually tuning λ may yield
greater gains. This heuristic involves consider-
ing the magnitudes of three gradients, and so
we first define the notation,

gorig(θ, φ) = ∇θLgen(θ, φ),

gAdvAs(θ, φ) = ∇θ r̃(θ, φ),

gtotal(θ, φ, λ) = ∇θL
AdvAs
gen (θ, φ)

= gorig(θ, φ) + λgAdvAs(θ, φ).

The heuristic can be interpreted as choosing λ
at each iteration to prevent the total gradient,
gtotal(θ, φ, λ), from being dominated by the
AdvAs term. Specifically, we ensure the mag-
nitude of λgAdvAs(θ, φ) is less than or equal to
the magnitude of gorig by setting

λ = min

(
1,
‖gorig(θ, φ)‖2
‖gAdvAs(θ, φ)‖2

)
(11)

at every iteration. We then perform gradient descent along gtotal(θ, φ, λ). This technique ensures
that λ is bounded above by 1.

5 EXPERIMENTS

We demonstrate the effect of incorporating AdvAs into GAN training using several GAN architec-
tures, objectives, and datasets. Our experiments complement those of Nagarajan & Kolter (2017)
and Mescheder et al. (2017). In each case, we compare GANs trained with AdvAs with baselines
that do not use AdvAs but are otherwise identical. We first demonstrate the use of AdvAs in conjunc-
tion with the WGAN-GP objective (Gulrajani et al., 2017) to model MNIST (Lecun et al., 1998).
In this experiment, we compare the performance gains achieved by AdvAs to a reasonable upper
bound on the gains achievable with this type of regularization. We further support these findings
with experiments on CIFAR10 (Krizhevsky et al., 2009) using AutoGAN (Gong et al., 2019), an
architecture found through neural architecture search. We then demonstrate that AdvAs can im-
prove training on larger images using StyleGAN2 (Karras et al., 2020) on CelebA (Liu et al., 2015).
We quantify each network’s progress throughout training using the FID score (Heusel et al., 2017).
Since AdvAs increases the computation time per iteration, we plot training progress against time for
each experiment. We also present inception scores (IS) (Salimans et al., 2016) where applicable. We
estimate scores in each case with 5 random seeds and report the standard deviation (σ) as a measure
of uncertainty.

AdvAs aims to improve performance by coming closer to having an optimal adversary. Another
common way to achieve this is to use a larger number of adversary updates (nadv) before each
generator update. For each experiment, we show baselines with the value of nadv suggested in
the literature. Noting that the computational complexity is O(nadv) and so keeping nadv low is
desirable, we find that AdvAs can work well with lower values of nadv than the baseline. For a fair
comparison, we also report baselines trained with these values of nadv.
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Figure 3: Bottom: FID scores throughout training estimated with 1000 samples, plotted against
number of epochs (left) and training time (right). FID scores for AdvAs decrease more on each
iteration at the start of training and converge to be 7.5% lower. Top: The left two columns show
uncurated samples with and without AdvAs after 2 epochs. The rightmost two columns show uncu-
rated samples from networks at the end of training. In each grid of images, each row is generated by
a network with a different training seed and shows 3 images generated by passing a different random
vector through this network. AdvAs leads to obvious qualitative improvement early in training.

For MNIST and CelebA, we avoid setting the hyperparameter λ by using the heuristic proposed in
Section 4.3. We found for CIFAR10 that manually tuning λ gave better performance, and so set λ =
0.01. Additionally, on MNIST and CelebA, the methods we consider use regularization in the form
of a gradient penalty (Gulrajani et al., 2017) for training the adversary. This is equivalent to including
a regularization term γadv(φ) in the definition of Ladv. That is, Ladv(θ, φ) = −∇φh(pθ, aφ) +
γadv(φ). Following Eq. (9) this regularization term is included in the AdvAs term r(θ, φ). Another
practical detail is that AutoGAN and StyleGAN2 are trained with a hinge loss (Lim & Ye, 2017).
That is, when computing the adversary’s lossLadv(θ, φ), its output aφ(x) is truncated to be below +1
for real images, or above−1 for generated images. This prevents it from receiving gradient feedback
when its predictions are both accurate and confident. Intuitively, this stops its outputs becoming too
large and damaging the generator’s training. However, this truncation is not present when updating
the generator. This means that the generator minimizes a different objective to the one maximized by
the adversary, and so it is not exactly a minimax game. It is not clear that it is beneficial to calculate
the AdvAs regularization term using this truncation. We found that better performance was obtained
by computing r(θ, φ) without truncation, and do this in the reported experiments.

5.1 WGAN-GP ON MNIST

We use a simple neural architecture: the generator consists of a fully-connected layer followed
by two transposed convolutions. The adversary has three convolutional layers. Both use instance
normalization (Ulyanov et al., 2017) and ReLU non-linearities; see Appendix E for details. We
compare using AdvAs with nadv = 1 against the baseline for nadv ∈ {1, 5} where nadv = 5
is suggested by Gulrajani et al. (2017). Fig. 1 shows the FID scores for each method throughout
training. We see that using AdvAs with nadv = 1 leads to better performance on convergence; even
compared to the baseline with nadv = 5, the best FID score reached is improved by 28%.

5.2 AUTOGAN ON CIFAR10

We next experiment on the generation of CIFAR10 (Krizhevsky et al., 2009) images. We use Auto-
GAN (Gong et al., 2019), which has a generator architecture optimized for CIFAR10 using neural
architecture search. It is trained with a hinge loss, as described previously, an exponential moving
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average of generator weights, and typically uses nadv = 5. Figure 2 shows FID scores throughout
training for various values of nadv, with and without AdvAs, each computed with 1000 samples. Ta-
ble 1 shows FID scores at the end of training for the best performing value of nadv for each method,
estimated with 50 000 samples. For a fixed nadv of either 1 or 2, using AdvAs improves the FID
score. In fact, with nadv = 2, the performance with AdvAs is indistinguishable from the baseline
with the suggested setting of nadv = 5. Unlike for MNIST, AdvAs does not outperform the baseline
with high enough nadv. We hypothesize that this is because, with an architecture highly optimized
for nadv = 5, the adversary is closer to being optimal when trained with nadv = 5. Assuming this
is the case, we would not expect AdvAs to improve training compared to a baseline with sufficient
nadv. Still, our results show that applying AdvAs allows the same performance with a lower nadv.

5.3 STYLEGAN2 ON CELEBA

To demonstrate that AdvAs improves state-of-the-art GAN architectures and training procedures,
we consider StyleGAN2 (Karras et al., 2020). We train this as proposed by Karras et al. (2020)
with a WGAN-like objective with gradient penalty (Gulrajani et al., 2017), an exponential moving
average of the generator weights, and various forms of regularization including path length, R1, and
style-mixing regularization. More detail on these can be found in Karras et al. (2020), but we merely
wish to emphasize that considerable effort has been put into tuning this training procedure. For this
reason, we do not attempt to further tune nadv, which is 1 by default. Any improvements from
applying AdvAs indicate a beneficial effect not provided by other forms of regularization used.

Figure 3 compares the training of StyleGAN2 on CelebA at 64×64 resolution with and without
the AdvAs regularizer. Using AdvAs has two main effects: (1) the generated images show bigger
improvements per epoch at the start of training; and (2) the final FID score is improved by 7.5%.
Even accounting for its greater time per iteration, the FID scores achieved by AdvAs overtake the
baseline after one day of training. We verify that the baseline performance is similar to that reported
by Zhou et al. (2019) with a similar architecture.

6 RELATED WORK

We motivated AdvAs from the perspective of the optimal adversary assumption. In this sense, it
is similar to a large body of work aiming to improve and stabilize GAN training by better training
the adversary. AdvAs differs fundamentally due to its focus on the training the generator rather
than the adversary. This other work generally affects the discriminator in one of two broad ways:
weight constraints and gradient penalties Brock et al. (2019). Weight normalization involves directly
manipulating the parameters of the adversary, such as through weight clipping (Arjovsky et al.,
2017) or spectral normalization (Miyato et al., 2018). Gradient penalties (Kodali et al., 2017; Roth
et al., 2017; Gulrajani et al., 2017) impose soft constraints on the gradients of the adversary’s output
with respect to its input. Various forms exist with different motivations; see Mescheder et al. (2018)
for a summary and analysis. AdvAs may appear similar to a gradient penalty, as it operates on
gradients of the adversary. However, the gradients are w.r.t. the adversary’s parameters rather than
its input. Furthermore, AdvAs is added to the generator’s loss and not the adversary’s.

Regularizing generator updates has recently received more attention in the literature (Chu et al.,
2020; Zhang et al., 2019; Brock et al., 2019). Chu et al. (2020) show theoretically that the ef-
fectiveness of different forms of regularization for both the generator and adversary is linked to
the smoothness of the objective function. They present a set of conditions on the generator and
adversary that ensure a smooth objective function, which they argue will stabilize GAN training.
However, they leave the imposition of the required regularization on the generator to future work.
Zhang et al. (2019) and Brock et al. (2019) consider applying spectral normalization (Miyato et al.,
2018) to the generator, and find empirically that this improves performance.

7 DISCUSSION AND CONCLUSIONS

We have shown that AdvAs addresses the mismatch between theory, where the adversary is assumed
to be trained to optimality, and practice, where this is never the case. We show improved training
across three datasets, architectures, and GAN objectives, indicating that it successfully reduces this
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disparity. This can lead to substantial improvements in final performance. We note that, while
applying AdvAs in preliminary experiments with BEGAN (Berthelot et al., 2017) and LSGAN (Mao
et al., 2017), we did not observe either a significant positive effect, or a significant negative effect
other than the increased time per iteration. Nevertheless, AdvAs is simple to apply and will, in many
cases, improve both training speed and final performance.
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