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ABSTRACT

Large Language Models (LLMs) have limited performance when solving arith-
metic reasoning tasks and often provide incorrect answers. Unlike natural lan-
guage understanding, math problems typically have a single correct answer, mak-
ing the task of generating accurate solutions more challenging for LLMs. To the
best of our knowledge, we are not aware of any LLMs that indicate their level
of confidence in their responses which fuels a trust deficit in these models im-
peding their adoption. To address this deficiency, we propose ‘MathPrompter’, a
technique that improves performance of LLMs on arithmetic problems along with
increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-
thought prompting technique to generate multiple algebraic expressions or python
functions to solve the same math problem in different ways and thereby raise the
confidence level in the output results. This is in contrast to other prompt based
CoT methods, where there is no check on the validity of the intermediate steps
followed. Our technique improves over state-of-the-art on the MultiArith dataset
(78.7% → 92.5%) evaluated using 175B parameter GPT-based LLM.

1 INTRODUCTION

Recent advancements in natural language processing (NLP) can be attributed to massive scaling of
Large Language Models (LLMs) Vaswani et al. (2017); Devlin et al. (2018); Raffel et al. (2020);
Brown et al. (2020); Rae et al. (2021); Chowdhery et al. (2022); Thoppilan et al. (2022). A very inter-
esting recent discovery that the LLMs are naturally good (in-context) Zero-shot or few-shot learners
turned out to be very useful Brown et al. (2020); Liu et al. (2021; 2023). This led to the development
of ‘prompting’ technique, where the user provides a small context for solving the task at-hand to the
LLM. This conditioning of the models on a few examples is termed as few-shot prompting, while
providing instructions to solve a task is known as Zero-shot prompting. Extensive research efforts
are being poured into designing these prompts, either manually Schick & Schütze (2020); Reynolds
& McDonell (2021) or automatically Shin et al. (2020); Gao et al. (2020). Although quite successful
for single-step system-I tasks Stanovich & West (2000); Liu et al. (2023), the prompting techniques
were inadequate in their performance on system-II tasks where multi-step reasoning is required Rae
et al. (2021). As humans, we tend to break down a problem and attempt to solve them step-by-step.
Extending this intuition to LLMs led to the development of ‘chain-of-thought’ (CoT) prompting
technique Wei et al. (2022); Wang et al. (2022). The use of CoT has led to improved performance
on a range of NLP tasks Talmor et al. (2018); Gao et al. (2020); Patel et al. (2021); Cobbe et al.
(2021); Geva et al. (2021); Chowdhery et al. (2022); Srivastava et al. (2022)

In this work, we investigate Zero-shot-CoT methods for solving mathematical reasoning tasks. To
the best of our knowledge, we found the recent work by Kojima et al. (2022) that proposed a Zero-
shot-CoT technique to be the state-of-the-art where they demonstrated a remarkable accuracy im-
provement on the ‘MultiArith’ Roy & Roth (2016) data (17.7% → 78.7%). Now, we identify two
key aspects that lacks in the previous CoT prompting based SOTA, namely (1) Although, the chain-
of-thought followed by the model improved the results, but there is no check on the validity of
the steps followed by the chain-of-thought prompting and (2) The confidence in the predictions
of LLMs are often not provided. In order to address these gap to some extent, we derive inspiration
from how we humans solve a math question by breaking it down to a simpler multi-step procedure
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and make use of multiple ways to validate our approach at each step. Specifically, given a ques-
tion Q, (I) Generating Algebraic template: We first generate its corresponding algebraic expression
Qt that replaces the numerical entries by variables. (II) Math-prompts: Then, we provide multiple
prompts P to the LLM that can solve Qt analytically in different ways. For eg. P can be ‘Derive an
Algebraic expression’ or ‘Write a python function’ etc. Following this procedure, we end up with
P expressions that analytically solves Qt in terms of its variables. (III) Compute verification: We
then evaluate the P analytical solutions by allotting multiple random values to the Qt variables. (IV)
Statistical significance: If the solutions of the P analytical functions are in ‘consensus’ over N ∼ 5
different variable choices, then we substitute the original values from Q to obtain the final solution.
In the case where there is no definite consensus, we repeat the steps (II), (III) & (IV). Our method,
MathPrompter, uses 175B parameter LLM called GPT3 DaVinci completion engine Brown et al.
(2020). We were able to improve the accuracy on the MultiArith data from 78.7% → 92.5%.

2 METHOD

Since the LLMs are generative models, it becomes very tricky to ensure that the generated answers
are accurate, especially for mathematical reasoning tasks. We take clues from the process followed
by students to solve arithmetic problems. We narrowed down a few steps that students take in order
to verify their solutions, namely

• Compliance with known results: By comparing the solution to a known result, one can assess its
accuracy and make necessary adjustments. This is particularly useful when the question is a standard
problem with a well-established solution.

• Multi-verification: By approaching a problem from multiple perspectives and comparing the re-
sults helps to confirm the validity of the solution and ensure that it is both sound and accurate.

• Cross-checking: The process of solving a problem is just as necessary as the final answer. Ver-
ifying the correctness of the intermediate steps of the process provide a clear understanding of the
thought process behind the solution.

• Compute verification: Utilizing a calculator or computer to perform arithmetic calculations can
assist in verifying the accuracy of the final answer.

2.1 MATHPROMPTER

Python prompt

Write a python function that returns

the answer.

Algebraic prompt

Write a mathematical equation and
generate the answer format starting

with `Answer =' 

LLM

Input Query


(I) Generating
Algebraic template

(II) Math-Prompts

(III) Compute
Verification 


"Eval()"

(IV) Statistical
significance

Figure 1: MathPrompter flow. We outline the MathPrompter process with an example alongside.
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Our proposed method, MathPrompter, is an attempt to transfer some of this thought process to the
LLM answer generation process. Fig. 1 provides a high-level overview of steps followed by Math-
Prompter to solve a mathematical reasoning problem. We use the state-of-the-art GPT-3 DaVinci
completion engine Brown et al. (2020) for the question-answering tasks.

We use the following question ‘Q’ from the MultiArith dataset to demonstrate the problem solving
process followed by MathPrompter.

Q: At a restaurant, each adult meal costs $5 and kids eat free. If a group of 15
people came in and 8 were kids, how much would it cost for the group to eat?

(I) Generating Algebraic template: We begin by transforming the question into its algebraic form by
replacing the numeric entries with variables using a key-value mapping. In this particular instance,
the modified question ‘Qt’ becomes:

Qt: at a restaurant, each adult meal costs A and kids eat free. if a group of B
people came in and C were kids, how much would it cost for the group to eat?

Mapping: {A:5, B:15, C:8}

(II) Math-prompts: We build up on the intuition provided by the multi-verification and cross-
checking thought processes mentioned above. We generate analytical solutions of Qt using two
different approaches, Algebraic way and Pythonic way. We give the following prompts to the LLM
to generate additional context for Qt

Algebraic prompt: Write a mathematical equation and generate the answer format
starting with ‘Answer =’
Python prompt: Write a python function that returns the answer.

The LLM model in response to the above prompts generated the following output expressions

Answer = A*(B-C) # Algebraic expression output

def total_price(A, B, C): # Python expression output
return A * (B-C)

The above generated analytical solutions gives the user a hint into the ‘intermediate thought process’
of the LLM. Incorporating additional prompts will improve the accuracy and consistency of the
results. This will, in turn, enhance the MathPrompter’s ability to generate more precise and effective
solutions.

(III) Compute verification: We evaluate the expressions generated in the previous step using multiple
randomized key-value mappings of the input variables in Qt. To evaluate the expressions, we used
the Python’s eval() method. We compare the outputs to see if we can find a consensus among the
answers. This also provides us with a higher level of confidence that the answers are correct and
reliable. Once the expressions agree on their outputs, we use the values of the variables in the input
Q to compute the final answer, as below

Algebraic-answer = 35
Pythonic-answer = 35

(IV) Statistical significance: In order to ensure that consensus is reached among various expressions’
output, in our experiments, we repeat the steps (II) & (III) for N ∼ 5 times and report the most
frequent value observed for the answer.

3 EXPERIMENT

3.1 DATASET

We evaluate MathPrompter on MultiArith dataset Roy & Roth (2016), which is a subset of the
Math World Problem Repository Koncel-Kedziorski et al. (2016). This dataset is a collection of
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Model Accuracy
Zero-shot 17.7
Zero-shot (PaLM 540B) 25.5
Zero-shot-CoT 78.7
Zero-shot-CoT (PaLM 540B) 66.1
Zero-shot-CoT + self consistency (PaLM 540B) 89.0
Zero-shot-CoT (MathPrompter) 92.5

Few-Shot (2 samples) 33.7
Few-Shot (8 samples) 33.8
Few-Shot-CoT (2 samples) 84.8
Few-Shot-CoT (4 samples) 90.5
Few-Shot-CoT (8 samples) 93.0
Zero-Plus-Few-Shot-CoT (8 samples) 92.8

Table 1: Accuracy on MultiArith dataset. MathPrompter outperforms all the Zero-shot & Zero-shot-CoT
baselines. We emphasize that our model’s performance is comparable to 540B parameter models as well as
the SOTA Few-shot-CoT approaches. (If not mentioned explicitly, the models in each row consists of 175B
parameters. Results are borrowed from Kojima et al. (2022). They used Textdavinci-002 (175B) model along
with the same 8 examples as described in Wei et al. (2022) for Few-shot and Few-shot-CoT settings.)

mathematical problems that are specifically designed to test the ability of machine learning models
to perform complex arithmetic operations and reasoning. These problems demand the application
of multiple arithmetic operations and logical reasoning to be sucessfully solved.

3.2 BASELINE

One of the popular baselines is the standard Zero-shot model by Brown et al. (2020). Their train their
models in a way that it is able to recognize and classify new objects or classes that it has never seen
before during training. This was achieved by utilizing the semantic relationships between classes.

We also compared against the state-of-the-art Zero-shot-CoT prompting model by Kojima et al.
(2022). This is a very recent approach that addresses the limitations of the standard Zero-shot
learning by incorporating a ‘context of the task’ using CoT to improve the performance. Briefly,
their method follows this procedure. Given a question Q, the authors use the prompt ‘Lets think step-
by-step’ followed by Q to generate a response Z. Then, they use the prompt ‘The answer (Arabic
numericals) is’ followed by Z to get their final result.

3.3 RESULTS

Table 1 compares the performance of the MathPrompter against the baseline models. The results
of few-shot & zero-shot learning based approaches are shown. Furthermore, we add the results for
models with different number of parameters to get better highlight the significance of our approach.
Since, MathPrompter is a Zero-shot-CoT (175B parameters) method, we choose the state-of-the-art
Zero-shot-CoT (175B parameters) model by Kojima et al. (2022) and a Zero-shot(175B parameters)
by Brown et al. (2020) for fair comparison. We report an accuracy of 92.5% which is a huge
improvement to the other SOTA models with 78.7% and 17.7% accuracy, respectively.

For quantitative comparison of different models, Table 2 in Appendix A presents a sample set of
questions taken from the MultiArith dataset, the outputs of each model as well as the intermediate
steps and final answers that were generated by MathPrompter.

4 CONCLUSIONS AND DISCUSSIONS

We introduced MathPrompter, a novel approach that improves LLM performance on mathematical
reasoning problems. It also addresses an important concern of building the user trust to some extent
in the LLM predictions. We translated our intuition on how students solve arithmetic problems to a
LLM model by utilizing the Zero-shot chain-of-thought prompting technique. MathPrompter incor-
porates ideas like cross-checking the intermediate steps and solving the same math problem using
multiple approaches in its design. We empirically show that our model is comparable to SOTA Few-
shot-CoT models as well as the larger Zero-shot-CoT models that have 540B parameters. In future,
we plan to further evaluate performance on additional datasets and explore incorporating additional
prompts into MathPrompter.
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A APPENDIX

Quantitative comparison of current state-of-the-art Zero-shot-CoT Kojima et al. (2022) and Math-
Prompter for few examples from MultiArith dataset is shown in Table2.

Table 2: Example-based comparison between current state of art Zero-shot-CoT and MathPrompter .

Question SOTA Zero-shot-CoT MathPrompter
Q: At the fair Adam
bought 13 tickets.
After riding the fer-
ris wheel he had
4 tickets left. If
each ticket cost 9
dollars, how much
money did Adam
spend riding the fer-
ris wheel?

A (ONE UNNECESSARY STEP ER-
ROR): Let’s think step by step. Adam
bought 13 tickets. That means he spent
13 * 9 = 117 dollars on tickets. After
riding the ferris wheel, he had 4 tickets
left. That means he used 9 tickets to ride
the ferris wheel. That means he spent
9 * 9 = 81 dollars on riding the ferris
wheel. So the answer is 117 - 81 = 36
dollars. Therefore, the answer (arabic
numerals) is 36. ✗

Dictionary = {A:13, B:4, C:9}

# Algabraic answer
Answer = A*(B-C)

#Python code
def total_price(A, B, C):

return A * (B-C)

Answer = 81 ✓

Q: At a restaurant
each adult meal
costs $5 and kids
eat free. If a group
of 15 people came
in and 8 were kids,
how much would it
cost for the group
to eat?

A (ONE UNNECESSARY STEP ER-
ROR): Let’s think step by step. There
are 8 kids, so that means there are 7
adults. Each adult meal costs $5, so
that means that the 7 adults will cost
$57=$35 Now we just need to add the
two numbers together. $35+8=43$ So
it would cost $43 for the group to eat.
Therefore, the answer (arabic numerals)
is 43. ✗

Dictionary = {A:5, B:15, C:8}

# Algabraic answer
Answer = A*(B-C)

#Python code
def total_price(A, B, C):

return A * (B-C)

Answer = 35 ✓

Q: April’s discount
flowers was hav-
ing a sale where
each flower was 6
dollars. If Katie
bought 5 roses
and 5 daisies,
how much did she
spend?

A: Let’s think step by step. First, we
need to calculate how much each type
of flower costs. There are 5 roses, and
each rose costs 6 dollars. So, the cost of
the roses is 5*6=30 dollars. There are
5 daisies, and each daisy costs 6 dollars.
So, the cost of the daisies is 5*6=30 dol-
lars. Then, we need to calculate the to-
tal cost. The total cost is the cost of the
roses plus the cost of the daisies. So, the
total cost is 30+30=60 dollars. There-
fore, the answer (arabic numerals) is 60.
✓

Dictionary = {A:6, B:5, C:5}

# Algabraic answer
Answer = A * (B + C)

#Python code
def flower_sale(A, B, C):

return A * (B + C)
}

Answer = 60 ✓

Q: While shopping
for music online,
Faye bought 2
country albums and
3 pop albums. Each
album came with a
lyric sheet and had
6 songs. How many
songs did Faye buy
total?

A: Let’s think step by step. Faye bought
2 country albums. Each album has 6
songs. So she bought 2 * 6 = 12 songs
from the country albums. Faye bought
3 pop albums. Each album has 6 songs.
So she bought 3 * 6 = 18 songs from the
pop albums. In total, Faye bought 12 +
18 = 30 songs. Therefore, the answer
(arabic numerals) is 30. ✓

Dictionary = {A:2, B:3, C:6}

# Algabraic answer
Answer = A x C + B x C

#Python code
def num_songs_bought(A, B, C):

return A*C + B*C

Answer = 30 ✓
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Table 2- Continued from previous page

Q: Jerry was help-
ing the cafeteria
workers pick up
lunch trays, but he
could only carry 8
trays at a time. If
he had to pick up 9
trays from one table
and 7 trays from
another, how many
trips will he make?

A (COMMONSENSE MISTAKE):
Let’s think step by step. Jerry can carry
8 trays at a time. There are 9 trays on
the first table. That means Jerry will
need to make 2 trips to the first table.
There are 7 trays on the second table.
That means Jerry will need to make 1
trip to the second table. In total, Jerry
will make 3 trips. Therefore, the answer
(arabic numerals) is 3. ✗

Dictionary = {A:8, B:9, C:7}

# Algabraic answer
Answer = (B+C)/A

#Python code
def numTrips(A, B, C):
trips = (B + C) // A
if (B + C) % A != 0:
trips += 1

return trips

Answer = 2 ✓
Q: Kaleb bought 14
boxes of chocolate
candy and gave 5
to his little brother.
If each box has 6
pieces inside it,
how many pieces
did Kaleb still
have?

A: Let’s think step by step. Kaleb
bought 14 boxes of chocolate candy.
This means that he had 84 pieces of
chocolate candy. He gave 5 boxes to his
little brother, which means that he gave
his little brother 30 pieces of choco-
late candy. Kaleb still had 54 pieces of
chocolate candy. Therefore, the answer
(arabic numerals) is 54 ✓.

Dictionary = {A:14, B:5, C:6}

# Algabraic answer
Answer = A*C - B

#Python code
def candy_pieces(A, B, C):
return A*C - B

Answer = 79 (COMMONSENSE
MISTAKE)✗

Q: At the fair there
were 12 people in
line for the bumper
cars. If 10 of them
got tired of wait-
ing and left and 15
more got in line,
how many people
would be in line?

A (OTHERS; REASONING IS NOT
STARTED): Let’s think step by step.
There were 12 people in line for the
bumper cars. 10 of them got tired of
waiting and left. 15 more got in line.
That means that there are now 15 people
in line for the bumper cars. Therefore,
the answer (arabic numerals) is 15. ✗

Dictionary = {A:12, B:10, C:15}

# Algabraic answer
Answer = A - B + C

#Python code
def bumper_car_queue(A,B,C):
return A - B + C

Answer = 17 ✓
Q: Luke made 9
dollars mowing
lawns and 18 dol-
lars weed eating.
If he only spent
3 dollar a week,
how long would the
money last him?

A (OTHERS; QUESTION UNDER-
STANDING ERROR): Let’s think step
by step. How much money does Luke
make in a week? How much money
does Luke spend in a week? How much
money does Luke have left over at the
end of the week? How long will it take
Luke to save up $54? Luke makes $27
a week. He spends $3 a week. He has
$24 left over at the end of the week. It
will take Luke 2 weeks to save up $54.
Therefore, the answer (arabic numerals)
is 2. ✗

Dictionary = {A:9, B:18, C:3}

# Algabraic answer
Answer = (A + B) / C

#Python code
def lawn_weed_dollars(A, B, C):
totalEarnings = A + B
weeks = totalEarnings / C
return weeks

Answer = 9 ✓
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Table 2- Continued from previous page

Q: Each chocolate
bar in a box cost
$3. If a box had
9 bars total and
Wendy sold all but
3 bars, how much
money would she
have made?

A (OTHERS; MAXIMUM LIMIT OF
TEXT LENGTH): Let’s think step by
step. Each chocolate bar in a box costs
$3. If a box had 9 bars total, then Wendy
sold all but 3 bars. How much money
would she have made? We can solve
this problem using algebra. Let’s start
by creating a variable to represent the
number of chocolate bars Wendy sold.
We’ll call this variable ”x”. If Wendy
sold ”x” chocolate bars, then she would
have 9 - x chocolate bars left in the box.
We know that each chocolate bar costs
$3, so the total cost of the chocolate bars
Wendy sold Therefore, the answer (ara-
bic numerals) is: Wendy would have
made $12. ✗

Dictionary = {A:3, B:9, C:3}

# Algabraic answer
Answer = A x (B - C)

#Python code
def money_made(A, B, C):
return (B-C)*A

Answer = 18 ✓
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