FRONTIERCO: REAL-WORLD AND LARGE-SCALE EVALUATION OF MACHINE LEARNING SOLVERS FOR COMBINATORIAL OPTIMIZATION

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

020

021

024

025

026

027

028

029

031

033

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Machine learning (ML) has shown promise for tackling combinatorial optimization (CO), but much of the reported progress relies on small-scale, synthetic benchmarks that fail to capture real-world structure and scale. A core limitation is that ML methods are typically trained and evaluated on synthetic instance generators, leaving open how they perform on irregular, competition-grade, or industrial datasets. We present FRONTIERCO, a benchmark for evaluating ML-based CO solvers under real-world structure and extreme scale. FRONTIERCO spans eight CO problems, including routing, scheduling, facility location, and graph problems, with instances drawn from competitions and public repositories (e.g., DIMACS, TSPLib). Each task provides both easy sets (historically challenging but now solvable) and hard sets (open or computationally intensive), alongside standardized training/validation resources. Using FRONTIERCO, we evaluate 16 representative ML solvers—graph neural approaches, hybrid neural-symbolic methods, and LLM-based agents—against state-of-the-art classical solvers. We find a persistent performance gap that widens under structurally challenging and large instance sizes (e.g., TSP up to 10M nodes; MIS up to 8M), while also identifying cases where ML methods outperform classical solvers. By centering evaluation on realworld structure and orders-of-magnitude larger instances, FRONTIERCO provides a rigorous basis for advancing ML for CO.

1 Introduction

Combinatorial optimization (CO) lies at the heart of computer science, operations research, and applied mathematics, with applications in routing, allocation, planning, and scheduling (Korte & Vygen, 2012). Most CO problems are intractable or NP-hard, and decades of research have relied on carefully engineered heuristics and exact solvers to make progress. Recently, machine learning (ML) has been proposed as a way to automate algorithm design, raising the exciting possibility that data-driven solvers could eventually rival or complement human-crafted methods.

Two main paradigms have emerged. *Neural solvers* use graph neural networks, reinforcement learning, or diffusion models to directly generate or guide solutions (Cappart et al., 2023; Bengio et al., 2020). *Symbolic solvers*, by contrast, leverage large language models (LLMs) to synthesize executable algorithms, often refining them through self-feedback or iterative search (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024; Novikov et al., 2025). Both paradigms have produced intriguing successes on benchmark datasets, sparking optimism about ML's role in CO.

Yet a central question remains unanswered: **can ML-based solvers match or surpass state-of-the-art (SOTA) human-designed algorithms on real-world CO problems?** Existing benchmarks do not allow us to answer this rigorously. They suffer from three limitations: (i) **scale:** most focus on toy instances orders of magnitude smaller than real applications (Kool et al., 2019; Luo et al., 2023); (ii) **realism:** synthetic datasets often fail to capture structural diversity; and (iii) **data realism and coverage**, i.e., most ML evaluations rely on synthetic generators, which limits insight into performance on irregular, non-Euclidean, or competition-grade instances that classical solvers routinely tackle. As a result, ML methods are often assessed at modest scales and on structurally simplified distributions.

055

056

058

060

061

062

063

064

065

066

067

068

069

071

072

073

074 075

076

077

079

081

082

083

084

090

091

092

094

095 096

098

099

100

101 102

103

104

105

106

107

To address these limitations, we present FRON-TIERCO, a benchmark that evaluates ML-based solvers under real-world structure and extreme instance sizes across eight CO problems from five categories (Figure 1). Unlike evaluations based solely on synthetic data, FRONTIERCO integrates instances from TSPLib, Reinelt (1991), DIMACS challenges (Johnson & McGeoch, 1993), CFLP testbeds (Avella et al., 2009), and other competition or repository sources, and complements them with standardized training/validation resources. For each problem we provide two test sets: easy (once challenging, now solvable by SOTA classical methods) and hard (open or computationally intensive). We intentionally include structurally challenging cases (e.g., PUC hypercubes (Rosseti et al., 2001); SAT-induced MIS (Xu et al., 2007)) and push scale by orders of magnitude to reflect real-world difficulty. Concretely, FRONTIERCO scales to TSP with 10M nodes and MIS with 8M nodes. Prior larger-scale ML evalua-

Figure 1: Overview of FRONTIERCO.

tions (e.g., DIMES) scaled to TSP graphs with 10K nodes, while early neural TSP studies commonly used ≤ 100 nodes (Kool et al., 2019).

Using this benchmark, we conduct a systematic, cross-paradigm evaluation of ML-based CO solvers. Our study covers 16 representative approaches, including end-to-end neural solvers, neural-enhanced heuristics (Bengio et al., 2020; Cappart et al., 2023), and LLM-based agentic methods (Sun et al., 2025), and compares them directly against the best human-designed solvers. This unified evaluation reveals several key insights: (i) ML methods still lag significantly behind SOTA human solvers, especially on hard instances; (ii) neural solvers demonstrate the potential to enhance simple human heuristics, but in general struggle with scalability, non-local structure, and distribution shift; (iii) LLM-based solvers sometimes may outperform the SOTA classical solvers but display high variance due to their incapability in understanding the effectiveness of different algorithms they are trained on.

Our contributions are threefold.

- 1. **Benchmark under real-world structure and extreme scale.** A unified evaluation suite across eight problems that pairs competition/real-world instances with hard, structurally irregular cases and orders-of-magnitude larger sizes than prior ML evaluations (e.g., TSP: 10M vs. 10k; MIS: 8M vs. 11k (Qiu et al., 2022)).
- 2. **Unified evaluation.** We conduct a rigorous comparison of 16 ML-based solvers against state-of-the-art classical baselines, under standardized protocols.
- 3. **Empirical insights.** We identify fundamental limitations of current ML approaches, while also highlighting the potential and future research directions for ML-based solvers.

2 FRONTIERCO: THE PROPOSED BENCHMARK

2.1 FORMAL OBJECTIVE AND EVALUATION METRICS

We follow Papadimitriou & Steiglitz (1982) in denoting a combinatorial optimization (CO) problem instance as s, a solution as $x \in \mathcal{X}_s$, and defining the objective as

$$\min_{x \in \mathcal{X}_s} c_s(x) = \cot(x; s) + \text{valid}(x; s), \tag{1}$$

where cost(x;s) is a problem-specific objective (e.g., the tour length in routing problems), and valid(x;s) penalizes constraint violations—taking value ∞ if x is infeasible, and 0 otherwise.

To accommodate the varying scales of different problem instances, we define the primal gap as:

$$\operatorname{pg}(x;s) = \begin{cases} 1, & \text{if } x \text{ is infeasible or } \operatorname{cost}(x;s) \cdot c^* < 0, \\ \frac{|\operatorname{cost}(x;s) - c^*|}{\max\{|\operatorname{cost}(x;s)|, |c^*|\}}, & \text{otherwise}, \end{cases}$$

where c^* is the (precomputed) optimal or best-known cost for instance s, and pg(x;s) denotes the primal gap (Berthold, 2006) of x with respect to c^* .

Let A denote a specific algorithm in the search space A, and let D be a distribution over problem instances. The objective of algorithm search is then defined as:

$$\min_{A \in \mathcal{A}} \mathbb{E}_{s \sim D, x \sim A}[pg(x; s)]. \tag{3}$$

The search space A includes all possible parameterizations of neural solvers or all feasible token sequences generated by symbolic solvers, depending on the solver type.

2.2 Domain Coverage

This study focuses on eight types of CO problems that have gained increasing attention in recent machine learning research. These problems are:

- MIS (Maximum Independent Set): Find the largest subset of non-adjacent vertices in a graph.
- MDS (Minimum Dominating Set): Find the smallest subset of vertices such that every vertex in the graph is either in the subset or adjacent to a vertex in the subset.
- TSP (Traveling Salesman Problem): Find the shortest possible tour that visits each city exactly once and returns to the starting point. We focus on the 2D Euclidean space in this work.
- CVRP (Capacitated Vehicle Routing Problem): Determine the optimal set of delivery routes for a fleet of vehicles with limited capacity to serve a set of customers.
- CFLP (Capacitated Facility Location Problem): Choose facility locations and assign clients to them to minimize the total cost, subject to facility capacity constraints.
- **CPMP** (**Capacitated** *p***-Median Problem**): Select *p* facility locations and assign clients to them to minimize the total distance, while ensuring that no facility exceeds its capacity.
- FJSP (Flexible Job-Shop Scheduling Problem): Schedule a set of jobs on machines where each operation can be processed by multiple machines, aiming to minimize the makespan while respecting job precedence and machine constraints.
- **STP** (**Steiner Tree Problem**): Find a minimum-cost tree that spans a given subset of terminals in a graph, possibly including additional intermediate nodes.

The dataset statistics are summarized in Table 1, with additional details provided in the Appendix B. Note that only test data are collected from the listed sources; training and validation data are regenerated by us to eliminate inconsistencies found in previous evaluations (see Section 2.4).

Graph-based problems (MIS and MDS) and routing problems (TSP and CVRP) have been widely used to evaluate end-to-end neural solvers (Qiu et al., 2022; Zhang et al., 2023; Sun & Yang, 2023; Sanokowski et al., 2025), as these tasks often admit relatively straightforward decoding strategies to transform probabilistic model output into feasible solutions. In contrast, facility location and scheduling problems (such as CFLP, CPMP, and FJSP) involve more complex and interdependent constraints, making them better suited to hybrid approaches that combine neural networks with traditional solvers (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b). Tree-based problems have received comparatively less attention in neural CO, yet we include a representative case (e.g., STP) due to their fundamental importance in the broader CO landscape. All of the above problems can also be directly handled by symbolic solvers, enabling comprehensive and comparable evaluations across solver paradigms (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

2.3 PROBLEM INSTANCES

For each CO problem type, we collect a diverse pool of problem instances from problem-specific and comprehensive CO libraries (Reinelt, 1991; Xu et al., 2007), major CO competitions (Johnson & McGeoch, 1993; PACE, 2025), and evaluation sets reported in recent research papers.

Due to rapid progress in CO, many instances from earlier archives can now be effectively solved by SOTA problem-specific solvers, often achieving an optimality gap below 1% within a 1-hour time

Table 1: Summary of collected problem instances.

ı	0
1	65
1	66
1	67
1	68
1	69
1	70

Problem	Test Set Sources	Attributes	Easy Set	Hard Set
MIS	2nd DIMACS Challenge	Instances	36	16
	BHOSLib	Nodes	1,404–7,995,464	1,150–4,000
MDS	PACE Challenge 2025	Instances Nodes	20 2,671–675,952	20 1,053,686–4,298,062
TSP	TSPLib	Instances	29	19
	8th DIMACS Challenge	Cities	1,002–18,512	10,000–10,000,000
CVRP	Golden et al. (1998)	Instances	20	10
	Arnold et al. (2019)	Cities	200–483	3,000–30,000
CFLP	Avella & Boccia (2009) Avella et al. (2009)	Instances Facilities Customers	20 1,000 1,000	30 2,000 2,000
СРМР	Lorena & Senne (2004; 2000)	Instances	31	12
	Stefanello et al. (2015)	Facilities	100–4,461	10,510–498,378
	Gnägi & Baumann (2021)	Medians	10–1,000	100–2,000
FJSP	Behnke & Geiger (2012) Naderi & Roshanaei (2021)	Instances Jobs Machines	60 10–100 10–20	20 10–100 20–60
STP	Leitner et al. (2014)	Instances	23	50
	Rosseti et al. (2001)	Nodes	7,565–71,184	64–4,096

budget. We select a representative subset of such instances as our *easy set*, which serves to validate the baseline effectiveness of ML-based solvers.

With a high-level goal to advance the CO solvers on open challenges, we also construct a *hard set* comprising open benchmark instances widely used to assess cutting-edge human-designed algorithms. Many of these instances lack known optimal solutions and remain beyond the reach of existing heuristics. As a result, they are less susceptible to *heuristic hacking*, where neural solvers or LLM-based agents rely on handcrafted decoding strategies or memorize prior solutions, rather than learning to solve the problem from first principles. Importantly, our hard set is not defined merely by instance size. Instead, we emphasize structurally complex cases, such as hypercube graphs in STP (Rosseti et al., 2001) or SAT-induced MIS (Xu et al., 2007), which require models to understand and reason about intricate problem structures.

2.4 SOTA SOLVERS AND BEST KNOWN SOLUTIONS (BKS)

We identify the SOTA solver for each CO problem type based on published research papers and competition leaderboards. The selected solvers include: KaMIS (Lamm et al., 2017) for MIS, LKH-3 (Helsgaun, 2017) for TSP, HGS (Vidal et al., 2012) for CVRP, GB21-MH (Gnägi & Baumann, 2021), a hybrid metaheuristic, for CPMP, and SCIP-Jack (Rehfeldt et al., 2021) for STP. For problems where no dominant problem-specific solver is available (e.g., MDS, CFLP, FJSP), we rely on general-purpose commercial solvers, such as Gurobi (Gurobi Optimization, LLC, 2024) for MDS and CFLP (Mixed Integer Programming), and CPLEX (Cplex, 2009) for FJSP (Constraint Programming). Among them, Gurobi, CPLEX and SCIP-Jack are exact solvers; the rest are heuristic-based.

Prior evaluations of ML-based CO solvers often relied on self-generated synthetic test instances, leading to difficulties in fair comparison across papers. These instances are sensitive to implementation details such as random seeds and Python versions, introducing undesirable variability and inconsistency. To address this, we provide standardized BKS for all test-set instances in our benchmark. These BKS are collected from published literature and competition leaderboards, and are further validated using the corresponding SOTA solvers executed on our servers. For instances lacking known BKS, such as the MDS instances from the PACE Challenge 2025 (PACE, 2025), or for benchmarks with outdated references, such as those in the CFLP literature, we run the designated SOTA solver for up to two hours to obtain high-quality reference solutions.

2.5 STANDARDIZED TRAINING/VALIDATION DATA

Similar to BKS, inconsistencies in self-generated training and validation data can also contribute to difficulties in cross-paper comparisons. To address this, FRONTIERCO provides standardized training sets for neural solvers and development sets for LLM agents, generated using a variety of problem-specific instance generators (details in Appendix B).

We also release a complete toolkit that includes a data loader, an evaluation function, and an abstract solving template tailored for LLM-based agents. The data loader and evaluation function are hidden from the agents to prevent data leakage. The solving template provides a natural language problem description along with Python starter code specifying the expected input and output formats. An example prompt is provided in Appendix C.

3 EVALUATION DESIGN

3.1 IMPLEMENTATION SETTINGS

In light of the difficulty and scale of our problem instances, we allow a maximum solving time of one hour per problem instance, as most solvers, including both classical and ML-based solvers, may require such a time to obtain a single feasible solution (see efficiency analysis in Appendix E).

For fair comparison, each solver is executed on a single CPU core of a dual AMD EPYC 7313

16-Core processor, and neural solvers are run on a single NVIDIA RTX A6000 GPU. Since the solving time is influenced by factors such as compute hardware (CPU vs. GPU), solver type (exact vs. heuristic), and implementation language (C++ vs. Python), we use the primal gap (Equation 2) as the primary evaluation metric, and solving time is reported for reference only. For any infeasible solution, we assign a primal gap of 1 and a solving time of 3600 seconds. The arithmetic mean of the primal gaps and geometric mean of solving time are reported across our experiments.

3.2 REPRESENTATIVE NEURAL SOLVERS FOR COMPARATIVE EVALUATION

In addition to the SOTA human-designed solvers described in Section 2.4, we include a curated set of machine learning-based CO solvers from recent literature. The neural solvers are tailored to specific problem categories they are developed for:

• **DiffUCO** (Sanokowski et al., 2024): An unsupervised diffusion-based neural solver for MIS and MDS that learns from the Lagrangian relaxation objective.

• **SDDS** (Sanokowski et al., 2025): A more scalable version of DiffUCO for MIS and MDS, with efficient training process.

• **RLNN** (Feng & Yang, 2025a): A neural sampling framework that enhances exploration in CO by enforcing expected distances between sampled and current solutions.

 LEHD (Luo et al., 2023): A hybrid encoder-decoder model for TSP and CVRP, with strong generalization to real-world instances.

• **DIFUSCO** (Sun & Yang, 2023): A diffusion-based approach for TSP that achieves strong scalability, solving instances with up to 10,000 cities.

 • **DeepACO** (Ye et al., 2023): A neural solver that adapts Ant Colony Optimization (ACO) principles to learn metaheuristic strategies.

• tMDP (Scavuzzo et al., 2022): A reinforcement learning framework that models the branching process in Mixed Integer Program (MIP) solver as a tree-structured Markov Decision Process.

SORREL (Feng & Yang, 2025b): A reinforcement learning method that leverages suboptimal demonstrations and self-imitation learning to train branching policies in MIP solvers.
 GCNN (Gasse et al., 2019): A graph convolutional network (GNN)-guided solver for MIPs,

• IL-LNS (Sonnerat et al., 2021): A neural large neighborhood search method for Integer Linear Programs (ILPs) that is trained to predict the locally optimal neighborhood choice.

which learns to guide branching decisions within a branch-and-bound framework.

272 273

274 275 276

277 278

279 280

281 282 283

284 285 286

287 288 289

290 291

292 293

294 295 296

297 298 299

300 301 302

308 309 310

315 316 317

318 319 320

321 322

323

- CL-LNS (Huang et al., 2023): A contrastive learning-based large neighborhood search approach for ILPs which advances the imitation learning strategy in IL-LNS.
- MPGN (Lei et al., 2022): A reinforcement learning-based approach for FJSP that employs multi-pointer graph networks to capture complex dependencies and generate efficient schedules.
- L-RHO (Li et al., 2025a): A learning-guided rolling horizon optimization method that integrates machine learning predictions into the rolling horizon framework.

Since STP is not well studied by existing neural methods, we consider both reinforcement learning (RL) and supervised learning (SL) baselines, predicting the Steiner points. The Takahashi-Matsuyama algorithm (Takahashi & Matsuyama, 1980) is then applied for decoding.

3.3 REPRESENTATIVE LLM-BASED AGENTS FOR COMPARATIVE EVALUATION

Our LLM-based solvers are selected based on the CO-Bench evaluation protocol (Sun et al., 2025), including both general-purpose prompting approaches and CO-specific iterative strategies:

- FunSearch (Romera-Paredes et al., 2023): An evolutionary search framework that iteratively explores the solution space and refines candidates through backtracking and pruning.
- Self-Refine (Madaan et al., 2023; Shinn et al., 2023): A feedback-driven refinement method in which the LLM improves its own output via iterative self-refinement.
- ReEvo (Ye et al., 2024): A self-evolving agent that leverages past trajectories—both successful and failed—to refine its future decisions through reflective reasoning.

All LLM-based solvers are evaluated across the full set of eight CO problem types in our benchmark.

RESULTS

We summarize the comparative results in Figure 2 and Table 2. See detailed results in Appendix D. Note that the primal gap is computed relative to the best known solution (BKS), so its absolute value does not directly reflect the inherent difficulty of the instance—especially in cases where no known optimum exists.

We draw several key observations from our results. First, there is a substantial performance gap between human-designed state-of-the-art (SOTA) solvers and ML-based solvers across all problem types and difficulty levels. Strikingly, this gap is more pronounced in our benchmark than in previously published results. For instance, LEHD reports only a 0.72% gap on a standard TSP benchmark (Kool et al., 2019), whereas on our new benchmark the gap widens to 10% on easy TSP instances and an alarming 77% on hard instances. A major factor behind this discrepancy lies in the training and evaluation protocols. Prior studies typically trained neural solvers on synthetic graphs of a fixed size (e.g., 1000 nodes) and evaluated them on test instances of the same size, ensuring aligned conditions. In contrast, our datasets incorporate substantial variability in both graph size and structure across training and test sets. This setup better reflects real-world deployment scenarios but also introduces significant distribution shifts, under which LEHD and many other ML-based methods experience severe performance degradation in FRONTIERCO.

Second, neural solvers face serious scalability challenges. Although they used to be treated as efficient heuristics on large-scale, difficult instances, we find that in practice this is often not the case. Neural networks typically address the non-convexity of CO problems through over-parameterization (Allen-Zhu et al., 2019), which inflates single-value variables into high-dimensional representations and leads to frequent out-of-memory failures (observed in 4 of 8 problems; see Appendix D). Inference efficiency is an additional bottleneck. For example, the auto-regressive solver LEHD (Luo et al., 2023) requires running a transformer model (Vaswani et al., 2017) for 10M steps to produce a single solution on our largest TSP instance, failing to return any solution within the 1-hour time limit. Similar inefficiencies exist even on easier instances or under shorter time budgets (Appendix E). Addressing these issues through integration of reduction techniques (Andersen & Andersen, 1995) and the design of more compact neural architectures is thus an important direction for future research.

Third, LLM-based agents show the potential to outperform prior human-designed SOTA solvers. For example, Self-Refine surpasses KaMIS on the easy MIS set, and FunSearch outperforms HGS on

Figure 2: Primal gap (%) across eight CO problems on easy and hard sets (lower is better). Classical (blue), neural (green), and LLM-based agents (red). Bars marked with * indicate at least one infeasible run on that test set; in such cases we assign gap 1 and time 3600 seconds (see Section 3.1).

the hard CVRP set. A closer inspection of these methods reveals their algorithmic sophistication: Self-Refine applies kernelization to simplify MIS instances, solves small kernels exactly using a Tomita-style max-clique algorithm, and employs ARW-style heuristics with solution pools, crossover, and path-relinking for larger instances. Similarly, FunSearch builds an Iterated Local Search framework for CVRP, enhanced with regret insertion and Variable Neighborhood Descent. These results highlight the promise of LLM-based approaches in automatically developing competitive, and in some cases superior, solvers for CO.

Fourth, despite their promise, LLM-based agents exhibit substantial performance variability. For example, while they perform comparably to the SOTA solver HGS on the hard CVRP set, they fall dramatically short on TSP—even though both are routing problems. We hypothesize that this stems from the nature of LLM training: while models are exposed to diverse human-designed heuristics and can combine them in novel ways, they generally lack the ability to reliably assess the effectiveness of the generated algorithms. As a result, each sampling run may randomly yield a different, not necessarily effective, strategy. This absence of internal reasoning abilities largely restricts the applicability of LLM agents to hard-to-verify tasks and raises safety concerns when they generate resource-intensive algorithms for large instances (e.g., frequent out-of-memory issues on

CPMP during evolving). Current agentic frameworks tend to focus on problems that are challenging yet easy to verify, strongly relying on external feedback. In contrast, FRONTIERCO provides a hard-to-verify benchmark (but still verifiable for evaluation purposes) that highlights the reasoning capabilities of the LLM themselves.

Table 2: The average primal gap achieved by LLM agentic solvers over all eight CO problems.

Method	Avg. Gap↓ (All)	Avg. Gap↓ (Easy)	Avg. Gap↓ (Hard)
FunSearch	20.35%	10.05%	30.65%
Self-Refine	15.11%	8.18%	22.03%
ReEvo	13.25%	7.25%	19.25%

Table 3: Ablation study on the effectiveness of the neural module.

TSP-E	lasy	CFLP-Easy		
Method	Gap ↓	Method	Gap ↓	
LKH-3 2-OPT DIFUSCO	0.03% 20.09% 4.19%	Gurobi SCIP GCNN	0.00% 6.50% 3.22%	

5 DISCUSSIONS

5.1 Does the Neural Module Help?

Considering the performance gap between neural solvers and SOTA solvers, a natural question arises: does the neural module actually contribute to improved performance? To explore this, we conduct an ablation study by removing the neural component from the underlying algorithm of each neural solver. We evaluate two representative pairs: DIFUSCO (Sun & Yang, 2023) vs. 2-OPT, and GCNN (Gasse et al., 2019) vs. SCIP (Achterberg, 2009). The results are summarized in Table 3.

The results show that both DIFUSCO and GCNN significantly improve upon their respective heuristic baselines, indicating a meaningful contribution from the neural module. However, such improvement is still far from being comparable to the SOTA classical solvers. Overall, our findings suggest that neural components can enhance human-designed heuristics, but such improvement is typically realized when built on relatively weak base algorithms. Whether similar gains can be achieved when enhancing already strong heuristics remains unclear.

5.2 DO NEURAL SOLVERS CAPTURE GLOBAL STRUCTURE?

Most neural solvers are based on graph neural networks (GNNs), which rely on local message passing. While they have demonstrated strong performance on routing problems such as TSP and CVRP—which involve complex global constraints—the majority of existing evaluations are limited to 2D Euclidean instances. Compared to general graph problems, Euclidean instances—such as those in metric TSP—often exhibit favorable local structures (e.g., triangle inequality), which can be explicitly exploited by certain algorithms to achieve improved performance (Karlin et al., 2021). In contrast, general graph problems such as MIS lack such spatial regularities, and neural solvers often perform poorly on them (Angelini & Ricci-Tersenghi, 2022; Böther et al., 2022).

To explicitly evaluate the ability of neural solvers in capturing global structure, we leverage the rich source of STP instances, which includes both Euclidean and non-Euclidean graphs (see Appendix B.8 for details). We train two separate GNNs to predict Steiner nodes, using ground truth labels generated by SCIP-Jack (Rehfeldt et al., 2021). One model is trained on Euclidean instances, and the other on non-Euclidean instances. The training dynamics are shown in Figure 3.

The results reveal a clear contrast: while the GNN quickly achieves a high F1 score in predicting Steiner points on Euclidean graphs, it fails to make any progress on non-Euclidean ones. This suggests that existing GNNs implicitly rely on locality and cannot really capture the global structure. These findings underscore a fundamental limitation in the expressive power of current neural solvers.

5.3 WHAT KINDS OF ALGORITHMS DO LLM-BASED SOLVERS DISCOVER?

To better understand the algorithmic strategies developed by LLM-based solvers, we visualize the key words corresponding to their generated algorithms using the word cloud in Figure 4, where the size of each word reflects its frequency of appearance across algorithms.

Figure 3: Training dynamics of neural solvers on Euclidean and non-Euclidean STP instances.

Figure 4: Word cloud of the algorithms generated by LLM-based solvers.

A clear pattern emerges: classical metaheuristics—particularly simulated annealing (SA) and large neighborhood search (LNS)—consistently appear across a diverse set of problems and often form the foundation of LLM-generated algorithms. **This highlights a shared reliance on well-established CO algorithms that effectively balance exploration and exploitation.** While current LLMs still fall short of demonstrating novel algorithmic reasoning in CO, their strategies tend to replicate known metaheuristics and problem-specific techniques from the literature. Interestingly, we observe that their performance does not critically depend on integrating existing solvers, suggesting that LLMs can autonomously construct plausible and often effective algorithms. This adaptability is particularly promising for rapidly tackling new problem variants or classical problems with additional constraints, indicating strong potential for LLMs in zero-shot or few-shot algorithm design scenarios.

6 RELATED WORK

Current machine-learning approaches to CO fall into two broad categories: neural and symbolic solvers. Neural solvers primarily train a graph neural network (GNN) model with standard machine learning objectives (Bengio et al., 2020; Cappart et al., 2023). The trained GNN is then used either to predict complete solutions (Luo et al., 2023; Sun & Yang, 2023; Sanokowski et al., 2024; 2025) or to guide classical heuristics such as branch-and-bound (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023; Feng et al., 2025). Symbolic solvers instead attempt to generate executable programs that solve the problem, exploring the space of algorithmic primitives with reinforcement learning (Kuang et al., 2024a;b) or leveraging LLM agents for code generation (Romera-Paredes et al., 2023; Ye et al., 2024; Liu et al., 2024; Novikov et al., 2025).

Despite these advances, empirical studies have mostly focused on small synthetic benchmarks (Kool et al., 2019; Zhang et al., 2023; Berto et al., 2025; Bonnet et al., 2024), or restricted to a single type of CO problems (Thyssens et al., 2023; Li et al., 2025b). Besides, the lack of training instances in existing LLM agentic benchmarks (Fan et al., 2024; Tang et al., 2025; Sun et al., 2025) also hinders the further development. To bridge these gaps, we introduce a comprehensive benchmark with both realistic evaluation instances and diverse training data sources.

7 Conclusion

We present FRONTIERCO, a new benchmark designed to rigorously evaluate ML-based CO solvers under realistic, large-scale, and diverse problem settings. Through a unified empirical study, we reveal that while current ML methods show potential, including both neural and LLM-based solvers, they continue to fall short of state-of-the-art human-designed algorithms in terms of structural reasoning, generalization, and scalability. However, our findings also uncover promising avenues: neural solvers can enhance certain human heuristics, and LLMs discover better usage of existing algorithms. We hope FRONTIERCO will serve as a foundation for advancing the design and evaluation of next-generation ML-based CO solvers.

REPRODUCIBILITY STATEMENT

Details of data collection are provided in Appendix B. The implementations of neural solvers are taken from the official public repositories of each method, as referenced in Section 3.2. All remaining code, including that for classical solvers, BKS computation, and LLM agent solvers, is available at https://anonymous.4open.science/r/FrontierCO-82E3.

REFERENCES

- Tobias Achterberg. Scip: solving constraint integer programs. *Mathematical Programming Computation*, 1:1–41, 2009.
- Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural networks, going beyond two layers. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf.
- Guilherme Almeida, Elisangela Martins de Sá, Sérgio Souza, and Marcone Souza. A hybrid iterated local search matheuristic for large-scale single source capacitated facility location problems. *Journal of Heuristics*, 30:1–28, 12 2023. doi: 10.1007/s10732-023-09524-9.
- Erling Andersen and Knud Andersen. Presolving in linear programming. *Math. Program.*, 71: 221–245, 12 1995. doi: 10.1007/BF01586000.
- Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. *Nature Machine Intelligence*, 5(1):29–31, December 2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00589-y. URL http://dx.doi.org/10.1038/s42256-022-00589-y.
- Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale routing problems. *Comput. Oper. Res.*, 107(C):32–42, July 2019. ISSN 0305-0548. doi: 10.1016/j.cor. 2019.03.006. URL https://doi.org/10.1016/j.cor.2019.03.006.
- Pasquale Avella and Maurizio Boccia. A cutting plane algorithm for the capacitated facility location problem. *Computational Optimization and Applications*, 43(1):39–65, May 2009. doi: 10.1007/s10589-007-9125-x. URL https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html.
- Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasilyev. An effective heuristic for large-scale capacitated facility location problems. *Journal of Heuristics*, 15:597–615, 12 2009. doi: 10.1007/s10732-008-9078-y.
- Vahid Roshanaei Bahman Naderi, Rubén Ruiz. Repository for mixed-integer programming versus constraint programming for shop scheduling problems: New results and outlook. 2023. doi: 10.5281/zenodo.7541223. URL https://github.com/INFORMSJoC/2021.0326.
- Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *Science*, 286 (5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.org/doi/abs/10.1126/science.286.5439.509.
- D. Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling problem with work centers. 2012. URL https://api.semanticscholar.org/CorpusID: 54531116.
- Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon, 2020.
- Timo Berthold. *Primal heuristics for mixed integer programs*. PhD thesis, Zuse Institute Berlin (ZIB), 2006.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2025. URL https://github.com/ai4co/rl4co.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth, Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub, Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn Neil Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock, Siddarth Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of scalable reinforcement learning environments in JAX. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=C4CxQmp9wc.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What's wrong with deep learning in tree search for combinatorial optimization. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=mk0HzdqY7i1.

- Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of Machine Learning Research*, 24(130):1–61, 2023.
- Marco Caserta and Stefan Voß. A general corridor method-based approach for capacitated facility location. *International Journal of Production Research*, 58(13):3855–3880, 2020. doi: 10.1080/00207543.2019.1636320. URL https://doi.org/10.1080/00207543.2019.1636320.
- G. Cornuejols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relaxations for the capacitated plant location problem. *European Journal of Operational Research*, 50(3):280–297, 1991. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(91)90261-S. URL https://www.sciencedirect.com/science/article/pii/037722179190261S.
- IBM ILOG Cplex. V12. 1: User's manual for cplex. *International Business Machines Corporation*, 46(53):157, 2009.
- Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop scheduling problem: A review. *European Journal of Operational Research*, 314(2):409–432, 2024. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.05.017. URL https://www.sciencedirect.com/science/article/pii/S037722172300382X.
- Juan Diaz and Elena Fernandez. Hybrid scatter search and path relinking for the capacitated p-median problem. *European Journal of Operational Research*, 169:570–585, 02 2006. doi: 10.1016/j.ejor.2004.08.016.
- Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4092–4114, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024. acl-long.225.
- Shengyu Feng and Yiming Yang. Regularized langevin dynamics for combinatorial optimization. In *International conference on machine learning*. PMLR, 2025a.
- Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning for learning to branch. In *The 39th Annual AAAI Conference on Artificial Intelligence*, 2025b.

- Shengyu Feng, Zhiqing Sun, and Yiming Yang. Spl-Ins: Sampling-enhanced large neighborhood search for solving integer linear programs, 2025. URL https://arxiv.org/abs/2508.16171.
 - Zhang-Hua Fu, Sipeng Sun, Jintong Ren, Tianshu Yu, Haoyu Zhang, Yuanyuan Liu, Lingxiao Huang, Xiang Yan, and Pinyan Lu. A hierarchical destroy and repair approach for solving very large-scale travelling salesman problem, 2023. URL https://arxiv.org/abs/2308.04639.
 - Sune Gadegaard, A. Klose, and Lars Nielsen. An improved cut-and-solve algorithm for the single-source capacitated facility location problem. *EURO Journal on Computational Optimization*, 6, 04 2017. doi: 10.1007/s13675-017-0084-4.
 - Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial optimization with graph convolutional neural networks. In *Advances in Neural Information Processing Systems* 32, 2019.
 - Mario Gnägi and Philipp Baumann. A matheuristic for large-scale capacitated clustering. *Computers & Operations Research*, pp. 105304, 2021.
 - Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The impact of metaheuristics on solving the vehicle routing problem: Algorithms, problem sets, and computational results. 1998. URL https://api.semanticscholar.org/CorpusID:61757468.
 - Gianfranco Guastaroba and M.Grazia Speranza. Kernel search for the capacitated facility location problem. *Journal of Heuristics*, 18:1–41, 12 2012. doi: 10.1007/s10732-012-9212-8.
 - Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.com.
 - Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems, 12 2017.
 - Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large neighborhoods for integer linear programs with contrastive learning. In *International conference on machine learning*. PMLR, 2023.
 - David J. Johnson and Michael A. Trick. *Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993*. American Mathematical Society, USA, 1996. ISBN 0821866095.
 - David S. Johnson and Catherine C. McGeoch. *Network Flows and Matching: First DIMACS Implementation Challenge*. American Mathematical Society, USA, 1993. ISBN 0821865986.
 - Daniel Juhl, David Warme, Pawel Winter, and Martin Zachariasen. The geosteiner software package for computing steiner trees in the plane: an updated computational study. *Mathematical Programming Computation*, 10, 02 2018. doi: 10.1007/s12532-018-0135-8.
 - Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation algorithm for metric tsp. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2021, pp. 32–45, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451009. URL https://doi.org/10.1145/3406325.3451009.
 - Yasuhito Kawano. A reduction from an lwe problem to maximum independent set problems. *Scientific Reports*, 13, 05 2023. doi: 10.1038/s41598-023-34366-7.
 - Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=ByxBFsRqYm.
 - Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer Publishing Company, Incorporated, 5th edition, 2012. ISBN 3642244874.

- Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye HAO, Bin Li, and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first deep symbolic discovery framework. In *The Twelfth International Conference on Learning Representations*, 2024a.
 - Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, Jianye Hao, and Feng Wu. Towards general algorithm discovery for combinatorial optimization: Learning symbolic branching policy from bipartite graph. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 25623–25641. PMLR, 21–27 Jul 2024b.
 - Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding near-optimal independent sets at scale. *J. Heuristics*, 23(4):207–229, 2017. doi: 10.1007/s10732-017-9337-x. URL https://doi.org/10.1007/s10732-017-9337-x.
 - Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng Tang. A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem. *Expert Systems with Applications*, 205:117796, 2022. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2022.117796. URL https://www.sciencedirect.com/science/article/pii/S0957417422010624.
 - Markus Leitner, Ivana Ljubic, Martin Luipersbeck, Markus Prossegger, and Max Resch. New real-world instances for the steiner tree problem in graphs, 01 2014.
 - Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
 - Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In *Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining*, KDD '05, pp. 177–187, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081893. URL https://doi.org/10.1145/1081870.1081893.
 - Sirui Li, Wenbin Ouyang, Yining Ma, and Cathy Wu. Learning-guided rolling horizon optimization for long-horizon flexible job-shop scheduling. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL https://openreview.net/forum?id=Aly68Y5Es0.
 - Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan. ML4TSPBench: Drawing methodological principles for TSP and beyond from streamlined design space of learning and search. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL https://openreview.net/forum?id=grU1VKEOLi.
 - Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language model. In *ICML*, 2024.
 - Luiz A.N. Lorena and Edson L.F. Senne. Local search heuristics for capacitated p-median problems. 08 2000.
 - Luiz A.N. Lorena and Edson L.F. Senne. A column generation approach to capacitated p-median problems. *Computers & Operations Research*, 31(6):863–876, 2004. ISSN 0305-0548. doi: https://doi.org/10.1016/S0305-0548(03)00039-X. URL https://www.sciencedirect.com/science/article/pii/S030505480300039X.
 - Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy decoder: Toward large scale generalization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=RBI4oAbdpm.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback. *ArXiv*, abs/2303.17651, 2023.

- Bahman Naderi and Vahid Roshanaei. Critical-path-search logic-based benders decomposition approaches for flexible job shop scheduling. *INFORMS Journal on Optimization*, 4, 08 2021. doi: 10.1287/ijoo.2021.0056.
- Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery, 2025. URL https://arxiv.org/abs/2506.13131.
- Ibrahim Osman. Capacitated clustering problems by hybrid simulated annealing and tabu search, international transactions in operational research, 1, 317-336. *International Transactions in Operational Research*, 1:317-336, 07 1994. doi: 10.1016/0969-6016(94)90032-9.
- PACE, 2025. Pace 2025 Challenge: Dominating Set. Website, 2025. URL https://pacechallenge.org/2025/ds/. Parameterized Algorithms and Computational Experiments Challenge. Available at https://pacechallenge.org/2025/ds/.
- Christos Papadimitriou and Kenneth Steiglitz. *Combinatorial Optimization: Algorithms and Complexity*, volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.
- Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial optimization problems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.
- Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. Scip-jack: An exact high performance solver for steiner tree problems in graphs and related problems. In Hans Georg Bock, Willi Jäger, Ekaterina Kostina, and Hoang Xuan Phu (eds.), *Modeling, Simulation and Optimization of Complex Processes HPSC 2018*, pp. 201–223, Cham, 2021. Springer International Publishing. ISBN 978-3-030-55240-4.
- Gerhard Reinelt. Tsplib a traveling salesman problem library. *INFORMS J. Comput.*, 3(4):376–384, 1991. URL http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91.
- Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret, Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language models. *Nature*, 625:468 475, 2023.
- Isabel Rosseti, Marcus Poggi, Celso Ribeiro, Eduardo Uchoa, and Renato Werneck. New benchmark instances for the steiner problem in graphs. 08 2001. doi: 10.1007/978-1-4757-4137-7_28.
- Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for unsupervised neural combinatorial optimization. In *ICML*, 2024. URL https://openreview.net/forum?id=AFfXlKFHXJ.
- Sebastian Sanokowski, Wilhelm Franz Berghammer, Haoyu Peter Wang, Martin Ennemoser, Sepp Hochreiter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization and statistical physics. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=peNgxpbdxB.
- Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=M4011Vd70mJ.
- Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: language agents with verbal reinforcement learning. In *Neural Information Processing Systems*, 2023.

- Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large neighborhood search algorithm for mixed integer programs. *ArXiv*, abs/2107.10201, 2021. URL https://api.semanticscholar.org/CorpusID:236154746.
 - Statistisches Bundesamt. Gemeinden in deutschland nach fläche, bevölkerung und postleitzahl am 31.03.2017 (1. quartal), 2017. URL https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx?blob=publicationFile. Accessed: 20 September 2017.
 - Fernando Stefanello, Olinto C. B. de Araújo, and Felipe M. Müller. Matheuristics for the capacitated p-median problem. *International Transactions in Operational Research*, 22(1):149–167, 2015. doi: https://doi.org/10.1111/itor.12103. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103.
 - Mike Steglich. A hybrid heuristic based on self-organising maps and binary linear programming techniques for the capacitated p-median problem. 06 2019. doi: 10.7148/2019-0267.
 - Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language model agents in algorithm search for combinatorial optimization, 2025. URL https://arxiv.org/abs/2504.04310.
 - Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=JV8Ff0lgVV.
 - Hiromitsu Takahashi and Akira Matsuyama. An approximate solution for the steiner problem in graphs. *Mathematica Japonica*, 24(6):573–577, 1980.
 - Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and improving large language models on graph computation. In *International Conference on Learning Representations*, 2025.
 - Daniela Thyssens, Tim Dernedde, Jonas K. Falkner, and Lars Schmidt-Thieme. Routing arena: A benchmark suite for neural routing solvers, 2023. URL https://arxiv.org/abs/2310.04140.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
 - Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research*, 60(3):611–624, 2012. doi: 10.1287/opre.1120.1048. URL https://doi.org/10.1287/opre.1120.1048.
 - Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. *J. Artif. Int. Res.*, 12(1):93–103, March 2000. ISSN 1076-9757.
 - Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint satisfaction: Easy generation of hard (satisfiable) instances. *Artificial Intelligence*, 171(8):514–534, 2007. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2007.04.001. URL https://www.sciencedirect.com/science/article/pii/S0004370207000653.
 - Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant systems for combinatorial optimization. In *Advances in Neural Information Processing Systems*, 2023.
 - Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park, and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the flows tell: Solving graph combinatorial problems with GFlownets. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=sTjW3JHs2V.

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used exclusively for supportive purposes, such as adapting baseline implementations, processing data, generating plots, and refining the manuscript text. Importantly, LLMs were not involved in data collection/synthesis, experimental design and result analysis, and therefore did not influence the scientific contributions of this work.

B DATA COLLECTION DETAILS

This section outlines the data collection process for all problems, covering both test and training/validation instances. Since the training instance generation for neural solvers varies significantly across methods, we omit low-level details such as the number of instances and parameter settings. Instead, we focus on describing the generation of the validation set (test cases used to provide feedback for iterative agent refinement) used for LLM-based solvers.

B.1 Maximum Independent Set

To construct suitable test instances, we conduct a comprehensive re-evaluation of the datasets collected by Böther et al. (Böther et al., 2022). We find that some large real-world graphs (Leskovec & Krevl, 2014), such as ai-caida (Leskovec et al., 2005) with up to 26,475 nodes, are not particularly challenging for SOTA classical solvers like KaMIS (Lamm et al., 2017), which can solve them within seconds. Therefore, we select two moderately sized but more challenging datasets.

The easy test set comprises complementary graphs of the maximum clique instances from the 2nd DIMACS Challenge (Johnson & Trick, 1996), while the hard test set consists of the largest 16 instances (each with over 1,000 nodes) from the BHOSLib benchmark (Xu et al., 2007), derived from SAT reductions. Since the original links have expired, we obtain these instances and their BKS from a curated mirror¹. For those interested in additional sources of high-quality MIS instances, we also highlight vertex cover instances from the 2019 PACE Challenge², reductions from coding theory³, and recent constructions derived from learning-with-errors (LWE) (Kawano, 2023), which provide a promising strategy for generating challenging MIS instances.

Training instances are generated using the RB model (Xu & Li, 2000), widely adopted in recent neural MIS solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We synthesize 20 instances with 800–1,200 nodes for our LLM validation set.

B.2 MINIMUM DOMINATING SET

Despite the popularity of MDS in evaluating neural solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025), we find a lack of high-quality publicly available benchmarks. We therefore rely on the PACE Challenge 2025⁴, using the exact track instances as our easy set and the heuristic track instances as the hard set. From each, we selected the 20 instances with the highest primal-dual gaps after a one-hour run with Gurobi. Reference BKS are obtained by extending the solving time to two hours.

Training instances are Barabási–Albert graphs (Barabási & Albert, 1999) with 800–1,200 nodes, consistent with previous literature (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We generate 20 such instances for the LLM validation set.

³https://oeis.org/A265032/a265032.html

⁴https://pacechallenge.org/2025/

B.3 Traveling Salesman Problem

We source TSP instances from the 8th DIMACS Challenge⁵ and TSPLib⁶. The easy test set includes symmetric 2D Euclidean TSP instances (distance type EUC_2D, rounding applied) from TSPLib with over 1,000 cities, all with known optimal solutions. This aligns with settings used in prior neural TSP solvers (Karlin et al., 2021).

The hard test set consists of synthetic instances from the DIMACS Challenge with at least 10,000 cities (Fu et al., 2023). We obtain BKS from the LKH website⁷.

Training instances follow the standard practice of uniformly sampling points in a unit square (Kool et al., 2019). For simplicity, we reuse DIMACS instances with 1,000 nodes as our LLM training set, since they are drawn from the same distribution, except scaling the coordinates by a constant.

B.4 CAPACITATED VEHICLE ROUTING PROBLEM

We collect CVRP instances from the 12th DIMACS Challenge⁸ and CVRPLib⁹, which have significant overlap. From these, we select the Golden (collected by Arnold et al. (Golden et al., 1998)) and Belgium (collected by Arnold et al. (Arnold et al., 2019)) instances as our easy and hard sets, respectively. All BKS are retrieved from the CVRPLib website.

Training data generation follows the method used in DeepACO (Ye et al., 2023). Each instance includes up to 500 cities, with demands in [1, 9] and capacity fixed at 50. We generate 15 total validation instances for LLMs, with 5 each for 20, 100, and 500 cities.

B.5 CAPACITATED FACILITY LOCATION PROBLEM

Following the benchmark setup in previous works (Guastaroba & Speranza, 2012; Caserta & Voß, 2020), we select instances from Test Bed 1 (Avella & Boccia, 2009) and Test Bed B (Avella et al., 2009) as our easy and hard test sets, respectively. The easy set includes the 20 largest instances from Test Bed 1, each with 1,000 facilities and 1,000 customers. The hard set consists of the 30 largest instances from Test Bed B, each with 2,000 facilities and 2,000 customers. All instances are downloaded from the OR-Brescia website 10.

Notably, our easy instances are already significantly larger than the most challenging instances typically used in neural solver evaluations (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b), which contain at most 100 facilities and 400 customers. All easy instances can be solved exactly by Gurobi. For the hard instances, as all available BKS identified in the literature (Caserta & Voß, 2020) are inferior to those obtained by Gurobi, we rerun Gurobi for two hours to obtain improved reference solutions.

Overall, we find that Gurobi already demonstrates strong performance on standard CFLP variants, in which each customer may be served by multiple facilities. Consequently, the single-source CFLP variant—where each customer must be assigned to exactly one facility—has become a more compelling and actively studied problem in recent CO literature (Gadegaard et al., 2017; Caserta & Voß, 2020; Almeida et al., 2023). Several corresponding benchmarks are also available on the OR-Brescia website.

For training data, we adopt the synthetic generation method from Cornuejols et al. (Cornuejols et al., 1991), producing 20 instances with 100 facilities and 100 customers for LLM validation. This generation method is widely used in existing neural branching works (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b), and forms part of the construction for Test Bed 1 (Avella & Boccia, 2009).

⁵http://archive.dimacs.rutgers.edu/Challenges/TSP/

⁶http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html

⁸http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/

⁹http://vrp.galgos.inf.puc-rio.br/index.php/en/

¹⁰https://or-brescia.unibs.it/home

B.6 CAPACITATED *p*-MEDIAN PROBLEM

We follow the evaluation setup in recent works on CRMP (Stefanello et al., 2015; Gnägi & Baumann, 2021). Instances with fewer than 10,000 facilities are assigned to the easy set; larger ones go to the hard set. Easy instances include 6 real-world São José dos Campos instances (Lorena & Senne, 2004) and 25 adapted TSPLib instances (Lorena & Senne, 2000; Stefanello et al., 2015). These are sourced from INPE¹¹ and SomAla¹² websites. Hard instances are large-scale problems introduced by Gnägi and Baumann (Gnägi & Baumann, 2021), downloaded from their GitHub¹³. BKS are derived by combining the best GB21-MH results and values reported in (Stefanello et al., 2015; Steglich, 2019; Gnägi & Baumann, 2021).

In total, we collect 31 easy and 12 hard instances, all using Euclidean distances. Additional alternatives include spherical-distance instances (Diaz & Fernandez, 2006; Statistisches Bundesamt, 2017) and high-dimensional instances (Gnägi & Baumann, 2021).

We synthesize training data with Osman's method (Osman, 1994). The validation set for LLMs are generated by fixing the number of facilities at 500 and varying medians p in $\{5, 10, 20, 50\}$. Each setting includes 5 instances.

B.7 FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

We collect FJSP instances from two recent benchmark sets commonly used in the evaluation of classical FJSP solvers. The easy test set consists of instances introduced by Behnke and Geiger (Behnke & Geiger, 2012), available via a GitHub mirror¹⁴. The hard test set includes 24 of the largest instances (with 100 jobs) from a benchmark proposed by Naderi and Roshanaei (Naderi & Roshanaei, 2021), which we obtain from the official repository¹⁵. These two datasets are selected based on recent comparative studies in the literature (Bahman Naderi, 2023; Dauzère-Pérès et al., 2024).

Based on our literature review, the strongest results have been reported by the CP-based Benders decomposition method (Naderi & Roshanaei, 2021); however, the source code is not publicly available. As a result, we adopt a constraint programming approach using CPLEX, which has demonstrated consistently strong performance relative to other commercial solvers and heuristic methods (Bahman Naderi, 2023).

Training data is generated following the same protocol used in Li et al. (Li et al., 2025a). Specifically, we synthesize 20 instances, each with 20 machines and 10 jobs, to form the LLM validation set.

B.8 Steiner Tree Problem

We collect STP instances from SteinLib¹⁶ and the 11th DIMACS Challenge¹⁷. The easy set includes Vienna-GEO instances (Leitner et al., 2014), which—despite having tens of thousands of nodes—are solvable within minutes by SCIP-Jack. The hard set comprises PUC instances (Rosseti et al., 2001), most of which cannot be solved within one hour by SCIP-Jack and even lack known optima. BKS are determined by taking the best value between SCIP-Jack's one-hour primal bound and published solutions from SteinLib or Vienna-GEO (Leitner et al., 2014). We also highlight the 2018 PACE Challenge¹⁸ as a useful benchmark with varied difficulty levels.

Training data includes two generation strategies. The first generator corresponds to the hardest instances in PUC (Rosseti et al., 2001), which constructs graphs from hypercubes with randomly sampled (perturbed) edge weights. We generate 100 training instances for neural solvers and 10 validation instances for LLMs across dimensions 6–10. The second, based on GeoSteiner (Juhl et al., 2018), samples 25,000-node graphs from a unit square. We include 15 such instances (10 for neural

```
"http://www.lac.inpe.br/~lorena/instancias.html
```

¹²http://stegger.net/somala/index.html

¹³https://github.com/phi185/GB21-MH

¹⁴https://github.com/Lei-Kun/FJSP-benchmarks

¹⁵https://github.com/INFORMSJoC/2021.0326

¹⁶https://steinlib.zib.de/steinlib.php

¹⁷https://dimacs11.zib.de/organization.html

¹⁸https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances

solvers, 5 for LLMs)¹⁹, and add 45 adapted TSPLib instances (Juhl et al., 2018) to the neural training set. The LLM training set also serves as the validation set for neural solvers.

C EXAMPLE PROMPT

 Our query prompts basically consist of two parts: the description of the problem background and the starter code for LLM to fill in. The following is an example prompt on TSP.

The evaluation example

Problem Description

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem where, given a set of cities with known pairwise distances, the objective is to find the shortest possible tour that visits each city exactly once and returns to the starting city. More formally, given a complete graph G = (V, E) with vertices V representing cities and edges E with weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting each vertex exactly once) of minimum total weight.

Starter Code

```
def solve(**kwargs):
    Solve a TSP instance.
    Args:
        - nodes (list): List of (x, y) coordinates representing
           cities in the TSP problem
                     Format: [(x1, y1), (x2, y2), ..., (xn, yn)]
    Returns:
        dict: Solution information with:
            - 'tour' (list): List of node indices representing the
               solution path
                            Format: [0, 3, 1, \ldots] where numbers
                                are indices into the nodes list
    # Your function must yield multiple solutions over time, not
       just return one solution
    # Use Python's yield keyword repeatedly to produce a stream of
       solutions
    # Each yielded solution should be better than the previous one
    while True:
       yield {
            'tour': [],
```

D DETAILED RESULTS

Table 4, 5, 6, and 7 present the detailed results for the evaluated methods in Section 4. A result is marked with * if the method suffers from the out-of-memory or timeout issue before obtaining a feasible solution on any instance in this benchmark.

E EFFICIENCY ANALYSIS OF NEURAL SOLVERS

We adopt a 1-hour time limit in our evaluation to ensure that all solvers, especially neural approaches, have sufficient time to produce at least one feasible solution. To examine this choice, we take TSP as

¹⁹http://www.geosteiner.com/instances/

Table 4: Comparative Results on MIS and MDS

MIS	Easy		Hard		MDS	Easy		Hard	
Method	Gap↓	Time ↓	Gap ↓	Time ↓	Method	Gap ↓	Time	Gap ↓	Time ↓ ↓
KaMIS	1.51%	223s	2.65%	274s	Gurobi	0.00%	3600s	0.63%	3600s
DiffUCO SDDS RLNN	9.57% 11.85% 6.29%	154s 223s 532s	6.45% 5.24% 6.31%	19s 27s 1064s	DiffUCO SDDS RLNN	71.86% 66.21% -	54s 54s -	100.00%* 100.00%* -	3600s* 3600s* -
FunSearch Self-Refine ReEvo	1.87% 1.30% 1.44%	3600s 3600s 3600s	4.97% 4.02% 4.81%	3600s 3600s 3600s	FunSearch Self-Refine ReEvo	41.83% 6.19% 7.52%	3600s 3600s 3600s	95.21% 5.71% 5.81%	3600s 3600s 3600s

Table 5: Comparative Results on TSP and CVRP

TSP	Ea	ısy	На	rd	CVRP	Ea	asy	Har	d
Method	Gap↓	Time ↓	Gap ↓	Time ↓	Method	Gap↓	Time ↓	Gap ↓	Time ↓
LKH-3	0.03%	65s	2.89%	21s	HGS	0.11%	3600s	6.74%	3600s
LEHD DIFUSCO	10.23% 4.19%	487s 555s	76.84%* 69.04%*	1347s* 2850s*	LEHD DeepACO	1.97% 4.42%	893s 50s	100.00%* 27.69%*	3600s* 3333s*
FunSearch Self-Refine ReEvo	6.79% 6.29% 5.65%	3600s 3600s 3600s	35.82% 32.00% 37.77%	3600s 3600s 3600s	FunSearch Self-Refine ReEvo	5.27% 3.86% 7.16%	3600s 3600s 3600s	6.52% 27.50% 10.01%	3600s 3600s 3600s

Table 6: Comparative Results on CFLP and CPMP

CFLP	Ea	ısy	На	ırd	СРМР	Eas	sy	Har	d
Method	Gap↓	Time ↓	Gap ↓	Time ↓	Method	Gap ↓	Time ↓	Gap ↓	Time ↓
Gurobi	0.00%	308s	0.01%	3136s	GB21-MH	0.53%	541s	0.32%	3600s
tMDP SORREL GCNN	3.54% 3.46% 3.22%	3581s 3600s 3551s	55.35% 55.35% 55.35%	3600s 3600s 3600s	IL-LNS CL-LNS GCNN	80.57%* 81.45%* 42.91%*	3600s* 3600s* 2143s*	100.00%* 100.00%* 100.00%*	3600s* 3600s* 3600s*
FunSearch Self-Refine ReEvo	7.31% 27.08% 12.89%	3600s 3600s 3600s	7.41% 24.93% 12.79%	3600s 3600s 3600s	FunSearch Self-Refine ReEvo	3.96% 2.84% 3.40%	3600s 3600s 3600s	77.32%* 74.05%* 70.64%*	3600s* 3600s* 3600s*

Table 7: Comparative Results on FJSP and STP

FJSP	Ea	sy	На	rd	STP	Ea	sy	На	ırd
Method	Gap↓	Time ↓	Gap↓	Time ↓	Method	Gap↓	Time ↓	Gap ↓	Time ↓
CPLEX	0.00%	702s	0.01%	3600s	SCIP-Jack	0.00%	22s	0.50%	717s
MPGN L-RHO	12.78% 27.20%	9s 21s	1.50% 1.03%	69s 58s	RL SL	14.00% 14.00%	31s 31s	13.10% 13.10%	1s 1s
FunSearch Self-Refine ReEvo	5.05% 6.66% 5.61%	3600s 3600s 3600s	12.10% 1.14% 2.16%	3600s 3600s 3600s	FunSearch Self-Refine ReEvo	8.29% 11.23% 14.36%	3600s 3600s 3600s	5.82% 6.93% 10.03%	3600s 3600s 3600s

an example and sample several instances from the TSP-easy set. Table 8 reports the time required by LKH-3, LEHD, and DIFUSCO to obtain their first feasible solution.

The results show that neural solvers are far less time-efficient than LKH-3. When scaling from a 4,461-node instance to a 15,112-node instance, LKH-3 requires about five times more time yet still achieves near-optimal solutions. By contrast, DIFUSCO takes around eight times longer, and LEHD

	fnl4	461	rl5	919	d15112		
	Gap↓	Time ↓	$\operatorname{Gap} \downarrow$	Time ↓	$\operatorname{Gap} \downarrow$	Time ↓	
LKH-3	0.00%	11s	2.35%	12s	0.17%	51s	
LEHD	16.00%	81s	9.42%	169s	26.49%	2464s	
DIFUSCO	3.50%	36s	3.31%	52s	3.20%	278s	

Table 8: Time to obtain one feasible solution on TSP-easy instances. The instance name is shown, where the number corresponds to the number of nodes in the graph.

more than thirty times longer, to produce even a single feasible solution. While this difference may appear minor on small graphs (e.g., \sim 1,000 nodes) where GPU acceleration can mask inefficiency, it becomes prohibitive as problem sizes grow. This motivates the development of our large-scale CO benchmark and justifies the choice of a 1-hour time limit.

To further address concerns that the long time budget might favor the classical solvers, we also compare the three methods under short limits of 10 and 20 seconds. Table 9 summarizes the results.

	10	s	20	S	3600s		
	Gap ↓	Time ↓	Gap ↓	Time ↓	$\operatorname{Gap} \downarrow$	Time ↓	
LKH-3 LEHD DIFUSCO	27.98%* 59.50%* 63.82%*	7.0s* 7.8s* 9.1s*	17.78 %* 40.70%* 37.37%*	8.1s* 10.5s* 12.3s*	0.03% 10.23% 4.19%	65s 487s 555s	

Table 9: Comparative results on TSP-easy under different time limits.

Even under very short limits, neural solvers do not gain an advantage. While LKH-3 exhibits some degradation when forced to terminate early, it still outperforms LEHD and DIFUSCO by a large margin. In fact, both neural solvers suffer from even more severe timeout issues, highlighting their inefficiency at small budgets as well. On the other hand, DIFUSCO shows better scalability than LEHD, suggesting the progress achieved in neural solver design. Overall, these results confirm that a 1-hour time limit is necessary for a fair evaluation, and that neural solvers remain both slower and less effective compared to classical baselines.