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Abstract

Encoded text representations often capture sen-001
sitive attributes about individuals (e.g., race002
or gender), which raise privacy concerns and003
can make downstream models unfair to certain004
groups. In this work, we propose FEDERATE,005
an approach that combines ideas from differ-006
ential privacy and adversarial training to learn007
private text representations which also induces008
fairer models. We empirically evaluate the009
trade-off between the privacy of the represen-010
tations and the fairness and accuracy of the011
downstream model on four NLP datasets. Our012
results show that FEDERATE consistently im-013
proves upon previous methods, and thus sug-014
gest that privacy and fairness can positively re-015
inforce each other.016

1 Introduction017

Algorithmically-driven decision-making systems018

raise fairness concerns (Raghavan et al., 2020;019

van den Broek et al., 2019) as they can be discrim-020

inatory against specific groups of people. These021

systems have also been shown to leak sensitive in-022

formation about the data of individuals used for023

training or inference, and thus pose privacy risks024

(Shokri et al., 2017). Societal pressure as well025

as recent regulations push for enforcing both pri-026

vacy and fairness in real-world deployments, which027

is challenging as these notions are multi-faceted028

concepts that need to be tailored to the context.029

Moreover, privacy and fairness can be at odds with030

one another: recent studies have shown that pre-031

venting a model from leaking information about032

its training data negatively impacts the fairness of033

the model and vice versa (Bagdasaryan et al., 2019;034

Pujol et al., 2020; Cummings et al., 2019; Chang035

and Shokri, 2020).036

This paper studies fairness and privacy and their037

interplay in the NLP context, where these two no-038

tions have often been considered independently039

from one another. Modern NLP heavily relies040

on learning or fine-tuning encoded representations 041

of text. Unfortunately, such representations often 042

leak sensitive attributes (e.g., gender, race, or age) 043

present explicitly or implicitly in the input text, 044

even when such attributes are known to be irrele- 045

vant to the task (Song and Raghunathan, 2020). 046

Moreover, the presence of such information in 047

the representations may lead to unfair downstream 048

models, as has been shown on various NLP tasks 049

such as occupation prediction from text bios (De- 050

Arteaga et al., 2019), coreference resolution (Zhao 051

et al., 2018), or sentiment analysis (Kiritchenko 052

and Mohammad, 2018). 053

Privatizing encoded representations is thus an im- 054

portant, yet challenging problem for which existing 055

approaches based on subspace projection (Boluk- 056

basi et al., 2016; Wang et al., 2020; Karve et al., 057

2019; Ravfogel et al., 2020) or adversarial learning 058

(Li et al., 2018; Coavoux et al., 2018; Han et al., 059

2021) do not provide a satisfactory solution. In 060

particular, these methods lack any formal privacy 061

guarantee, and it has been shown that an adversary 062

can still recover sensitive attributes from the result- 063

ing representations with high accuracy (Elazar and 064

Goldberg, 2018; Gonen and Goldberg, 2019). 065

Instead of relying on adversarial learning to pre- 066

vent attribute leakage, Lyu et al. (2020); Plant et al. 067

(2021) recently propose to add random noise to text 068

representations so as to satisfy differential privacy 069

(DP), a mathematical definition which comes with 070

rigorous guarantees (Dwork et al., 2006). How- 071

ever, we uncover a critical error in their privacy 072

analysis which drastically weakens their privacy 073

claims. Moreover, their approach harms accuracy 074

and fairness compared to adversarial learning. 075

In this work, we propose a novel approach 076

(called FEDERATE) to learn private text represen- 077

tations and fair models by combining ideas from 078

DP with an adversarial training mechanism. More 079

specifically, we propose a flexible end-to-end archi- 080

tecture in which (i) the output of an arbitrary text 081
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encoder is normalized and perturbed using random082

noise to make the resulting encoder differentially083

private, and (ii) on top of the encoder, we com-084

bine a classifier branch with an adversarial branch085

to actively induce fairness, improve accuracy and086

further hide specific sensitive attributes.087

We empirically evaluate the privacy-fairness-088

accuracy trade-offs achieved by FEDERATE over089

four datasets and find that it simultaneously leads090

to more private representations and fairer models091

than state-of-the-art methods while maintaining092

comparable accuracy. Beyond the superiority of093

our approach, our results bring valuable insights on094

the complementarity of DP and adversarial learn-095

ing and the compatibility of privacy and fairness.096

On the one hand, DP drastically reduces undesired097

leakage from adversarially trained representations,098

and has a stabilizing effect on the training dynamics099

of adversarial learning. On the other hand, adver-100

sarial learning improves the accuracy and fairness101

of models trained over DP text representations.102

Our main contributions are as follows:103

• We propose a new approach, FEDERATE,104

which combines a DP encoder with adversar-105

ial learning to learn fair and accurate models106

from private representations.107

• We identify and fix (with a formal proof) a crit-108

ical mistake in the privacy analysis of previous109

work on learning DP text representations.110

• We empirically show that FEDERATE leads to111

more private representations and fairer models112

than state-of-the-art methods while maintain-113

ing comparable accuracy.114

• Unlike previous studies, our empirical results115

suggest that privacy and fairness are compati-116

ble in our setting, and even mutually reinforce117

each other.118

The paper is organized as follows. Section 2 pro-119

vides background on differential privacy. Section 3120

presents our approach. Section 4 reviews related121

work. Experimental results and conclusions are122

given in Sections 5 and 6.123

2 Background: Differential Privacy124

Differential Privacy (DP) (Dwork et al., 2006) pro-125

vides a rigorous mathematical definition of the pri-126

vacy leakage associated with an algorithm. It does127

not depend on assumptions about the attacker’s ca-128

pabilities and comes with a powerful algorithmic129

framework. For these reasons, it has become a 130

de-facto standard in privacy currently used by the 131

US Census Bureau (Abowd, 2018) and several big 132

tech companies (Erlingsson et al., 2014; Fanti et al., 133

2016; Ding et al., 2017). This section gives a brief 134

overview of DP, focusing on the aspects needed 135

to understand our approach (see Dwork and Roth 136

(2014) for an in-depth review of DP). 137

Over the last few years, two main models for 138

DP have emerged: (i) Central DP (CDP) (Dwork 139

et al., 2006), where raw user data is collected and 140

processed by a trusted curator, which then releases 141

the result of the computation to a third party or the 142

public, and (ii) Local DP (LDP) (Kasiviswanathan 143

et al., 2011) which removes the need for a trusted 144

curator by having each user locally perturb their 145

data before sharing it. Our work aims to create 146

an encoder that leads to a private embedding of 147

an input text, which can then be shared with an 148

untrusted curator for learning or inference. We 149

thus consider LDP, defined as follows. 150

Definition 1 (Local Differential Privacy). A ran- 151

domized algorithm M : X → O is ε-differentially 152

private if for all pairs of inputs x, x′ ∈ X and all 153

possible outputs o ∈ O: 154

Pr[M(x) = o] ≤ eε Pr[M(x′) = o]. (1) 155

LDP ensures that the probability of observing a par- 156

ticular output o of M should not depend too much 157

on whether the input is x or x′. The strength of pri- 158

vacy is controlled by ε, which bounds the log-ratio 159

of these probabilities for any x, x′. Setting ε = 0 160

corresponds to perfect privacy, while ε→∞ does 161

not provide any privacy guarantees (as one may 162

be able to uniquely associate an observed output 163

to a particular input). In our approach described 164

in Section 3, x will be an input text and M will 165

be an encoding function which transforms x into 166

a private vector representation that can be safely 167

shared with untrusted parties. 168

Laplace mechanism. As clearly seen from Def- 169

inition 1, an algorithm needs to be randomized to 170

satisfy DP. A classical approach to achieve ε-DP for 171

vector data is the Laplace mechanism (Dwork et al., 172

2006). Given the desired privacy guarantee ε and 173

an input vector x ∈ RD, this mechanism adds cen- 174

tered Laplace noise Lap(∆
ε ) independently to each 175

dimension of x. The noise scale ∆
ε is calibrated to 176

ε and the L1-sensitivity ∆ of inputs: 177

∆ = max
x,x′∈X

‖x− x′‖1. (2) 178
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In our work, we propose an architecture in which179

the Laplace mechanism is applied on top of a train-180

able encoder to get private representations of in-181

put texts, and is further combined with adversarial182

training to learn fair models.183

3 Approach184

We consider a scenario similar to Coavoux et al.185

(2018), where a user locally encodes its input186

data (text) x into an intermediate representation187

Epriv(x) which is then shared with an untrusted cu-188

rator to predict the label y associated with x using a189

classifier C. Additionally, an attacker (which may190

be the untrusted curator or an eavesdropper) may191

observe the intermediate representation Epriv(x)192

and try to infer some sensitive (discrete) attribute193

z about x (e.g., gender, race etc.). Our goal is to194

learn an encoder Epriv and classifier C such that195

(i) the attacker performs poorly at inferring z from196

Epriv(x), (ii) the classifierC(Epriv(x)) is fair with197

respect to z according to some fairness metric, and198

(iii) C accurately predicts the label y.199

To achieve the above goals we introduce200

FEDERATE (for Fair modEls with DiffERentiAlly201

private Text Encoders), which combines two com-202

ponents: a differentially private encoder and an203

adversarial branch. Figure 1 shows an overview of204

our proposed architecture.205

3.1 Differentially Private Encoder206

We propose a generic private encoder construction207

Epriv = priv ◦ E composed of two main compo-208

nents. The first component E can be any encoder209

which maps the text input to some vector space210

of dimension D. It can be a pre-trained language211

model along with a few trainable layers, or it can212

be trained from scratch. The second component213

priv is a randomized mapping which transforms214

the encoded input to a differentially private rep-215

resentation. Given the desired privacy guarantee216

ε > 0, this mapping is obtained by applying the217

Laplace mechanism (see Section 2) to a normalized218

version of the encoded representation E(x):219

priv(E(x)) = E(x)/‖E(x)‖1 + `, (3)220

where each entry of ` ∈ RD is sampled indepen-221

dently from Lap(2
ε ). We will prove that Epriv =222

priv ◦ E satisfies ε-DP in Section 3.4.223

3.2 Adversarial Component224

To improve the fairness of the downstream classi-225

fier C, we model the adversary by another classi-226

Encoder E

User Input

priv Classifier C

Adversarial 
A

g𝝀

Figure 1: Overview of our FEDERATE approach. The
text input x is transformed to E(x) ∈ RD by the text
encoder E. The encoded input is then made private by
the privacy layer priv, which involves normalization and
addition of Laplace noise. The resulting private represen-
tation Epriv(x) ∈ RD is then used by the main task clas-
sifier C. It also serves as input to the adversarial layer
A which is connected to the main branch via a radient
reversal layer gλ. The light red boxes represent the Dif-
ferentially Private Encoder (Sec. 3.1), and the light blue
boxes represent the Adversarial component (Sec. 3.2).

fier A which aims to predict z from the privately 227

encoded input Epriv(x). The encoder Epriv is op- 228

timized to fool A while maximizing the accuracy 229

of the downstream classifier C. Specifically, given 230

λ > 0, we train Epriv, C and A (parameterized 231

by θE , θC , and θA respectively) to optimize the 232

following objective: 233

min
θE ,θC

max
θA
Lclass(θE , θC)− λLadv(θE , θA), (4) 234

where Lclass(θE , θC) is the cross-entropy loss for 235

the C ◦Epriv branch and Ladv(θE , θA) is the cross- 236

entropy loss for the A ◦ Epriv branch. 237

3.3 Training 238

We train the private encoder Epriv and the clas- 239

sifier C from a set of public tuples (x, y, z) by 240

optimizing (4) with backpropagation using a gradi- 241

ent reversal layer gλ (Ganin and Lempitsky, 2015). 242

The latter acts like an identity function in the for- 243

ward pass but scales the gradients passed through 244

it by −λ in the backward pass. This results in 245

Epriv receiving opposite gradients to A. We give 246

pseudo-code in Appendix A. 247

3.4 Privacy Analysis 248

We show the following privacy guarantee. 249

Theorem 1. Our encoder Epriv and the down- 250

stream predictions C ◦ Epriv satisfy ε-DP. 251

The proof is given in Appendix B. Theorem 1 252

shows that the encoded representations produced 253

by Epriv have provable privacy guarantees: in par- 254

ticular, it bounds the risk that the sensitive attribute 255
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z of a text x is leaked by Epriv(x).1 These pri-256

vacy guarantees naturally extend to the downstream257

prediction C(Epriv(x)) due to the post-processing258

properties of DP (see Appendix B for details).259

Error in previous work. We found a critical er-260

ror in the privacy analysis of previous work on261

differential private text encoders (Lyu et al., 2020;262

Plant et al., 2021). In a nutshell, they incorrectly263

state that normalizing each entry of the encoded264

representation in [0, 1] allows to bound the sensi-265

tivity of their representation by 1, while it can in266

fact be as large as D (the dimension of the repre-267

sentation). As a result, the privacy guarantees are268

dramatically weaker than what the authors claim:269

the ε values they report should be multiplied by270

D. In contrast, the L1 normalization we use in (3)271

ensures that the sensitivity of E is bounded by 2.272

We provide more details in Appendix C.273

Interestingly, Habernal (2021) recently identi-274

fied an error in ADePT (Krishna et al., 2021), a275

differentially private auto-encoder for text rewrit-276

ing. However, the error in ADePT is different from277

the one in Lyu et al. (2020); Plant et al. (2021): the278

problem with ADePT is that it calibrates the noise279

to L2 sensitivity, while the Laplace mechanism re-280

quires L1 sensitivity. These errors call for greater281

scrutiny of differential privacy-based approaches282

in NLP—our work contributes to this goal.283

4 Related Work284

Adversarial learning. In order to improve285

model fairness or to prevent leaking sensitive at-286

tributes, several approaches employ adversarial-287

based training. For instance, Li et al. (2018) pro-288

pose to use a different adversary for each protected289

attribute, while Coavoux et al. (2018) consider ad-290

ditional loss components to improve the privacy-291

accuracy trade-off of the learned representation.292

Han et al. (2021) introduce multiple adversaries fo-293

cusing on different aspects of the representation by294

encouraging orthogonality between pairs of adver-295

saries. Recently, Chowdhury et al. (2021) propose296

an adversarial scrubbing mechanism. However,297

they purely focus on information leakage, and not298

on fairness. Moreover, unlike our approach, these299

methods do not offer formal privacy guarantees.300

In fact, it has been observed that one can recover301

the sensitive attributes from the representations by302

training a post-hoc non linear classifier (Elazar and303

1More generally, the DP guarantee bounds the risk that
any attribute of x is leaked through Epriv(x).

Goldberg, 2018). This is confirmed by our empiri- 304

cal results in Section 5. 305

Sub-space projection. A related line of work fo- 306

cuses on debiasing text representations using pro- 307

jection methods (Bolukbasi et al., 2016; Wang et al., 308

2020; Karve et al., 2019). The general approach 309

involves identifying and removing a sub-space asso- 310

ciated with sensitive attributes. However, they rely 311

on a manual selection of words in the vocabulary 312

which is difficult to generalize to new attributes. 313

Furthermore, Gonen and Goldberg (2019) showed 314

that sensitive attributes still remain present even 315

after applying these approaches. 316

Recently, Ravfogel et al. (2020) propose Itera- 317

tive Null space Projection (INLP). It involves itera- 318

tively training a linear classifier to predict sensitive 319

attributes followed by projecting the representa- 320

tion on the classifier’s null space. However, the 321

method can only remove linear information from 322

the representation. By leveraging DP, our approach 323

provides robust guarantees that do not depend on 324

the expressiveness of the adversary, thereby provid- 325

ing protection against a wider range of attacks. 326

DP and fairness. Recent work has studied the in- 327

terplay between DP and (group) fairness in the set- 328

ting where one seeks to prevent a model from leak- 329

ing information about individual training points. 330

Empirically, this is evaluated through membership 331

inference attacks, where an attacker uses the model 332

to determine whether a given data point was in the 333

training set (Shokri et al., 2017). While Kulynych 334

et al. (2022) observed that DP reduces disparate 335

vulnerability to such attacks, it has also been shown 336

that DP can exacerbate unfairness (Bagdasaryan 337

et al., 2019; Pujol et al., 2020). Conversely, Chang 338

and Shokri (2020) showed that enforcing a fair 339

model leads to more privacy leakage for the unpriv- 340

ileged group. This tension between DP and fairness 341

is further confirmed by a formal incompatibility 342

result between ε-DP and fairness proved by Cum- 343

mings et al. (2019), albeit in a restrictive setting. 344

Some recent work attempts to train models under 345

both DP and fairness constraints (Cummings et al., 346

2019; Xu et al., 2020; Liu et al., 2020), but this 347

typically comes at the cost of enforcing weaker pri- 348

vacy guarantees for some groups. Finally, Jagielski 349

et al. (2019) train a fair model under DP constraints 350

only for the sensitive attribute. 351

A fundamental difference between this line of 352

work and our approach lies in the kind of privacy 353
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we provide. While the above approaches study354

(central) DP as a way to design algorithms which355

protect training points from membership inference356

attacks on the model, we construct a private en-357

coder such that the encoded representation does not358

leak sensitive attributes of the input. Thus, unlike359

previous work, we provide privacy guarantees with360

respect to the model’s intermediate representation361

for data unseen at training time, and empirically362

observe that in this case privacy and fairness are363

compatible and even mutually reinforce each other.364

DP representations for NLP. In a setting simi-365

lar to ours, Lyu et al. (2020) propose to use DP to366

privatize model’s intermediate representation. Un-367

like their method, we actively promote fairness by368

using an adversarial training mechanism, which369

leads to more private representations and fairer370

models in practice. Importantly, we also uncover a371

critical error in their privacy analysis (see Sec. 3.1).372

Concurrent to and independently from our work,373

Plant et al. (2021) propose an adversarial-driven374

DP training mechanism. However, they do not375

consider fairness, whereas we focus on enforcing376

both fairness and privacy. Moreover, their method377

has the same incorrect analysis as Lyu et al. (2020).378

5 Experiments379

Recall that we are interested in approaches that380

are not only accurate but also fair and private at381

the same time. However, these three dimensions382

are not independent and are not straightforwardly383

amenable to a single evaluation metric. Thus, we384

present experiments aiming at (i) showcasing the385

privacy-fairness-accuracy tradeoffs of different ap-386

proaches and then (ii) analyzing privacy-accuracy387

and fairness-accuracy tradeoffs separately. We be-388

gin by describing the datasets and the metrics.389

Datasets. We consider 4 different datasets: (i)390

Twitter Sentiment (Blodgett et al., 2016) consists391

of 200k tweets annotated with a binary sentiment392

label and a binary “race” attribute corresponding to393

African American English (AAE) vs. Standard394

American English (SAE) speakers; (ii) Bias in395

Bios (De-Arteaga et al., 2019) consists of 393,423396

textual biographies annotated with an occupation397

label (28 classes) and a binary gender attribute;398

(iii) CelebA (Liu et al., 2015) is a binary classi-399

fication dataset with a binary sensitive attribute400

(gender); (iv) Adult Income (Kohavi, 1996) con-401

sists of 48,842 instances with binary sensitive at-402

tribute (gender). Our setup for the first two dataset 403

is similar to Ravfogel et al. (2020) and Han et al. 404

(2021). Appendix D.2 provides detailed description 405

of these datasets, including sizes, pre-processing, 406

and the challenges they pose to privacy and fairness 407

tasks. Due to lack of space, results and analyses 408

for Adult Income and CelebA dataset are given in 409

Appendix D.5, but note that they exhibit similar 410

trends. The preprocessed versions of the datasets 411

can be downloaded from this anonymized URL.2 412

Fairness metrics. For Twitter Sentiment we re- 413

port the True Positive Rate Gap (TPR-gap), which 414

measures the true positive rate difference between 415

the two sensitive groups (gender/race) and is 416

closely related to the notion of equal opportunity. 417

Formally, denoting by y ∈ {0, 1} the ground truth 418

binary label, ŷ the predicted label and z ∈ {g,¬g} 419

the sensitive attribute, TPR-gap is defined as: 420

TPR-gap = Pg(ŷ = 1|y = 1)−P¬g(ŷ = 1|y = 1). 421

For Bias in Bios, which has 28 classes, we fol- 422

low Romanov et al. (2019) and report the root mean 423

square of TPR-gaps (GRMS) over all occupations 424

y ∈ O to obtain a single number: 425

GRMS =
√

(1/|O|)
∑

y∈O(TPR-gapy)
2. (5) 426

Privacy metrics. We report two metrics for pri- 427

vacy: (i) Leakage: the accuracy of a two-layer 428

classifier which predicts the sensitive attribute from 429

the encoded representation, and (ii) Minimum De- 430

scription Length (MDL) (Voita and Titov, 2020), 431

which quantifies the amount of “effort” required 432

by such a classifier to achieve a certain accuracy. 433

A higher MDL means that it is more difficult to 434

retrieve the sensitive attribute from the represen- 435

tation. The metric depends on the dataset and the 436

representation dimension, and thus cannot be com- 437

pared across different datasets. We provide more 438

details about these metrics in Sec. D.1. 439

Methods and model architectures. We com- 440

pare FEDERATE to the following methods: (i) 441

Adversarial implements standard adversar- 442

ial learning (Li et al., 2018), which is equiv- 443

alent to our approach without the priv layer, 444

(ii) Adversarial + Multiple (Han et al., 445

2021) implements multiple adversaries, (iii) 446

INLP (Ravfogel et al., 2020) is a subspace pro- 447

jection approach, and (iv) Noise learns DP text 448

2https://drive.google.com/uc?id=
1ZmUE-g6FmzPPbZyw3EOki7z4bpzbKGWk
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Figure 2: Validation accuracy, fairness and privacy of various approaches for different relaxation threshold (RT)
(see Section 5.1) on Twitter Sentiment. When RT is increased, we select models with potentially lower accuracy
on the validation set but are more fair (lower TPR-gap). Our approach FEDERATE consistently achieves better
accuracy-fairness-privacy trade-offs than its competitors across all RTs.

representations as proposed by Lyu et al. (2020) but449

with corrected privacy analysis: this corresponds450

to our approach without the adversarial compo-451

nent. These methods have been described in de-452

tails in Section 4 and their hyperparametrs in Ap-453

pendix D.4. We also report the performance of two454

simple baselines: Random simply predicts a ran-455

dom label, and Unconstrained optimizes the456

classification performance without special consid-457

eration for privacy or fairness.458

To provide a fair comparison, all methods use the459

same architecture for the encoder, the classifier and460

(when applicable) the adversarial branches. In or-461

der to evaluate across varying model complexities,462

we employ different architectures for the different463

datasets. For Twitter Sentiment, we follow the ar-464

chitecture employed by Han et al. (2021), while465

for Bias in Bios we use a deeper architecture. The466

exact architecture, hyperparameters, and their tun-467

ing details are provided in Appendix D.3-D.4. We468

implement FEDERATE in PyTorch (Paszke et al.,469

2019). Our implementation, training, and evalua-470

tion scripts are available here.3471

5.1 Accuracy-Fairness-Privacy Trade-off472

In this first set of experiments, we explore the473

tridimensional trade-off between accuracy, fairness,474

and privacy and the inherent tension between them.475

These metrics are potentially all equally important476

and represent different information on different477

scales. Thus, they cannot be trivially combined478

into a single metric. Moreover, this trade-off is479

influenced by the choice of method but also some480

of its hyperparameters (e.g., the value of ε and481

λ in our approach). Previous studies (Han et al.,482

2021; Lyu et al., 2020) essentially selected hyper-483

parameter values that maximize validation accu-484

3The URL of the final code will be released after the
anonymity period. The work-in-progress version of the code-
base is currently available as a zip file for the reviewers.

racy, which may lead to undesirable or suboptimal 485

trade-offs. For instance, we found that this strat- 486

egy does not always induce a fairer model than the 487

Unconstrained baseline, and that it is often 488

possible to obtain significantly more fair models at 489

a negligible cost in accuracy. Based on these obser- 490

vations, we propose to use a Relaxation Threshold 491

(RT): instead of selecting the hyperparameters with 492

highest validation accuracy α∗, we consider all 493

models with accuracy in the range [α∗ − RT, α∗]. 494

We then select the hyperparameters with best fair- 495

ness score within that range.4 496

Figure 2 presents the (validation) accuracy, fair- 497

ness and privacy scores related to different RT for 498

each method on Twitter Sentiment. The first thing 499

to note is that FEDERATE achieves the best fair- 500

ness and privacy results with accuracy higher or 501

comparable to competing approaches. We also 502

observe that setting RT= 0.0 (i.e., choosing the 503

model with highest validation accuracy) leads to a 504

significantly more unfair model in all approaches, 505

while fairness generally improves with increasing 506

RT. This improvement comes at a negligible or 507

small cost in accuracy. In terms of privacy, we find 508

no significant differences across RTs. 509

We now showcase detailed results with RT 510

fixed to 1.0 which is found to provide good 511

trade-offs for all approaches in Figure 2, see Ta- 512

ble 1a for Twitter Sentiment and Table 1b for 513

Bias in Bios (and Appendix D.6 for additional re- 514

sults). For both datasets, we observe that all ad- 515

versarial approaches induce a fairer model than 516

Unconstrained or Noise, with FEDERATE 517

performing best. In terms of accuracy, all adver- 518

sarial approaches perform similarly on Twitter Sen- 519

timent. Interestingly, they achieve higher accu- 520

4We can also incorporate privacy into our hyperparam-
eter selection strategy but, for the datasets and methods in
our study, we found no significant change in Leakage across
different hyperparameters.
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 - 31.3 ± 0.10
Unconstrained 72.09 ± 0.73 26.26 ± 0.87 86.56 ± 0.83 15.21 ± 0.88

INLP 67.62 ± 0.57 9.19 ± 1.08 80.27 ± 2.50 24.82 ± 3.28
Noise 71.52 ± 0.51 21.23 ± 2.50 66.29 ± 3.55 21.10 ± 1.81
Adversarial 75.16 ± 0.65 5.03 ± 2.94 88.06 ± 0.20 16.16 ± 1.05
Adversarial + Multiple 75.32 ± 0.60 2.09 ± 1.18 88.03 ± 0.47 15.85 ± 1.46

FEDERATE 75.15 ± 0.59 1.75 ± 1.41 61.74 ± 5.05 22.94 ± 1.25

(a) Results on Twitter Sentiment dataset.

Method Accuracy ↑ GRMS ↓ Leakage ↓ MDL ↑

Random 3.53 ± 0.01 0.00 ± 0.00 – 265.44 ± 0.13
Unconstrained 79.29 ± 0.32 15.88 ± 0.80 75.92 ± 2.73 173.99 ± 7.08

INLP 75.96 ± 0.47 12.81 ± 0.09 59.91 ± 0.08 253.36 ± 1.05
Noise 77.88 ± 0.32 13.89 ± 0.31 62.23 ± 0.99 241.22 ± 2.97
Adversarial 79.02 ± 0.20 13.06 ± 0.39 69.47 ± 1.64 206.78 ± 13.02
Adversarial + Multiple 79.30 ± 0.20 13.38 ± 0.63 68.24 ± 1.12 222.35 ± 10.04

FEDERATE 77.79 ± 0.11 11.02 ± 0.55 56.92 ± 0.98 257.94 ± 1.93

(b) Results on Bias in Bios dataset.

Table 1: Test results on (a) Twitter Sentiment, and (b) Bias in Bios with fixed Relaxation Threshold of 1.0. Fairness
is measured with TPR-Gap or GRMS (lower is better), while privacy is measured by Leakage (lower is better) and
MDL (higher is better). The MDL achieved by Random gives an upper bound for that particular dataset. Results
have been averaged over 5 different seeds. Our proposed FEDERATE approach is the only method which achieves
high levels of both fairness and privacy while maintaining competitive accuracy.

racy than Unconstrained. We attribute this to521

a significant mismatch in the train and test distri-522

bution due to class imbalance. On Bias in Bios,523

we observe a small drop in accuracy of our pro-524

posed approach in comparison to Adversarial,525

albeit with a corresponding gain in fairness. We526

hypothesize that this is due to the choice of possi-527

ble hyperparameters for FEDERATE (we did not528

consider very large values of ε which would re-529

cover Adversarial), meaning that FEDERATE530

pushes for more fairness (and privacy) at a poten-531

tial cost of some accuracy. We explore the pairwise532

trade-offs (fairness-accuracy and privacy-accuracy)533

in more details in Section 5.2.534

In terms of both privacy metrics, FEDERATE535

significantly outperforms all adversarial methods536

on both datasets. In fact, in line with previous537

studies (Han et al., 2021), the leakage and MDL538

of purely adversarial methods are similar to that539

of Unconstrained. On both datasets, Noise540

achieves slightly weaker privacy than FEDERATE541

with much worse accuracy and fairness.542

FEDERATE also consistently outperforms 543

INLP in all dimensions. 544

In summary, the results show that FEDERATE 545

stands out as the only approach that can simulta- 546

neously induce a fairer model and make its repre- 547

sentation private while maintaining high accuracy. 548

Furthermore, these results empirically demonstrate 549

that our measures of privacy and fairness are in- 550

deed compatible with one another and can even 551

reinforce each other. 552

5.2 Pairwise Trade-offs 553

In the previous experiments, we explored the tridi- 554

mensional trade-off and found FEDERATE to at- 555

tain better trade-offs than all other methods. Here, 556

we take a closer look at the pairwise fairness- 557

accuracy and privacy-accuracy trade-offs sepa- 558

rately. We find that FEDERATE outperforms the 559

Adversarial and Noise approach in their cor- 560

responding dimension, suggesting that FEDERATE 561

is a better choice even for bidimensional trade-offs. 562

This experiment also validates the superiority of 563
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Figure 3: Fairness-accuracy trade-off on Twitter Senti-
ment (top) and Bias in Bios (bottom). A missing point
means that the accuracy interval was not found within
our hyperparameter search. FEDERATE provides bet-
ter fairness across most accuracy intervals in compari-
son to Adversarial over both datasets.

combining adversarial learning and DP over using564

either approach alone.565

Fairness-accuracy trade-off. We plot best vali-566

dation fairness scores over different accuracy inter-567

vals for the two datasets in Figure 3. The interval is568

denoted by its mean accuracy (i.e., [71.5, 72.5] is569

represented by 72). We then find the corresponding570

best fairness score for the interval. We observe:571

• Better fairness-accuracy trade-off:572

FEDERATE provides better fairness than573

the Adversarial approach for almost all574

accuracy intervals. In the case of Bias in Bios,575

Adversarial is able to achieve higher576

accuracy (albeit with a loss in fairness). We577

note that this high accuracy regime can be578

matched by FEDERATE with a larger ε.579

• Smoother fairness-accuracy trade-off: Inter-580

estingly, FEDERATE enables a smoother ex-581

ploration of the accuracy-fairness trade-off582

space than Adversarial. As adversarial583

models are notoriously difficult to train, this584

suggests that the introduction of DP noise has585

a stabilizing effect on the training dynamics586

of the adversarial component.587

Privacy-accuracy trade-off. We plot privacy588

and accuracy with respect to ε, the parameter con-589

trolling the theoretical privacy level in Figure 4.590

In general, the value of ε correlates well with the591

empirical leakage. On Bias in Bios, FEDERATE592

and Noise are comparable in both accuracy and593
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Figure 4: Privacy-accuracy trade-off on Twitter Senti-
ment (top) and Bias in Bios (bottom), with associated
values of ε. FEDERATE gives lower leakage and better
or comparable accuracy to Noise over both datasets.

privacy. However, for Twitter Sentiment, our ap- 594

proach outperforms Noise in both accuracy and 595

privacy for every ε. We hypothesize this differ- 596

ence in the accuracy to be a case of mismatch be- 597

tween train-test split, suggesting FEDERATE to be 598

more robust to these distributional shifts. These 599

observations suggest that FEDERATE either im- 600

proves upon Noise in privacy-accuracy tradeoff 601

or remains comparable. For completeness, we also 602

present the same results as a table in Appendix D.6. 603

6 Conclusion and Perspectives 604

We proposed a DP-driven adversarial learning ap- 605

proach for NLP. Through our experiments, we 606

showed that our method simultaneously induces 607

private representations and fair models, with a mu- 608

tually reinforcing effect between privacy and fair- 609

ness. We also find that our approach improves upon 610

competitors on each dimension separately. While 611

we focused on privatizing sensitive attributes like 612

race or gender, our approach can be used to remove 613

other types of unwanted information from text rep- 614

resentations, such as tenses or POS tag information, 615

which might not be relevant for certain NLP tasks. 616

A possible limitation of this work is that it not tai- 617

lored to a specific definition of fairness like equal 618

odds. Instead, it enforces fairness by removing 619

certain protected information, which can correlate 620

with specific fairness notions. Similarly, we do 621

not provide any formal fairness guarantees for our 622

method, as we do for privacy. In the future, we aim 623

to investigate fairness methods that explicitly opti- 624

mize for a specific fairness definition and explore 625

other privacy threats (e.g., reconstruction attacks). 626
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APPENDIX947

A Training Algorithm948

We provide the pseudo-code of the training proce-949

dure of FEDERATE in Algorithm 1. Note that the950

combination of Steps 2-3-4 corresponds to Epriv951

in Sec. 3.952

B Proof of Theorem 1953

Proof. We start by proving that our noisy encoder
Epriv : X → RD satisfies ε-DP. Recall that for any
input text x ∈ X

Epriv(x) = priv ◦ E(x) = E(x)/‖E(x)‖1 + `,

where each entry of ` ∈ RD is sampled indepen-954

dently from Lap(2
ε ), the centered Laplace distribu-955

tion with scale 2/ε. Let Ẽ(x) = E(x)/‖E(x)‖1.956

The L1 sensitivity of Ẽ is957

∆Ẽ = max
x,x′∈X

‖Ẽ(x)− Ẽ(x)′‖1.958

Since for any x ∈ X we have ‖Ẽ(x)‖1 = 1, the tri-
angle inequality gives ∆Ẽ ≤ 2. The ε-DP guaran-
tee then follows from the application of the Laplace
mechanism (Dwork et al., 2006). Formally, let

p(y) =
ε

4
e−

|y|ε
2

denote the p.d.f. of Lap(2/ε). Consider two arbi-959

trary input texts x, x′ ∈ X and let x̃ = Ẽ(x) ∈ RD960

and x̃′ = Ẽ(x′) ∈ RD be their normalized encoded961

representations. Then, for any possible encoded962

output e = (e1, . . . , eD) ∈ RD, we have:963

Pr[Epriv(x) = e]

Pr[Epriv(x′) = e]
=

D∏
d=1

p(ed − x̃d)
p(ed − x̃d′)

(6)964

=
D∏
d=1

e−
ε
2
|ed−x̃d|

e−
ε
2
|ed−x̃′d|

965

= e
ε
2

∑D
d=1 |ed−x̃′d|−|ed−x̃d|966

≤ e
ε
2

∑D
d=1 |x̃d−x̃′d| (7)967

= e
ε
2
‖x̃−x̃′‖1968

≤ e
ε
2

∆Ẽ = eε, (8)969

where (6) follows from the independence of the970

noise across dimensions, (7) uses the triangle in-971

equality, and (8) from the definition of ∆Ẽ and the972

fact that ∆Ẽ ≤ 2 as shown above.973

The above inequality shows that Epriv satisfies974

ε-DP as per Definition 1. The fact that C ◦ Epriv975

also satisfies ε-DP follows from the post-processing 976

property of DP, which ensures that the composition 977

of any function with an ε-DP algorithm also satis- 978

fies ε-DP (Dwork and Roth, 2014). 979

980

C Error in Privacy Analysis of Previous 981

Work 982

As briefly mentioned in Section 4, we found a criti- 983

cal error in the differential privacy analysis made 984

in previous work by Lyu et al. (2020). This error is 985

then reproduced in subsequent work by Plant et al. 986

(2021). In this section, we explain this error and its 987

consequences for the formal privacy guarantees of 988

these methods, and provide a correction. 989

Recall from Section 2 that to achieve ε-DP with 990

the Laplace mechanism, one must calibrate the 991

scale of the Laplace noise needed to the L1 sen- 992

sitivity of the encoded representation (see Eq. 2). 993

This sensitivity bounds the worst-case change in 994

L1 norm for any two arbitrary encoded user inputs 995

x and x′ of dimension D. 996

In order to bound the L1 sensitivity, Lyu et al. 997

(2020) and Plant et al. (2021) propose to bound 998

each entry of the encoded input x ∈ RD in the [0, 1] 999

range. Specifically, they normalize as follows: 1000

x← x−min(x)/(max(x)−min(x)), (9) 1001

where min(x) and max(x) are respectively the min- 1002

imum and maximum values in the vector x. Lyu 1003

et al. (2020) and Plant et al. (2021) incorrectly 1004

claim that this allows to bound the L1 sensitivity 1005

by 1 and thus add Laplace noise of scale 1
ε . In fact, 1006

the sensitivity can be as large as D, as can be seen 1007

by considering the two inputs x = [0, 1, . . . , 1]D 1008

and x′ = [1, 0, . . . , 0] for which ‖x − x′‖1 = D. 1009

Therefore, to achieve ε-DP, the scale of the Laplace 1010

noise should be D
ε (i.e., D times larger than what 1011

the authors use). As a consequence, the differen- 1012

tial privacy provided by their method are D times 1013

worse than claimed by Lyu et al. (2020) and Plant 1014

et al. (2021): the ε values they report should be 1015

multiplied by D, which leads to essentially void 1016

privacy guarantees. 1017

While Lyu et al. (2020) claim to follow the 1018

approach of Shokri and Shmatikov (2015), they 1019

missed the fact that Shokri and Shmatikov (2015) 1020

do account for multiple dimensions by scaling the 1021

noise to the number of entries (denoted by c in 1022

their paper) that are submitted to the server, see 1023
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Algorithm 1: Training procedure of FEDERATE (one epoch).
Input: Model architecture composed of encoder E (parameterized by θE), classifier C

(parameterized by θC), adversary A (parameterized by θA), loss function L
Output: Trained model
Data: Samples S={xi, yi, zi}mi=1 where xi is the input text, yi is the task label, and zi is the

sensitive attribute.
1 for i← 0 to m do

// For each sample in the dataset. This can be batch too.

2 Encode: xi ← E(xi)

3 Normalize: xi ← xi
‖xi‖1

4 Privatize: xipriv ← xi + `, where each entry of the vector ` ∈ RD is sampled independently
from a centered Laplace distribution with scale 2

ε
5 Adversarial prediction: ẑi ← A(xipriv)
6 Update θA by backpropagating the loss L(zi, ẑi)
7 Task classification: ŷi ← C(xipriv)
8 Update θE and θC by backpropagating the loss L(yi, ŷi)− λ · L(zi, ẑi)

pseudo-code in Figure 12 of Shokri and Shmatikov1024

(2015).1025

In contrast to Lyu et al. (2020) and Plant et al.1026

(2021), our normalization in Eq. 3 guarantees by1027

design that the L1 sensitivity is bounded by 2. We1028

provide a complete and self-contained proof of our1029

privacy guarantees in Section B.1030

D Experiments1031

This section gives more information on the experi-1032

mental setup and also provides additional results.1033

D.1 Privacy metric1034

Leakage: We compute the leakage using a1035

sklearn’s MLPClassifier. We use the validation1036

set of the original dataset as the train and the test1037

set of the original dataset as the test.1038

Minimum Description Length (MDL) is a1039

information-theoretic probing measure which cap-1040

tures the strength of regularity in the data. In this1041

work, we employ the online coding approach (Voita1042

and Titov, 2020) to calculate MDL. Online cod-1043

ing captures the regularity by characterizing the1044

effort required to achieve a certain level of accu-1045

racy. Here, a portion of data is transmitted to the1046

receiver at each step, which then uses all the data1047

in the previous steps to understand the regularity1048

in the current step. The regularity is obtained by1049

training the model on the previously received data1050

and then evaluating it on the current portion of the1051

data.1052

Borrowing, the terminology from Voita and 1053

Titov (2020), consider a dataset D consisting of 1054

{(x1, y1), · · · , (xn, yn)} pairs, where the xi’s are 1055

the data representation, and the yi’s are the task 1056

label. In our case, xi is the output of the encoder, 1057

and yi is the sensitive attribute associated with the 1058

underlying text. Following the standard informa- 1059

tion theory setting, consider a sender Alice who 1060

wants to transmit labels y1:n = {y1 · · · , yn} to a 1061

receiver Bob, and both of them have access to the 1062

data representation x1:n = {x1 · · · , xn}. In order 1063

to transmit labels y1:n efficiently (as few bits possi- 1064

ble), Alice encodes y1:n using a model p(y|x). Ac- 1065

cording to Shannon-Huffman code, the minimum 1066

bits required to transmit these labels losslessly is: 1067

Lp(y1:n|x1:n) = −
n∑
i=1

log2 p(yi|xi).

In the online coding setting of MDL, the la- 1068

bels are transmitted in blocks of n timesteps t0 < 1069

t1 < · · · tn. Alice starts by encoding y1:t1 with 1070

a uniform code, then both Alice and Bob learn 1071

a model pθ1(y|x) that predicts y from x using 1072

data {(xi, yi)}t1i=1. Alice then uses this model to 1073

communicate the next data block yt1:t2 , and both 1074

learns a new model using larger chunk of data 1075

{(xi, yi)}t2i=1. This continues till the whole set of 1076

labels y1:n is transmitted. The total code length 1077

required for transmission using this setting is given 1078
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as:1079

Lonline(y1:n|x1:n) = t1 log2C−
n−1∑
i=1

log2 pθi(yti+1:ti |xti+1:ti).

(10)

1080

where yi ∈ {1, 2, · · · , C}. In our case, the on-1081

line code length Lonline(y1:n|x1:n) is shorter, if it1082

is easier for probing model to perform well with1083

fewer training instances. This implies that the sen-1084

sitive information is more easily available in the1085

encoder’s representation.1086

We compute MDL using sklearn’s MLPClas-1087

sifier at timesteps corresponding to 0.1%, 0.2%,1088

0.4%, 0.8%, 1.6%, 3.2%, 6.25%, 12.5%, 25%,1089

50% and 100% of each dataset as suggested1090

by Voita and Titov (2020).1091

D.2 Datasets1092

Twitter Sentiment (Blodgett et al., 2016) con-1093

sists of 200k tweets annotated with a binary senti-1094

ment label and a binary “race” attribute correspond-1095

ing to African American English (AAE) vs. Stan-1096

dard American English (SAE) speakers. The initial1097

representation of tweets are obtained from a Deep-1098

moji encoder (Felbo et al., 2017). The dataset is1099

evenly balanced with respect to the four sentiment-1100

race subgroup combinations. To create bias in1101

the training data, we follow Elazar and Goldberg1102

(2018) and change the race proportion in each sen-1103

timent class to have 40% AAE-happy, 10% AAE-1104

sad, 10% SAE-happy, and 40% SAE-sad. Test1105

data remains balanced. This setup is particularly1106

challenging regarding privacy and fairness, as the1107

model may exploit the correlation between the pro-1108

tected attribute and the main class label, which is1109

reinforced due to skewing. The mismatch between1110

the train-test distribution is also relevant for our1111

setup, where the system may be trained on pub-1112

licly available datasets or collected via an opt-in1113

policy and may therefore not closely resemble the1114

test distribution. This dataset is made available for1115

research purposes only.51116

Bias in Bios (De-Arteaga et al., 2019) consists1117

of 393,423 textual biographies annotated with an1118

occupation label (28 classes) and a binary gender1119

attribute. Similar to Ravfogel et al. (2020), we1120

encode each biography with BERT (Devlin et al.,1121

5http://slanglab.cs.umass.edu/
TwitterAAE/

2019), using the last hidden state over the CLS 1122

token. We use the same train-valid-test split as De- 1123

Arteaga et al. (2019). As the dataset was collected 1124

by scrapping the web, it tends to reflect common 1125

gender stereotypes and contains explicit gender 1126

indicators (e.g., pronouns), making it more chal- 1127

lenging to prevent models from relying on these 1128

gendered words. It is also more complex than Twit- 1129

ter Sentiment in terms of the number of classes. 1130

Dataset is released under MIT License.6 1131

CelebA (Liu et al., 2015) consists of over 1132

200,000 images of the human face, alongside with 1133

40 binary attributes labels describing the content 1134

of the images. Following the standard setting as 1135

described in (Lohaus et al., 2020), we use 38 of 1136

these attributes as features, "Smiling" as the class 1137

label, and "Sex" as the sensitive attribute. We use 1138

60% of the data as train, 20% as validation, and the 1139

remaining as the test split. The CelebA dataset is 1140

available for non-commercial research purposes.7 1141

Adult Income (Kohavi, 1996) consists of a U.S. 1142

1994 Census database segment and has 48842 in- 1143

stances with 14 features each. We apply the pre- 1144

processing as proposed by (Wu et al., 2019) result- 1145

ing in a total of 9 features for each instance. The 1146

objective is to predict whether a given data point 1147

earns more than fifty thousand U.S. dollars or less. 1148

We consider sex (binary) as the sensitive attribute. 1149

Like CelebA, We use 60% of the data as train, 20% 1150

as validation, and the remaining as the test split. 1151

The license of the dataset is unknown, however it 1152

is commonly used in several fairness papers and is 1153

avaialbe at (Dua and Graff, 2017). 1154

D.3 Model Architecture 1155

Twitter Sentiment. The encoder consists of two 1156

layers with ReLU activation and a fixed dropout 1157

of 0.1. The classifier is linear, and the adversar- 1158

ial branch consists of three layers. We use a fixed 1159

dropout of 0.1 in all the layers with ReLU activa- 1160

tion, apart from the last layer. 1161

Bias in Bios. The encoder consists of three lay- 1162

ers and a fixed dropout of 0.1. The classifier also 1163

consists of three layers, and the adversarial branch 1164

consists of two layers. We use a fixed dropout of 1165

0.1 in all the layers with ReLU activation, apart 1166

from the last layer. 1167

6https://github.com/Microsoft/biosbias
7https://mmlab.ie.cuhk.edu.hk/

projects/CelebA.html
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In case of Adult Income and CelebA dataset we1168

use the same model as for Twitter Sentiment.1169

D.4 Hyperparameters1170

For all our experiments, we use Adam optimizer1171

with a learning rate of 0.001 and batch size of 2000.1172

We give additional tuning details of the different1173

methods below. A single experiment takes about1174

30 minutes to run on Intel Xenon CPU. We will1175

also provide the PyTorch model description in the1176

README of the source code for easier reproduc-1177

tion.1178

• Adversarial: We perform a grid search1179

over λ varying it between 0.1 to 3.0 with an1180

interval of 0.2. Moreover, following previous1181

work (Lample et al., 2017; Adi et al., 2019),1182

instead of a constant λ, we increase it over the1183

epochs using the update scheme λi = 2/(1 +1184

e−pi) − 1, where pi is the scaled version of1185

the epoch number. We also experimented with1186

increasing the λ linearly, as well as keeping it1187

constant, but found the above update scheme1188

to perform the best in various settings. We1189

also use this scheme in all other adversarial1190

approaches.1191

• Adversarial + Multiple: Similar to1192

Adversarial, we vary λ between 0.1 to1193

3.0 with an interval of 0.2. Apart from λ,1194

Adversarial + Multiple has an ad-1195

ditional hyperparameter λort which corrre-1196

sponds to the weight given to the orthogo-1197

nality loss component. We vary λort between1198

0.1 and 1.0. Here, we do a simultaneous grid1199

search over λ and λort resulting in 150 runs1200

for each seed. We fix the number of the adver-1201

sary to three which is the same as the original1202

implementation by (Han et al., 2021).1203

• FEDERATE: In order to have1204

comparable number of runs to1205

Adversarial + Multiple, we1206

experiments with following ε values:1207

8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0,1208

20.0. Similar to above approach, we do1209

a simultaneous grid search over λ and ε1210

resulting in 150 runs for each seed.1211

• INLP: In the case of INLP, we always debias1212

the representation after the penultimate clas-1213

sifier layer and before the final layer, which1214

is consistent with the setting considered by1215

the authors (Ravfogel et al., 2020). We also 1216

observe that this choice empirically led to the 1217

best results. We vary the number of iterations 1218

as a part of hyperparameter tuning. For Bias in 1219

Bios we vary the iterations between 15 and 45, 1220

while for Twitter Sentiment we vary between 1221

2 to 7. We found that in case of Bias in Bios, 1222

performing less than 15 iterations resulted 1223

in the same behaviour as Unconstrained 1224

model over validation set while more than 45 1225

iterations resulted in a random classifier. We 1226

observed the same in the Twitter Sentiment 1227

before 2 and after 7 iterations, respectively. 1228

D.5 Extended Evaluation 1229

Tables 2–3 present detailed results on CelebA 1230

and Adult Income dataset respectively. In terms 1231

of fairness over both the datasets, we observe 1232

that adversarial-based approaches induce a more 1233

fair model than Unconstrained or Noise, with 1234

FEDERATE outperforming all other methods. In- 1235

terestingly, unlike Twitter Sentiment and Bias in 1236

Bios, all approaches have comparable accuracy, 1237

including Noise and INLP. We believe this to 1238

be the case due to these datasets being relatively 1239

more challenging than CelebA and Adult Income. 1240

As observed previously, purely adversarial-based 1241

approaches leak significantly more information 1242

than the DP-based approaches in terms of pri- 1243

vacy. We observe that Noise and INLP performs 1244

marginally better in privacy than FEDERATE; how- 1245

ever, they suffer significantly in the fairness metric. 1246

In fact, they induce fairness levels which are similar 1247

to Unconstrained. 1248

Overall, the results show FEDERATE as the only 1249

viable choice to induce a fairer model and make its 1250

representation private while maintaining compara- 1251

ble accuracy. These observations are in line with 1252

previous experiments described in Sec. 5.1 1253

D.6 Additional Results 1254

Tables 4–6 present detailed results on Twitter Sen- 1255

timent with different relaxation thresholds, which 1256

were summarized in Figure 2. 1257

Table 7 provides the detailed privacy-fairness 1258

results which were summarized in Figure 4. 1259

1260

1261

1262

1263
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 – 104.64 ± 0.11
Unconstrained 85.70 ± 0.21 12.25 ± 2.07 81.3 ± 0.89 67.82 ± 1.46

INLP 84.81 ± 0.47 12.69 ± 4.66 66.00 ± 1.32 100.17 ± 1.65
Noise 85.12 ± 0.47 12.49 ± 0.58 59.01 ± 0.65 103.93 ± 0.24
Adversarial 85.34 ± 0.22 7.83 ± 0.97 87.00 ± 2.22 46.61 ± 5.52
Adversarial + Multiple 84.92 ± 0.12 5.79 ± 1.44 84.38 ± 2.07 51.11 ± 4.06

FEDERATE 84.81 ± 0.34 2.68 ± 0.60 65.49 ± 3.48 98.53 ± 4.51

Table 2: Test results on CelebA dataset with fixed Relaxation Threshold of 1.0. Fairness is measured by TPR-Gap
(lower is better), while privacy is measured by Leakage (lower is better) and MDL (higher is better). The MDL
achieved by Random gives an upper bound for that particular dataset. The results have been averaged over 5
different seeds.

Method Accuracy ↑ TPR-gap ↓ Leakage ↓ MDL ↑

Random 50.00 ± 0.00 0.00 ± 0.00 - 20.15 ± 0.083
Unconstrained 83.41 ± 0.32 12.73 ± 7.17 78.19 ± 1.0 16.38 ± 0.46

INLP 83.11 ± 0.51 3.91 ± 2.43 74.54 ± 0.67 19.93 ± 0.35
Noise 82.87 ± 0.37 8.01 ± 1.18 68.12 ± 0.94 19.38 ± 0.33
Adversarial 83.14 ± 0.53 7.02 ± 3.31 78.2 ± 0.18 16.1 ± 0.36
Adversarial + Multiple 83.14 ± 0.25 3.55 ± 2.16 81.37 ± 0.98 13.5 ± 1.09

FEDERATE 82.29 ± 0.9 2.73 ± 2.18 70.25 ± 4.81 18.1 ± 2.79

Table 3: Test results on Adult Income dataset with fixed Relaxation Threshold of 1.0. Fairness is measured by
TPR-Gap (lower is better), while privacy is measured by Leakage (lower is better) and MDL (higher is better). The
MDL achieved by Random gives an upper bound for that particular dataset. The results have been averaged over
5 different seeds.

Method Accuracy ↑ TPR-gap ↓ Leakage ↓

Unconstrained 72.54 ± 0.57 27.17 ± 1.76 87.18 ± 0.32

Noise 71.87 ± 0.56 25.14 ± 3.47 71.75 ± 2.99
Adversarial 75.49 ± 0.71 8.47 ± 3.5 88.03 ± 0.24
Adversarial + Multiple 75.6 ± 0.53 7.74 ± 4.17 88.01 ± 0.28

FEDERATE 75.34 ± 0.56 5.46 ± 3.59 62.31 ± 5.69

Table 4: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=0.0).

Method Accuracy ↑ TPR-gap ↓ Leakage ↓

Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 74.09 ± 1.56 3.03 ± 2.65 88.14 ± 0.18
Adversarial + Multiple 74.44 ± 0.62 1.07 ± 0.74 87.98 ± 0.36

FEDERATE 74.24 ± 1.25 0.89 ± 0.46 61.92 ± 5.04

Table 5: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=3.0).
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Method Accuracy ↑ TPR-gap ↓ Leakage ↓

Unconstrained 70.57 ± 0.98 20.68 ± 0.99 82.91 ± 1.65

Noise 70.47 ± 0.43 19.84 ± 0.91 66.83 ± 3.32
Adversarial 70.8 ± 2.77 1.72 ± 1.5 88.2 ± 0.24
Adversarial + Multiple 67.39 ± 1.16 1.0 ± 0.8 88.01 ± 0.12

FEDERATE 73.97 ± 1.6 1.4 ± 1.22 60.38 ± 5.46

Table 6: Test set results on Twitter Sentiment dataset (scores averaged over 5 different seeds, RT=10.0).

Method ε
Twitter Sentiment Bias in Bios

Accuracy ↑ Leakage ↓ Accuracy ↑ Leakage ↓

Noise 8.0 71.3 60.59 64.75 56
FEDERATE 8.0 74.89 56.91 64.78 54.4

Noise 10.0 71.63 65.57 70.86 57.7
FEDERATE 10.0 75.25 60.55 70.97 56.5

Noise 12.0 71.76 66.04 75.01 58.4
FEDERATE 12.0 75.31 53.31 75.01 57

Noise 14.0 71.7 67.98 76.74 59
FEDERATE 14.0 75.3 57.29 76.83 56.3

Noise 16.0 71.7 67.69 77.77 60.3
FEDERATE 16.0 75.56 61.98 77.89 57.9

Table 7: Accuracy-privacy trade-off for different noise level (as captured by ε).
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