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Abstract Random Forests (RFs) have become a standard pick of data scientists for classification and 4

regression tasks over the last two decades. Several modifications of RFs have been proposed 5

to eliminate the limitation of standard RFs to axis-aligned splits through the notion of 6

Oblique Random Forests (ORFs), which allow that splits are defined over linear combinations 7

of attributes rather than a single attribute. However, like there is no single best learner for 8

all supervised learning problems, there is also not a single best RF type. In this paper, we 9

present self-optimizing random forests (SORFs). SORFs incrementally create a forest by 10

growing different tree types and identifying the best tree type based on extrapolations of the 11

forest performance curves obtained from out-of-bag performance estimate. Our exhaustive 12

empirical evaluation shows that SORFs consistently achieve the maximum performance 13

across three considered types of RFs while requiring only half the time for training all 14

these forests on average. At the same time, SORFs outperform standard RFs statistically 15

significantly and by at least 0.01 in accuracy on 25% of the considered datasets and even 16

substantially beyond 0.35 in two cases. 17

1 Introduction 18

Random Forests (RFs) (Breiman, 2001) have become a standard pick of data scientists for classifica- 19

tion and regression tasks over the last two decades. RFs are Bagging ensembles (Breiman, 1996) of 20

decision trees (Quinlan, 1997) in which the decision trees only have access to a random subset of 21

features in each inner node (Ho, 1998). The main strength of RFs is that they exhibit oftentimes 22

strong performance without the need of hyperparameter tuning. 23

Several modifications of RFs have been proposed to eliminate the limitation of standard RFs to 24

axis-aligned splits through the notion of Oblique Random Forests (ORFs). ORFs are RFs in which the 25

split is not defined over a single original feature but a linear combination thereof, which amounts 26

to an arbitrarily oriented hyperplane in the input space. ORFs were already discussed in Breiman’s 27

original work (Breiman, 2001), but optimizing the decision direction was, to our knowledge, first 28

considered by Lemmond et al. who used a Linear Discriminant Analysis (LDA) to identify the 29

split direction (Lemmond et al., 2008). Follow-up approaches considered a solution by regression 30

(Menze et al., 2011), the application of a (potentially kernelized) Principal Component Analysis 31

(PCA), (Zhang and Suganthan, 2014; Zhang et al., 2014; Wang et al., 2020) or even a combination of 32

PCA and LDA (Zhang and Suganthan, 2014). ORFs have a close connection to Rotation Forests 33

(Rodríguez et al., 2006), which compute the projection not in the inner leafs but previously once for 34

the whole tree. Thereby, Rotation Forests can be seen as one type of ORFs as well. 35

As often observed in algorithm selection or configuration, there is not a single best rotation 36

strategy. In many situations, it is best to not use any rotation at all while sometimes and LDA-based 37

rotation or PCA-based rotation is best. Based on this observation, Zhang et al. proposed ensemble 38

forests (Zhang and Suganthan, 2014), which optimize over different possible rotations in each inner 39

node (including no rotation). However and perhaps surprisingly, we could verify that this type of 40

forest does not consistently achieve the best performance obtained by any of the three forest types 41

while exhibiting a substantially increased training time. 42

This paper makes two contributions. Theminor contribution is to bring Oblique Random Forests 43

to the attention of the AutoML community, which has not taken notice of this interesting extension 44
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of RFs so far. The main contribution is then the introduction of Self-Optimizing Random Forests 45

(SORFs). The idea is to incrementally create a forest by growing different tree types. Extrapolating 46

the performance curves obtained from the out-of-bag error of sub-forests of the different tree types, 47

SORFs early detect the type of tree that is most suitable for the dataset on which they are being 48

trained. As soon as the performance curve models have stabilized, the best tree type is picked, 49

and only trees from this type are grown. Here, we focus on standard random trees, LDA-rotated 50

trees, and PCA-rotated trees. Besides, SORFs use this performance curve to automatically decide 51

whether to add additional trees to the forest. So SORFs do not require the number of trees as a 52

hyperparameter, which makes them even more straight forward to use than standard RFs. 53

Our experimental evaluation reveals that SORFs consistently achieve close-optimal performance 54

compared to the best of the three RF types while requiring substantially less time to be trained. 55

On 96 classification datasets, SORFs present an average regret of only 0.001 in accuracy compared 56

to the single best forest type. On 25% of the datasets, significant improvements of at least 0.01 in 57

accuracy can be achieved over standard RFs, in two cases even above 0.3. At the same time, SORFs 58

exhibit substantially lower runtime compared to evaluating all of the three forest types separately, 59

which would be the time required by an AutoML tool that treat them as a black box. 60

Therefore, we consider that a broader impact of SORFs to AutoML or even data science in 61

general could be that SORFs replace standard RFs and even porfolios containing Oblique RFs. 62

Thanks to the obsolete forest size hyperparameter this will even reduce the search space size of an 63

AutoML tool that replaces standard RFs by SORFs. 64

2 Background on Oblique Random Forests 65

Random Forests (RFs) are ensembles of decision trees with two special properties (Breiman, 2001). 66

First, RFs are bagging ensembles (Breiman, 1996), which means that each decision tree is being 67

trained not on the original data but on a bootstrap sample thereof. Second, in each inner node of 68

the tree, the training mechanism considers a random subspace (Ho, 1998), which means that it has 69

access only to a random subset of the features. Both mechanisms diversify the ensemble. 70

Oblique RFs (ORFs) are a generalization of RFs that consist of decision trees in which the split 71

points are not necessarily axis-aligned. Formally, a split point is then not formulated as 𝑥 𝑗 ≤ 𝑐 , 72

where 𝑥 𝑗 is the value of the 𝑗-th feature of some instance 𝑥 , but it is formulated over a projection 73

of the considered attributes to some line 𝛽 , i.e., 𝑥𝑇 𝛽 ≤ 𝑐 . ORFs have been introduced by Breiman 74

himself (Breiman, 2001) with random projections but received attention rather sporadically over 75

time (Lemmond et al., 2008; Menze et al., 2011; Zhang and Suganthan, 2014; Zhang et al., 2014; 76

Wang et al., 2020). A special type of ORF is a rotation forest (Rodríguez et al., 2006), in which the 77

projections are defined per tree and cannot vary among inner nodes. 78

The general learning algorithm of an oblique random forest consisting of 𝐿 trees is as follows: 79

1. For each 𝑖 = 1, .., 𝐿 80

2. Create a dataset 𝐷𝑖 by sampling from the original dataset 𝐷 with replacement (bootsrapping). 81

3. At each node with purity < 𝜋 and with more than 𝜂 instances associated: 82

(a) randomly select 𝑟 out of the original 𝑑 features. 83

(b) transform the data available in the node from the 𝑟 selected features according to some 84

projection to the new directions 𝛽1, .., 𝛽𝑟 ′ 85

(c) calculate the best split in the transformed space, and create a left and right child with 86

instances partitioned according to the split point. 87

(d) repeat this procedure with the left and right child respectively. 88
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The only difference to the standard RF is step 3b, which is only used by ORFs. The transformation 89

used in that part must be stored in the node because it needs to be applied to new instances arriving 90

at prediction time. A new instance 𝑥 is classified like in a standard RF except that the (original) 91

instance is projected in each inner node according to the projection stored in it. The ORF approaches 92

mainly differ in how the projections in step 3b are chosen. We briefly recap four of them. 93

The simplest approach is to create random projections. Such an approach was mentioned by 94

Breiman himself (Breiman, 2001). In this case, the coefficients of 𝛽 are uniformly drawn from 95

[−1, 1]. Notably, random projections do not even need to be rotations of the original data. 96

Another technique to create the split is to map the class labels to numbers and to address the 97

direction question as a regression problem. Menze et al. (Menze et al., 2011) introduce an approach 98

in which the coordinate of a point on the line onto which it is projected is directly interpreted 99

as a class prediction. Treating classes as numbers, the distance between the true label and this 100

prediction is computed in order to identify a smooth loss. The best projection line is then found 101

with a ridge regression approach. 102

Another broadly applied technique is to transform the data via a Principal Component Analysis 103

(PCA) or Linear Discriminant Analysis (LDA). The PCA approach with a full rotation without 104

projection is for example taken in (Zhang and Suganthan, 2014). If desired, only a subset of the first 105

𝑘 principal components can be considered for projection. An extreme case is taken in (Wang et al., 106

2020), which only consider the case of 𝑘 = 1 and hence project the data onto a line. An approach 107

based on LDA projection is taken for example in (Lemmond et al., 2008; Zhang and Suganthan, 108

2014). In this paper, we refer to RFs of these types, i.e., RFs that project the data in each inner node, 109

as PCA RFs and LDA RFs respectively. 110

To make projection-based RFs more stable and consistently superior to standard RFs, Zhang 111

et al. (Zhang and Suganthan, 2014) have introduced projection ensemble RFs (PERFs). This has 112

motivated the application of PERFs, which consider possibly several projections in addition to the 113

standard random space used by the standard RF. The term “ensemble” here stems from the fact that 114

an ensemble of projections (including no projection) is considered in each inner node. In (Zhang 115

and Suganthan, 2014), the authors consider the identity (no) projection, a PCA, and an LDA. 116

However, PERFs are not a good final answer to the question of rotations. While experimental 117

evaluations have shown that such projections, specifically LDA, oftentimes improve over standard 118

RFs, there are also some counter-examples in which results deteriorate. Besides, the training time 119

of PERFs is enormous corresponding to the one of training all forest types. 120

3 Self-Optimizing Random Forests 121

The core idea of Self-Optimizing Random Forests (SORFs) is to maintain different tree types and to 122

detect during training which of the tree types works best. At a high level, SORFs grow different 123

sub-forests, one for each tree type, and observe which of these forests evolves best. Projecting 124

the performance curves of each of these sub-forest, the best tree type is chosen as soon as the 125

performance projection is stable for each of the types. The chosen forest type is then grown until 126

its performance curve plateaus or a predefined maximum number of trees has been reached. 127

The final forest will only contain the trees of the chosen type. That is, the trees grown for the 128

tree types not finally chosen are simply discarded. While it would be possible in principle to create 129

a mixed forest with different tree types, we abstain from this option in this paper to create a simple 130

baseline for then perhaps more sophisticated follow-up works. 131

In this paper, we consider only three tree types based on the used rotation (no rotation, LDA, 132

or PCA) throughout all nodes in the tree. Other tree types like Kernel PCA trees or common 133

hyperparameters of decision trees and hence RFs such as purity and minimum number of instances 134

in a leaf could be compiled into different tree types as well, which is however beyond our scope. 135
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3.1 Creating Performance Curves Using the Out-of-Bag Error 136

If the trees of an RF are trained (semi-)sequentially, one can create a performance curve during 137

training. This performance curve is similar to what Cortes et al. (Cortes et al., 1994) refer to 138

as a capacity curve since it shows the performance of the ensemble, i.e., the accuracy or the 139

cross-entropy-loss, as a function of the ensemble size and hence the capacity of the ensemble. 140

We deliberately avoid the term of a learning curve here, because this is typically considered as a 141

function of the number of training samples or time or iterations spent by an optimizer. 142

There are mainly two possibilities to create this type of performance curve in RFs. The first 143

one is to separate a fraction of data points for this purpose. This is the same strategy most AutoML 144

tools would apply when considering each forest type as one algorithm and optimizing over these 145

(without of course building an explicit performance curve). The second approach is to exploit the 146

fact that random forests have the capacity to estimate the generalization performance through the 147

notion of the out-of-bag (OOB) estimate. The OOB estimate is computed simply by predicting the 148

labels of all the data points in the training data but, for every instance 𝑥𝑖 in the dataset only using 149

those trees of the ensemble for predictions that did not have 𝑥𝑖 in their bootstrap sample. 150

None of the two strategies is obviously superior over the other. Based on the claims that the 151

OOB error is an unbiased estimate for the test error (Breiman, 2001; Zhang et al., 2010; Goldstein 152

et al., 2011) and quickly becomes stable, one might consider the OOB error the better choice since 153

it does not require to sacrifice data points. However, it has been known for a time that the OOB 154

estimate can (even for forests with hundreds of trees and with thousands of instances) substantially 155

deviate from the test performance (Bylander, 2002; Matthew et al., 2011; Janitza and Hornung, 2018). 156

While literature mostly reports that OOB is too optimistic (Janitza and Hornung, 2018), we also 157

could observe many cases in which the test performance was significantly better than the OOB 158

estimate. So on large datasets it could be preferable to use a validation fold instead of an OOB 159

estimate to create the performance curve. 160

In this paper, we stick to the OOB estimate despite its possible bias. Separating validation data 161

can be unacceptable on small datasets, and providing a principled decision criterion for one of the 162

two techniques based on the dataset at hand is not straight forward. Our experiments show that 163

using the OOB estimate yields convincing results, but still this can be interesting future work. 164

3.2 Performance Curve Extrapolation 165

In this paper, we follow an extrapolation technique based on a maximum likelihood estimate for 166

the four-parametric Morgan-Mercer-Flodin (MMF) model class, which has been used to model 167

performance curves before in terms of sample size (Gu et al., 2001) or iterations of a neural network 168

(Domhan et al., 2015). This class models a performance curve by 169

𝑓 (𝑥) = 𝑎𝑏 + 𝑐𝑥𝑑

𝑏 + 𝑥𝑑
(1)

where 𝑥 in our case is the number of trees in the forest. Given a set of observations, the parameters 170

𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 can be easily estimated with standard interpolation techniques such as the Levenberg- 171

Marquardt method (Bard, 1974). Preliminary experiments showed that this class approximates the 172

performance curve of RFs much more accurate than other common models like the inverse power 173

law. Once the parameters are estimated, one can predict the performance for any specific forest size. 174

If no limit is given, the best possible performance of the forest is estimated by lim𝑥→∞ 𝑓 (𝑥) = 𝑐 . 175

3.3 The Training Algorithm 176

The training algorithm is simple and sketched in Alg. 1. It consists of two stages: In the first stage, 177

a forest is trained for each tree type in sequence until a stopping criterion is met. The stopping 178

criteria are (i) a stagnation of the performance curve, (ii) stability in the forecast created by the 179
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Algorithm 1: SelfOptimizingRandomForest

1 𝑝 ← [];
2 𝑀 ← [];
3 foreach tree type 𝑡 do
4 𝑚 ← new RandomForest(𝑡 );

5 while m.size()< 𝐿 ∧ ¬m.is_stale() ∧¬m.stable_forecast() do
6 m.train_and_add_tree()

7 M .append (m);
8 p.append (oob(Ft));
9 𝑚 ← 𝑀 [argmax𝑝];
10 while m.size()< 𝐿 ∧ ¬m.is_stale() do
11 m.train_and_add_tree()

12 return m

performance curve extrapolation, or (iii) that a possibly predefined maximum number of trees has 180

been trained. Once the first stage is completed, the performance forecast is used to pick the tree 181

type that is expected to perform best. The algorithm then adds trees to the forest of this tree type 182

and updates the forecast until stagnation of the performance curve is detected or the upper limit of 183

the number of trees is reached. In the following, we describe the stopping criteria more formally. 184

The stagnation stopping criterion m.is_stale() is based on two parameters. The parameter 𝜀stag 185

controls by how much the accuracy of the forest must improve at least in order to keep training. 186

However, the performance curves obtained from OOB estimates can exhibit a significant zig-zag 187

behavior, because, in contrast to cross-validation, there is only one observation at each forest size. 188

To reduce this effect, the check is not applied to the curve itself but a smoothened curve in which 189

the performance at “size” 𝑘 averages the values of the forest sizes [𝑘 −wstag, 𝑘]. Observe that, since 190

the increments in size are always 1, 𝜀stag is a threshold for the minimum slope of the (smoothened) 191

performance curve required to continue learning. 192

Stability in the forecast of performance curves is considered to occur in a similar way based on 193

windowing. In each iteration, the algorithm memorizes the expected performance of the considered 194

tree type as a result of the performance curve extrapolation. These forecasts then generate a 195

forecast history over time. m.stable_forecast () returns true iff the variance in the wforecast most 196

recent forecasts is less than 𝜀forecast . In other words, if the prediction about the best possible 197

performance of a forest type does not change substantially anymore, we consider the prediction 198

model to be sufficiently accurate and rely on its prediction. Unless being configured with a very 199

tight (small) 𝜀forecast , it will usually be the case that this criterion will apply prior to stagnation. 200

4 Experimental Evaluation 201

Our evaluation seeks to answer the following research questions: 202

1. How often are standard RFs outperformed by LDA RFs or PCA RFs? 203

2. How consistent are SORFs in their ability to identify the best forest type? 204

3. What is the regret of (limited) SORFs compared to the optimal RF type? 205

4. How much faster are (limited) SORFs compared to growing three forests? 206

Since this is an empirical evaluation, all insights and conclusions are limited to the datasets 207

considered here. 208
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4.1 Experiment Setup 209

To answer the above questions, we computed the voting scheme of RFs of the three tree types 210

for forest sizes between 1 and 100 each on 96 datasets, all of which are available at openml.org 211

(Vanschoren et al., 2013) for reproducibility. The 96 datasets are a mixture of datasets from the 212

AutoML benchmark (Gijsbers et al., 2019) and previous works on Oblique RFs (Zhang and Suganthan, 213

2014). For technical reasons, we excluded datasets of the AutoML benchmark with a sparse data 214

representation. The exact collection of datasets is described in the supplementary material, which 215

also contains the algorithms’ results on each of them individually. 216

For every dataset, 20 random train/test splits of 80%/20% were created. From these voting 217

schemes, which are shared with the community, it is possible to recover the behavior of the three 218

simple RFs (standard, LDA, PCA) as well as the behavior of SORFs. This procedure not only saved 219

computational resources but also allows other researchers to reproduce the results without explicitly 220

training the forests again. All reported performances are summarized test-fold performances. 221

The RFs were configured as follows. To enable better comparison, the maximum number of 222

trees was set to 100 even though this hyperparameter is even optional for SORFs. A comparison 223

of the trees under this condition is however beyond our scope. The purity parameter 𝜋 was set 224

to 0.9, and the minimum number of instances in a leaf 𝜂 was set to 5. PCA RFs were configured 225

to consider all of the dimensions (PCA simply used for rotation but not projection). The SORF 226

hyperparameters were set to wstag = 10, 𝜀stag = 10
−4
, wforecast = 10, and 𝜀forecast = 10

−3
, which we 227

would arguably consider reasonable default values. 228

The computations for this experimentation required 58.5 CPU days in a compute center with 229

Linux machines, each of them equipped with 2.6Ghz Intel Xeon E5-2670 processors and 16GB 230

memory. No timeouts were imposed when training the forests and computing the voting schemes. 231

4.2 Results 232

4.2.1 How often are standard RFs outperformed by LDA RFs or PCA RFs?. We are not the first to pro- 233

vide an answer to this question. Zhang et al. (Zhang and Suganthan, 2014) have reported similar 234

results. However, since we could not reproduce their results on ensemble forests, we aimed at 235

verifying that ORFs indeed can substantially improve the performance over standard RFs. 236

An answer to this question can be found in Fig. 1. The left figure compares the performances 237

of a standard RF with the LDA and PCA RF respectively. Every point represents one dataset: blue 238

points compare the standard RF against an LDA RF, and orange points compare it against an PCA 239

RF trained on the same dataset. The scores are test set accuracies averaged over the 20 random 240

train/test splits of size 80%/20%. 241

The plot suggests that none of the tree types is dominant. On many datasets, the standard RF 242

without any rotation outperforms both the LDA RF and the PCA RF (points below the line). So 243

none of the two alternatives dominates the standard RF. On the other side, for both RF types LDA 244

RF and PCA RF there are datasets on which they perform substantially better than a standard RF. 245

The most extreme example is the hill-valley dataset (1566) on which the two rotation based forest 246

types achieve virtually a 100% test accuracy while the standard RF only achieves a 60% accuracy. 247

While the presentation of results in the scatter plot suggests that LDA RF and PCA RF only 248

occasionally are the best choice, the other two plots in Fig. 1 show that indeed the standard RF is 249

the best choice in only approximately a little less than 50% of the cases. In fact, LDA RF is the best 250

choice in 29% of the cases an PCA RF in 23% of the cases. Here “cases” refers to splits of datasets, 251

because on some splits of a dataset one algorithm might work better than on a different split. With 252

these results, there is a clear motivation to identify the best forest type for a given dataset. 253

4.2.2 How consistent are SORFs in their ability to identify the best forest type?. This question is an- 254

swered by the the middle and right plot of Fig. 1, now also considering the actual decisions of the 255

SORF (y-axes). Summing up the probabilities on the diagonal of the confusion matrix, we observe 256
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Figure 1: Left: Comparison of the accuracies of standard RFs vs LDA RFs (blue) and PCA RFs (orange).

Middle and Right: Best possible RF type choice and the type choices made by a SORF.

that SORFs identify the correct tree type in only 75% of the cases. The middle plot reflects this 257

by rather impure bars in which the bar for every best choice contains the correct choice in the 258

majority but certainly not all of the cases. 259

The explanation for this supposedly disappointing result is that, on many datasets, there is only 260

very little difference between the algorithm performances and the best one is only very marginally 261

better than the other or at least the second best one. In such cases, it is possible that the forecast of 262

the performance curve is not precise enough to identify the best algorithm. 263

Interestingly, the more intuitive explanation for these results, namely the mediocre quality of the 264

out-of-bag (OOB) estimate, is not a relevant factor here. Clearly, since the OOB does not accurately 265

resemble the test error on many datasets, one would intuitively expect that this misguidance leads 266

to wrong decisions. However and perhaps surprisingly, considering the same confusion plots not 267

with the best choice on the test data but the best choice according to the OOB estimate, the results 268

look worse: the SORF then identifies the best tree type (according to OOB) in only 64% of the cases. 269

Based on these observations, the next research question about the regret becomes even more 270

urgent. Apparently SORFs are not able to consistently identify the best tree type. So the question is 271

how much they are outperformed by the indeed best single RF type in the situation in which they 272

don’t pick the best type. 273

4.2.3 What is the regret of (limited) SORFs compared to the optimal RF type?. To analyze this ques- 274

tion, Fig. 2 shows the performance difference between SORFs and each of the three RF types. The 275

left plot compares the accuracy of SORFs (x-axis) against the other three tree type RFs. Blue points 276

show the comparison to LDA RFs, orange points to PCA RFs, and green points to standard RFs. 277

Every point is the average accuracy of the two compared algorithms on a single dataset across the 278

20 train/test splits. Bullets show statistically significant differences according to a Wilcoxon signed 279

rank test (p-value 0.05), and circles show datasets on which the difference is not significant in this 280

sense. To give a different perspective on the same data, the right plot summarizes the improvements 281

in accuracy the SORF achieves over each of the three individual forest types. For each of them, 282

there is one boxplot summarzing the improvements over all the datasets, and one only about those 283

on which the mean value could be identified to be statistically significantly different (same test 284

as for left plot). Besides, there is one boxplot showing the improvement over the “oracle”, which 285

is effectively the regret of the SORF since the oracle picks the best RF type and hence cannot be 286

improved upon. Three vertical dotted lines serve as visual aids for a deterioration of 0.01 (red 287

line), and improvements of 0.01 and 0.03 (black lines). The vertical dashed line is simply the 0 288

improvement (no improvement but also no regret). 289

These results now show SORFs in a much more positive light than the plots in Fig. 1. There are 290

almost no datasets in which SORFs significantly underperform the best RF type for that dataset 291
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on the different datasets. The boxplots labeled with “sign.” only summarize the datasets on

which the difference of the mean performance is statistically significant. The oracle entry

refers to the comparison to the best RF type on a dataset (hence always negative).

(points below the line in the left plot). In fact, on only one dataset a deterioration of more than 292

0.01 in accuracy can be observed, and this deterioration is not statistically significant. Among the 293

statistically significantly deviating results, the regret is always under 0.007, and in over 70% of the 294

cases there is no regret at all since SORF obtains the optimal performance among all tree types. 295

From a different viewpoint, the regret of the standard RF is above 0.01 in 25% of the cases. This 296

can be seen in the bottom boxplot of the right plot, which shows that the 75%-quantile is exactly 297

at 0.01. In other words, we should not expect SORFs to significantly outperform standard RFs all 298

too often, but it can happen, and in such situations the improvement is often not only statistically 299

significant but also quite substantial in terms of absolute improvement. 300

All this being said, we conclude that SORFs have negligible regret when being compared to an 301

oracle that picks the best forest type. The average regret is 0.001, and the maximum statistically 302

significant regret is below 0.01. In other words and putting this into the light of the discussion in 303

Sec. 4.2.2, SORFs not always identify the best forest type, but in the case where they don’t, the 304

chosen alternative is almost equally good. The regret here is the price one has to pay getting the 305

runtime advantages of SORFs in contrast to training all forest types and choosing the best one. We 306

next assess precisely this runtime advantage. 307

4.2.4 How much faster are (limited) SORFs compared to growing three forests?. To analyze the train- 308

ing time behavior, Fig. 3 relates the numbers of trained trees and the actual training times of SORFs 309

and the individual RF types in several ways. The panel with the two left plots shows the relative 310

training time compared to the full forest of the respective types (left plot) and the number of trees 311

grown for each of the types on average based on the chosen forest type (middle left plot). While 312

the left panel only shows mean values averaged over the datasets, the panel with the two boxplots 313

on the right summarizes the relative reduction in training time (middle right plot) or numbers of 314

trained tree (right plot) per tree type without taking the chosen tree type into account. Again, it is 315

important to note that the SORFs were limited to a forest size of 100 for the finally chosen tree 316

type. Without this restriction, some forests would have built more trees requiring more training 317

time while possibly leading to better results. This analysis is beyond our scope. 318

Looking first at the left plots, we can observe a substantial runtime reduction on average. The 319

fourth column of the first plot shows that SORFs exhibit a training time that is roughly only 40% of 320

the time required to fully train all three forest types with 100 trees and then pick the best one. It 321

also shows that the eventual choice of the tree types barely affects this number even though PCA 322

RFs have a significantly higher runtime than the other two forest types on average (not shown 323

in the figure). Consistently, the middle left plot shows that the number of trained trees is only 324

40% of the trees that would be trained otherwise, i.e. approximately 120 instead of 300. What is 325

8



RF LDA RFPCA RFTotal
Training time spent per tree type
(relative to maximum possible)

RF
LD

A 
RF

PC
A 

RF
Ch

os
en

 F
or

es
t T

yp
e 0.51 0.36 0.37 0.41

0.33 0.51 0.36 0.4

0.31 0.34 0.5 0.39

RF LDA RFPCA RFTotal
Numbers of trees grown per tree type

RF
LD

A 
RF

PC
A 

RF
Ch

os
en

 fo
re

st
 ty

pe 51 36 37 124

33 50 36 119

31 34 50 115

RF

LD
A 

RF

PC
A 

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e 
Co

m
pr

es
sio

n

RF

LD
A 

RF

PC
A 

RF

To
ta

l0.0

0.2

0.4

0.6

0.8

1.0

Tr
ee

 C
om

pr
es

sio
n

0.35

0.40

0.45

0.50

40

60

80

100

120

Figure 3: Left: Mean training time compression in SORFs for different tree types depending on the

finally chosen tree type. Middle left: Mean number of trees trained per tree depending on

the finally chosen tree type. Middle and outer right: Mean reduction per dataset in training

time/trained trees per tree type and in total summarized over all datasets.

particularly interesting is that, on average, even for the chosen tree type only roughly 50 instead of 326

100 trees are trained. This suggests the usefulness of the automated stopping criterion applied by 327

SORFs, which could of course also be used independently by the RF training algorithms. Note that 328

the actual numbers of trained trees of the selected type ranges between 10 and 100, and the fact 329

that it is on average close to 50 is only a coincidence. 330

The right panel offers a more detailed view on the range of the concrete reductions. They 331

summarize across the datasets, for each tree type but also in total, how much the training time or 332

number of trees of that tree type is reduced on average on the respective dataset. For both boxplots 333

it shows two visual aids at 50% and 25% through the dotted lines. Remarkably, we can see that 334

the compression of both time and trained trees is better (below) than 50% in more than 75% of the 335

cases. In roughly 25% of the analyzed datasets, these quantities are even reduced by 75% or more. 336

Putting everything together, we can conclude, with the usual limitation of a limited number 337

of datasets used for analysis, that SORFs achieve the same performance as a portfolio consisting 338

of three RF types while requiring substantially less time for training. Thanks to the projection of 339

the performance curves and early stopping based on the detection of stale training progress, the 340

training time can be significantly reduced while sacrificing only a marginal portion of accuracy. 341

The trivial approach of considering full RFs for all of the types seems only justified if the user is 342

concerned about accuracy differences on an order that is below 0.01 in accuracy. 343

5 Conclusion 344

In this paper, we have proposed Self-Optimizing Random Forests (SORFs). SORFs build sub-forests 345

with different tree types up to a size in which the final performance of each type can be safely 346

predicted based on a performance curve model. The experimental evaluation over 96 datasets 347

shows that SORFs with three tree types (standard, with LDA rotations, and with PCA rotations) 348

exhibit optimal performance compared to a portfolio of RFs of these tree types while requiring only 349

40% of the training time on average. While SORFs can be seen as a RF-centered AutoML approach 350

itself, the results suggest to replace standard RFs in AutoML tools by SORFs since they cover a 351

broader class of learners than standard RFs with potentially significant performance improvements 352

while exhibiting a much lower training time compared to adding each of these RF types separately 353

to the portfolio of the AutoML tool. 354

There are plenty of options for immediate future work. One straight forward question is on 355

the potential improvements of SORFs if no tree limit is imposed. A second question is on the 356

evaluation mechanism and whether the usage of a validation set instead of using the OOB estimate 357

can improve the performance or runtime of the SORF. Finally, analyzing the prediction performance 358

of mixed forests that consist of trees of different types would be interesting, because this could 359

reduce the training time even more while adding more diversity to the ensemble. 360
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