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Abstract We present Syne Tune, a library for large-scale distributed hyperparameter optimization

(HPO).
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Syne Tune’s modular architecture allows users to easily switch between di�erent

execution backends to facilitate experimentation and makes it easy to contribute new opti-

mization algorithms. To foster reproducible benchmarking, Syne Tune provides an e�cient

simulator backend and a benchmarking suite, which are essential for large-scale evaluations

of distributed asynchronous HPO algorithms on tabulated and surrogate benchmarks. We

showcase these functionalities with a range of state-of-the-art gradient-free optimizers,

including multi-�delity and transfer learning approaches on popular benchmarks from the

literature. Additionally, we demonstrate the bene�ts of Syne Tune for constrained and multi-

objective HPO applications through two use cases: the former considers hyperparameters

that induce fair solutions and the latter automatically selects machine types along with the

conventional hyperparameters.

1 Introduction

Major advances in algorithms, systems, and hardware led to deep learning models with billions of

parameters being trained by gradient-based stochastic optimization. However, these algorithms

come with many hyperparameters that are crucial for good performance. Hyperparameters come

in many �avors, such as the learning rate and its schedule, the type and amount of regularization or

the number and width of neural network layers. Tuning them is di�cult and time-consuming, even

for experts, criteria like latency or cost often play a role in deciding for a winning hyperparameter

con�guration. If domain experts and industrial practitioners are to bene�t from latest deep learning

technology, it is essential to automate the tuning of these hyperparameters along with speeding up

the training of neural network weights.

Today, a number of hyperparameter optimization (HPO) systems are available in order to �ll

this need, both commercially (Golovin et al., 2017; Perrone et al., 2021b) and open source (Liaw

et al., 2018; Akiba et al., 2019; Lindauer et al., 2021). Taken together, they re�ect the wide diversity

of this research area, o�ering di�erent optimization strategies, evaluating hyperparameter con-

�gurations sequentially or in parallel, and enabling tuning single hyperparameters to full-blown

neural architecture search (NAS). Some are single-�delity optimizers that only rely on evaluations

obtained after full training runs, while others allow to make a more e�cient use of compute by

early stopping the training process; we will refer to these as multi-�delity optimizers as they also

make use of “low �delity” evaluations along the training process. However, few systems support

advanced settings such as constrained, multi-objective or transfer learning-based HPO.

This diversity can be hard to navigate for non-expert users, but also for HPO researchers.

Most available systems are not agnostic along axes such as HPO algorithm or execution backend

(which runs the training jobs), but only cover parts of the whole. Moreover, tooling for empirical

comparisons and benchmarking is often sidelined. In contrast, when new ideas for training deep
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neural networks emerge today, they can be compared against others in the same system with the

same backend, such as PyTorch (Paszke et al., 2019) or TensorFlow (Abadi et al., 2015). The �eld of

tuning such large models could equally bene�t from systems that reduce these confounding factors.

In this paper we present Syne Tune, a novel open source library for asynchronous distributed

HPO. The design of Syne Tune addresses issues of implementation and system bias, and it comes

with tooling to simplify and speed up empirical comparisons of HPO methodology. The main

features of Syne Tune are the following:

• Wide coverage of baselines: Syne Tune provides implementations across the spectrum of HPO

algorithms, such as random search, Bayesian optimization and evolutionary search, as well as

a range of asynchronous and synchronous multi-�delity optimizers, thus removing the imple-

mentation bias in comparisons. See Table 3 in the Appendix for a list of currently supported

algorithms.

• Backend agnostic: Syne Tune allows to easily switch the execution backend. Coming with

a generic API, new backends can be easily integrated. As of now, Syne Tune provides three

backends to change seamlessly the execution locally, on the cloud or as simulation. In particular,

the simulator backend allows to run realistic experiments on a single CPU, where the actual

runtime is determined by the decision-making only.

• Advanced HPO methodologies: beyond the basic global optimization formulation of single- and

multi-�delity HPO, Syne Tune supports a range of advanced setups, such as hyperparameter

transfer learning, constrained HPO or multi-objective optimization.

• Benchmarking: Syne Tune provides an abstraction for benchmarks, along with a sizeable suite of

implementations thereof. A special emphasis is given to supporting fast, a�ordable experimenta-

tion with tabulated or surrogate benchmarks and a simulation backend.

2 Related Work
Recently, a large variety of HPO frameworks have emerged. Due to space constraints, we only

discuss frameworks for hyperparameter optimization and omit other frameworks for general

AutoML, such as Auto-Sklearn (Feurer et al., 2020) or AutoGluon (Erickson et al., 2020). Arguably,

most similar to Syne Tune is Ray Tune (Liaw et al., 2018), which uses Ray (Moritz et al., 2017) as the

backend to distribute the HPO process. While Ray Tune supports a range of HPO algorithms, it does

not provide support for multi-objective optimization, constrained optimization, transfer learning

or benchmarking. Optuna (Akiba et al., 2019) accommodates TPE (Bergstra et al., 2011), CMA-

ES (Hansen, 2006) and even multi-objective optimization, but lacks recent multi-�delity approaches,

such as ASHA (Li et al., 2019) or PBT (Jaderberg et al., 2017). SMAC3 (Lindauer et al., 2021) o�ers

multi-�delity algorithms, such as BOHB (Falkner et al., 2018) or Hyperband (Li et al., 2018), alongside

Bayesian optimization (BO), but does not support multi-objective or constrained optimization. It

also lacks system support for asynchronous parallel algorithms, such as checkpointing of neural

networks or asynchronous scheduling. Dragon�y (Kandasamy et al., 2020) provides BO based

strategies for distributed HPO, but does not support multi-objective and transfer learning scenarios.

Hyper-Tune (Li et al., 2022) contains a range of asynchronous multi-�delity algorithms based on

successive halving, but does not support distributed tuning across multiple machines, nor does it

provide integrated benchmarks for reproducible large-scale experiments. Loosely related are also

BO packages, such as BOTorch (Balandat et al., 2020). However, their main purpose is to provide a

platform to foster research on Monte Carlo BO rather than distributed HPO.

In an orthogonal line of work, several packages support e�cient evaluation of HPO algorithms

by providing a standardized access to benchmarks. HPOBench (Eggensperger et al., 2021) serves

code for a range of multi-�delity benchmarks and comes with a thorough evaluation of state-of-

the-art approaches, which however does not include transfer learning methods. HPO-B (Arango
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1 # hyperparameter search space to consider

2 config_space = {

3 'epochs': 100,

4 'num_layers': randint(1, 20),

5 'learning_rate': loguniform(1e-6, 1e-4)

6 }

7 tuner = Tuner(

8 trial_backend=LocalBackend(entry_point='train_network.py'),

9 scheduler=BayesianOptimization(config_space, metric='val_loss'),

10 stop_criterion=StoppingCriterion(max_wallclock_time=30),

11 n_workers=4, # how many trials are evaluated in parallel

12 )

13 tuner.run()

Listing 1: How to tune a training script with Bayesian optimization in Syne Tune.

et al., 2021) contains a set of surrogate benchmarks (Eggensperger et al., 2015) based on datasets

from OpenML (Vanschoren et al., 2014). They also compare several state-of-the-art hyperparameter

transfer learning algorithms in the single-�delity setting. Mehta et al. (2022) introduced NASLib

which implements several search spaces and optimization strategies for neural architecture search.

To the exception of Li et al. (2022) which provides an experimental script to simulate tabulated

benchmarks from NAS201, none of these packages allow to e�ciently simulate asynchronous

parallel methods on multiple tabular and surrogate benchmarks.

3 Library Overview

Let x be a con�guration of hyperparameters in the space X . Our goal is to �nd a global minimum of

the target function 5 (x), which could be non-di�erentiable. We will further consider a multi-�delity
setting, assuming that an evaluation, which can be noisy, requires the consumption of the maximum

resource level Amax. The optimization problem of interest is de�ned as follows:

min

x∈X
5 (x, Amax) .

Observations at A < Amax are cheaper, yet may be only loosely correlated with 5 (x, Amax). To �x

ideas, 5 (x, A ) could for instance be the validation error of a neural network trained for A epochs

with x encoding the learning rate, batch size and number of units of a layer.

Next, we introduce the core modules of Syne Tune: the tuner, the backends, the schedulers and

the benchmarking components.

3.1 Tuner

The overall search for the best con�guration is orchestrated by the tuner. It interacts with a backend,

which launches new trials (i.e., evaluations of con�gurations) in parallel and retrieves evaluation

results. Decisions on which trials to launch or interrupt are delegated to a scheduler, which is

synonymous with “HPO algorithm” in Syne Tune. A code snippet for launching an HPO experiment

based on BO in Syne Tune is given in Listing 1. Algorithm 1 in the Appendix contains pseudo-code

for the tuner loop.

When a worker is free, the tuner queries the scheduler for a trial, passing it to the backend

for execution. Usually, the scheduler searches for a new, most promising con�guration x , but for

some schedulers, a paused trial may be resumed instead. Whenever a trial reports evaluations

5 (x, A ), they are sent to the scheduler, who may use this data to improve future decisions. The

3



scheduler returns a decision on the reporting trial (stop, pause or continue), which is executed by

the backend.

During a tuning experiments, results obtained over time and the tuner state are periodically

stored. The former allow for live plotting of relevant metrics (e.g., best performance attained so far).

By loading the tuner state, tuning can be resumed later on. The ability to recover from premature

termination allows us to work with cheaper, preemptible compute instances. A sound comparison

of several di�erent combinations of schedulers requires averaging results over a substantial number

of runs with di�erent random seeds (Agarwal et al., 2021), since the outcomes of single HPO

experiments can be highly variable. Syne Tune allows for this e�ort to be parallelized by running

tuning remotely.

3.2 Backends

The backend module is responsible for starting, stopping, pausing and resuming trials and ac-

cessing results and trial statuses. Syne Tune provides a general interface for a backend and three

implementations: one to evaluate trials on a local machine, one to evaluate trials on the cloud,

and one to simulate tuning with tabulated benchmarks to reduce run time. Switching between

di�erent backends can be done by just passing a di�erent trial_backend parameter of the tuner as

shown in the code examples given in Appendix D. The backend API has been kept lean on purpose,

and adding new backends requires little e�ort. Note that pause-and-resume scheduling requires

checkpointing of models, which is supported by all backends in Syne Tune.

Local backend. This backend evaluates trials concurrently on a single machine by using subpro-

cesses. We support rotating multiple GPUs on the machine, assigning the next trial to the least

busy GPU, e.g. the GPU with the smallest amount of trials currently running. Trial checkpoints

and logs are stored to local �les.

Cloud backend. Running on a single machine limits the number of trials which can run concurrently.

Moreover, neural network training may require many GPUs, even distributed across several nodes

(Brown et al., 2020). For those use-cases, we provide an Amazon SageMaker backend that schedules

one training job per trial. Amazon SageMaker provides several bene�ts for conducting reproducible

HPO research (Liberty et al., 2020). Users have access to pre-build containers of ML frameworks

(e.g., Pytorch, Tensor�ow, Scikit-learn, HuggingFace), training on cheaper preemptible machines

and distributed training work out-of-the-box. We demonstrate the versatility of this backend in

Section 4.3.

Simulation backend. A growing number of tabulated benchmarks are available for HPO and NAS

research (Ying et al., 2019; Dong and Yang, 2020; Klein et al., 2019; Klein and Hutter, 2019; Siems

et al., 2020; Klyuchnikov et al., 2020; Arango et al., 2021). The simulation backend allows to run

realistic experiments with such benchmarks on a single CPU instance, paying real time for the

decision-making only. To this end, we use a time keeper to manage simulated time and a priority

queue of time-stamped events (e.g., reporting metric values for running trials), which work together

to ensure that interactions between trials and scheduler happen in the right ordering, whatever the

experimental setup may be. The simulator correctly handles any number of workers, and delay

due to model-based decision-making is taken into account.

3.3 Schedulers

In Syne Tune, HPO algorithms are called schedulers. They interact with the tuner by suggesting

con�gurations for new trials, but may also decide to stop running trials, or resume paused ones.

All currently supported schedulers are listed in Table 3, and in the sequel, we restrict our focus on

these, noting that there is a lot more related work in any of the directions we touch upon here; see

for instance the comprehensive review by Feurer and Hutter (2019).
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All our schedulers suggest single new con�gurations in the presence of pending evaluations

(i.e., running trials which have not reported results yet). Decision-making is synchronized in some

schedulers, such as Hyperband (Li et al., 2018) or synchronous BOHB (Falkner et al., 2018), where

trials have to wait in order to get resumed (or terminated) until a number of others reached their

resource level. Most of our schedulers make decisions asynchronously (i.e., on the �y), which is

more e�cient in general (Li et al., 2018; Klein et al., 2020).

In multi-�delity HPO, we receive evaluations 5 (x, A ) at resource levels A ∈ {Amin, . . . , Amax} (e.g.,

epochs) and may act on these by stopping or resuming trials. ASHA (Li et al., 2019), a prominent

asynchronous multi-�delity algorithm, comes in two variants (Klein et al., 2020): stopping stops

underperforming trials early, while promotion pauses trials and resumes the most promising ones

later on, but requires model checkpointing.

Finally, con�gurations for new trials can be proposed by random sampling (Bergstra et al.,

2011), Bayesian optimization (BO) (Snoek et al., 2012) or evolutionary techniques (Real et al., 2019).

BO schedulers �t a probabilistic surrogate model to the evaluation data and propose the maximizer

of an acquisition function averaged over the posterior distribution of this model. This often leads

to more sample e�ciency, but expensive decisions can prolong experiment wall-clock time. The

combination of BO with multi-�delity is non-trivial, because 5 (x, A ) needs to be modelled along x
and A . Di�erent options are given in (Swersky et al., 2014; Klein et al., 2020; Li et al., 2022).

Transfer learning-based schedulers. Hyperparameter transfer learning aims to use evaluation

data from past HPO tasks in order to warmstart the current HPO task (Bardenet et al., 2013; Wistuba

et al., 2015a; Perrone et al., 2019b; Salinas et al., 2021b). Syne Tune supports transfer learning-based

HPO via an abstraction which maps a scheduler and transfer learning data to a warmstarted instance

of the former. In our experiments, we consider ASHA-BB, which implements the bounding-box

method of Perrone et al. (2019b), ASHA-CTS, which combines the quantile-based approach of

Salinas et al. (2021b) with ASHA, and ZS which greedily selects hyperparameter con�gurations

that complement previously considered ones based on performances on other tasks (Wistuba et al.,

2015b). RUSH (Zappella et al., 2021) is another Syne Tune scheduler which warmstarts ASHA

with best con�gurations of previous tasks. Additionally, it prunes all con�gurations which don’t

outperform the initial con�gurations.

Constrained schedulers. Constrained HPO amounts to the problemminx∈X 5 (x), subject to 2 (x) ≤
0 (Gardner et al., 2014), where the constraint function 2 (x) needs to be learned by sampling just

like 5 (x). Syne Tune provides the the approach from Gardner et al. (2014), called CBO in Table 3,

where 5 (x) and 2 (x) have independent Gaussian process surrogate models, coming together in an

expected constrained improvement acquisition function.

Multi-objective schedulers. The goal of multi-objective HPO (Emmerich and Deutz, 2018) is to

�nd good trade-o�s between several objectives 51, . . . , 5: . A Pareto-optimal point x ∈ X cannot

be improved upon along any one objective without increasing along another one. Formally, for

any x ′ ∈ X , :1, if 5:1 (x ′) < 5:1 (x), there is some :2 such that 5:2 (x ′) > 5:2 (x). We would like

to sample con�gurations on the Pareto frontier (i.e., the set of Pareto-optimal points). MOASHA

is a multi-objective extension of ASHA, where trials paused at each rung level are ranked by

non-dominated sorting (Salinas et al., 2021a; Guerrero-Viu et al., 2021; Schmucker et al., 2021).

3.4 Benchmarking

Similar to HPOBench or HPO-B, we provide benchmarking functionalities to simplify and stan-

dardize comparisons of HPO algorithms. However, we surpass previous e�orts in terms of speed of

experimentation, both, when it comes to running experiments in parallel and to simulating them

for tabulated benchmarks.
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Table 1: Performance comparison when loading a task and reading all �delities of a random con�gu-

ration. These tasks can have a signi�cant impact on the runtime of simulated benchmarks.

load time (s) read time (s)

FCNet NAS201 LCBench FCNet NAS201 LCBench

Baseline 7.5892 31.9592 8.8561 0.2898 0.2274 5e-6

Syne Tune 0.7443 0.2356 0.2528 0.0005 0.0004 5e-6

Syne Tune contains a repository, where tabulated benchmarks are stored and served in a single

general format optimized for fast look-up and reading time. Table 1 shows the average runtime

needed to load a tabulated benchmark (averaged over 3 seeds), and the average runtime needed to

access all �delities of a random con�guration (averaged over 1000 reads), compared to publicly

available implementations (FCNet and NAS201 from Eggensperger et al. (2021), LCBench from

Zimmer et al. (2021)). Speeding up the access to look-up table values can result in simulated

experiments to complete much faster. For instance, to simulate one scheduler on 30 seeds on

the 4 tasks of FCNet, roughly 600K evaluations are needed which corresponds to 5 min of total

reading time on a single machine with Syne Tune versus 2 days with the best public available

implementation of FCNet.

Ultimately, faster experimentation leads to more robust results, due to more repetitions with

di�erent random seeds, and more alternatives can be considered in the time available to the scientist.

4 Experiments

In this section, we �rst conduct a large scale comparison of asynchronous algorithms, including

multi-�delity and hyperparameter transfer learning, and then study two use-cases: constrained BO

for improving fairness in a ML pipeline, and multi-objective optimization to jointly tune hardware

and hyperparameter con�gurations.

4.1 Comparing asynchronous HPO algorithms

Baselines. We consider single-�delity algorithms RS, GP and REA, and multi-�delity algorithms

ASHA, asynchronous BOHB, BORE, MSR and MOB, detailed in Section 3.3 and Table 3. We also

evaluate hyperparameter transfer learning methods ASHA-BB, ASHA-CTS, RUSH and ZS (see

Section 3.3). When running on a given task, they are provided all evaluations from the others tasks

of the same benchmark as transfer data.

Benchmarks. We use 12 problems coming from the tabulated benchmarks FCNet (Klein and

Hutter, 2019), NAS201 (Dong and Yang, 2020) and LCBench (Zimmer et al., 2021). Details on these

benchmarks and their con�guration spaces are given in Appendix B.

Experiment details. Unless otherwise stated, tuning experiments use the simulation backend on a

AWS c5.4xlarge machine with 4 parallel workers, and are stopped when a wall-clock time budget

is exhausted. All runs are repeated 30 times with di�erent random seeds, and means and standard

deviations are reported. Scripts to reproduce all our experiments together with instructions are

available in this repository
2
.

Simulating parallel tuning. In our �rst experiment, we compare the performance of ASHA with

an increasing number of workers to execute jobs asynchronously in parallel (Figure 1 left). The

major speed-up in wall-clock time obtained by running multiple workers asynchronously is a key

aspect that is leveraged in industrial applications (Li et al., 2019; Klein et al., 2020).

2https://github.com/awslabs/syne-tune/tree/main/benchmarking/nursery/benchmark_automl
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Figure 1: Left: E�ect of number of workers on performance when running ASHA on NAS201 (CIFAR-

100). The time to reach 30% validation accuracy with one worker gets reduced by respectively

1.8, 3 and 4 when using 2, 4, and 8 workers. Right: Comparison of simulator backend with

local backend on the same task (10 random repetitions). For the local backend, workers are

put to sleep for the tabulated training time. For the simulator backend, real wall-clock times

were 17.7(±4.6) seconds for ASHA stopping, 17.5(±3.1) seconds for ASHA promotion.

In order to test whether the simulation backend provides realistic results, we compared against

the naive approach of putting each worker to sleep for the tabulated training time. As shown in

Figure 1 right, quantitative di�erences between the two alternatives are negligible. However, while

the naive approach takes the full 6.25 hours, the simulated results are available in about 17 seconds.

Comparison of asynchronous algorithms. In Figure 2, we show the performance of all optimizers

on two tasks. Results are similar for other tasks, as shown in Appendix C. Table 2 shows the ranks

of di�erent algorithms, averaged over time, seeds and benchmarks.

REA and TPE perform similar to RS, despite them exploiting past information. GP does better

on FCNet (slice). Multi-�delity algorithms are generally superior on these tasks, as is known in

the �eld (Li et al., 2018, 2019; Klein et al., 2020; Eggensperger et al., 2021). Among them, MSR is

the only one not using successive halving, and it performs worst. Using past data via Bayesian

optimization, MOB has an edge on ASHA and asynchronous BOHB on NAS201, yet the three

perform similarly on FCNet. While the use of advanced asynchronous scheduling via successive

halving reduces the bene�ts of BO decision-making , compared to GP versus RS, it should be noted

that our experimental setup is rather favourable for ASHA. More complex execution backends,

spanning several machines, can come with substantial delays for starting or stopping jobs. This

increases the relative cost of starting a job, even if it is stopped after one epoch, and the strategy of

starting randomly drawn con�gurations becomes less attractive.

Finally, the transfer learning approaches are provided with evaluation data from related tasks,

not available to the others. This allows them to signi�cantly improve the performance. Depending

on the application, transfer data may be available or not. In practice, it may require an infrastructure

for logging, aggregation, and cleaning. Syne Tune allows to mix in such data in various ways, so

that any promising HPO algorithm in the standard setting can easily be enhanced to make use of

valuable data from past experiments.

4.2 Constrained hyperparameter optimization use case

ML applications often require a solution satisfying pre-de�ned constraints, such as maximum

memory usage, training cost, inference latency or even fairness (Perrone et al., 2019a, 2021a; Lee

et al., 2020; Guinet et al., 2020). For example, a classi�er that is only tuned to maximize prediction

accuracy may unfairly predict a high credit risk for some subgroups of the population applying for
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(a) FCNet: Slice Localization.
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(b) NAS201: CIFAR-100.

Figure 2: Best validation error found over time on (a) FCNet (slice) and (b) NAS201 (CIFAR-100). Results

averaged over 30 random repetitions. For each benchmark Left: single- and multi-�delity

methods; Right: transfer learning methods.

Table 2: Average normalized rank (lower is better) of algorithms across time and benchmarks. Best

results per category are indicated in bold.

single-�delity multi-�delity transfer-learning

RS TPE REA GP MSR ASHA BOHB MOB RUSH ASHA-BB ZS ASHA-CTS

FCNet 0.78 0.72 0.66 0.60 0.61 0.47 0.47 0.36 0.58 0.29 0.28 0.22
NAS201 0.76 0.74 0.73 0.75 0.67 0.49 0.49 0.48 0.31 0.27 0.13 0.20

LCBench 0.68 0.67 0.68 0.57 0.50 0.46 0.43 0.50 0.23 0.43 0.53 0.31

Average 0.74 0.71 0.69 0.64 0.59 0.47 0.46 0.45 0.38 0.33 0.31 0.24

a loan. In this section, we show how Syne Tune’s constrained HPO can be used to optimize for

accuracy while enforcing additional fairness constraints.

We consider the German Credit Data from the UCI Machine Learning Repository (Dua and

Gra�, 2017), a binary classi�cation problem where the goal is to classify people described by a

set of attributes as good or bad credit risks. One of these attributes is a binary variable indicating

gender, a sensitive feature. We measure unfairness as the deviation from statistical parity (DSP)

between individuals of di�erent genders, namely |% (.̂ = 1|( = 0) − % (.̂ = 1|( = 1) |, where .

is the true label, ( the sensitive attribute, and .̂ the predicted label. We tune a Random Forest

model to optimize validation accuracy with a random 70%/30% split into train/validation, under the

constraint of DSP being lower than 0.01. Syne Tune implements the constrained EI (cEI), a popular

acquisition function for constrained Bayesian optimization (cBO) (Gardner et al., 2014).

Figure 3 (left) provides a comparison of standard BO and cBO, each run for 15 iterations. For

every trial, we report both the DSP and validation accuracy level. The results show that standard

BO can get stuck in high-performing yet unfair regions, failing to return a well-performing, feasible

0.68 0.70 0.72 0.74 0.76 0.78
validation accuracy

0.00

0.02

0.04

0.06

0.08

0.10

D
S

P

BO

Fair best

0.68 0.70 0.72 0.74 0.76 0.78
validation accuracy

0.00

0.02

0.04

0.06

0.08

0.10

D
S

P

CBO

Fair best

0

2

4

6

8

10

12

14

tri
al

5 10 15 20 25 30 35 40

latency (milliseconds)

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

va
li

d
at

io
n

er
ro

r

RTE

ml.g4dn.4xlarge

ml.g4dn.xlarge

ml.g4dn.2xlarge

ml.p2.xlarge

ml.g4dn.8xlarge

ml.p3.2xlarge

Figure 3: Left: Comparison of BO and cBO for tuning a random forest on German. The horizontal

line is the fairness constraint (DSP ≤ 0.01). Right: Latency and test error of con�gurations

sampled by MOASHA. The dashed black line represents the Pareto front, points on which

constitute optimal trade-o�s.
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solution. In contrast, Syne Tune’s constrained BO focuses the exploration over the fair area of the

hyperparameter space and �nds a more accurate fair solution.

4.3 Multi-objective hyperparameter optimization use case

Our �nal example shows what can be done by combining Syne Tune’s multi-objective optimizers

with its cloud backend. In industrial practice, predictive performance is rarely the only metric of

concern, prediction latency, training time and cost are often at least equally important. Moreover,

every user may trade them o� di�erently. Using a cloud service for training ML models, many

di�erent machine types, spanning a large range of specs and costs, can be accessed by just changing

an argument. We show how this complexity can e�ciently be navigated by including the machine

type among the parameters to be tuned with multi-objective HPO. While the machine type does

not in�uence predictive performance, it strongly impacts latency, training time and cost. We use

MOASHA (Section 3.3, Table 3) in order to sample the Pareto set for a number of such metrics.

Training jobs are executed with the Amazon SageMaker backend.

We demonstrate the impact of jointly optimizing instance type together with model hyperpa-

rameters when �ne-tuning a large pre-trained language model from HuggingFace (Wolf et al., 2019)

on the RTE dataset of the GLUE benchmark suite (Wang et al., 2019). As hyperparameters we expose

the learning rate, batch size, the warm-up ratio of a triangular learning rate schedule as well as the

choice of the pre-trained model. We use the Amazon SageMaker backend in order to distribute

HPO across a heterogenous set of instances. Figure 3 (right) shows the latency and test error of

all con�gurations sampled by MOASHA after a budget of 1800 seconds with 4 workers. Selecting

the right instance type correlates with other hyperparameters. For example, while g4dn.4xlarge
instances tend to have better latency than p3.2xlarge instances, for some con�gurations other

instance types still seem to work even better.

5 Discussion

Syne Tune is an open source library for distributed HPO with an emphasis on enabling reproducible

machine learning research. It simpli�es, standardizes and speeds up the evaluation of a wide

variety of HPO algorithms, which are implemented on top of common modules and aim to remove

implementation bias to conduct fair comparisons. By supporting di�erent backends, Syne Tune lets

researchers and engineers e�ortlessly move from simulation and small-scale experimentation to

large-scale distributed tuning on the cloud. Its simulator backend, curated set of benchmarks, and

problem repository allow researchers to conduct robust empirical evaluations with many random

repetitions, rapidly and at low costs, in particular by taking advantage of the growing availability

of tabulated benchmarks. Beyond the basic single- and multi-�delity HPO, Syne Tune supports

advanced scenarios such as constrained HPO, multi-objective optimization, and hyperparameter

transfer learning with the goal to o�er a better coverage of academic and industrial use cases.

6 Limitations and Broader Impact Statement

Syne Tune has the potential to make automated tuning research more e�cient, reliable, and

trustworthy. We also hope it will encourage domain experts to adopt HPO methodology more

systematically. By making simulation on tabulated benchmarks a �rst class citizen, it allows

researchers without massive computation budgets to participate. However, Syne Tune may foster

an over-reliance on tabulated benchmarks, which are often smaller and less variable than real

benchmarks that need computation. In general, e�orts to collect and publish new benchmarks and

diverse data sets are of critical importance to assess advances in the �eld, and should complement

endeavours targeted at rendering machine learning research more reproducible.
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Algorithm 1: Pseudo-code of the tuner loop.

1 while not stop_criterion() do
2 new_results = backend.fetch_results() ;

3 for result in new_results do
4 decision = scheduler.on_trial_result(result) ;

5 if decision == ’stop’ then
6 backend.stop_trial(result.trial_id) ;

7 end
8 end
9 if backend.num_free_workers() > 0 then
10 while backend.num_free_workers() > 0 do
11 config = scheduler.suggest() ;

12 backend.start_trial(config) ;

13 end
14 else
15 time_keeper.advance(sleep_time) ;

16 end
17 end

A Additional library details

A.1 Schedulers

We list the schedulers currently supported in Syne Tune, see Section 3.3 for details. TPE search

uses kernel density estimators in order to approximate its acquisition function directly (Falkner

et al., 2018). PBT di�ers from the others, in that a trial can change its con�guration, and can be

resumed from the checkpoint of another trial.

Table 3: Schedulers supported in Syne Tune.

name reference (a)sync multi-�delity search

RS Bergstra et al. (2011) async no random

GP Snoek et al. (2012) async no BO

TPE Bergstra et al. (2011) async no density-ratio estimation

REA Real et al. (2019) async no evolution

BORE Tiao et al. (2021) async no density-ratio estimation

ASHA Li et al. (2019) async stopping/promotion random

MOB Klein et al. (2020) async stopping/promotion BO

BOHB Falkner et al. (2018) async stopping/promotion TPE

MSR Golovin et al. (2017) async stopping random

SyncHyperband Li et al. (2018) sync promotion random

SyncBOHB Falkner et al. (2018) sync promotion TPE

PBT Jaderberg et al. (2017) sync promotion evolution

RUSH Zappella et al. (2021) async stopping/promotion random

ASHA-BB Perrone et al. (2019b) async stopping/promotion random

ASHA-CTS Salinas et al. (2021b) async stopping/promotion parametric surrogate

ZS Wistuba et al. (2015b) async no greedy-selection

MOASHA Schmucker et al. (2021) async stopping random

CBO Gardner et al. (2014) async no BO (CEI)

A.2 Tuner

In Algorithm 1, we provide a stylized version of what happens in the tuner loop. Here,

time_keeper.advance(sleep_time) sleeps for the alloted time in a standard backend, but in this

simulation backend, the time keeper is simply just advanced (see Section 3.2).

B Experiment details
Statistics for tabulated benchmarks are given in Table 4 and their con�guration spaces are given

in Table 5. The domains “�nite-range” and “�nite-range log-space” correspond to finrange and
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Table 4: Tabulated benchmark statistics

Benchmark #Evaluations #Hyperparameters #Tasks #Fidelities

FCNet 62208 9 4 100

NAS201 15625 6 3 200

LCBench 2000 7 5 52

Table 5: Con�guration spaces for all tabulated benchmarks.

Benchmark Hyperparameter Con�guration space Domain

FCNet activation_1 ["tanh", "relu"] categorical

activation_2 ["tanh", "relu"] categorical

batch_size [8, 16, 32, 64] �nite-range log-space

dropout_1 [0.0, 0.3, 0.6] �nite-range

dropout_2 [0.0, 0.3, 0.6] �nite-range

init_lr [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] categorical

lr_schedule ["cosine", "const"] categorical

n_units_1 [16, 32, 64, 128, 256, 512] �nite-range log-space

n_units_2 [16, 32, 64, 128, 256, 512] �nite-range log-space

NAS201 x0 ["avg_pool_3x3", "nor_conv_3x3", "skip_connect", "nor_conv_1x1", "none"] categorical

x1 ["avg_pool_3x3", "nor_conv_3x3", "skip_connect", "nor_conv_1x1", "none"] categorical

x2 ["avg_pool_3x3", "nor_conv_3x3", "skip_connect", "nor_conv_1x1", "none"] categorical

x3 ["avg_pool_3x3", "nor_conv_3x3", "skip_connect", "nor_conv_1x1", "none"] categorical

x5 ["avg_pool_3x3", "nor_conv_3x3", "skip_connect", "nor_conv_1x1", "none"] categorical

LCBench num_layers [1, 5] uniform

max_units [64, 512] log-uniform

batch_size [16, 512] log-uniform

learning_rate [1e-4, 1e-1] log-uniform

weight_decay [1e-5, 0.1] uniform

momentum [0.1, 0.99] uniform

max_dropout [0.0, 1.0] uniform

logfinrange in Syne Tune, which are encoded by a single integer internally. For LCBench, we run

the 5 most expensive tasks among the 35 tasks available ("airlines", "albert", "covertype", "christine"

and "Fashion-MNIST").

In Section 4.1, all results are obtained by running simulation on a c5.4xlarge machine. All

schedulers are run with 4 workers a wallclock time budget of 1200s for FCNet, 21600s for NAS201

and 7200s for LCBench. For LCBench, we also stop the tuning whenever 4000 epochs evaluations

are seen given that the epoch-time varies more across tasks. As indicated in Section 3.2, those

results include the decision time taken by schedulers to suggest new con�guration or decide on

stopping (longer for GP than ASHA for instance) as well as the time taken by each con�guration

to be evaluated (as recorded in the tabulated benchmarks). Since LCBench does not contain all

possible evaluations on a grid, we run evaluations using a :-nearest-neighbors surrogate with

: = 1.

Con�dence intervals are reported using mean and standard deviation with 30 random seeds in

Figures 2 and 4. To compute normalized ranks in Table 2, we �rst compute the best value obtained

for each methods at 10 uniformly spread time-steps from 0 to the maximum allowed wallclock

time set for the task. We then compute the normalized ranks for each method in [0, 1] and average

those values over time-steps and tasks of the benchmark.

Schedulers details. We give here the list of parameters used for running schedulers in our experi-

ments. In general, the Syne Tune defaults have been used.

• REA is run with a population size of 10, and 5 samples are drawn to select a mutation from

• GP is run using a Matérn
5

2
kernel with automatic relevance determination parameters. For each

suggestion, the surrogate model is �t by marginal likelihood maximization, and a con�guration
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is returned which maximizes the expected improvement acquisition function. This involves

averaging over 20 samples of fantasy outcomes for pending evaluations (Snoek et al., 2012).

• TPE is based on a multi-variate kernel density estimator as proposed by Falkner et al. (2018) to

capture interactions between hyperparameters, which is not possible with unit-variant kernel

density estimator as used for the original TPE approach (Bergstra et al., 2011). We limit the

minimum bandwidth for the kernel density estimator to 0.1 to avoid that all probability mass is

assigned to a single categorical value, which would eliminate extrapolation.

• MSR is running random-search with the median stopping rule, trials are stopped at a time-step if

their running average is worse than the median observed for this time-step. The stopping only

occurs after a grace time of 1 and when at least 5 results are observed for a given time-step.

• ASHA is running the stopping variant (see Section 3.3) with grace period 1 and reduction factor 3,

so that stopping trials happens after 1, 3, 9, . . . epochs. Con�gurations for new trials are sampled

at random.

• BOHB uses the same multi-variate kernel density estimator as TPE, and hyperparameters are set

to default values in Falkner et al. (2018). Note that BOHB uses the same asynchronous scheduling

as ASHA and MOB, while the algorithm in Falkner et al. (2018) is synchronous (corresponding to

SyncBOHB in Syne Tune).

• MOB is running the same scheduling as ASHA, but con�gurations for new trials are chosen as in

Bayesian optimization. The surrogate model is adapted from (Swersky et al., 2014), but does not

use their conditional independence assumption (the base kernel over x is Matérn
5

2
ARD). We

deal with pending evaluations by averaging the acquisition function over 20 samples of fantasy

outcomes (Snoek et al., 2012). Details are found in (Klein et al., 2020).

• ASHA-BB runs ASHA on a restricted con�guration space that consists in the bounding-box of

the best evaluations of o�ine tasks. The same parameters are used as for ASHA and we use

one-hot encoding to compute the bounding-box of categorical parameters.

• ASHA-CTS uses the same parameters as ASHA but use copula-thompson-sampling to �nd

con�gurations to evaluate as proposed in (Salinas et al., 2021b). This approach requires to �t a

surrogate on o�ine evaluations which is done with XGBoost with default hyper-parameters.

• RUSH uses the same settings as ASHA but uses the best con�guration from each other task as

�rst candidates and all candidates which don’t exceed their performance at the di�erent rung

levels are immediately pruned.

• ZS is the method Wistuba et al. (2015b) refer to as A-SMFO. This method is free from any

parameters. This approach requires to �t a surrogate on o�ine evaluations for benchmarks

where con�gurations are not evaluated for all datasets (FCNet) which is done with XGBoost with

default hyper-parameters.

C Additional results
In Figure 4, we show the performance obtained on all methods and tasks.

D Code examples

D.1 Reporting metrics and tuning script conventions

In Listing 2, we show an example of how a user can report metrics from a training script. In l15,

the user reports a metric of a given validation loss for an epoch. Additional metric such as runtime,

dollar-cost (when running on cloud machines) are also automatically added.
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To support checkpointing the user can write into the folder st_checkpoint_dir passed as

argument in l7. The trial backend makes sure that those folders are unique and properly persisted

so that they can be accessed between trials for advanced schedulers such as PBT.

D.2 Switching between di�erent trial backends

Amazon SageMaker. Listing 1 showed how to run a tuning on a local machine. How to run on

GPU cloud machines with distributed training is shown in Listing 3. Importantly, this can be

achieved by just passing a di�erent trial_backend to the tuner. Users can also include additional

dependencies by providing a "requirements.txt" �le, provide custom code or their docker image.

Simulation backend. To evaluate schedulers, we provide a simulation backend that allows to run

realistic simulations in a fraction of the wallclock time and cost compared to real experiments or

compare to a naive approach consisting in sleeping for the recorded runtime of each con�gura-

tion. An example on how to use this backend is shown in Listing 4. As for switching to cloud

backend, the only change required is to pass a di�erent trial backend to the tuner. A surrogate

can be used by just passing arguments to the class, for instance using a KNN surrogate can be

achieved by setting trial_backend = BlackboxRepositoryBackend(blackbox_name="lcbench",
dataset="Fashion-MNIST", surrogate="KNeighborsRegressor") which is the setup that was

used for LCBench.

D.3 Launching tuning remotely

The Listing 5 shows how a user can easily launch a tuning remotely using any desired machine. The

main utility is the ability to schedule many experiments in parallel (for instance when benchmarking

one algorithm multiple seed/task combinations must be evaluated). Importantly, a user can also

use the Amazon SageMaker backend in this scenario (in which case the remote machine schedules

Amazon SageMaker training jobs for di�erent trials). The cost is detected either when the user

tunes remotely or when he uses the Amazon SageMaker backend. In addition to letting the user

the possibility to cap the dollar budget of a tuning, it can also be used as an objective metric to

minimize.
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1 # train_network.py

2 from syne_tune import Reporter

3 from argparse import ArgumentParser

4

5 if __name__ == '__main__':

6 parser = ArgumentParser()

7 parser.add_argument('--st_checkpoint_dir', type=str)

8 parser.add_argument('--epochs', type=int)

9 parser.add_argument('--num_layers', type=int)

10 parser.add_argument('--learning_rate', type=float)

11 args, _ = parser.parse_known_args()

12

13 report = Reporter()

14 for i in range(args.epochs):

15 val_loss = train_epoch()

16 report(val_loss=val_loss, epoch=i+1) # Feed the score back to Syne Tune.

Listing 2: Changing the trial backend to run on cloud machines
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(a) FCNet: Naval Propulsion.
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(b) FCNet: Parkinsons Telemonitoring.
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(c) FCNet: Protein Structure.
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(d) FCNet: Slice Localization.
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(e) NAS201: CIFAR-10
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(f) NAS201: CIFAR-100.
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(g) NAS201: ImageNet16-120.
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(h) LCBench: Airlines.
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(i) LCBench: Albert.
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(j) LCBench: Christine.
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(k) LCBench: Covertype.
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(l) LCBench: Fashion-MNIST.

Figure 4: Best validation error found over time on all tasks.
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1 from sagemaker.pytorch import PyTorch

2 from syne_tune import Tuner, StoppingCriterion

3 from syne_tune.backend import SageMakerBackend

4 from syne_tune.config_space import randint, loguniform

5 from syne_tune.backend.sagemaker_backend.sagemaker_utils import get_execution_role

6 from syne_tune.optimizer.baselines import BayesianOptimization

7

8 # hyperparameter search space to consider

9 config_space = {

10 'epochs': 100,

11 'num_layers': randint(1, 20),

12 'learning_rate': loguniform(1e-6, 1e-4)

13 }

14

15 # use SageMaker trial backend to evaluate trials on the cloud

16 # using pre-build PyTorch container

17 trial_backend = SageMakerBackend(

18 sm_estimator=PyTorch(

19 entry_point='train_network.py',

20 instance_type='ml.p2.xlarge', # choose a GPU machine

21 instance_count=10, # run distributed training with 10 nodes

22 role=get_execution_role(),

23 framework_version='1.7.1',

24 use_spot_instances=True,
25 py_version='py3',

26 )

27 )

28

29 tuner = Tuner(

30 trial_backend=trial_backend,

31 scheduler=BayesianOptimization(config_space, metric='val_loss'),

32 stop_criterion=StoppingCriterion(max_wallclock_time=30),

33 n_workers=4, # how many trials are evaluated in parallel

34 )

35 tuner.run()

Listing 3: Changing the trial backend to run on cloud machines
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1 from syne_tune.config_space import randint, loguniform

2 from benchmarking.blackbox_repository.simulated_tabular_backend import BlackboxRepositoryBackend

3 from syne_tune import Tuner, StoppingCriterion

4 from syne_tune.optimizer.baselines import BayesianOptimization

5

6 # hyperparameter search space to consider

7 config_space = {

8 'epochs': 100,

9 'num_layers': randint(1, 20),

10 'learning_rate': loguniform(1e-6, 1e-4)

11 }

12

13 trial_backend = BlackboxRepositoryBackend(

14 blackbox_name="nasbench201",

15 dataset="cifar100",

16 )

17

18 # runs parallel tuning with simulations

19 tuner = Tuner(

20 trial_backend=trial_backend,

21 scheduler=BayesianOptimization(config_space, metric='val_loss'),

22 stop_criterion=StoppingCriterion(max_wallclock_time=30),

23 n_workers=4, # how many trials are evaluated in parallel

24 )

25 tuner.run()

Listing 4: Changing the trial backend to run on parallel and asynchronous simulations based on

tabulated benchmarks.

1 from syne_tune import Tuner, StoppingCriterion

2 from syne_tune.config_space import randing, loguniform

3 from syne_tune.backend import LocalBackend

4 from syne_tune.optimizer.baselines import BayesianOptimization

5 from syne_tune.remote.remote_launcher import RemoteLauncher

6

7 # hyperparameter search space to consider

8 config_space = {

9 'epochs': 100,

10 'num_layers': randint(1, 20),

11 'learning_rate': loguniform(1e-6, 1e-4)

12 }

13

14 tuner = RemoteLauncher(

15 tuner=Tuner(

16 trial_backend=LocalBackend(entry_point='train_network.py'),

17 # do not spend more than 10$ or 600s

18 stop_criterion=StoppingCriterion(max_cost=10, max_wallclock_time=600),

19 scheduler=BayesianOptimization(config_space, metric='val_loss'),

20 ),

21 instance_type='ml.p3.8xlarge', # runs on a remote machine with 8 GPUs

22 use_spot_instances=True,
23 )

24 tuner.run()

Listing 5: Running a tuning on a remote instance
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E Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s

contributions and scope? Yes.

(b) Did you describe the limitations of your work? Yes.

(c) Did you discuss any potential negative societal impacts of your work? Yes.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

Yes.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? NA.

(b) Did you include complete proofs of all theoretical results? NA.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results, including all requirements (e.g., requirements.txt with

explicit version), an instructive README with installation, and execution com-

mands (either in the supplemental material or as a url)? The instructions

and code to reproduce results is available at https://github.com/awslabs/syne-

tune/tree/automl/benchmarking/nursery/benchmark_automl.

(b) Did you include the raw results of running the given instructions on the given code and

data? No.

(c) Did you include scripts and commands that can be used to generate the �gures and tables

in your paper based on the raw results of the code, data, and instructions given? Yes.

(d) Did you ensure su�cient code quality such that your code can be safely executed and the

code is properly documented? Yes.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed

hyperparameter settings, and how they were chosen)? Yes.

(f) Did you ensure that you compared di�erent methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? Yes.

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?

Yes (compare with/without transfer-learning, w/o multi�delity).

(h) Did you use the same evaluation protocol for the methods being compared? Yes.

(i) Did you compare performance over time? Yes.

(j) Did you perform multiple runs of your experiments and report random seeds? Yes.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? Yes.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? Yes.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? Yes.
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(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? NA, we used default for all methods.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? Yes.

(b) Did you mention the license of the assets? No.

(c) Did you include any new assets either in the supplemental material or as a url? No.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? No.

(e) Did you discuss whether the data you are using/curating contains personally identi�able

information or o�ensive content? No.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? No.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? No.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? No.
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