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Abstract

Reinforcement learning (RL) is a machine learning technique
to optimize policies to execute the most desirable sequence
of actions in a complex environment. In particular, the opti-
mal set of parameters is automatically learned based on ob-
servations while continuously interacting with environments.
While this powerful approach has shown great success in var-
ious applications (e.g. games, robotics, etc.), relatively little
attention has been paid to the agriculture domain. In this pa-
per, we first discuss a general framework for RL with con-
straint terms for agricultural scenarios and also explore the
potential challenges in developing it into a successful model
under realistic environments. We then introduce potential
data-driven strategies to effectively mitigate those challenges
to realize fully autonomous systems for farm management.

1 Introduction

With the rapid growth of global population, the demand for
healthy and fresh food is rising fast (FAO 2022). To im-
prove sustainability of current food systems, novel Al and
machine learning techniques have been proposed for pre-
cision agriculture, where an individual-specific treatment is
applied to each crop not only to maximize the total yields
but also to utilize the available resources in an efficient man-
ner (Roopaei, Rad, and Choo 2017). For such a decision-
making process, reinforcement learning (RL)—shown to be
successful in various applications, such as games (Vinyals
et al. 2019), robotics (Agostinelli et al. 2019), and recom-
mender systems (Afsar, Crump, and Far 2021)—has also
been studied to learn optimal policies in agricultural do-
mains (Cao et al. 2022; Ajagekar and You 2022).

In this paper, we consider the agricultural control problem
in which an RL controller can access a variety of sensors and
actuators to estimate the states of the whole system as well
as drive it to a desirable condition. To be specific, Fig. 1 il-
lustrates the closed-loop framework of RL for a greenhouse
that can repeatedly determine the parameters of built-in ac-
tuators to adjust physical properties (e.g., temperature, hu-
midity, and lighting) based on the latest sensor readings of
the climate and plants. Moreover, the RL controller would
continuously improve the policy based on the crop status.
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Figure 1: Illustration of the control framework.

Similarly, some specialized sensors could be deployed to au-
tomatically decide to gate in chemical fertilizers or water to
manage the soil when necessary. The ultimate objective of
this autonomous system is to precisely maintain the best en-
vironmental conditions to maximize the productivity of crop
while controlling the cost of such resources.

Recently, Gandhi (2022) and Gautron et al. (2022) have
surveyed some state-of-the-art technologies for such appli-
cations. This paper, however, offers novel perspectives that
have not been covered albeit essential for real use cases:

* In Sec. 2, we formulate the decision-making process of
RL into a stochastic Constrained Markov Decision Pro-
cess (CMDP) instead of a naive MDP to directly involve
realistic resource constraints in optimization.

* Practical challenges (cf. Sec. 3) are each linked to spe-
cific potential opportunities (cf. Sec. 4) that would be
well incorporated into the general pipeline of RL for agri-
cultural applications.

2 Constrained Reinforcement Learning

Constrained RL aims to train a controller to perform ap-
propriate actions based on the observed states to maximize
the total reward under cost constraints. Here, we suggest
formulating the sequential decision-making process of au-
tonomous farming as a stochastic Constrained Markov De-
cision Process (CMDP) (Liu et al. 2021), which is a con-
strained optimization problem in essence. The objectives can
be set to maximize the quantities positively correlated to
the crop yield (e.g., volume, weight, growth rate, etc.) or
minimize the occurrence of negative events (e.g., unhealthy
fruits). Concurrently, the farming controller may be subject
to a number of constraints on usable resources—e.g., water,
electricity, and fertilizers—as well as safety requirements,
such as minimal level of temperature.



Formally, we represent the farming control problem as a
CMDP with tuple (S, A, R, C, P,~). To be specific, the ob-
servations from deployed sensors (i.e., temperature, images
of plant, etc.) at each time ¢ constitute the state s; € S of
the whole system. In addition, the action set A consists of
possible joint actions a; (e.g., open air inlet) for accessi-
ble actuators (e.g., ventilation system) to influence certain
properties (e.g., air quality). Also, the reward function R :
Sx AxS — Rand the cost function C' : Sx Ax S +— R are
both dependent upon the taken action a; under state s; and
its resulting sate s; ;. Multiple cost functions can be set up
so that each can correspond to a particular constraint. More-
over, the state transition function P : S x A x S — [0,1]
represents Pr(s;1|st, at), which governs the stochastic dy-
namics of the world, albeit unknown in most realistic sce-
narios. Lastly, ~y is the discount factor, possibly defined to
be different for reward and cost calculations.

In particular, as suggested in (Liu, Halev, and Liu 2021),
we also consider two types of constraints: 1) Cumulative
constraints require the accumulated costs to be within a cer-
tain limit (e.g., the total usage of water) and 2) Instantaneous
ones require each action/state not to violate any pre-defined
condition at each time slot—e.g., minimal humidity.

Eventually, RL is designed to learn a policy 7
that takes state s; as input to output an action ay,
which leads to state s;y;, determined by the state
transition function P. In particular, the optimal pol-
icy m* is to maximize the discounted cumulative re-
ward JE = E o[> 007 R(st,at, si41)], while sat-
isfying both discounted cumulative constraints J& =
Eror[>poV' Ci(st,ar, 5141)] and  instantaneous con-
straints C;, where 7 = (sg,a0,$1,a1...) is a trajectory.
Thus, the final form for optimization can be defined as:

maximize
s

subject to

max Ji (H

J&, < w;, foreachi, 2)
Cj(s¢,a:) <e€j,foreachjandt. (3)

3 Practical Challenges

In this section, we describe the technical challenges to apply
RL in agricultural domains. Even though some of the chal-
lenges may also exist in other domains, it is more severe in
agriculture systems because of the domain-specific natures.

3.1 System Complexity

Farming is by nature a highly complex activity since it re-
quires to model various environmental factors as well as the
consequences from the interactions among them in plants,
soils, and fertilizers over a long period of time. Further-
more, the same species of crop can grow into diverse phe-
notypes even under a carefully controlled condition, which
would promote different interactions with environments. As
a result, the state-action space for RL may be prohibitively
large for a controller to evaluate every possible state-action
pair during training. Trained controllers would, thus, have
to keep performing interpolation or extrapolation over un-
seen inputs after deployment, so taken actions may not be

reliable—i.e., poor generalizability (Lee et al. 2019). More-
over, accurate physics-based simulators cannot be easily
built as interactive testbeds for RL, which also hinders ac-
tive research.

3.2 Resource Constraints & Safety Requirements

The primary goal of smart farming is not only to improve
productivity but to restrict the used resources—such as wa-
ter and electricity usage—to a certain limit. Moreover, as
in other RL problems with physical environments, learning
cannot be performed by freely exploring possible actions
with trail and error, because otherwise some undesirable,
irreversible outcomes (e.g., damages to crops or facilities)
may happen (Dulac-Arnold, Mankowitz, and Hester 2019).
Therefore, detailed requirements based on domain knowl-
edge may be defined in advance.

3.3 Slow Growth Rates

As described in Sec. 2, RL is to discover the optimal pol-
icy m* maximizing the expected cumulative reward, so the
optimization process accompanies the sequential selection
of a new policy 7 to evaluate. Compared to other RL appli-
cations, collecting data in agricultural settings can be slow
and expensive, resulting in data sparsity. To be specific, ob-
serving a transition from s; to sy (e.g., recovery from a nu-
trient deficiency) after an action a; (e.g., using fertilizers)
may take several days or weeks, where ' > ¢. In addition,
this lengthy temporal scale can cause the reward signals to
be sparse in learning since ;<-4 would be likely to be ze-
ros. Moreover, the association between the action a; and the
state s, might not be precisely identified, due to the inter-
ference of the actions at times t < 7/ < ¢’. Such an issue has
been discussed as a severe problem in RL for long-horizon
tasks (Pathak et al. 2017), and we consider that farming be-
longs to that task family.

3.4 Multimodal Datasets

Precision agriculture could be achieved if an RL algorithm
can perform accurate and rapid state estimation using data
streams in different formats gathered from multiple sources.
Modern agricultural systems are equipped with a wide vari-
ety of sensors. Specifically, some may be of numeric val-
ues or 2D/3D images from soil-/plant-monitoring sensors
while others might come from human experts in the form of
knowledge graph representing symbiotic dynamics. Naive
methods for unimodal data could not utilize all the available
information nor comprehensively assess the agricultural sys-
tem, and as a result, RL would not succeed, due to incor-
rectly inferred states.

3.5 Lack of Explainability

The policy in RL is typically parameterized by a complex
machine-learning model such as a deep neural network,
which is namely regarded as a black box that is computa-
tionally powerful but lacks the human-understandable inter-
pretation between inputs and outputs (Angelov and Soares
2020). Consequently, when the behaviors of trained con-
troller are subpotimal, the investigation of its erroneous de-
cisions can be difficult. In addition, human farmers could



Table 1: RL for farming: Challenges and Opportunities

Challenges Opportunities

BO, Exploration

Meta RL, Human
Res.&Safety Constraints  Constrained RL, Human
Model-based RL&Sim2real
Exploration, Meta RL, Human
Multimodal RL

Explainable RL

System Complexity

Slow Growth Rates

Multimodal Datasets
Lack of Explainability

not fully trust even a successfully trained controller if it
keeps suggesting the actions that conflict with their knowl-
edge with no sufficient explanation.

4 Potential Opportunities

In this section, we present the strategies to address each chal-
lenge discussed in Sec. 3 (cf. Table 1). Also, Table 2 summa-
rizes the advantages and limitations of each method. Some
of the strategies are also active areas of research, e.g., meta-
RL (Sec. 4.5), XRL (Sec. 4.8), etc.

4.1 Bayesian Optimization

We suggest to apply a efficient parameter searching method,
e.g., Bayesian Optimization (BO) (Frazier 2018), before RL.
Because, 1) the control action space A is too large for RL.
BO can help to reduce the searching space. 2) RL cannot
make sure to work sample efficiently on all control param-
eters in different temporal scales, e.g., the CO2 supply rate
and the light intensity, etc, which are only needed to be set
once before the crop planting. It is one-time optimization
that is different from RL which needs to make decisions in
each step, e.g. hour-scale temperature.

BO is a sequential design strategy for global optimization
of black-box functions that do not assume particular func-
tional forms. It works efficiently with only a few samples,
when the dimensionality of control parameters is low.

4.2 Constrained RL

Resource and safety constraints are often embedded in ap-
plications of RL to agriculture (cf. Sec. 3.2). As discussed in
Sec. 2, we suggest using CMDP to take into account cu-
mulative constraints and instantaneous ones (Liu, Ding, and
Liu 2021). The basic idea to solve cumulative constraints is
to reduce the constrained optimization problem to an uncon-
strained problem (Liu, Ding, and Liu 2020b). More specifi-
cally, Lagrangian relaxation (Altman 1999) is the most com-
mon approach to address cumulative constraints, which out-
performs reward shaping that embeds the constraint within
the reward function using fixed multiplier A\. As explained
in (Tessler, Mankowitz, and Mannor 2018), reward shaping
is hard to adapt in environments with different levels of re-
ward values (e.g., high values or low values). Moreover, it is
easy to lead the policy to a local optimum. To satisfy instan-
taneous constraints, an effective approach is to adjust actions
at each step by projecting them onto a space for evaluation of

feasibility (Liu and Liu 2021). This can be performed by in-
troducing a projection layer into the end of the policy neural
network (Liu, Ding, and Liu 2020a). Overall, the constrained
RL could learn a significant practical policy at certain cost of
computation resource and sample efficiency when the data
collection is restricted with cumulative constraints.

4.3 Model-based RL & Sim2Real

Since learning from continuous interactions with a real-
world farming environment can be expensive (cf. Sec. 3.3),
an alternative idea could be to learn a model of the envi-
ronment itself to simulate the realistic feedback during the
control-policy learning (Janner et al. 2019). In this approach,
samples from the environment (e.g., a greenhouse) are not
fed to learn the controller but instead to the model of the en-
vironment. RL can then be performed for policy learning by
running the learned environmental model to rapidly respond
to a number of actions that the trained controller executes.
Such a method would be useful to alleviate the scarcity of
observations and rewards discussed in Sec. 3.3.

A related issue can arise due to the simulation-to-real gap.
Even though we have a simulator of an environment, the
simulated feedback is an approximation of the real envi-
ronment, so successful policies on the simulator might not
generalize well to real scenarios. To close this performance
gap, three following approaches can be suggested: 1) System
identification to build a reliable simulator based on mathe-
matical, physics-based models for a real agricultural system;
2) Domain adaptation to shape the data distributions or rep-
resentations from a simulator to match those in real scenar-
ios (Chen et al. 2021); and 3) Domain randomization to cre-
ate random variants of simulated environmental properties
so that this augmented distribution could include plausible
observations from real environments (Lee et al. 2019).

4.4 Exploration Strategies

Effective exploration can significantly improve sample ef-
ficiency by gathering more informative trajectory data to
escape locally optimal solutions in RL while encouraging
the controller to visit novel state-action pairs. Recently, suc-
cessful strategies have been proposed under the following
categories (Yang et al. 2021): 1) Uncertainty-based meth-
ods (Liu and Liu 2023b) estimate the uncertainty (variance)
of objective (Eq. 1) via Bayesian posterior to consider it in
choosing the next actions; and 2) Intrinsic-motivation meth-
ods (Liu and Liu 2023a) take the prediction error of next
state as an intrinsic reward to drive the controller towards
unfamiliar environments. Similarly, RL controllers in agri-
cultural scenarios could take advantage of a well-designed
exploration module because, as pointed out in Sec. 3.1, the
state-action space may be extremely large and in Sec. 3.3,
sampling can be time-consuming, and reward signals are
sparse. One potential limitation can be that the novel state-
actions pairs may violate safety requirements, so a combined
solution with constrained RL needs to be considered in prac-
tice (Efroni, Mannor, and Pirotta 2020).



Table 2: Pros and cons of different methods

Methods Pros Cons

BO Data-efficiency Low-dimensional and global control parameters

Constrained RL Resource and safety constrained controls Data 1nefﬁc1ency with cumulative constraints
Computation complex

Model-based RL . ) . Need well-learned model/simulators

. Data-efficiency, Time-efficiency .

Sim2real Computation complex

Exploration Data-efficiency, Escape local optima May explore unsafe actions

Meta RL Generalization, Adapt to new environment Data inefficiency during training

Learn from Human | Data-efficiency, Model accuracy
Multi-model RL

Need human efforts, Less generalization

Multi-model data, Information complementary  Need specialized approach to align modalities

4.5 Meta RL

Meta RL (Duan et al. 2016) enables to quantify how differ-
ent a policy performs on a wide range of learning environ-
ments (e.g., different crops) and utilize this experience for
learning in novel environments (e.g., new types of crops) to
be much faster than otherwise possible. In other words, we
can expect that after only a mini learning session, a meta RL
policy can adapt to new environments that have never been
encountered during training time. Meta RL, thus, should
be considered to 1) acquire a better generalizable policy in
highly complex agricultural environments (cf. Sec. 3.1) and
2) speed up the learning while observations are gathered at
a sluggish rate (cf. Sec. 3.3).

4.6 Learning from Human Experts

RL can be particularly hard in farming systems, compared
to other applications, because of their complexity (Sec. 3.1),
slowness (Sec. 3.3), and safety requirements (Sec. 3.2). To
address those issues, existing demonstration data from hu-
man experts could be utilized to provide a trained controller
with high-quality state-action trajectories in terms of perfor-
mance and safety. For instance, imitation learning (IL) could
be designed to supervise a controller to follow the exactly
equivalent action to the human choice for each encountered
state (Yin et al. 2022). IL can, however, easily fail when the
learned policy makes a mistake to deviate from familiar tra-
jectories. Offline RL (ORL) can be an alternative method,
which approximates the value function of possible state-
action pairs (Agarwal, Schuurmans, and Norouzi 2020). In
particular, Conservative Q-Learning (Kumar et al. 2020) can
be a good design choice to learn a safe policy from human
demonstrations in agricultural scenarios because it avoids
overestimating the values of unseen, risky state-action pairs.
Moreover, reward shaping (Hu et al. 2020) can be consid-
ered to use domain knowledge to promote particular action
selections with denser reward signals. For example, as the
controller selects a desirable decision according to the do-
main knowledge, the expert could offer some reward even
though its positive consequence is still steps away.

4.7 Multimodal RL

Diverse aspects of state in crops can be captured via a
variety of sensors into different formats—such as visual

images and time-series climate or chemical measurements.
Some knowledge from human experts could also be a use-
ful form of data to provide an informative assessment of the
plant system based on the observed facts and their known re-
lations. To fully take advantage of all those sources, we sug-
gest considering Multimodal RL (Ma et al. 2022), in which
the controller learns a unified policy whose states were gen-
erated by both visual and auditory data. In particular, they
claim that if one of the modalities is uninformative at some
time instants possibly due to too much noise, information
from others could be used to compensate for it. Also, their
experiments show the importance of developing a special-
ized approach to align the modalities since simply concate-
nating all modalities leads to suboptimal performance.

4.8 Explainable RL

The goal of Explainable RL (XRL) (Milani et al. 2022) is
to elucidate the decision-making process of controller. For
example, XRL in farming scenarios could explain the rea-
son for particular actions chosen such as adding more wa-
ter or increasing temperature in human-understandable man-
ners. Primary XRL methods fall into three categorizations:
1) Feature-importance explanations identify the features that
affect a controller’s action choice a; for the input state s,
which provide an action-level look at the controller’s be-
havior. 2) Learning process and MDP explanations show
the past experiences or the components of the MDP that
led to the current behavior, which provide useful informa-
tion about the effects of the training process or the MDP.
3) Policy-level explanations illustrate the long-term behav-
ior of the controller, which are critical for understanding a
controller’s behavior to evaluate its overall competency.

5 Conclusion

In this paper, we suggest using Constrained Markov Deci-
sion Process to obtain a policy for autonomous farming with
reinforcement learning. In addition, we have discussed prac-
tical, unique challenges to consider for agricultural applica-
tions, for each of which potential solutions also have been
presented. We argue that CRL is a greatly promising re-
search direction to realize fully automated operation of farm
systems, and our exploration over the topic in this short pa-
per would be a useful resource for researchers and practi-
tioners to perform deeper study on it in the future.
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