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Abstract

Underwater 3D mapping using low-cost scanning systems001
relies on accurate laser stripes segmentation. However,002
the scarcity of annotated data and the variability of un-003
derwater environments limit the model’s generalization and004
scalability. To address this issue, we introduce a synthetic005
dataset specically designed for laser stripe segmentation.006
Created using a custom laser scanner module integrated007
into Blender and the Innigen procedural generator. The008
dataset contains over 1,200 high-resolution images across009
23 diverse terrains, each with ground truth. We evaluate010
the impact of synthetic data using a segmentation network011
trained under different eld-to-synthetic data ratios. Our012
results show that augmenting eld datasets with synthetic013
images signicantly improves performance on unseen do-014
mains—achieving up to 10% higher recall and 7% higher015
precision on deep-sea imagery from the Salas y Gómez016
Ridge, a location with different lighting, seaoor compo-017
sition, and depth. Our ndings highlights the value of syn-018
thetic data for domain diversity, reducing annotation costs019
and enhancing model generalization, supporting broader020
and more robust deployment of underwater laser mapping021
systems.022

1. Introduction023

High-resolution seaoor mapping is essential for under-024
standing ocean dynamics and the ecosystems that inhabit025
the seabed [13]. This task typically involves deploying re-026
motely operated vehicles (ROVs) or autonomous underwa-027
ter vehicles (AUVs) equipped with sensors to capture de-028
tailed information about underwater terrains. Commonly029
used sensors include single-beam and multi-beam echo030
sounders or underwater LIDARs. However, these technolo-031
gies are often bulky, expensive, and energy-intensive.032

An emerging alternative for underwater 3D reconstruc-033
tion is the use of optical-based structured light systems,034
specically one-stripe laser scanners. These systems are035

Figure 1. The image shows (left) a simulation of MBARI’s
MiniROV performing laser scanning, (top right) an simulated im-
age captured during the survey, and (bottom right) the correspond-
ing ground truth mask

characterized by their high precision, energy efciency, and 036
relatively low cost [1, 5]. The method consists of projecting 037
a laser stripe onto the seaoor and capturing its deformation 038
using a monocular camera. With proper system calibration, 039
3D coordinates of the seabed surface can be computed from 040
the observed laser stripe. Figure 1 illustrates the scanning 041
process. 042

A crucial part of the process is the segmentation of the 043
laser stripe in the captured image. Existing methods for un- 044
derwater laser stripe segmentation can be broadly divided 045
into two categories: classical approaches based on inten- 046
sity thresholding [7, 12] or color cues [1, 3]; and more re- 047
cent approaches using deep learning. Among these, a novel 048
transformer-based architecture has been proposed [4], sig- 049
nicantly outperforming classical methods—achieving up 050
to 71% improvement in accuracy under illuminated condi- 051
tions. 052

Despite these advancements, the performance of deep 053
learning models—like in other domains—is constrained by 054
the size and diversity of the training datasets. In the case 055
of underwater environments, this limitation is even more 056
severe due to the well-known lack of publicly available an- 057
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notated imagery [6]. This scarcity is largely due to the high058
operational cost of collecting eld data, as well as the time-059
consuming and labor-intensive process of manually labeling060
high-resolution images.061

Moreover, underwater imagery exhibits high variability062
caused by differences in terrain composition, water clar-063
ity, laser and camera characteristics, and lighting condi-064
tions—often inuenced by depth and the vehicle’s illumi-065
nation system. For instance, a model trained on eld data066
collected in Monterey Bay, California, and controlled ex-067
periments in a test tank performed well in those domains.068
However, its segmentation accuracy signicantly degraded069
when applied to data from Easter Island, Chile, where the070
seaoor composition, lighting, and ecological context differ071
markedly. This lack of generalization restricts the usability072
and scalability of the method across diverse marine regions.073

To address these limitations and to complement scarce074
annotated eld data, we propose a synthetic dataset de-075
signed to improve the robustness and adaptability of under-076
water laser segmentation systems.077

Our main contributions are:078

(i) A novel Synthetic Underwater Laser Scanner Module, in-079
tegrated with Blender and Innigen, enabling rapid gen-080
eration of synthetic underwater scanning data;081

(ii) A dataset of over 1,200 simulated images from 23 diverse082
underwater terrains, each paired with pixel-level ground083
truth masks;084

(iii) A comprehensive evaluation quantifying the impact of085
synthetic data on segmentation performance in underwa-086
ter scenarios.087

The remainder of this paper is organized as follows: Sec-088
tion 2 describes the synthetic data generation pipeline; Sec-089
tion 3 presents the experimental setup; Section 4 discusses090
the results; and Section 5 concludes the paper.091

2. Synthetic Underwater Laser Scanner Mod-092

ule093

The system module was develop in Blender 3.6 [2] and im-094
plemented in Python 3.10.095

2.1. System096

The synthetic data generation pipeline is designed to sim-097
ulate the core components of an underwater laser scanning098
system: a monocular camera, a laser stripe, and an illumi-099
nation setup.100

The camera is encapsulated within a rigid camera rig,101
with a resolution of 1920×1080. It is spawned at a random102
position above the terrain at altitudes ranging between 0.5103
and 3 meters, always oriented downward (along the nega-104
tive Z-axis). The camera’s focal length and sensor size are105
user-congurable, allowing realistic replication of specic106
optical setups.107

The laser is modeled using a SPOT light object in 108
Blender. It is rigidly mounted relative to the camera with a 109
congurable baseline (between 0.4m and 0.6m). The laser 110
orientation can be set at a xed incidence angle or dynam- 111
ically adjusted based on the camera’s altitude to simulate 112
realistic scanning geometries. The beam intensity is ran- 113
domly sampled between 500 and 1000 lumens to emulate 114
realistic laser output variation. The spot size is constrained 115
to control the spread of the projected laser stripe across the 116
scene - between 30◦ and 45◦. 117

To render a physically plausible thin laser stripe, we 118
implement a custom node-based shader in Blender using 119
Python. This setup isolates the Y-component of the light’s 120
surface normal using a Separate XYZ node, followed by 121
a Math > Compare operation with a narrow threshold 122
(e.g., 1 × 10−4) to ensure a sharp-edge beam with mini- 123
mal soft falloff, effectively restricting emission to a single 124
narrow plane. 125

Two lighting congurations were implemented to emu- 126
late different AUV/ROV setups: 127

• A dual-spotlight system with left and right lights mounted 128
on the center camera rig. 129

• A quad-light system with four spotlights (forward-left, 130
forward-right, rear-left, rear-right). 131

Light intensities are randomly selected in the range of 132
500–1000W to simulate operational variability and envi- 133
ronmental lighting conditions. 134

2.2. Terrain Generation 135

The simulated images were generated using two comple- 136
mentary approaches for underwater terrain formation: eld 137
3D models and procedurally generated environments. 138

2.2.1. MBARI’s 3D Survey Models 139

We used pre-existing 3D models from previous MBARI 140
(Monterey Bay Aquarium Research Institute) seaoor sur- 141
veys, publicly available on Sketchfab [9]. Three distinct 142
models were selected, each representing geological features 143
observed in the Monterey Bay area. These meshes were im- 144
ported into Blender and placed over a at sandy plane to 145
provide environmental continuity and context. Additional 146
props such as rocks were added to increase scene complex- 147
ity. 148

2.2.2. Procedural Generation with Innigen 149

To diversify terrain geometry, we used Innigen [11], a pho- 150
torealistic procedural scene generator built on Blender. We 151
extended Innigen’s source code to integrate our custom 152
laser scanner module, enabling automatic placement of the 153
camera-laser rig within procedurally generated scenes. A 154
total of 20 unique terrains were generated using the coral 155
reef conguration, each derived from a different random 156
seed to ensure variation in structural features (Figure 2). 157
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Underwater Visual Effects158

Two common optical effects in underwater environments159
are absorption and scattering [8]. To simulate these160
effects, we applied a volumetric absorption shader to161
the background and surrounding water using Blender’s162
Principled Volume node. The volume was tinted163
with cool blue to approximate the spectral absorption of164
light underwater. The density of the volume was randomly165
varied between 0.08 and 0.2 to simulate different water clar-166
ity conditions.167

To further enhance visual realism, a scattering compo-168
nent was added to the volumetric shader to emulate the dif-169
fusion of light caused by suspended particles in the water170
column.171

(a) Seed 4c4954ab (b) Seed 4863ffd8

(c) Seed 161a2dbc (d) Seed 68067fa

Figure 2. Samples from Innigen-based terrains

2.3. Data Collection172

To simulate realistic AUV/ROV surveys, a data collection173
script was developed to capture multiple frames across each174
terrain. A standard survey grid of 5m × 5m was dened,175
and a step size parameter controlled the spatial resolution of176
the survey.177

Each survey begins with the system positioned at the178
bottom-left corner of the grid. It then follows a mowing-179
the-lawn trajectory, commonly used in underwater surveys.180
At each step, one image is captured, with Gaussian noise ap-181
plied independently to the position in all three spatial axes182
to simulate underwater vehicle motion and localization un-183
certainty.184

For each scene conguration, two renders are produced185
per frame: one with the system lights and laser active (RGB186
image) and one with all non-laser lights disabled, isolating187
the laser contribution. The latter is used to generate the188
ground truth binary segmentation mask for the laser stripe.189

In total, 23 unique survey scenes were generated, result-190
ing in 1277 images with corresponding ground truth masks.191

3. Evaluation Methodology 192

3.1. Dataset Composition 193

The simulated dataset consists of 1,277 images generated 194
across 24 distinct underwater survey scenarios. To evaluate 195
the impact of synthetic data on segmentation performance, 196
we also incorporated 564 manually annotated eld images. 197
These eld annotations were created using Roboow. 198

The eld dataset is divided as follows: 199
• Monterey Canyon, California: 207 images collected 200
during eld deployments using an ROV equipped with a 201
laser scanner. 202

• MBARI’s Test Tank: 187 images captured under con- 203
trolled conditions with varying lighting congurations. 204
These two subsets form the training set, representing 205

environments with similar sensor setups and moderate light- 206
ing variability. 207

To assess the generalization ability of the segmentation 208
model, a separate test setwas curated using 156 images col- 209
lected during a scientic expedition to the Salas y Gómez 210
Ridge in Chile. These images were taken at greater depth 211
(approximately 500 meters deeper than Monterey deploy- 212
ments) and with a different vehicle platform featuring a dis- 213
tinct lighting system. This evaluation setup enables us to 214
rigorously test the model’s ability to adapt to previously un- 215
seen underwater environments. 216

Figure 3 shows representative examples of the eld an- 217
notated images used in both the training and test sets. 218

3.2. Network Implementation Details 219

To assess the impact of the simulated dataset on segmen- 220
tation performance, we used the same deep learning archi- 221
tecture across all experiments: SPLASH-SegFormer [4] 222
. This network was trained using different proportions of 223
synthetic and eld data to systematically analyze the contri- 224
bution of the simulated dataset to the target task. 225

All experiments were conducted on a workstation 226
equipped with an NVIDIA GeForce RTX 3090 GPU. The 227
input images were all in Full HD resolution (1920× 1080). 228

For each training run, 10% of the dataset was reserved 229
for validation, and the remaining 90% was used for train- 230
ing. The training process employed a OneCycle learning 231
rate scheduler and early stopping to avoid overtting. The 232
best-performing model from each run, as determined by the 233
validation loss, was saved and subsequently evaluated on 234
the held-out test set. 235

3.3. Training Modes 236

To establish a baseline, we trained three models using only 237
eld data: one with the full dataset (Monterey Canyon + test 238
tank), one with only test tank images, and one with only 239
Monterey Canyon images. This allowed us to assess how 240
the training domain affects generalization. 241
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(a) Monterey Bay (b) Salas y Gómez Ridge

(c) MBARI’s test tank (illumi-
nated)

(d) MBARI’s test tank (non-
illuminated)

Figure 3. Samples from eld images

To evaluate the contribution of synthetic data, we trained242
three additional models: one using only synthetic data, one243
with a 1:1 ratio of synthetic to eld data, and one with a 2:1244
ratio. Finally, for reference, we trained a model including245
the test set (Salas y Gómez Ridge) in the training data. This246
result is shown as an upper-bound comparison, not used for247
evaluation.248

3.4. Metrics249

We evaluate the performance over the test set of our model250
using the following metrics: recall, precision, F1-score and251
Mean Intersection Over Union (mIoU) [10].252

4. Results253

Table 1 presents the evaluation metrics for each training254
mode, measured on the test set composed of images from255
the Salas y Gómez Ridge.256

As expected, the lowest performance was observed in the257
models trained exclusively with test tank data or only with258
Monterey Canyon eld data. This highlights the limitations259
of domain-specic training and the need for diverse data to260
ensure generalization.261

Training with both Monterey and test tank datasets sig-262
nicantly improved the results, as the combined data pro-263
vided greater variability in lighting conditions and seaoor264
textures.265

Building upon this baseline, incorporating synthetic im-266
ages yielded further improvements. Training with a 1:1 ra-267
tio of synthetic to eld data led to a 3% increase in recall and268
a 4% increase in precision compared to the baseline model.269

Notably, training with a 2:1 ratio of synthetic to eld270
data resulted in a 10% increase in recall and a 7% improve-271
ment in precision over the baseline. These results suggest272
that synthetic data enhances the model’s ability to general-273
ize and makes it more robust for deployment in previously274

unseen underwater environments. 275

Table 1. Model comparison across key metrics: recall, precision,
mIoU and F1-score. The best result is bolded.

Model Recall % ↑ Precision % ↑ F1-score ↑ mIoU↑
Test tank 27.31 66.93 34.79 24.53
Monterey 38.57 50.17 40.09 28.16
Previous Field 61.55 66.78 61.23 47.43
Sim only 64.46 65.04 61.71 45.80
Ratio 1:1 64.52 70.03 63.80 49.65
Ratio 2:1 71.35 71.89 68.04 53.90
Baseline* 84.28 80.53 81.91 69.98

In Figure 4, we illustrate the results. The ground truth is 276
shown in blue, the intersection between the prediction and 277
ground truth (true positives) is shown in green, and false 278
positives are highlighted in red. As the examples show, 279
the network trained with synthetic data produces predictions 280
that more closely align with the ground truth. 281

(a) Original Image (b) Ground Truth

(c) Prediction with Previous Field (d) Prediction with ratio 2:1

Figure 4. Qualitative Comparison Showing the Impact of Syn-
thetic Data

5. Conclusion 282

By integrating a custom laser scanner module into Blender 283
and Innigen, we generated over 1,200 high-resolution syn- 284
thetic images with ground truth masks across 23 proce- 285
durally generated terrains. Our experiments show that in- 286
corporating synthetic data into the training pipeline signi- 287
cantly improves performance—especially in recall and pre- 288
cision—when applied to previously unseen domains with 289
different depths, lighting, and ecosystems. 290

These results validate synthetic data as a scalable, cost- 291
effective solution for training robust underwater segmen- 292
tation models. This paves the way for broader adoption 293
of laser-based mapping systems and contributes to mak- 294
ing detailed seaoor exploration more accessible and scal- 295
able. 296
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