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Abstract

Underwater 3D mapping using low-cost scanning systems
relies on accurate laser stripes segmentation. However,
the scarcity of annotated data and the variability of un-
derwater environments limit the model’s generalization and
scalability. To address this issue, we introduce a synthetic
dataset specifically designed for laser stripe segmentation.
Created using a custom laser scanner module integrated
into Blender and the Infinigen procedural generator. The
dataset contains over 1,200 high-resolution images across
23 diverse terrains, each with ground truth. We evaluate
the impact of synthetic data using a segmentation network
trained under different field-to-synthetic data ratios. Our
results show that augmenting field datasets with synthetic
images significantly improves performance on unseen do-
mains—achieving up to 10% higher recall and 7% higher
precision on deep-sea imagery from the Salas y Gómez
Ridge, a location with different lighting, seafloor compo-
sition, and depth. Our findings highlight the value of syn-
thetic data for domain diversity, reducing annotation costs
and enhancing model generalization, supporting broader
and more robust deployment of underwater laser mapping
systems.

1. Introduction

High-resolution seafloor mapping is crucial for studying
ocean dynamics and benthic ecosystems [14]. It typically
relies on remotely operated vehicles (ROVs) or autonomous
underwater vehicles (AUVs) equipped with sensors such as
echo sounders or underwater LIDARs to capture detailed
information about underwater terrains. However, these sys-
tems are often bulky, expensive, and energy-intensive.

An emerging alternative for underwater 3D reconstruc-
tion is the use of one-stripe laser scanners, due to their high
precision, energy efficiency, and relatively low cost [1, 6].
The method consists of projecting a laser stripe onto the

Figure 1. The image shows (left) a simulation of MBARI’s
MiniROV performing laser scanning, (top right) a simulated im-
age captured during the survey, and (bottom right) the correspond-
ing ground truth mask.

seafloor and capturing its deformation using a monocular
camera. With proper system calibration, 3D coordinates of
the seabed surface can be computed from the observed laser
stripe. Fig. 1 illustrates the scanning process.

Laser stripe segmentation is a critical step in this pro-
cess. Existing methods can be broadly divided into two cat-
egories: classical approaches based on intensity threshold-
ing [8, 13] or color cues [1, 3]; and more recent approaches
using deep learning. Among these, a novel transformer-
based architecture has been proposed [5], significantly out-
performing classical methods—achieving up to 64% im-
provement in accuracy under illuminated conditions.

Despite these advancements, deep learning performance
remains limited by the size and diversity of the training data.
This challenge is especially pronounced in underwater set-
tings, where annotated datasets are scarce due to the high
cost of data collection and the labor-intensive nature of la-
beling high-resolution images [7].

Moreover, underwater imagery varies widely due to dif-
ferences in terrain, water clarity, sensor characteristics, and
lighting—often influenced by depth and vehicle-mounted



illumination. For instance, a model trained on data from
Monterey Bay, California and a test tank performed well lo-
cally but showed a sharp drop in accuracy when tested on
data from Easter Island, Chile, where environmental con-
ditions differ significantly. This limited generalization re-
stricts the usability and scalability of the method across di-
verse marine regions.

To address these limitations and to complement scarce
annotated field data, we propose a synthetic dataset de-
signed to improve the robustness and adaptability of under-
water laser segmentation systems.

Our main contributions are:
(i) A novel Underwater Laser Simulation Module, integrated

with Blender and Infinigen, for rapid data generation;
(ii) A 1,200-image dataset spanning 23 underwater terrains,

with pixel-level annotations;
(iii) A study quantifying synthetic data’s impact on underwa-

ter segmentation performance.
The remainder of this paper is organized as follows: Sec-

tion 2 describes the synthetic data generation pipeline; Sec-
tion 3 presents the experimental setup; Section 4 discusses
the results; and Section 5 concludes the paper.

2. Underwater Laser Simulation Module

2.1. System

Implemented in Python 3.10 within Blender 3.6 [2], our
pipeline simulates a monocular camera, laser stripe, and
lighting system for underwater scanning.

The camera, enclosed in a rigid camera rig, has a 1920×
1080 resolution and is randomly placed at altitudes rang-
ing between 0.5 and 3m above the terrain, pointing down-
ward. The camera’s focal length and sensor size are user-
configurable, allowing realistic replication of specific opti-
cal setups.

The laser is modeled using a SPOT light rigidly mounted
to the camera, with a configurable baseline (between 0.4m
and 0.6m) and either fixed or altitude-dependent inclina-
tion. The beam intensity is sampled from 500-1000 lumens
to emulate realistic laser output variation. The spot size is
constrained to control the spread of the projected laser stripe
across the scene - between 30◦ and 45◦.

To render a physically plausible thin laser stripe, we
implement a custom node-based shader. This setup iso-
lates the Y-component of the light’s surface normal us-
ing a Separate XYZ node, followed by a Math >
Compare operation with a narrow threshold (e.g., 1 ×
10−4) to ensure a sharp-edge beam with minimal soft
falloff, effectively restricting emission to a single narrow
plane.

Two lighting configurations were implemented to emu-
late different AUV/ROV setups:

• A dual-spotlight system with left and right lights mounted
on the center camera rig.

• A quad-light system with four spotlights (forward-left,
forward-right, rear-left, rear-right).

Light intensities are randomly selected in the range of
500–1000W to simulate operational variability and envi-
ronmental lighting conditions.

2.2. Terrain Generation
The simulated images were generated using two comple-
mentary approaches for underwater terrain formation: field
3D models and procedurally generated environments.

2.2.1. MBARI’s 3D Survey Models
We used pre-existing 3D models from previous MBARI
(Monterey Bay Aquarium Research Institute) seafloor sur-
veys, publicly available on Sketchfab[10]. Three distinct
models were selected, each representing geological features
observed in the Monterey Bay area. These meshes were im-
ported into Blender and placed over a flat sandy plane to
provide environmental continuity and context. Additional
props such as rocks were added to increase scene complex-
ity.

2.2.2. Procedural Generation with Infinigen
To diversify terrain geometry, we used Infinigen [12], a pho-
torealistic procedural scene generator built on Blender. We
extended Infinigen’s source code to integrate our custom
laser scanner module, enabling automatic placement of the
camera-laser rig within procedurally generated scenes. A
total of 20 unique terrains were generated using the coral
reef configuration, each derived from a different random
seed to ensure variation in structural features (Fig. 2).

Underwater Visual Effects
Two common optical effects in underwater environments
are absorption and scattering [9]. To simulate these
effects, we applied a volumetric absorption shader to
the background and surrounding water using Blender’s
Principled Volume node. The volume was tinted
with cool blue to approximate the spectral absorption of
light underwater. The density of the volume was randomly
varied between 0.08 and 0.2 to simulate different water clar-
ity conditions.

To further enhance visual realism, a scattering compo-
nent was added to the volumetric shader to emulate the dif-
fusion of light caused by suspended particles in the water
column.

2.3. Data Collection
To simulate realistic AUV/ROV surveys, a script was de-
veloped to capture multiple frames across a 5 × 5m grid,
with a step size parameter controlling the spatial resolution



(a) Seed 4c4954ab (b) Seed 4863ffd8

(c) Seed 161a2dbc (d) Seed 68067fa

Figure 2. Samples from Infinigen-based terrains

of the survey. The system follows a standard mowing-the-
lawn trajectory, starting from the bottom-left corner. At
each step, one image is captured, with Gaussian noise added
to simulate vehicle motion and localization uncertainty

For each frame, two renders are generated: one with all
lights active (RGB) and one isolating the laser, used to cre-
ate the target segmentation mask. In total, 23 survey scenes
produced 1,277 images with corresponding masks.

3. Evaluation Methodology

3.1. Dataset Composition
The simulated dataset consists of 1,277 images generated
across 23 distinct underwater survey scenarios. To evaluate
the impact of synthetic data on segmentation performance,
we also incorporated 564 manually annotated field images.
These field annotations were created using Roboflow.

The field dataset is divided as follows:
• Monterey Canyon, California: 207 images collected

during field deployments using an ROV equipped with a
laser scanner.

• MBARI’s Test Tank: 187 images captured under con-
trolled conditions with varying lighting configurations.
These two subsets form the training set, representing

environments with similar sensor setups and moderate light-
ing variability.

To evaluate generalization, a separate test set of 156 im-
ages was curated from a scientific expedition to the Salas
y Gómez Ridge, Chile. These images were acquired at
greater depths (approximately 500m deeper than the Mon-
terey sites) using a different vehicle and lighting setup, pro-
viding a rigorous test of the model’s adaptability to unseen
underwater conditions.

Fig. 3 shows representative examples of the field anno-
tated images used in both the training and test sets.

3.2. Network Implementation Details
To assess the impact of the simulated dataset on segmenta-
tion performance, we used the same architecture across all

experiments: SPLASH-SegFormer [5], trained with vary-
ing proportions of synthetic and field data. Experiments
were run on an NVIDIA GeForce RTX 3090 GPU using
Full HD resolution images (1920 × 1080). For each train-
ing run, 90% of the data was used for training and 10% for
validation. A OneCycle learning rate scheduler and early
stopping were applied to prevent overfitting. The model
with the lowest validation loss was saved and evaluated on
the test set.

(a) Monterey Bay (b) Salas y Gómez Ridge

(c) Test tank (illuminated) (d) Test tank (non-illuminated)

Figure 3. Samples from field images

3.3. Training Modes
To establish a baseline, we trained three models using only
field data: one with the full dataset (Monterey Canyon + test
tank), one with only test tank images, and one with only
Monterey Canyon images. This allowed us to assess how
the training domain affects generalization.

To evaluate the contribution of synthetic data, we trained
models under three additional settings: (i) using only syn-
thetic images, (ii) combining synthetic and field data in a
1:1 ratio, and (iii) combining them in a 2:1 ratio. To an-
alyze the effect of underwater visual realism, we repeated
the first two settings using a variant of the synthetic dataset
with no underwater visual effects. Finally, for reference, we
trained a model including the test set (Salas y Gómez Ridge)
in the training data. This result is shown as an upper-bound
comparison, not used for evaluation.

3.4. Metrics
We evaluate the performance over the test set of our model
using recall, precision, F1-score and Mean Intersection
Over Union (mIoU) [11].

4. Results
4.1. Segmentation Performance with Synthetic Data
Table 1 presents the performance of each training mode on
the Salas y Gómez Ridge test set. Models trained solely
on test tank or Monterey data achieved the lowest scores,



(a) Field Image (b) Synthetic Image without Effects (c) Synthetic Image with Effects

Figure 4. Visual comparison of (left) field image, (center) synthetic image without underwater effects, and (right) synthetic image with
visual effects (e.g., volume absorption).

underscoring the limitations of domain-specific training and
the importance of dataset diversity. While combining both
field datasets led to improved generalization.

Incorporating synthetic data yielded further gains: a 1:1
synthetic-to-field ratio provided moderate improvements,
while a 2:1 ratio resulted in a 10% increase in recall and
a 7% increase in precision over the field-only baseline.
Ablation experiments further indicate that simulating un-
derwater visual effects enhances performance, as models
trained without these effects underperformed, likely due to
increased domain shift.

Table 1. Model comparison across key metrics. “No effects” ex-
cludes underwater visual effects. The best result is bolded.

Model Recall (%) Precision (%) F1-score (%) mIoU (%)

Field-only training
Test tank 27.31 66.93 34.79 24.53
Monterey 38.57 50.17 40.09 28.16
Previous Field 61.55 66.78 61.23 47.43

Synthetic + Field training
Sim only 64.46 65.04 61.71 45.80
Sim only No effects 55.63 61.03 58.20 40.78
Ratio 1:1 64.52 70.03 63.80 49.65
Ratio 1:1 No effects 56.59 66.04 59.94 44.03
Ratio 2:1 (Ours) 71.35 71.89 68.04 53.90

Baseline* 84.28 80.53 81.91 69.98

(a) Original Image (b) Ground Truth

(c) Prediction with Previous Field (d) Prediction with ratio 2:1

Figure 5. Effect of Synthetic Data on Segmentation Output

Fig. 5 presents qualitative results. Ground truth is shown
in blue, true positives in green, and false positives in red.
As illustrated, models trained with synthetic data produce
predictions more closely aligned with the reference mask.

4.2. Visual Fidelity of Simulated Data

Fig. 4 presents a comparison between a real field image, a
synthetic image without underwater effects, and one with
simulated effects. The addition of visual effects—such
as absorption and scattering—produces images that more
closely resemble real underwater conditions. This qualita-
tive similarity supports the improved performance observed
when these effects are included during training. To further
assess visual fidelity, we compute the Fréchet Distance [4]
between feature embeddings from the encoder of the best-
performing model (Ratio 2:1) for synthetic and real-world
datasets. The resulting matrix shows how simulation helps
reduce the domain gap between diverse environments, such
as Monterey Canyon and Salas y Gómez Ridge.

Figure 6. Fréchet Distance Matrix Between Domains

5. Conclusion

This work introduces a synthetic data pipeline for un-
derwater laser segmentation, generating over 1,200 high-
resolution images with corresponding segmentation masks
across 23 terrains. Incorporating synthetic data into training
significantly improved segmentation performance in previ-
ously unseen environments, highlighting its value as a scal-
able, cost-effective solution for underwater mapping.

Future work will focus on expanding the dataset, vali-
dating generalization across additional real-world sites, and
releasing the simulation tools to the research community.
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