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Abstract

In this work we propose a pragmatic method
that reduces the annotation cost for structured
label spaces using active learning. Our ap-
proach leverages partial annotation, which re-
duces labeling costs for structured outputs
by selecting only the most informative sub-
structures for annotation. We also utilize self-
training to incorporate the current model’s au-
tomatic predictions as pseudo-labels for un-
annotated sub-structures. A key challenge in
effectively combining partial annotation with
self-training to reduce annotation cost is deter-
mining which sub-structures to select to label.
To address this challenge, we adopt an error
estimator to adaptively decide the partial selec-
tion ratio according to the current model’s capa-
bility. In evaluations spanning four structured
prediction tasks, we show that our combination
of partial annotation and self-training using an
adaptive selection ratio reduces annotation cost
over strong full annotation baselines under a
fair comparison scheme that takes reading time
into consideration.

1 Introduction

Structured prediction (Smith, 2011) is a fundamen-
tal problem in NLP, wherein the label space con-
sists of complex structured outputs with groups of
interdependent variables. It covers a wide range of
NLP tasks, including sequence labeling, syntactic
parsing and information extraction (IE). Modern
structured predictors are developed in a data-driven
way, by training statistical models with suitable
annotated data. Recent developments in neural
models and especially pre-trained language models
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019) have greatly improved sys-
tem performance on these tasks. Nevertheless, the
success of these models still relies on the availabil-
ity of sufficient manually annotated data, which is
often expensive and time-consuming to obtain.
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Figure 1: Example partial annotations of a dependency
tree. Manual annotation is requested only for the uncer-
tain sub-structures (red), whereas model predictions can
be used to annotate the highly-confident edges (blue).

To mitigate such data bottlenecks, active learn-
ing (AL), which allows the model to select the
most informative data instances to annotate, has
been demonstrated to achieve good model accu-
racy while requiring fewer labels (Settles, 2009).
When applying AL to structured prediction, one
natural strategy is to perform full annotation (FA)
for the output structures, for example, annotating a
full sequence of labels or a full syntax tree. Due to
its simplicity, FA has been widely adopted in AL
approaches for structured prediction tasks (Hwa,
2004; Settles and Craven, 2008; Shen et al., 2018).
Nevertheless, a structured object can usually be de-
composed into smaller sub-structures having non-
uniform difficulty and informativeness. For exam-
ple, as shown in Figure 1, in a dependency tree,
edges such as functional relations are relatively
easy to learn, requiring fewer manual annotations,
while prepositional attachment links may be more
informative and thus more worthwhile to annotate.

The non-uniform distribution of informative sub-
structures naturally suggests AL with partial an-
notation (PA), where the annotation budget can be
preserved by only choosing a portion of informative
sub-structures to annotate rather than laboriously
labeling entire sentence structures. This idea has
been explored in previous work, covering typical
structured prediction tasks such as sequence label-
ing (Shen et al., 2004; Marcheggiani and Artières,
2014; Chaudhary et al., 2019; Radmard et al., 2021)



Algorithm 1 AL Procedure.
Input: Seed dataset L0, dev dataset D, unlabeled pool U , to-

tal budget t, batch selection size b, annotation strategy.
Output: Final labeled dataset L, trained modelM.

1: L ← L0 # Initialize
2: while t > 0 do # Until out of budget
3: M ← train(L, U) # Model training
4: S ← sentence-query(M, U) # Sentence selection
5: if strategy == “partial” then
6: r ← auto-ratio(S,D) # Decide adaptive ratio
7: partial-annotate(S, r) # Partial annotation
8: else
9: full-annotate(S) # Full annotation

10: U ← U − S; L ← L ∪ S; t ← t− b

11: M ← train(L, U) # Final model training
12: return L, M

and dependency parsing (Sassano and Kurohashi,
2010; Mirroshandel and Nasr, 2011; Flannery and
Mori, 2015; Li et al., 2016). Our work follows this
direction and investigates the central question in
AL with PA of how to decide which sub-structures
to select. Most previous work uses a pre-defined
fixed selection criterion, such as a threshold or ra-
tio, which may be hard to decide in practice. In this
work, we adopt a performance predictor to estimate
the error rate of the queried instances and decide
the ratio of partial selection accordingly. In this
way, our approach can automatically and adaptively
adjust the amount of partial selection throughout
the AL process.

Another interesting question for AL is how
to better leverage unlabeled data. In this work,
we investigate a simple semi-supervised method,
self-training (Yarowsky, 1995), which adopts the
model’s automatic predictions on the unlabeled
data as extra training signals. Self-training natu-
rally complements AL in the typical pool-based
setting where we assume access to a pool of unla-
beled data (Settles, 2009). It is particularly compat-
ible with PA-based AL since the un-selected sub-
structures are typically also highly-confident under
the current model and likely to be predicted cor-
rectly without requiring additional annotation. We
revisit this idea from previous work (Tomanek and
Hahn, 2009; Majidi and Crane, 2013) and investi-
gate its applicability with modern neural models
and our adaptive partial selection approach.

We perform a comprehensive empirical investi-
gation on the effectiveness of different AL strate-
gies for typical structured prediction tasks. We
perform fair comparisons that account for the hid-
den cost of reading time by keeping the context
size the same for all the strategies in each AL cy-

cle. With evaluations on four benchmark tasks for
structured prediction (named entity recognition, de-
pendency parsing, event extraction, and relation
extraction), we show that PA can obtain roughly
the same benefits as FA with the same reading cost
but less sub-structure labeling cost, leading to bet-
ter data efficiency. We also demonstrate that the
adaptive partial selection scheme and self-training
play crucial and complementary roles.

2 Method

2.1 AL for Structured Prediction

We adopt the conventional pool-based AL setting,
which iteratively selects and annotates instances
from an unlabeled pool. Please refer to Settles
(2009) for the basics and details of AL; our main
illustration focuses more specifically on applying
AL to structured prediction.

Algorithm 1 illustrates the overall AL process.
We focus on sentence-level tasks. In FA, each sen-
tence is annotated with a full structured object (for
example, a label sequence or a syntax tree). In PA,
annotation granularity is at the sub-structure level
(for example, a sub-sequence of labels or a partial
tree). We adopt a two-step selection approach for
all the strategies by first choosing a batch of sen-
tences and then annotating within this batch. This
approach is natural for FA since the original aim
is to label full sentences, and it is also commonly
adopted in previous PA work (Mirroshandel and
Nasr, 2011; Flannery and Mori, 2015; Li et al.,
2016). Moreover, this approach makes it easier to
control the reading context size for fair compar-
isons of different strategies as described in §3.2.

Without loss of generality, we take sequence
labeling as an example and illustrate several key
points in the AL process. Other tasks follow similar
treatment, with details provided in Appendix A.

• Model. We adopt a standard BERT-based model
with a CRF output layer for structured output
modeling (Lafferty et al., 2001), together with
the BIO tagging scheme.

• Querying Strategy. We utilize the query-by-
uncertainty strategy with the margin-based met-
ric, which has been shown effective in AL for
structured prediction (Marcheggiani and Artières,
2014; Li et al., 2016). Specifically, each token
obtains an uncertainty score with the difference
between the (marginal) probabilities of the most



and second most likely label. We also tried sev-
eral other strategies, such as least-confidence or
max-entropy, but did not find obvious benefits.1

• Sentence selection. For both FA and PA, se-
lecting a batch of uncertain sentences is the first
querying step. We use the number of total tokens
to measure batch size since sentences may have
variant lengths. The sentence-level uncertainty
is obtained by averaging the token-level ones.
This length normalization heuristic is commonly
adopted to avoid biases towards longer sentences
(Hwa, 2004; Shen et al., 2018).

• Token selection. In PA, a subset of highly uncer-
tain tokens is further chosen for annotation. One
important question is how many tokens to select.
Instead of using a pre-defined fixed selection cri-
terion, we develop an adaptive strategy to decide
the amount, as will be described in §2.2.

• Annotation. Sequence labeling is usually
adopted for tasks involving mention extraction,
where annotations are over spans rather than in-
dividual tokens. Previous work explores sub-
sequence querying (Chaudhary et al., 2019; Rad-
mard et al., 2021), which brings further complex-
ities. Since we mainly explore tasks with short
mention spans, we adopt a simple annotation pro-
tocol: Labeling the full spans where any inside
token is queried. Note that for annotation cost
measurement, we also include the extra labeled
tokens in addition to the queried ones.

• Model learning. For FA, we adopt the standard
log-likelihood as the training loss. For PA, we
follow previous work (Scheffer et al., 2001; Wan-
varie et al., 2011; Marcheggiani and Artières,
2014) and adopt marginalized likelihood to learn
from incomplete annotations (Tsuboi et al., 2008;
Greenberg et al., 2018). More details are pro-
vided in Appendix C.

2.2 Adaptive Partial Selection
PA adopts a second selection stage to choose highly
uncertain sub-structures within the selected sen-
tences. One crucial question here is how many

1Please refer to Appendix D.1 for more results. Note that
our main focus is on AL for structured prediction, where AL
selection involves not only what instances to select (acqui-
sition function), but also at what granularity to select and
annotate. In contrast with most AL work that focuses on the
first aspect (and classification tasks), we mainly investigate
the second one and explore better partial selection strategies.
Exploring more advanced acquisition functions is mostly or-
thogonal to our main focus and is left to future work.

sub-structures to select. Typical solutions in previ-
ous work include setting an uncertainty threshold
(Tomanek and Hahn, 2009) or specifying a selec-
tion ratio (Li et al., 2016). The threshold or ratio is
usually pre-defined with a fixed hyper-parameter.

This fixed selecting scheme might not be an ideal
one. First, it is usually hard to specify such fixed
values in practice. If too many sub-structures are
selected, there will be little difference between FA
and PA, whereas if too few, the annotation amount
is insufficient to train good models. Moreover, this
scheme is not adaptive to the model. As the model
is trained with more data throughout the AL pro-
cess, the informative sub-structures become less
dense as the model improves. Thus, the number of
selected sub-structures should be adjusted accord-
ingly. To mitigate these shortcomings, we develop
a dynamic strategy that can decide the selection in
an automatic and adaptive way.

We adopt the ratio-based strategy which enables
straightforward control of the selected amount.
Specifically, we rank the sub-structures by the un-
certainty score and choose those scoring highest
by the ratio. Our decision on the selecting ratio
is based on the hypothesis that a reasonable ratio
should roughly correspond to the current model’s
error rate on all the candidates. The intuition is that
incorrectly predicted sub-structures are the most in-
formative ones that can help to correct the model’s
mistakes.

Since the queried instances come from the unla-
beled pool without annotations, the error rate can-
not be directly obtained, requiring estimation.2 We
adopt a simple one-dimensional logistic regression
model for this purpose. The input to the model is
the uncertainty score3 and the output is a binary pre-
diction of whether its prediction is confidently cor-
rect4 or not. The estimator is trained using all the
sub-structures together with their correctness on the
development set5 and then applied to the queried
candidates. For each candidate sub-structure s, the
estimator will give it a correctness probability. We

2Directly using uncertainty is another option, but the main
trouble is that the model is not well-calibrated. We also tried
model calibration by temperature scaling (Guo et al., 2017),
but did not find better results.

3We transform the input with a logarithm, which leads to
better estimation according to preliminary experiments.

4The specific criterion is that the argmax prediction
matches the gold one and its margin is greater than 0.5. Since
neural models are usually over-confident, it is hard to decide a
confidence threshold. Nevertheless, we find 0.5 a reasonable
value for the ratio decision here.

5We re-use the development set for the task model training.



estimate the overall error rate as one minus the aver-
age correctness probability over all the candidates
in the query set Q (all sub-structures in the selected
sentences), and set the selection ratio r as this error
rate:

r = 1− 1

n

∑
s∈Q

p(correct = 1|s)

In this way, the selection ratio can be set adap-
tively according to the current model’s capability.
If the model is weak and makes many mistakes,
we will have a larger ratio which can lead to more
dense annotations and richer training signals. As
the model is trained with more data and makes
fewer errors, the ratio will be tuned down corre-
spondingly to avoid wasting annotation budget on
already-correctly-predicted sub-structures. As we
will see in later experiments, this adaptive scheme
is suitable for AL (§3.3).

2.3 Self-training
Better utilization of unlabeled data is a promising
direction to further enhance model training in AL
since unlabeled data are usually freely available
from the unlabeled pool. In this work, we adopt
self-training (Yarowsky, 1995) for this purpose.

The main idea of self-training is to enhance the
model training with pseudo labels that are predicted
by the current model on the unlabeled data. It
has been shown effective for various NLP tasks
(Yarowsky, 1995; McClosky et al., 2006; He et al.,
2020; Du et al., 2021). For the training of AL mod-
els, self-training can be seamlessly incorporated.
For FA, the application of self-training is no dif-
ferent than that in the conventional scenarios by
applying the current model to all the un-annotated
instances in the unlabeled pool. The more inter-
esting case is on the partially annotated instances
in the PA regime. The same motivation from the
adaptive ratio scheme (§2.2) also applies here: We
select the highly-uncertain sub-structures that are
error-prone and the remaining un-selected parts
are likely to be correctly predicted; therefore we
can trust the predictions on the un-selected sub-
structures and include them for training. One more
enhancement to apply here is that we could further
perform re-inference by incorporating the updated
annotations over the selected sub-structures, which
can enhance the predictions of un-annotated sub-
structures through output dependencies.

In this work, we adopt a soft version of self-
training through knowledge distillation (KD; Hin-

ton et al., 2015). This choice is because we want to
avoid the potential negative influences of ambigu-
ous predictions (mostly in completely unlabeled
instances). One way to mitigate this is to set an
uncertainty threshold and only utilize the highly-
confident sub-structures. However, it is unclear
how to set a proper value, similar to the scenarios
in query selection. Therefore, we take the model’s
full output predictions as the training targets with-
out further processing.

Specifically, our self-training objective function
is the cross-entropy between the output distribu-
tions predicted by the previous model m′ before
training and the current model m being trained:

L = −
∑
y∈Y

pm′(y|x) log pm(y|x)

Several points are notable here: 1) The previous
model is kept unchanged, and we can simply cache
its predictions before training; 2) Over the instances
that have partial annotations, the predictions should
reflect these annotations by incorporating corre-
sponding constraints at inference time; 3) For tasks
with CRF based models, the output space Y is usu-
ally exponentially large and infeasible to explicitly
enumerate; we utilize special algorithms (Wang
et al., 2021) to deal with this, and more details are
presented in Appendix C.

Finally, we find it beneficial to include both the
pseudo labels and the real annotated gold labels for
the model training. With the gold data, the original
training loss is adopted, while the KD objective
is utilized with the pseudo labels. We simply mix
these two types of data with a ratio of 1:1 in the
training process, which we find works well.

3 Experiments

3.1 Main Settings
Tasks and data. Our experiments6 are conducted
over four English tasks. The first two are named
entity recognition (NER) and dependency parsing
(DPAR), which are representative structured pre-
diction tasks for predicting sequence and tree struc-
tures. We adopt the CoNLL-2003 English dataset
(Tjong Kim Sang and De Meulder, 2003) for NER
and the English Web Treebank (EWT) from Uni-
versal Dependencies v2.10 (Nivre et al., 2020) for
DPAR. Moreover, we explore two more complex
IE tasks: Event extraction and relation extraction.

6Our implementation is available at https://github.
com/zzsfornlp/zmsp/.

https://github.com/zzsfornlp/zmsp/.
https://github.com/zzsfornlp/zmsp/.


Each task involves two pipelined sub-tasks: The
first aims to extract the event trigger and/or entity
mentions, and the second predicts links between
these mentions as event arguments or entity rela-
tions. We utilize the ACE05 dataset (Walker et al.,
2006) for these IE tasks.

AL. For the AL procedure, we adopt settings fol-
lowing conventional practices. We use the original
training set as the unlabeled data pool to select in-
stances. Unless otherwise noted, we set the AL
batch size (for sentence selection) to 4K tokens,
which roughly corresponds to 2% of the total pool
size for most of the datasets we use. The initial seed
training set and the development set are randomly
sampled (with FA) using this batch size. Unless
otherwise noted, we run 14 AL cycles for each ex-
periment. In each AL cycle, we re-train our model
since we find incremental updating does not per-
form well. Following most AL work, annotation
is simulated by checking and assigning the labels
from the original dataset. In FA, we annotate all
the sub-structures for the selected sentences. In PA,
we first decide the selection ratio and apply it to the
selected sentences. We further adopt a heuristic7

that selects the union of sentence-wise uncertain
sub-structures as well as global ones since both
may contain informative sub-structures. Finally, all
the presented results are averaged over five runs
with different random seeds.

Model and training. For the models, we adopt
standard architectures by stacking task-specific
structured predictors over pre-trained RoBERTabase
(Liu et al., 2019) and the full models are fine-tuned
at each training iteration. After obtaining new an-
notations in each AL cycle, we first train a model
based on all the available full or partial annota-
tions. When using self-training, we further ap-
ply this newly trained model to assign pseudo soft
labels to all un-annotated instances and combine
them with the existing annotations to train another
model. Compared to using the old model from the
last AL cycle, this strategy can give more accu-
rate pseudo labels since the newly updated model
usually performs better by learning from more an-
notations. For PA, pseudo soft labels are assigned
to both un-selected sentences and the un-annotated
sub-structures in the selected sentences.

7This heuristic will increase the actual selecting ratio, but
it will only be slightly larger since there are large overlaps be-
tween sentence-wise and global highly-ranked sub-structures.

3.2 Comparison Scheme

Since FA and PA annotate at different granularities,
we need a common cost measurement to compare
their effectiveness properly. A reasonable metric
is the number of the labeled sub-structures; for
instance, the number of labeled tokens for sequence
labeling or edges for dependency parsing. This
metric is commonly adopted in previous PA work
(Tomanek and Hahn, 2009; Flannery and Mori,
2015; Li et al., 2016; Radmard et al., 2021).

Nevertheless, evaluating only by sub-structures
ignores a crucial hidden cost: The reading time of
the contexts. For example, in sequence labeling
with PA, although not every token in the sentence
needs to be tagged, the annotator may still need to
read the whole sentence to understand its meaning.
Therefore, if performing comparisons only by the
amount of annotated sub-structures, it will be unfair
for the FA baseline because more contexts must be
read to carry out PA.

In this work, we adopt a simple two-facet com-
parison scheme that considers both reading and
labeling costs. We first control the reading cost
by choosing the same size of contexts in the sen-
tence selection step of each AL cycle (Line 4 in
Algorithm 1). Then, we further compare by the
sub-structure labeling cost, measured by the sub-
structure annotation cost. If PA can roughly reach
the FA performance with the same reading cost but
fewer sub-structures annotated, it would be fair to
say that PA can help reduce cost over FA. A better
comparing scheme should evaluate against a uni-
fied estimation of the real annotation costs (Settles
et al., 2008). This usually requires actual annota-
tion exercises rather than simulations, which we
leave to future work.

3.3 NER and DPAR

Settings. We compare primarily three strategies:
FA, PA, and a baseline where randomly selected
sentences are fully annotated (Rand). We also in-
clude a supervised result (Super.) which is obtained
from a model trained with the full original training
set. We measure reading cost by the total number
of tokens in the selected sentences. For labeling
cost, we further adopt metrics with practical consid-
erations. In NER, lots of tokens, such as functional
words, can be easily judged as the ‘O’ (non-entity)
tag. To avoid over-estimating the costs of such
easy tokens for FA, we filter tokens by their part-
of-speech (POS) tags and only count the ones that
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Figure 2: Comparisons according to reading and labeling cost. Each node indicates one AL cycle. For x-axis,
reading cost (left) is measured by token numbers, while labeling cost (right) is task-specific (§3.3). NER is evaluated
with labeled F1 scores on CoNLL-2003, while DPAR is with LAS scores on UD-EWT. Results are averaged over
five runs with different seeds, and the shaded areas indicate standard deviations. The overall unlabeled pool contains
around 200K tokens. Using AL, good performance can be obtained with less than 30% (60K) annotated.

are likely to be inside an entity mention.8 For PA,
we still count every queried token. For the task of
DPAR, similarly, different dependency links can
have variant annotation difficulties. We utilize the
surface distance between the head and modifier
of the dependency edge as the measure of label-
ing cost, considering that the decisions for longer
dependencies are usually harder.

Main Results. The main test results are shown
in Figure 2, where the patterns on both tasks are
similar. First, AL brings clear improvements over
the random baseline and can roughly reach the fully
supervised performance with only a small portion
of data annotated (around 18% for CoNLL-2003
and 30% for UD-EWT). Moreover, self-training
(+ST) is helpful for all the strategies, boosting per-
formance without the need for extra manual annota-
tions. Finally, with the help of self-training, the PA
strategy can roughly match the performance of FA
with the same amount of reading cost (according to
the left figures) while labeling fewer sub-structures
(according to the right figures). This indicates that
PA can help to further reduce annotation costs over
the strong FA baselines.

8The POS tags are assigned by Stanza (Qi et al., 2020).
For CoNLL-2003, we filter by PROPN and ADJ, which cover
more than 95% of the entity tokens.

Ratio Analysis. We further analyze the effec-
tiveness of our adaptive ratio scheme with DPAR
as the case study. We compare the adaptive scheme
to schemes with fixed ratio r, and the results9 are
shown in Figure 3. For the fixed-ratio schemes,
if the value is too small (such as 0.1), although
its improving speed is the fastest at the beginning,
its performance lags behind others with the same
reading contexts due to fewer sub-structures anno-
tated. If the value is too large (such as 0.5), it grows
slowly, probably because too many uninformative
sub-structures are annotated. The fixed scheme
with r = 0.3 seems a good choice; however, it is
unclear how to find this sweet spot in realistic AL
processes. The adaptive scheme provides a reason-
able solution by automatically deciding the ratio
according to the model performance.

Error and Uncertainty Analysis. We further an-
alyze the error rates and uncertainties of the queried
sub-structures. We still take DPAR as a case study
and Figure 4 shows the results along the AL cycles
in PA mode. First, though adopting a simple model,
the performance predictor can give reasonable es-
timations for the overall error rates. Moreover, by
further breaking down the error rates into selected

9Here, we use self-training (+ST) for all the strategies.
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Figure 3: Comparisons of different strategies to decide
the partial ratio. The first three utilize fixed ratio r,
while “Adaptive” adopts the dynamic scheme. The grey
curve (corresponding to the right y-axis) denotes the
actual selection ratios with the adaptive scheme.

(S) and non-selected (N) groups, we can see that
the selected ones contain many errors, indicating
the need for manual corrections. On the other hand,
the error rates on the non-selected sub-structures
are much lower, verifying the effectiveness of us-
ing model-predicted pseudo labels on them in self-
training. Finally, the overall margin of the selected
sentences keeps increasing towards 1, indicating
that there are many non-ambiguous sub-structures
even in highly-uncertain sentences. The margins
of the selected sub-structures are much lower, sug-
gesting that annotating them could provide more
informative signals for model training.

Domain-transfer Experiments. We further in-
vestigate a domain-transfer scenario: in addition to
unlabeled in-domain data, we assume abundant out-
of-domain annotated data and perform AL on the
target domain. We adopt tweet texts as the target
domain, using Broad Twitter Corpus (BTC; Der-
czynski et al., 2016) for NER and Tweebank (Liu
et al., 2018) for DPAR. We assume we have models
trained from a richly-annotated source domain and
continue performing AL on the target domain. The
source domains are the datasets that we utilize in
our main experiments: CoNLL03 for NER and UD-
EWT for DPAR. We adopt a simple model-transfer
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Figure 4: Analyses of error rates and uncertainties (mar-
gins) of the DPAR sub-structures in the queried sen-
tences along the AL cycles (x-axis). Here, ‘pred’ de-
notes the predicted error rate, ‘error’ denotes the actual
error rate and ‘margin’ denotes the uncertainty (margin)
scores. For the suffixes, ‘(S)’ indicates partially selected
sub-structures, and ‘(N)’ indicates non-selected ones.
‘Margin(N)’ is omitted since it is always close to 1.

approach by initializing the model from the one
trained with the source data and further fine-tuning
it with the target data. Since the target data size
is small, we reduce the AL batch sizes for BTC
and Tweebank to 2000 and 1000 tokens, respec-
tively. The results for these experiments are shown
in Figure 5. In these experiments, we also include
the no-transfer results, adopting the “FA+ST” but
without model transfer. For NER, without transfer
learning, the results are generally worse, especially
in early AL stages, where there is a small amount of
annotated data to provide training signals. In these
cases, knowledge learned from the source domain
can provide extra information to boost the results.
For DPAR, we can see even larger benefits of using
transfer learning; there are still clear gaps between
transfer and no-transfer strategies when the former
already reaches the supervised performance. These
results indicate that the benefits of AL and transfer
learning can be orthogonal, and combining them
can lead to promising results.

3.4 Information Extraction
We further explore more complex IE tasks that in-
volve multiple types of output. Specifically, we
investigate event extraction and relation extraction.
We adopt a classical pipelined approach,10 which
splits the full task into two sub-tasks: the first per-
forms mention extraction, while the second exam-
ines mention pairs and predicts relations. While

10Please refer to Appendix A for more task-specific details.
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Figure 5: AL results in domain-transfer settings (CoNLL03 → BTC for NER and UD-EWT → Tweebank for
DPAR). Notations are the same as in Figure 2, except that there is one more curve of “NoTransfer” denoting the
setting where no transfer learning is applied (FA+ST alone).
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Figure 6: Results of event argument extraction on ACE05. Notations are the same as in Figure 2.

previous work investigates multi-task AL with FA
(Reichart et al., 2008; Zhu et al., 2020; Rotman and
Reichart, 2022), this work is the first to explore PA
in this challenging setting.

We extend our PA scheme to this multi-task sce-
nario with several modifications. First, for the
sentence-selection stage, we obtain a sentence-wise
uncertainty score UNC(x) with a weighted combi-
nation of the two sub-tasks’ uncertainty scores:

UNC(x) = β · UNC-Mention(x)

+ (1− β) · UNC-Relation(x)

Following Rotman and Reichart (2022), we set β
to a relatively large value (0.9), which is found to
be helpful for the second relational sub-task.

Moreover, for partial selection, we separately se-
lect sub-structures for the two sub-tasks according
to the adaptive selection scheme. Since the second

relational sub-task depends on the mentions ex-
tracted from the first sub-task, we utilize predicted
mentions and view each feasible mention pair as a
querying candidate. A special annotation protocol
is adopted to deal with the incorrectly predicted
mentions. For each queried relation, we first exam-
ine its mentions and perform corrections if there
are mention errors that can be fixed by matching
the gold ones. If neither of the two mentions can
be corrected, we discard this query.

Finally, to compensate for the influences of er-
rors in mention extraction, we adopt further heuris-
tics of increasing the partial ratio by the estimated
percentage of queries with incorrect mentions, as
well as including a second annotation stage with
queries over newly annotated mentions. Please
refer to Appendix A.2 for more details.

We show the results of event argument extraction
in Figure 6, where the overall trends are similar to



those in NER and DPAR. Here, labeling cost is
simply measured as the number of candidate ar-
gument links. Overall, self-training is helpful for
all AL strategies, indicating the benefits of making
better use of unlabeled data. If measured by the
labeling cost, PA learns the fastest and costs only
around half of the annotated arguments of FA to
reach the supervised result. On the other hand, PA
is also competitive concerning reading cost and can
generally match the FA results in later AL stages.
There is still a gap between PA and FA in the earlier
AL stages, which may be influenced by the errors
produced by the first sub-task of mention extrac-
tion. We leave further investigations on improving
early AL stages to future work. The results for
the relation extraction task share similar trends and
are presented in Appendix D.2, together with the
results of mention extraction.

4 Related Work

Self-training. Self-training is a commonly uti-
lized semi-supervised method to incorporate unla-
beled data. It has been shown effective for a variety
of NLP tasks, including word sense disambigua-
tion (Yarowsky, 1995), parsing (McClosky et al.,
2006), named entity recognition (Meng et al., 2021;
Huang et al., 2021), text generation (He et al., 2020;
Mehta et al., 2022) as well as natural language
understanding (Du et al., 2021). Moreover, self-
training can be especially helpful for low-resource
scenarios, such as in few-shot learning (Vu et al.,
2021; Chen et al., 2021). Self-training has also
been a commonly adopted strategy to enhance ac-
tive learning (Tomanek and Hahn, 2009; Majidi
and Crane, 2013; Yu et al., 2022).

PA. Learning from incomplete annotations has
been well-explored for structured prediction. For
CRF models, taking the marginal likelihood as the
objective function has been one of the most uti-
lized techniques (Tsuboi et al., 2008; Täckström
et al., 2013; Yang and Vozila, 2014; Greenberg
et al., 2018). There are also other methods to
deal with incomplete annotations, such as adopt-
ing local models (Neubig and Mori, 2010; Flan-
nery et al., 2011), max-margin objective (Fernan-
des and Brefeld, 2011), learning with constraints
(Ning et al., 2018, 2019; Mayhew et al., 2019) and
negative sampling (Li et al., 2022).

AL for structured prediction. AL has been in-
vestigated for various structured prediction tasks in

NLP, such as sequence labeling (Settles and Craven,
2008; Shen et al., 2018), parsing (Hwa, 2004), se-
mantic role labeling (Wang et al., 2017; Myers
and Palmer, 2021) and machine translation (Haffari
et al., 2009; Zeng et al., 2019). While most previ-
ous work adopt FA, that is, annotating full struc-
tured objects for the inputs, PA can help to further
reduce the annotation cost. Typical examples of PA
sub-structures include tokens and subsequences for
tagging (Marcheggiani and Artières, 2014; Chaud-
hary et al., 2019; Radmard et al., 2021), word-wise
head edges for dependency parsing (Flannery and
Mori, 2015; Li et al., 2016) and mention links for
coreference resolution (Li et al., 2020; Espeland
et al., 2020).

5 Conclusion

In this work, we investigate better AL strategies
for structured prediction in NLP, adopting a perfor-
mance estimator to automatically decide suitable
ratios for partial sub-structure selection and utiliz-
ing self-training to make better use of the available
unlabeled data pool. With comprehensive experi-
ments on various tasks, we show that the combi-
nation of PA and self-training can be more data-
efficient than strong full AL baselines.

Limitations

This work has several limitations. First, the AL
experiments in this work are based on simulations
with existing annotations, following previous AL
work. Our error estimator also requires a small
development set and the proper setting of a hyper-
parameter. Nevertheless, we tried our best to make
the settings practical and the evaluation fair, espe-
cially taking reading time into consideration. Sec-
ond, in our experiments, we mainly focus on inves-
tigating how much data is needed to reach the fully-
supervised results and continue the AL cycles until
this happens. In practice, it may be interesting to
more carefully examine the early AL stages, where
most of the performance improvements happen. Fi-
nally, for the IE tasks with multiple output types,
we mainly focus on the second relational sub-task
and adopt a simple weighting setting to combine
the uncertainties of the two sub-tasks. More explo-
rations on the dynamic balancing of the two sub-
tasks in pipelined models (Roth and Small, 2008)
would be an interesting direction for future work.
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A More Details of Task Settings

A.1 DPAR

• Model. Similar to NER, we utilize a BERT-
based module to provide contextualized repre-
sentations. We further stack a standard first-
order non-projective graph-based parsing mod-
ule based on a biaffine scorer (Dozat and Man-
ning, 2017). The marginals for each token’s
head decision can be feasibly calculated by the
Matrix-Tree algorithm (Koo et al., 2007; Smith
and Smith, 2007; McDonald and Satta, 2007).

• Query and Selection. Following previous works
(Flannery and Mori, 2015; Li et al., 2016), we
view DPAR as a head-word finding problem and
regard each token and its head decision as the
sub-structure unit. In this case, the query and
selection for DPAR are almost identical to the
NER task because of this token-wise decision
scheme. Therefore, the same AL strategies in
NER can be adopted here.

• Annotation. In DPAR, there are no special span-
based annotations as in NER; thus, we simply
annotate in a word-based scheme.

• Model learning. Similar to NER, we adopt the
log-likelihood of the gold parse tree as the train-
ing loss in FA and marginalized likelihood in PA
(Li et al., 2016).

A.2 IE

• Tasks. We tackle event extraction (EE) and rela-
tion extraction (RE) using a two-step pipelined
approach. The first step aims to extract entity
mentions for RE, and entity mentions and event
triggers for EE. We adopt sequence labeling for
mention extractions as in the NER task. Based on
the mentions extracted in the first step, the second
step examines each feasible candidate mention
pair (entity pair for RE and event-entity pair for
EE) and decides the relation (entity relation for
RE and event argument relation for EE) for them.
Since event argument links can be regarded as
relations between event triggers and entities, for
simplicity we will use the relational sub-task to
refer to both relation and argument extraction.

• Model. We adopt a multi-task model similar to
the one utilized in (Rotman and Reichart, 2022).
With a pre-trained encoder, we take the first N

layers as the shared encoding module whose out-
put representations are used for both sub-tasks.
Each sub-task further adopts a private encoder
that is initialized with the remaining pre-trained
layers and is trained with task-specific signals.
We simply set N to 6, while the results are gen-
erally not sensitive to this hyper-parameter. Final
task-specific predictors are further stacked upon
the corresponding private encoders. We adopt a
CRF layer for mention extraction and a pairwise
local predictor with a biaffine scorer for relation
or argument extraction.

• Sentence selection. For an unlabeled sentence,
there is an uncertainty score for each sub-task.
For mentions, the uncertainty is the average mar-
gin as in the NER task. For relations, we find that
averaging uncertainties over all mention pairs has
a bias towards sentences with fewer mentions.
To mitigate such bias, we first aggregate an un-
certainty score for each mention by taking the
maximum score within all the relations that link
to it and then averaging over all the mentions for
sentence-level scores. Finally, the scores of the
two sub-tasks are linearly combined to form the
sentence-level uncertainty.

• Partial selection. For PA selection, the two sub-
tasks are handled separately according to the
adaptive ratio scheme. We further adopt two
heuristics for the relational task to compensate
for errors in the mention extraction. First, since
there can be over-predicted mentions that lead
to discarded relation queries, we adjust the PA
ratio by estimating how many candidate rela-
tions contain such errors in the mentions. We
again train a logistic regression model to pre-
dict whether a token is NIL (or ‘O’ in the BIO
scheme, meaning not contained inside any gold
mentions) based on its NIL probability. Then for
each candidate relation, we calculate the proba-
bility that any token within its mentions is NIL.
By averaging this probability of all the candi-
dates, we obtain a rough estimation of the per-
centage of problematic relations, which we call
it α. Finally the PA selection ratio is adjusted by:
radjust = α·rproblem+(1−α)·rorigin. Here, rorigin
denotes the original selection ratio obtained from
the adaptive scheme, and rproblem denotes the se-
lection ratio of problematic relations, which we
conservatively set to 1. Secondly, since there
can also be under-predicted mentions, we add a



Data Split #Sent. #Token #Event #Entity #Argument #Relation

CoNLL03
train 14.0K 203.6K - 23.5K - -
dev 3.3K 51.4K - 5.9K - -
test 3.5K 46.4K - 5.6K - -

UD-EWT
train 12.5K 204.6K - - - -
dev 2.0K 25.1K - - - -
test 2.1K 25.1K - - - -

ACE05
train 14.4K 215.2K 3.7K 38.0K 5.7K 6.2K
dev 2.5K 34.5K 0.5K 6.0K 0.7K 0.8K
test 4.0K 61.5K 1.1K 10.8K 1.7K 1.7K

Table 1: Data statistics.

second stage of querying and annotation in each
AL cycle based on the annotated mentions in
the first stage. This extra stage only selects rela-
tions that involve the newly added or corrected
mentions. We simply reuse the selection ratio
determined from the first stage and apply it to
each sentence that contains such mentions. In
this way, the second stage is lightweight and only
requires relatively cheap re-inference for each
queried sentence individually.

• Annotation. The annotation of the mentions is
the same as in the NER task, while for the annota-
tion of relational queries, their mentions are first
examined and corrected if needed, as explained
in §3.4. We measure the labeling cost by the fi-
nal annotated items; thus, these extra examined
mentioned will also be properly counted.

• Model learning. For the mention extraction sub-
task, the training objective is the same as in NER.
For the relational sub-task, we simply adopt a
local pairwise model with the standard cross-
entropy loss. Since the relation model is local,
no special treatment is needed for PA.

B Data Statistics and More Settings

Data. Our main experiments are conducted us-
ing the CoNLL-2003 English dataset11 (Tjong
Kim Sang and De Meulder, 2003) for NER, the
English Web Treebank (EWT) from Universal De-
pendencies12 v2.10 (Nivre et al., 2020) for DPAR,
and English portion of ACE200513 (Walker et al.,
2006) for IE. We utilize Stanza14 (Qi et al., 2020)
to assign POS tags for cost measurement in NER

11https://www.clips.uantwerpen.be/conll2003/
ner/

12https://universaldependencies.org/
13https://catalog.ldc.upenn.edu/LDC2006T06
14https://stanfordnlp.github.io/stanza/

and mention tasks. We follow Lin et al. (2020) for
the pre-processing15 of the ACE dataset. For the
IE tasks on ACE, we find that the conventional test
set contains only newswire documents while the
training set consists of various genres (such as from
conversation and web). Such mismatches between
the AL pool and the final testing set are nontriv-
ial to handle with the classical AL protocol, and
we thus randomly re-split the ACE dataset (with a
ratio of 7:1:2 for training, dev, and test sets, respec-
tively). Table 1 shows data statistics. For each AL
experiment, we take the original training set as the
unlabeled pool, down-sample a dev set from the
original dev set, and evaluate on the full test set.

More Settings. All of our models are based on
the pre-trained RoBERTabase as the contextual-
ized encoder. We further fine-tune it with the
task-specific decoder in all the experiments. The
number of model parameters is roughly 124M for
single-output tasks and around 186M for multi-task
IE tasks. For other hyper-parameter settings, we
mostly follow common practices. Adam is utilized
for optimization, with an initial learning rate of 1e-
5 for NER and 2e-5 for DPAR and IE. The learning
rate is linearly decayed to 10% of the initial value
throughout the training process. The models are
tuned for 10K steps with a batch size of roughly
512 tokens. We evaluate the model on the dev set
every 1K steps to choose the best checkpoint. The
experiments are run with one 2080Ti GPU. The
training of one AL cycle usually takes only one
or two hours, and the full simulation of one AL
run can be finished within one day. We adopt stan-
dard evaluation metrics for the tasks: labeled F1
score for NER, labeled attachment score (LAS) for
DPAR, labeled argument and relation F1 score for
event arguments and relations (Lin et al., 2020).

15http://blender.cs.illinois.edu/software/
oneie/

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
https://universaldependencies.org/
https://catalog.ldc.upenn.edu/LDC2006T06
https://stanfordnlp.github.io/stanza/
http://blender.cs.illinois.edu/software/oneie/
http://blender.cs.illinois.edu/software/oneie/


C Details of Algorithms

In this section, we provide more details of the al-
gorithms for CRF-styled models (Lafferty et al.,
2001). For an input instance x (for example, a sen-
tence), the model assigns a globally normalized
probability to each possible output structured ob-
ject y (for example, a tag sequence or a parse tree)
in the target space Y:

p(y|x) = exp s(y|x)∑
y′∈Y exp s(y′|x)

=
exp

∑
f∈y s(f |x)∑

y′∈Y
∑

f ′∈y′ s(f
′|x)

Here, s(y|x) denotes the un-normalized raw scores
assigned to y, which is further factorized into the
sum of the sub-structure scores s(f |x).16 In plain
likelihood training for CRF, we take the negative
log-probability as the training objective:

L = − log p(y|x)

= −s(y|x) + log
∑
y′∈Y

exp s(y′|x)

For brevity, in the remaining, we use logZ(x) to
denote the second term of the log partition function.
For model training, we need to calculate the gradi-
ents of the model parameters θ to the loss function.
The first item is easy to deal with since it only in-
volves one structured object, while logZ(x) needs
some reorganization according to the factorization:

∇θ logZ =

∑
y′∈Y exp s(y′|x)∇θs(y

′|x)∑
y′′∈Y exp s(y′′|x)

=
∑
y′∈Y

p(y′|x)∇θs(y
′|x)

=
∑
y′∈Y

p(y′|x)
∑
f ′∈y′

∇θs(f
′|x)

=
∑
f ′

∇θs(f
′|x)

∑
y′∈Yf ′

p(y′|x)

The last step is obtained by swapping the order of
the two summations, and finally, the problem is re-
duced to calculating each sub-structure’s marginal
probability

∑
y′∈Yf ′

p(y′|x). Here, Yf ′ denotes
all the output structured objects that contain the
sub-structure f ′, and the marginals can usually
be calculated by classical structured prediction al-
gorithms such as forward-backward for sequence

16Such as unary and pairwise scores for sequence labeling
or token-wise edge scores for dependency parsing.

labeling (Baum et al., 1970) or Matrix-tree for
non-projective dependency parsing (Koo et al.,
2007; Smith and Smith, 2007; McDonald and Satta,
2007).

Learning with incomplete annotations. Follow-
ing previous works (Tsuboi et al., 2008; Li et al.,
2016; Greenberg et al., 2018), for the instances
with incomplete annotations, we utilize the loga-
rithm of the marginal likelihood as the learning
objective:

L = − log
∑
y∈YC

p(y|x)

= − log
∑
y∈YC

exp s(y|x)∑
y∈Y exp s(y|x)

= − log
∑
y∈YC

exp s(y|x) + logZ(x)

Here, YC denotes the constrained set of the output
objects that agree with the existing partial annota-
tions. In this objective function, the second item is
exactly the same as in standard CRF, while the first
one can be calculated17 in a modified way (Tsuboi
et al., 2008).

Knowledge distillation. As described in the
main context, we adopt the knowledge distillation
objective for self-training with soft labels. For
brevity, we denote the probabilities from the last
model as p′(y|x) and keep using p(y|x) to denote
the ones from the current model. Following Wang
et al. (2021), the loss can be calculated by:

L = −
∑
y∈Y

p′(y|x) log p(y|x)

= −
∑
y∈Y

p′(y|x)s(y|x) + logZ(x)

= −
∑
y∈Y

p′(y|x)
∑
f ′∈y′

s(f ′|x) + logZ(x)

= −
∑
f ′

s(f ′|x)
∑

y′∈Yf ′

p′(y′|x) + logZ(x)

The loss function is broken down into two items
whose gradients can be obtained by calculating
marginals according to the last model or the current
one, respectively.

17In our implementation, we adopt a simple method to en-
force the constraints by adding negative-infinite to the scores
of the impossible labels. In this case, the structures that vio-
lates the constraints will have a score of negative-infinite (and
a probability of zero) and will thus be excluded.
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Figure 7: Comparisons of different acquisition functions for partial annotation: “-M” denotes margin-based, “-LC”
denotes least-confident, “-E” denotes entropy-based, and “-B” indicates BALD.
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Figure 8: Comparisons of different acquisition functions
for full annotation. Notations of the methods are the
same as in Figure 7.

D Extra Results

D.1 Using Different Acquisition Functions

In the main experiments, our acquisition function
is based on margin-based uncertainty, that is, se-
lecting the instances that have the largest marginal
differences between the most and second-most con-
fident predictions. Here, we compare it with var-
ious other acquisition functions, including least-
confident (-LC), max-entropy (-E) and BALD (-
B) (Houlsby et al., 2011). We take DPAR as the
studying case and the results for full annotation
and partial annotation are shown in Figure 8 and
7, respectively. Generally, there are no large differ-
ences between the adopted querying methods and
the margin-based method can obtain the overall
best results. Notice that regardless of the adopted
acquisition function, we can see the effectiveness
of our partial selection scheme: it requires lower
labeling cost than full annotation to reach the upper
bound. This shows that our method is extensible
to different AL querying methods and it will be in-
teresting to explore the combination of our method
with more complex and advanced acquisition func-

tions, such as those considering representativeness.

D.2 IE Experiments
In this section, we present more results of the IE
experiments. First, Figure 9 shows the mention
extraction results for the event extraction task. The
overall trends are very similar to those in NER:
PA can obtain similar results to FA with the same
reading texts and less mention labeling cost. In
Figure 10, we show the results for mention and
relation extractions. In the ACE dataset, relations
are very sparsely annotated, and around 97% of the
entities are linked with less or equal to two rela-
tions. Considering this fact, we measure the cost
of FA relation extraction by two times the anno-
tated entities, while PA still counts the number of
the queried relations. The relation results are sim-
ilar to the patterns for event argument extraction,
showing the benefits of selecting and annotating
with partial sub-structures. Notice that in some of
the mention extraction results, there seems to be
less obvious differences between the AL strategies
over the random baseline. This may be due to our
focus on the second sub-task for relations (or event
arguments), directly reflected by its high weight
(β) in calculating sentence uncertainty. It will be
interesting to explore better ways to enhance both
sub-tasks, probably with an adaptive combination
scheme (Roth and Small, 2008).



4000 12000 20000 28000 36000 44000 52000 60000
Token Count

80

82

84

86

88

F1
%

MentionEntity Reading Cost

Rand
Rand+ST
FA
FA+ST
PA
PA+ST
Super.

0 5000 10000 15000 20000 25000 30000
Sub-structure Count

80

82

84

86

88

F1
%

MentionEntity Labeling Cost

Rand
Rand+ST
FA
FA+ST
PA
PA+ST
Super.

4000 12000 20000 28000 36000 44000 52000 60000
Token Count

55

60

65

70

75

F1
%

MentionTrigger Reading Cost

Rand
Rand+ST
FA
FA+ST
PA
PA+ST
Super.

0 5000 10000 15000 20000 25000 30000
Sub-structure Count

55

60

65

70

75

F1
%

MentionTrigger Labeling Cost

Rand
Rand+ST
FA
FA+ST
PA
PA+ST
Super.

Figure 9: Results (F1) of mention extraction (entities and event triggers) for the event extraction task on ACE05
(argument results are shown in Figure 6).
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Figure 10: Results (F1) of the extraction of entity mentions and relations for the relation extraction task on ACE05.


