
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FRONTIERCO: REAL-WORLD AND LARGE-SCALE
EVALUATION OF MACHINE LEARNING SOLVERS FOR
COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning (ML) has shown promise for tackling combinatorial optimization
(CO), but much of the reported progress relies on small-scale, synthetic bench-
marks that fail to capture real-world structure and scale. A core limitation is that
ML methods are typically trained and evaluated on synthetic instance genera-
tors, leaving open how they perform on irregular, competition-grade, or industrial
datasets. We present FRONTIERCO, a benchmark for evaluating ML-based CO
solvers under real-world structure and extreme scale. FRONTIERCO spans eight
CO problems, including routing, scheduling, facility location, and graph problems,
with instances drawn from competitions and public repositories (e.g., DIMACS,
TSPLib). Each task provides both easy sets (historically challenging but now
solvable) and hard sets (open or computationally intensive), alongside standardized
training/validation resources. Using FRONTIERCO, we evaluate 16 representative
ML solvers—graph neural approaches, hybrid neural–symbolic methods, and
LLM-based agents—against state-of-the-art classical solvers. We find a persistent
performance gap that widens under structurally challenging and large instance
sizes (e.g., TSP up to 10M nodes; MIS up to 8M), while also identifying cases
where ML methods outperform classical solvers. By centering evaluation on real-
world structure and orders-of-magnitude larger instances, FRONTIERCO provides
a rigorous basis for advancing ML for CO.

1 INTRODUCTION

Combinatorial optimization (CO) lies at the heart of computer science, operations research, and
applied mathematics, with applications in routing, allocation, planning, and scheduling (Korte &
Vygen, 2012). Most CO problems are intractable or NP-hard, and decades of research have relied
on carefully engineered heuristics and exact solvers to make progress. Recently, machine learning
(ML) has been proposed as a way to automate algorithm design, raising the exciting possibility that
data-driven solvers could eventually rival or complement human-crafted methods.

Two main paradigms have emerged. Neural solvers use graph neural networks, reinforcement
learning, or diffusion models to directly generate or guide solutions (Cappart et al., 2023; Bengio
et al., 2020). Symbolic solvers, by contrast, leverage large language models (LLMs) to synthesize
executable algorithms, often refining them through self-feedback or iterative search (Romera-Paredes
et al., 2023; Liu et al., 2024; Ye et al., 2024; Novikov et al., 2025). Both paradigms have produced
intriguing successes on benchmark datasets, sparking optimism about ML’s role in CO.

Yet a central question remains unanswered: can ML-based solvers match or surpass state-of-
the-art (SOTA) human-designed algorithms on real-world CO problems? Existing benchmarks
do not allow us to answer this rigorously. They suffer from three limitations: (i) scale: most
focus on toy instances orders of magnitude smaller than real applications (Kool et al., 2019; Luo
et al., 2023); (ii) realism: synthetic datasets often fail to capture structural diversity; and (iii) data
realism and coverage, i.e., most ML evaluations rely on synthetic generators, which limits insight
into performance on irregular, non-Euclidean, or competition-grade instances that classical solvers
routinely tackle. As a result, ML methods are often assessed at modest scales and on structurally
simplified distributions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FrontierCO

Figure 1: Overview of FRONTIERCO.

To address these limitations, we present FRON-
TIERCO, a benchmark that evaluates ML-based
solvers under real-world structure and extreme in-
stance sizes across eight CO problems from five cat-
egories (Figure 1). Unlike evaluations based solely
on synthetic data, FRONTIERCO integrates instances
from TSPLib, Reinelt (1991), DIMACS challenges
(Johnson & McGeoch, 1993), CFLP testbeds (Avella
et al., 2009), and other competition or repository
sources, and complements them with standardized
training/validation resources. For each problem we
provide two test sets: easy (once challenging, now
solvable by SOTA classical methods) and hard (open
or computationally intensive). We intentionally in-
clude structurally challenging cases (e.g., PUC hy-
percubes (Rosseti et al., 2001); SAT-induced MIS
(Xu et al., 2007)) and push scale by orders of mag-
nitude to reflect real-world difficulty. Concretely,
FRONTIERCO scales to TSP with 10M nodes and
MIS with 8M nodes. Prior larger-scale ML evalua-
tions (e.g., DIMES) scaled to TSP graphs with 10K nodes, while early neural TSP studies commonly
used ≤ 100 nodes (Kool et al., 2019).

Using this benchmark, we conduct a systematic, cross-paradigm evaluation of ML-based CO solvers.
Our study covers 16 representative approaches, including end-to-end neural solvers, neural-enhanced
heuristics (Bengio et al., 2020; Cappart et al., 2023), and LLM-based agentic methods (Sun et al.,
2025), and compares them directly against the best human-designed solvers. This unified evaluation
reveals several key insights: (i) ML methods still lag significantly behind SOTA human solvers,
especially on hard instances; (ii) neural solvers demonstrate the potential to enhance simple human
heuristics, but in general struggle with scalability, non-local structure, and distribution shift; (iii)
LLM-based solvers sometimes may outperform the SOTA classical solvers but display high variance
due to their incapability in understanding the effectiveness of different algorithms they are trained on.

Our contributions are threefold.

1. Benchmark under real-world structure and extreme scale. A unified evaluation suite
across eight problems that pairs competition/real-world instances with hard, structurally
irregular cases and orders-of-magnitude larger sizes than prior ML evaluations (e.g., TSP:
10M vs. 10k; MIS: 8M vs. 11k (Qiu et al., 2022)).

2. Unified evaluation. We conduct a rigorous comparison of 16 ML-based solvers against
state-of-the-art classical baselines, under standardized protocols.

3. Empirical insights. We identify fundamental limitations of current ML approaches, while
also highlighting the potential and future research directions for ML-based solvers.

2 FRONTIERCO: THE PROPOSED BENCHMARK

2.1 FORMAL OBJECTIVE AND EVALUATION METRICS

We follow Papadimitriou & Steiglitz (1982) in denoting a combinatorial optimization (CO) problem
instance as s, a solution as x ∈ Xs, and defining the objective as

min
x∈Xs

cs(x) = cost(x; s) + valid(x; s), (1)

where cost(x; s) is a problem-specific objective (e.g., the tour length in routing problems), and
valid(x; s) penalizes constraint violations—taking value ∞ if x is infeasible, and 0 otherwise.

To accommodate the varying scales of different problem instances, we define the primal gap as:

pg(x; s) =

1, if x is infeasible or cost(x; s) · c∗ < 0,
|cost(x; s)− c∗|

max{|cost(x; s)|, |c∗|}
, otherwise,

(2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where c∗ is the (precomputed) optimal or best-known cost for instance s, and pg(x; s) denotes the
primal gap (Berthold, 2006) of x with respect to c∗.

Let A denote a specific algorithm in the search space A, and let D be a distribution over problem
instances. The objective of algorithm search is then defined as:

min
A∈A

Es∼D, x∼A[pg(x; s)]. (3)

The search space A includes all possible parameterizations of neural solvers or all feasible token
sequences generated by symbolic solvers, depending on the solver type.

2.2 DOMAIN COVERAGE

This study focuses on eight types of CO problems that have gained increasing attention in recent
machine learning research. These problems are:

• MIS (Maximum Independent Set): Find the largest subset of non-adjacent vertices in a graph.

• MDS (Minimum Dominating Set): Find the smallest subset of vertices such that every vertex
in the graph is either in the subset or adjacent to a vertex in the subset.

• TSP (Traveling Salesman Problem): Find the shortest possible tour that visits each city exactly
once and returns to the starting point. We focus on the 2D Euclidean space in this work.

• CVRP (Capacitated Vehicle Routing Problem): Determine the optimal set of delivery routes
for a fleet of vehicles with limited capacity to serve a set of customers.

• CFLP (Capacitated Facility Location Problem): Choose facility locations and assign clients
to them to minimize the total cost, subject to facility capacity constraints.

• CPMP (Capacitated p-Median Problem): Select p facility locations and assign clients to them
to minimize the total distance, while ensuring that no facility exceeds its capacity.

• FJSP (Flexible Job-Shop Scheduling Problem): Schedule a set of jobs on machines where
each operation can be processed by multiple machines, aiming to minimize the makespan while
respecting job precedence and machine constraints.

• STP (Steiner Tree Problem): Find a minimum-cost tree that spans a given subset of terminals
in a graph, possibly including additional intermediate nodes.

The dataset statistics are summarized in Table 1, with additional details provided in the Appendix
B. Note that only test data are collected from the listed sources; training and validation data are
regenerated by us to eliminate inconsistencies found in previous evaluations (see Section 2.4).

Graph-based problems (MIS and MDS) and routing problems (TSP and CVRP) have been widely
used to evaluate end-to-end neural solvers (Qiu et al., 2022; Zhang et al., 2023; Sun & Yang, 2023;
Sanokowski et al., 2025), as these tasks often admit relatively straightforward decoding strategies
to transform probabilistic model output into feasible solutions. In contrast, facility location and
scheduling problems (such as CFLP, CPMP, and FJSP) involve more complex and interdependent
constraints, making them better suited to hybrid approaches that combine neural networks with
traditional solvers (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b). Tree-based
problems have received comparatively less attention in neural CO, yet we include a representative
case (e.g., STP) due to their fundamental importance in the broader CO landscape. All of the above
problems can also be directly handled by symbolic solvers, enabling comprehensive and comparable
evaluations across solver paradigms (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

2.3 PROBLEM INSTANCES

For each CO problem type, we collect a diverse pool of problem instances from problem-specific
and comprehensive CO libraries (Reinelt, 1991; Xu et al., 2007), major CO competitions (Johnson &
McGeoch, 1993; PACE, 2025), and evaluation sets reported in recent research papers.

Due to rapid progress in CO, many instances from earlier archives can now be effectively solved by
SOTA problem-specific solvers, often achieving an optimality gap below 1% within a 1-hour time

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of collected problem instances.

Problem Test Set Sources Attributes Easy Set Hard Set

MIS 2nd DIMACS Challenge
BHOSLib

Instances
Nodes

36
1,404–7,995,464

16
1,150–4,000

MDS PACE Challenge 2025 Instances
Nodes

20
2,671–675,952

20
1,053,686–4,298,062

TSP TSPLib
8th DIMACS Challenge

Instances
Cities

29
1,002–18,512

19
10,000–10,000,000

CVRP Golden et al. (1998)
Arnold et al. (2019)

Instances
Cities

20
200–483

10
3,000–30,000

CFLP Avella & Boccia (2009)
Avella et al. (2009)

Instances
Facilities
Customers

20
1,000
1,000

30
2,000
2,000

CPMP
Lorena & Senne (2004; 2000)
Stefanello et al. (2015)
Gnägi & Baumann (2021)

Instances
Facilities
Medians

31
100–4,461
10–1,000

12
10,510–498,378
100–2,000

FJSP Behnke & Geiger (2012)
Naderi & Roshanaei (2021)

Instances
Jobs
Machines

60
10–100
10–20

20
10–100
20–60

STP Leitner et al. (2014)
Rosseti et al. (2001)

Instances
Nodes

23
7,565–71,184

50
64–4,096

budget. We select a representative subset of such instances as our easy set, which serves to validate
the baseline effectiveness of ML-based solvers.

With a high-level goal to advance the CO solvers on open challenges, we also construct a hard set
comprising open benchmark instances widely used to assess cutting-edge human-designed algorithms.
Many of these instances lack known optimal solutions and remain beyond the reach of existing
heuristics. As a result, they are less susceptible to heuristic hacking, where neural solvers or LLM-
based agents rely on handcrafted decoding strategies or memorize prior solutions, rather than learning
to solve the problem from first principles. Importantly, our hard set is not defined merely by instance
size. Instead, we emphasize structurally complex cases, such as hypercube graphs in STP (Rosseti
et al., 2001) or SAT-induced MIS (Xu et al., 2007), which require models to understand and reason
about intricate problem structures.

2.4 SOTA SOLVERS AND BEST KNOWN SOLUTIONS (BKS)

We identify the SOTA solver for each CO problem type based on published research papers and
competition leaderboards. The selected solvers include: KaMIS (Lamm et al., 2017) for MIS, LKH-3
(Helsgaun, 2017) for TSP, HGS (Vidal et al., 2012) for CVRP, GB21-MH (Gnägi & Baumann, 2021),
a hybrid metaheuristic, for CPMP, and SCIP-Jack (Rehfeldt et al., 2021) for STP. For problems
where no dominant problem-specific solver is available (e.g., MDS, CFLP, FJSP), we rely on general-
purpose commercial solvers, such as Gurobi (Gurobi Optimization, LLC, 2024) for MDS and CFLP
(Mixed Integer Programming), and CPLEX (Cplex, 2009) for FJSP (Constraint Programming).
Among them, Gurobi, CPLEX and SCIP-Jack are exact solvers; the rest are heuristic-based.

Prior evaluations of ML-based CO solvers often relied on self-generated synthetic test instances,
leading to difficulties in fair comparison across papers. These instances are sensitive to imple-
mentation details such as random seeds and Python versions, introducing undesirable variability
and inconsistency. To address this, we provide standardized BKS for all test-set instances in our
benchmark. These BKS are collected from published literature and competition leaderboards, and
are further validated using the corresponding SOTA solvers executed on our servers. For instances
lacking known BKS, such as the MDS instances from the PACE Challenge 2025 (PACE, 2025), or
for benchmarks with outdated references, such as those in the CFLP literature, we run the designated
SOTA solver for up to two hours to obtain high-quality reference solutions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.5 STANDARDIZED TRAINING/VALIDATION DATA

Similar to BKS, inconsistencies in self-generated training and validation data can also contribute
to difficulties in cross-paper comparisons. To address this, FRONTIERCO provides standardized
training sets for neural solvers and development sets for LLM agents, generated using a variety of
problem-specific instance generators (details in Appendix B).

We also release a complete toolkit that includes a data loader, an evaluation function, and an abstract
solving template tailored for LLM-based agents. The data loader and evaluation function are hidden
from the agents to prevent data leakage. The solving template provides a natural language problem
description along with Python starter code specifying the expected input and output formats. An
example prompt is provided in Appendix C.

3 EVALUATION DESIGN

3.1 IMPLEMENTATION SETTINGS

In light of the difficulty and scale of our problem instances, we allow a maximum solving time of
one hour per problem instance, as most solvers, including both classical and ML-based solvers, may
require such a time to obtain a single feasible solution (see efficiency analysis in Appendix E).

For fair comparison, each solver is executed on a single CPU core of a dual AMD EPYC 7313
16-Core processor, and neural solvers are run on a single NVIDIA RTX A6000 GPU. Since the
solving time is influenced by factors such as compute hardware (CPU vs. GPU), solver type (exact vs.
heuristic), and implementation language (C++ vs. Python), we use the primal gap (Equation 2) as
the primary evaluation metric, and solving time is reported for reference only. For any infeasible
solution, we assign a primal gap of 1 and a solving time of 3600 seconds. The arithmetic mean of the
primal gaps and geometric mean of solving time are reported across our experiments.

3.2 REPRESENTATIVE NEURAL SOLVERS FOR COMPARATIVE EVALUATION

In addition to the SOTA human-designed solvers described in Section 2.4, we include a curated set of
machine learning-based CO solvers from recent literature. The neural solvers are tailored to specific
problem categories they are developed for:

• DiffUCO (Sanokowski et al., 2024): An unsupervised diffusion-based neural solver for MIS
and MDS that learns from the Lagrangian relaxation objective.

• SDDS (Sanokowski et al., 2025): A more scalable version of DiffUCO for MIS and MDS, with
efficient training process.

• RLNN (Feng & Yang, 2025a): A neural sampling framework that enhances exploration in CO
by enforcing expected distances between sampled and current solutions.

• LEHD (Luo et al., 2023): A hybrid encoder-decoder model for TSP and CVRP, with strong
generalization to real-world instances.

• DIFUSCO (Sun & Yang, 2023): A diffusion-based approach for TSP that achieves strong
scalability, solving instances with up to 10,000 cities.

• DeepACO (Ye et al., 2023): A neural solver that adapts Ant Colony Optimization (ACO)
principles to learn metaheuristic strategies.

• tMDP (Scavuzzo et al., 2022): A reinforcement learning framework that models the branching
process in Mixed Integer Program (MIP) solver as a tree-structured Markov Decision Process.

• SORREL (Feng & Yang, 2025b): A reinforcement learning method that leverages suboptimal
demonstrations and self-imitation learning to train branching policies in MIP solvers.

• GCNN (Gasse et al., 2019): A graph convolutional network (GNN)-guided solver for MIPs,
which learns to guide branching decisions within a branch-and-bound framework.

• IL-LNS (Sonnerat et al., 2021): A neural large neighborhood search method for Integer Linear
Programs (ILPs) that is trained to predict the locally optimal neighborhood choice.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• CL-LNS (Huang et al., 2023): A contrastive learning-based large neighborhood search approach
for ILPs which advances the imitation learning strategy in IL-LNS.

• MPGN (Lei et al., 2022): A reinforcement learning-based approach for FJSP that employs
multi-pointer graph networks to capture complex dependencies and generate efficient schedules.

• L-RHO (Li et al., 2025a): A learning-guided rolling horizon optimization method that integrates
machine learning predictions into the rolling horizon framework.

Since STP is not well studied by existing neural methods, we consider both reinforcement
learning (RL) and supervised learning (SL) baselines, predicting the Steiner points. The Taka-
hashi–Matsuyama algorithm (Takahashi & Matsuyama, 1980) is then applied for decoding.

3.3 REPRESENTATIVE LLM-BASED AGENTS FOR COMPARATIVE EVALUATION

Our LLM-based solvers are selected based on the CO-Bench evaluation protocol (Sun et al., 2025),
including both general-purpose prompting approaches and CO-specific iterative strategies:

• FunSearch (Romera-Paredes et al., 2023): An evolutionary search framework that iteratively
explores the solution space and refines candidates through backtracking and pruning.

• Self-Refine (Madaan et al., 2023; Shinn et al., 2023): A feedback-driven refinement method in
which the LLM improves its own output via iterative self-refinement.

• ReEvo (Ye et al., 2024): A self-evolving agent that leverages past trajectories—both successful
and failed—to refine its future decisions through reflective reasoning.

All LLM-based solvers are evaluated across the full set of eight CO problem types in our benchmark.

4 RESULTS

We summarize the comparative results in Figure 2 and Table 2. See detailed results in Appendix D.
Note that the primal gap is computed relative to the best known solution (BKS), so its absolute
value does not directly reflect the inherent difficulty of the instance—especially in cases where
no known optimum exists.

We draw several key observations from our results. First, there is a substantial performance
gap between human-designed state-of-the-art (SOTA) solvers and ML-based solvers across all
problem types and difficulty levels. Strikingly, this gap is more pronounced in our benchmark than
in previously published results. For instance, LEHD reports only a 0.72% gap on a standard TSP
benchmark (Kool et al., 2019), whereas on our new benchmark the gap widens to 10% on easy TSP
instances and an alarming 77% on hard instances. A major factor behind this discrepancy lies in the
training and evaluation protocols. Prior studies typically trained neural solvers on synthetic graphs
of a fixed size (e.g., 1000 nodes) and evaluated them on test instances of the same size, ensuring
aligned conditions. In contrast, our datasets incorporate substantial variability in both graph size and
structure across training and test sets. This setup better reflects real-world deployment scenarios but
also introduces significant distribution shifts, under which LEHD and many other ML-based methods
experience severe performance degradation in FRONTIERCO.

Second, neural solvers face serious scalability challenges. Although they used to be treated as
efficient heuristics on large-scale, difficult instances, we find that in practice this is often not the case.
Neural networks typically address the non-convexity of CO problems through over-parameterization
(Allen-Zhu et al., 2019), which inflates single-value variables into high-dimensional representations
and leads to frequent out-of-memory failures (observed in 4 of 8 problems; see Appendix D).
Inference efficiency is an additional bottleneck. For example, the auto-regressive solver LEHD (Luo
et al., 2023) requires running a transformer model (Vaswani et al., 2017) for 10M steps to produce
a single solution on our largest TSP instance, failing to return any solution within the 1-hour time
limit. Similar inefficiencies exist even on easier instances or under shorter time budgets (Appendix E).
Addressing these issues through integration of reduction techniques (Andersen & Andersen, 1995)
and the design of more compact neural architectures is thus an important direction for future research.

Third, LLM-based agents show the potential to outperform prior human-designed SOTA solvers.
For example, Self-Refine surpasses KaMIS on the easy MIS set, and FunSearch outperforms HGS on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Primal gap (%) across eight CO problems on easy and hard sets (lower is better). Classical
(blue), neural (green), and LLM-based agents (red). Bars marked with * indicate at least one infeasible
run on that test set; in such cases we assign gap 1 and time 3600 seconds (see Section 3.1).

the hard CVRP set. A closer inspection of these methods reveals their algorithmic sophistication: Self-
Refine applies kernelization to simplify MIS instances, solves small kernels exactly using a Tomita-
style max-clique algorithm, and employs ARW-style heuristics with solution pools, crossover, and
path-relinking for larger instances. Similarly, FunSearch builds an Iterated Local Search framework
for CVRP, enhanced with regret insertion and Variable Neighborhood Descent. These results highlight
the promise of LLM-based approaches in automatically developing competitive, and in some cases
superior, solvers for CO.

Fourth, despite their promise, LLM-based agents exhibit substantial performance variability.
For example, while they perform comparably to the SOTA solver HGS on the hard CVRP set,
they fall dramatically short on TSP—even though both are routing problems. We hypothesize that
this stems from the nature of LLM training: while models are exposed to diverse human-designed
heuristics and can combine them in novel ways, they generally lack the ability to reliably assess
the effectiveness of the generated algorithms. As a result, each sampling run may randomly yield
a different, not necessarily effective, strategy. This absence of internal reasoning abilities largely
restricts the applicability of LLM agents to hard-to-verify tasks and raises safety concerns when they
generate resource-intensive algorithms for large instances (e.g., frequent out-of-memory issues on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CPMP during evolving). Current agentic frameworks tend to focus on problems that are challenging
yet easy to verify, strongly relying on external feedback. In contrast, FRONTIERCO provides a
hard-to-verify benchmark (but still verifiable for evaluation purposes) that highlights the reasoning
capabilities of the LLM themselves.

Table 2: The average primal gap achieved by LLM
agentic solvers over all eight CO problems.

Method Avg. Gap ↓
(All)

Avg. Gap ↓
(Easy)

Avg. Gap ↓
(Hard)

FunSearch 20.35% 10.05% 30.65%
Self-Refine 15.11% 8.18% 22.03%
ReEvo 13.25% 7.25% 19.25%

Table 3: Ablation study on the effective-
ness of the neural module.

TSP-Easy CFLP-Easy
Method Gap ↓ Method Gap ↓
LKH-3 0.03% Gurobi 0.00%
2-OPT 20.09% SCIP 6.50%
DIFUSCO 4.19% GCNN 3.22%

5 DISCUSSIONS

5.1 DOES THE NEURAL MODULE HELP?

Considering the performance gap between neural solvers and SOTA solvers, a natural question arises:
does the neural module actually contribute to improved performance? To explore this, we conduct
an ablation study by removing the neural component from the underlying algorithm of each neural
solver. We evaluate two representative pairs: DIFUSCO (Sun & Yang, 2023) vs. 2-OPT, and GCNN
(Gasse et al., 2019) vs. SCIP (Achterberg, 2009). The results are summarized in Table 3.

The results show that both DIFUSCO and GCNN significantly improve upon their respective heuristic
baselines, indicating a meaningful contribution from the neural module. However, such improvement
is still far from being comparable to the SOTA classical solvers. Overall, our findings suggest that
neural components can enhance human-designed heuristics, but such improvement is typically
realized when built on relatively weak base algorithms. Whether similar gains can be achieved
when enhancing already strong heuristics remains unclear.

5.2 DO NEURAL SOLVERS CAPTURE GLOBAL STRUCTURE?

Most neural solvers are based on graph neural networks (GNNs), which rely on local message
passing. While they have demonstrated strong performance on routing problems such as TSP and
CVRP—which involve complex global constraints—the majority of existing evaluations are limited
to 2D Euclidean instances. Compared to general graph problems, Euclidean instances—such as
those in metric TSP—often exhibit favorable local structures (e.g., triangle inequality), which can be
explicitly exploited by certain algorithms to achieve improved performance (Karlin et al., 2021). In
contrast, general graph problems such as MIS lack such spatial regularities, and neural solvers often
perform poorly on them (Angelini & Ricci-Tersenghi, 2022; Böther et al., 2022).

To explicitly evaluate the ability of neural solvers in capturing global structure, we leverage the rich
source of STP instances, which includes both Euclidean and non-Euclidean graphs (see Appendix B.8
for details). We train two separate GNNs to predict Steiner nodes, using ground truth labels generated
by SCIP-Jack (Rehfeldt et al., 2021). One model is trained on Euclidean instances, and the other on
non-Euclidean instances. The training dynamics are shown in Figure 3.

The results reveal a clear contrast: while the GNN quickly achieves a high F1 score in predicting
Steiner points on Euclidean graphs, it fails to make any progress on non-Euclidean ones. This
suggests that existing GNNs implicitly rely on locality and cannot really capture the global structure.
These findings underscore a fundamental limitation in the expressive power of current neural solvers.

5.3 WHAT KINDS OF ALGORITHMS DO LLM-BASED SOLVERS DISCOVER?

To better understand the algorithmic strategies developed by LLM-based solvers, we visualize the
key words corresponding to their generated algorithms using the word cloud in Figure 4, where the
size of each word reflects its frequency of appearance across algorithms.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Training dynamics of neural solvers on
Euclidean and non-Euclidean STP instances.

Figure 4: Word cloud of the algorithms gener-
ated by LLM-based solvers.

A clear pattern emerges: classical metaheuristics—particularly simulated annealing (SA) and large
neighborhood search (LNS)—consistently appear across a diverse set of problems and often form the
foundation of LLM-generated algorithms. This highlights a shared reliance on well-established
CO algorithms that effectively balance exploration and exploitation. While current LLMs still
fall short of demonstrating novel algorithmic reasoning in CO, their strategies tend to replicate known
metaheuristics and problem-specific techniques from the literature. Interestingly, we observe that
their performance does not critically depend on integrating existing solvers, suggesting that LLMs
can autonomously construct plausible and often effective algorithms. This adaptability is particularly
promising for rapidly tackling new problem variants or classical problems with additional constraints,
indicating strong potential for LLMs in zero-shot or few-shot algorithm design scenarios.

6 RELATED WORK

Current machine-learning approaches to CO fall into two broad categories: neural and symbolic
solvers. Neural solvers primarily train a graph neural network (GNN) model with standard machine
learning objectives (Bengio et al., 2020; Cappart et al., 2023). The trained GNN is then used either to
predict complete solutions (Luo et al., 2023; Sun & Yang, 2023; Sanokowski et al., 2024; 2025) or to
guide classical heuristics such as branch-and-bound (Gasse et al., 2019; Scavuzzo et al., 2022; Feng
& Yang, 2025b) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023; Feng et al.,
2025). Symbolic solvers instead attempt to generate executable programs that solve the problem,
exploring the space of algorithmic primitives with reinforcement learning (Kuang et al., 2024a;b) or
leveraging LLM agents for code generation (Romera-Paredes et al., 2023; Ye et al., 2024; Liu et al.,
2024; Novikov et al., 2025).

Despite these advances, empirical studies have mostly focused on small synthetic benchmarks (Kool
et al., 2019; Zhang et al., 2023; Berto et al., 2025; Bonnet et al., 2024), or restricted to a single type
of CO problems (Thyssens et al., 2023; Li et al., 2025b). Besides, the lack of training instances in
existing LLM agentic benchmarks (Fan et al., 2024; Tang et al., 2025; Sun et al., 2025) also hinders
the further development. To bridge these gaps, we introduce a comprehensive benchmark with both
realistic evaluation instances and diverse training data sources.

7 CONCLUSION

We present FRONTIERCO, a new benchmark designed to rigorously evaluate ML-based CO solvers
under realistic, large-scale, and diverse problem settings. Through a unified empirical study, we reveal
that while current ML methods show potential, including both neural and LLM-based solvers, they
continue to fall short of state-of-the-art human-designed algorithms in terms of structural reasoning,
generalization, and scalability. However, our findings also uncover promising avenues: neural
solvers can enhance certain human heuristics, and LLMs discover better usage of existing algorithms.
We hope FRONTIERCO will serve as a foundation for advancing the design and evaluation of
next-generation ML-based CO solvers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Details of data collection are provided in Appendix B. The implementations of neural solvers are
taken from the official public repositories of each method, as referenced in Section 3.2. All remaining
code, including that for classical solvers, BKS computation, and LLM agent solvers, is available at
https://anonymous.4open.science/r/FrontierCO-82E3.

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computa-
tion, 1:1–41, 2009.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
in overparameterized neural networks, going beyond two layers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf.

Guilherme Almeida, Elisangela Martins de Sá, Sérgio Souza, and Marcone Souza. A hybrid iterated
local search matheuristic for large-scale single source capacitated facility location problems.
Journal of Heuristics, 30:1–28, 12 2023. doi: 10.1007/s10732-023-09524-9.

Erling Andersen and Knud Andersen. Presolving in linear programming. Math. Program., 71:
221–245, 12 1995. doi: 10.1007/BF01586000.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than
classical greedy algorithms in solving combinatorial optimization problems like maximum indepen-
dent set. Nature Machine Intelligence, 5(1):29–31, December 2022. ISSN 2522-5839. doi: 10.1038/
s42256-022-00589-y. URL http://dx.doi.org/10.1038/s42256-022-00589-y.

Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale routing
problems. Comput. Oper. Res., 107(C):32–42, July 2019. ISSN 0305-0548. doi: 10.1016/j.cor.
2019.03.006. URL https://doi.org/10.1016/j.cor.2019.03.006.

Pasquale Avella and Maurizio Boccia. A cutting plane algorithm for the capacitated facility
location problem. Computational Optimization and Applications, 43(1):39–65, May 2009.
doi: 10.1007/s10589-007-9125-x. URL https://ideas.repec.org/a/spr/coopap/
v43y2009i1p39-65.html.

Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasilyev. An effective heuristic for
large-scale capacitated facility location problems. Journal of Heuristics, 15:597–615, 12 2009.
doi: 10.1007/s10732-008-9078-y.

Vahid Roshanaei Bahman Naderi, Rubén Ruiz. Repository for mixed-integer programming versus
constraint programming for shop scheduling problems: New results and outlook. 2023. doi:
10.5281/zenodo.7541223. URL https://github.com/INFORMSJoC/2021.0326.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.
org/doi/abs/10.1126/science.286.5439.509.

D. Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling prob-
lem with work centers. 2012. URL https://api.semanticscholar.org/CorpusID:
54531116.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon, 2020.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

10

https://anonymous.4open.science/r/FrontierCO-82E3
https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
http://dx.doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1016/j.cor.2019.03.006
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://github.com/INFORMSJoC/2021.0326
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://api.semanticscholar.org/CorpusID:54531116
https://api.semanticscholar.org/CorpusID:54531116

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou,
Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool,
Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon,
Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial
Optimization Benchmark. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2025. URL https://github.com/ai4co/rl4co.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn Neil
Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock, Siddarth
Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a
diverse suite of scalable reinforcement learning environments in JAX. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=C4CxQmp9wc.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=mk0HzdqY7i1.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Marco Caserta and Stefan Voß. A general corridor method-based approach for capacitated fa-
cility location. International Journal of Production Research, 58(13):3855–3880, 2020. doi:
10.1080/00207543.2019.1636320. URL https://doi.org/10.1080/00207543.2019.
1636320.

G. Cornuejols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relaxations for the
capacitated plant location problem. European Journal of Operational Research, 50(3):280–297,
1991. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(91)90261-S. URL https:
//www.sciencedirect.com/science/article/pii/037722179190261S.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop
scheduling problem: A review. European Journal of Operational Research, 314(2):409–432,
2024. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.05.017. URL https://www.
sciencedirect.com/science/article/pii/S037722172300382X.

Juan Diaz and Elena Fernandez. Hybrid scatter search and path relinking for the capacitated
p-median problem. European Journal of Operational Research, 169:570–585, 02 2006. doi:
10.1016/j.ejor.2004.08.016.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 4092–4114, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.225.

Shengyu Feng and Yiming Yang. Regularized langevin dynamics for combinatorial optimization. In
International conference on machine learning. PMLR, 2025a.

Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning
for learning to branch. In The 39th Annual AAAI Conference on Artificial Intelligence, 2025b.

11

https://github.com/ai4co/rl4co
https://openreview.net/forum?id=C4CxQmp9wc
https://openreview.net/forum?id=C4CxQmp9wc
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1
https://doi.org/10.1080/00207543.2019.1636320
https://doi.org/10.1080/00207543.2019.1636320
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://www.sciencedirect.com/science/article/pii/S037722172300382X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shengyu Feng, Zhiqing Sun, and Yiming Yang. Spl-lns: Sampling-enhanced large neighborhood
search for solving integer linear programs, 2025. URL https://arxiv.org/abs/2508.
16171.

Zhang-Hua Fu, Sipeng Sun, Jintong Ren, Tianshu Yu, Haoyu Zhang, Yuanyuan Liu, Lingxiao Huang,
Xiang Yan, and Pinyan Lu. A hierarchical destroy and repair approach for solving very large-scale
travelling salesman problem, 2023. URL https://arxiv.org/abs/2308.04639.

Sune Gadegaard, A. Klose, and Lars Nielsen. An improved cut-and-solve algorithm for the single-
source capacitated facility location problem. EURO Journal on Computational Optimization, 6, 04
2017. doi: 10.1007/s13675-017-0084-4.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

Mario Gnägi and Philipp Baumann. A matheuristic for large-scale capacitated clustering. Computers
& Operations Research, pp. 105304, 2021.

Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The impact of metaheuristics
on solving the vehicle routing problem: Algorithms, problem sets, and computational results. 1998.
URL https://api.semanticscholar.org/CorpusID:61757468.

Gianfranco Guastaroba and M.Grazia Speranza. Kernel search for the capacitated facility location
problem. Journal of Heuristics, 18:1–41, 12 2012. doi: 10.1007/s10732-012-9212-8.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems, 12 2017.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning. PMLR, 2023.

David J. Johnson and Michael A. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society,
USA, 1996. ISBN 0821866095.

David S. Johnson and Catherine C. McGeoch. Network Flows and Matching: First DIMACS
Implementation Challenge. American Mathematical Society, USA, 1993. ISBN 0821865986.

Daniel Juhl, David Warme, Pawel Winter, and Martin Zachariasen. The geosteiner software pack-
age for computing steiner trees in the plane: an updated computational study. Mathematical
Programming Computation, 10, 02 2018. doi: 10.1007/s12532-018-0135-8.

Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, pp. 32–45, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451009. URL https:
//doi.org/10.1145/3406325.3451009.

Yasuhito Kawano. A reduction from an lwe problem to maximum independent set problems. Scientific
Reports, 13, 05 2023. doi: 10.1038/s41598-023-34366-7.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer
Publishing Company, Incorporated, 5th edition, 2012. ISBN 3642244874.

12

https://arxiv.org/abs/2508.16171
https://arxiv.org/abs/2508.16171
https://arxiv.org/abs/2308.04639
https://api.semanticscholar.org/CorpusID:61757468
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/3406325.3451009
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye HAO, Bin Li,
and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first
deep symbolic discovery framework. In The Twelfth International Conference on Learning
Representations, 2024a.

Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, Jianye Hao, and Feng Wu. Towards
general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
25623–25641. PMLR, 21–27 Jul 2024b.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. J. Heuristics, 23(4):207–229, 2017. doi: 10.1007/
s10732-017-9337-x. URL https://doi.org/10.1007/s10732-017-9337-x.

Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng
Tang. A multi-action deep reinforcement learning framework for flexible job-shop scheduling
problem. Expert Systems with Applications, 205:117796, 2022. ISSN 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2022.117796. URL https://www.sciencedirect.com/science/
article/pii/S0957417422010624.

Markus Leitner, Ivana Ljubic, Martin Luipersbeck, Markus Prossegger, and Max Resch. New
real-world instances for the steiner tree problem in graphs, 01 2014.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 177–187, New York, NY, USA,
2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081893.
URL https://doi.org/10.1145/1081870.1081893.

Sirui Li, Wenbin Ouyang, Yining Ma, and Cathy Wu. Learning-guided rolling horizon optimization for
long-horizon flexible job-shop scheduling. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=Aly68Y5Es0.

Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
ML4TSPBench: Drawing methodological principles for TSP and beyond from streamlined de-
sign space of learning and search. In The Thirteenth International Conference on Learning
Representations, 2025b. URL https://openreview.net/forum?id=grU1VKEOLi.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In ICML, 2024.

Luiz A.N. Lorena and Edson L.F. Senne. Local search heuristics for capacitated p-median problems.
08 2000.

Luiz A.N. Lorena and Edson L.F. Senne. A column generation approach to capacitated p-median
problems. Computers & Operations Research, 31(6):863–876, 2004. ISSN 0305-0548. doi: https:
//doi.org/10.1016/S0305-0548(03)00039-X. URL https://www.sciencedirect.com/
science/article/pii/S030505480300039X.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
RBI4oAbdpm.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651, 2023.

13

https://doi.org/10.1007/s10732-017-9337-x
https://www.sciencedirect.com/science/article/pii/S0957417422010624
https://www.sciencedirect.com/science/article/pii/S0957417422010624
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/1081870.1081893
https://openreview.net/forum?id=Aly68Y5Es0
https://openreview.net/forum?id=grU1VKEOLi
https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=RBI4oAbdpm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Bahman Naderi and Vahid Roshanaei. Critical-path-search logic-based benders decomposition
approaches for flexible job shop scheduling. INFORMS Journal on Optimization, 4, 08 2021. doi:
10.1287/ijoo.2021.0056.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
2025. URL https://arxiv.org/abs/2506.13131.

Ibrahim Osman. Capacitated clustering problems by hybrid simulated annealing and tabu search,
international transactions in operational research, 1, 317-336. International Transactions in
Operational Research, 1:317–336, 07 1994. doi: 10.1016/0969-6016(94)90032-9.

PACE, 2025. Pace 2025 Challenge: Dominating Set. Website, 2025. URL https://
pacechallenge.org/2025/ds/. Parameterized Algorithms and Computational Experi-
ments Challenge. Available at https://pacechallenge.org/2025/ds/.

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity, volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. Scip-jack: An exact high performance solver for
steiner tree problems in graphs and related problems. In Hans Georg Bock, Willi Jäger, Ekaterina
Kostina, and Hoang Xuan Phu (eds.), Modeling, Simulation and Optimization of Complex Processes
HPSC 2018, pp. 201–223, Cham, 2021. Springer International Publishing. ISBN 978-3-030-55240-
4.

Gerhard Reinelt. Tsplib - a traveling salesman problem library. INFORMS J. Comput., 3(4):376–
384, 1991. URL http://dblp.uni-trier.de/db/journals/informs/informs3.
html#Reinelt91.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
models. Nature, 625:468 – 475, 2023.

Isabel Rosseti, Marcus Poggi, Celso Ribeiro, Eduardo Uchoa, and Renato Werneck. New benchmark
instances for the steiner problem in graphs. 08 2001. doi: 10.1007/978-1-4757-4137-7 28.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. In ICML, 2024. URL https://openreview.
net/forum?id=AFfXlKFHXJ.

Sebastian Sanokowski, Wilhelm Franz Berghammer, Haoyu Peter Wang, Martin Ennemoser, Sepp
Hochreiter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization
and statistical physics. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=peNgxpbdxB.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=M4OllVd70mJ.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: language agents with verbal reinforcement learning. In Neural Information
Processing Systems, 2023.

14

https://arxiv.org/abs/2506.13131
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=peNgxpbdxB
https://openreview.net/forum?id=M4OllVd70mJ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Statistisches Bundesamt. Gemeinden in deutschland nach fläche, bevölkerung und postleitzahl am
31.03.2017 (1. quartal), 2017. URL https://www.destatis.de/DE/ZahlenFakten/
LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/
Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx?blob=publicationFile.
Accessed: 20 September 2017.

Fernando Stefanello, Olinto C. B. de Araújo, and Felipe M. Müller. Matheuristics for the capacitated
p-median problem. International Transactions in Operational Research, 22(1):149–167, 2015. doi:
https://doi.org/10.1111/itor.12103. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/itor.12103.

Mike Steglich. A hybrid heuristic based on self-organising maps and binary linear programming
techniques for the capacitated p-median problem. 06 2019. doi: 10.7148/2019-0267.

Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language model
agents in algorithm search for combinatorial optimization, 2025. URL https://arxiv.org/
abs/2504.04310.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Hiromitsu Takahashi and Akira Matsuyama. An approximate solution for the steiner problem in
graphs. Mathematica Japonica, 24(6):573–577, 1980.

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and im-
proving large language models on graph computation. In International Conference on Learning
Representations, 2025.

Daniela Thyssens, Tim Dernedde, Jonas K. Falkner, and Lars Schmidt-Thieme. Routing arena: A
benchmark suite for neural routing solvers, 2023. URL https://arxiv.org/abs/2310.
04140.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research,
60(3):611–624, 2012. doi: 10.1287/opre.1120.1048. URL https://doi.org/10.1287/
opre.1120.1048.

Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. J. Artif. Int.
Res., 12(1):93–103, March 2000. ISSN 1076-9757.

Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint sat-
isfaction: Easy generation of hard (satisfiable) instances. Artificial Intelligence, 171(8):514–
534, 2007. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2007.04.001. URL https:
//www.sciencedirect.com/science/article/pii/S0004370207000653.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems,
2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

15

https://api.semanticscholar.org/CorpusID:236154746
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103
https://arxiv.org/abs/2504.04310
https://arxiv.org/abs/2504.04310
https://openreview.net/forum?id=JV8Ff0lgVV
https://arxiv.org/abs/2310.04140
https://arxiv.org/abs/2310.04140
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://www.sciencedirect.com/science/article/pii/S0004370207000653

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=sTjW3JHs2V.

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used exclusively for supportive purposes, such as adapting
baseline implementations, processing data, generating plots, and refining the manuscript text. Impor-
tantly, LLMs were not involved in data collection/synthesis, experimental design and result analysis,
and therefore did not influence the scientific contributions of this work.

B DATA COLLECTION DETAILS

This section outlines the data collection process for all problems, covering both test and training/vali-
dation instances. Since the training instance generation for neural solvers varies significantly across
methods, we omit low-level details such as the number of instances and parameter settings. Instead,
we focus on describing the generation of the validation set (test cases used to provide feedback for
iterative agent refinement) used for LLM-based solvers.

B.1 MAXIMUM INDEPENDENT SET

To construct suitable test instances, we conduct a comprehensive re-evaluation of the datasets
collected by Böther et al. (Böther et al., 2022). We find that some large real-world graphs (Leskovec
& Krevl, 2014), such as ai-caida (Leskovec et al., 2005) with up to 26,475 nodes, are not particularly
challenging for SOTA classical solvers like KaMIS (Lamm et al., 2017), which can solve them within
seconds. Therefore, we select two moderately sized but more challenging datasets.

The easy test set comprises complementary graphs of the maximum clique instances from the 2nd
DIMACS Challenge (Johnson & Trick, 1996), while the hard test set consists of the largest 16
instances (each with over 1,000 nodes) from the BHOSLib benchmark (Xu et al., 2007), derived from
SAT reductions. Since the original links have expired, we obtain these instances and their BKS from
a curated mirror1. For those interested in additional sources of high-quality MIS instances, we also
highlight vertex cover instances from the 2019 PACE Challenge2, reductions from coding theory3,
and recent constructions derived from learning-with-errors (LWE) (Kawano, 2023), which provide a
promising strategy for generating challenging MIS instances.

Training instances are generated using the RB model (Xu & Li, 2000), widely adopted in recent
neural MIS solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We synthesize 20 instances
with 800–1,200 nodes for our LLM validation set.

B.2 MINIMUM DOMINATING SET

Despite the popularity of MDS in evaluating neural solvers (Zhang et al., 2023; Sanokowski et al.,
2024; 2025), we find a lack of high-quality publicly available benchmarks. We therefore rely on
the PACE Challenge 20254, using the exact track instances as our easy set and the heuristic track
instances as the hard set. From each, we selected the 20 instances with the highest primal-dual gaps
after a one-hour run with Gurobi. Reference BKS are obtained by extending the solving time to two
hours.

Training instances are Barabási–Albert graphs (Barabási & Albert, 1999) with 800–1,200 nodes,
consistent with previous literature (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We generate
20 such instances for the LLM validation set.

1https://iridia.ulb.ac.be/˜fmascia/maximum_clique/
2https://pacechallenge.org/2019/
3https://oeis.org/A265032/a265032.html
4https://pacechallenge.org/2025/

16

https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V
https://iridia.ulb.ac.be/~fmascia/maximum_clique/
https://pacechallenge.org/2019/
https://oeis.org/A265032/a265032.html
https://pacechallenge.org/2025/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 TRAVELING SALESMAN PROBLEM

We source TSP instances from the 8th DIMACS Challenge5 and TSPLib6. The easy test set includes
symmetric 2D Euclidean TSP instances (distance type EUC 2D, rounding applied) from TSPLib with
over 1,000 cities, all with known optimal solutions. This aligns with settings used in prior neural TSP
solvers (Karlin et al., 2021).

The hard test set consists of synthetic instances from the DIMACS Challenge with at least 10,000
cities (Fu et al., 2023). We obtain BKS from the LKH website7.

Training instances follow the standard practice of uniformly sampling points in a unit square (Kool
et al., 2019). For simplicity, we reuse DIMACS instances with 1,000 nodes as our LLM training set,
since they are drawn from the same distribution, except scaling the coordinates by a constant.

B.4 CAPACITATED VEHICLE ROUTING PROBLEM

We collect CVRP instances from the 12th DIMACS Challenge8 and CVRPLib9, which have significant
overlap. From these, we select the Golden (collected by Arnold et al. (Golden et al., 1998)) and
Belgium (collected by Arnold et al. (Arnold et al., 2019)) instances as our easy and hard sets,
respectively. All BKS are retrieved from the CVRPLib website.

Training data generation follows the method used in DeepACO (Ye et al., 2023). Each instance
includes up to 500 cities, with demands in [1, 9] and capacity fixed at 50. We generate 15 total
validation instances for LLMs, with 5 each for 20, 100, and 500 cities.

B.5 CAPACITATED FACILITY LOCATION PROBLEM

Following the benchmark setup in previous works (Guastaroba & Speranza, 2012; Caserta & Voß,
2020), we select instances from Test Bed 1 (Avella & Boccia, 2009) and Test Bed B (Avella et al.,
2009) as our easy and hard test sets, respectively. The easy set includes the 20 largest instances
from Test Bed 1, each with 1,000 facilities and 1,000 customers. The hard set consists of the 30
largest instances from Test Bed B, each with 2,000 facilities and 2,000 customers. All instances are
downloaded from the OR-Brescia website10.

Notably, our easy instances are already significantly larger than the most challenging instances
typically used in neural solver evaluations (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang,
2025b), which contain at most 100 facilities and 400 customers. All easy instances can be solved
exactly by Gurobi. For the hard instances, as all available BKS identified in the literature (Caserta
& Voß, 2020) are inferior to those obtained by Gurobi, we rerun Gurobi for two hours to obtain
improved reference solutions.

Overall, we find that Gurobi already demonstrates strong performance on standard CFLP variants,
in which each customer may be served by multiple facilities. Consequently, the single-source
CFLP variant—where each customer must be assigned to exactly one facility—has become a more
compelling and actively studied problem in recent CO literature (Gadegaard et al., 2017; Caserta
& Voß, 2020; Almeida et al., 2023). Several corresponding benchmarks are also available on the
OR-Brescia website.

For training data, we adopt the synthetic generation method from Cornuejols et al. (Cornuejols
et al., 1991), producing 20 instances with 100 facilities and 100 customers for LLM validation. This
generation method is widely used in existing neural branching works (Gasse et al., 2019; Scavuzzo
et al., 2022; Feng & Yang, 2025b), and forms part of the construction for Test Bed 1 (Avella & Boccia,
2009).

5http://archive.dimacs.rutgers.edu/Challenges/TSP/
6http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
7http://webhotel4.ruc.dk/˜keld/research/LKH/DIMACS_results.html
8http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
9http://vrp.galgos.inf.puc-rio.br/index.php/en/

10https://or-brescia.unibs.it/home

17

http://archive.dimacs.rutgers.edu/Challenges/TSP/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://or-brescia.unibs.it/home

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.6 CAPACITATED p-MEDIAN PROBLEM

We follow the evaluation setup in recent works on CRMP (Stefanello et al., 2015; Gnägi & Baumann,
2021). Instances with fewer than 10,000 facilities are assigned to the easy set; larger ones go to the
hard set. Easy instances include 6 real-world São José dos Campos instances (Lorena & Senne, 2004)
and 25 adapted TSPLib instances (Lorena & Senne, 2000; Stefanello et al., 2015). These are sourced
from INPE11 and SomAla12 websites. Hard instances are large-scale problems introduced by Gnägi
and Baumann (Gnägi & Baumann, 2021), downloaded from their GitHub13. BKS are derived by
combining the best GB21-MH results and values reported in (Stefanello et al., 2015; Steglich, 2019;
Gnägi & Baumann, 2021).

In total, we collect 31 easy and 12 hard instances, all using Euclidean distances. Additional alterna-
tives include spherical-distance instances (Diaz & Fernandez, 2006; Statistisches Bundesamt, 2017)
and high-dimensional instances (Gnägi & Baumann, 2021).

We synthesize training data with Osman’s method (Osman, 1994). The validation set for LLMs are
generated by fixing the number of facilities at 500 and varying medians p in {5, 10, 20, 50}. Each
setting includes 5 instances.

B.7 FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

We collect FJSP instances from two recent benchmark sets commonly used in the evaluation of classi-
cal FJSP solvers. The easy test set consists of instances introduced by Behnke and Geiger (Behnke &
Geiger, 2012), available via a GitHub mirror14. The hard test set includes 24 of the largest instances
(with 100 jobs) from a benchmark proposed by Naderi and Roshanaei (Naderi & Roshanaei, 2021),
which we obtain from the official repository15. These two datasets are selected based on recent
comparative studies in the literature (Bahman Naderi, 2023; Dauzère-Pérès et al., 2024).

Based on our literature review, the strongest results have been reported by the CP-based Benders
decomposition method (Naderi & Roshanaei, 2021); however, the source code is not publicly
available. As a result, we adopt a constraint programming approach using CPLEX, which has
demonstrated consistently strong performance relative to other commercial solvers and heuristic
methods (Bahman Naderi, 2023).

Training data is generated following the same protocol used in Li et al. (Li et al., 2025a). Specifically,
we synthesize 20 instances, each with 20 machines and 10 jobs, to form the LLM validation set.

B.8 STEINER TREE PROBLEM

We collect STP instances from SteinLib16 and the 11th DIMACS Challenge17. The easy set includes
Vienna-GEO instances (Leitner et al., 2014), which—despite having tens of thousands of nodes—are
solvable within minutes by SCIP-Jack. The hard set comprises PUC instances (Rosseti et al., 2001),
most of which cannot be solved within one hour by SCIP-Jack and even lack known optima. BKS
are determined by taking the best value between SCIP-Jack’s one-hour primal bound and published
solutions from SteinLib or Vienna-GEO (Leitner et al., 2014). We also highlight the 2018 PACE
Challenge18 as a useful benchmark with varied difficulty levels.

Training data includes two generation strategies. The first generator corresponds to the hardest
instances in PUC (Rosseti et al., 2001), which constructs graphs from hypercubes with randomly
sampled (perturbed) edge weights. We generate 100 training instances for neural solvers and 10
validation instances for LLMs across dimensions 6–10. The second, based on GeoSteiner (Juhl et al.,
2018), samples 25,000-node graphs from a unit square. We include 15 such instances (10 for neural

11http://www.lac.inpe.br/˜lorena/instancias.html
12http://stegger.net/somala/index.html
13https://github.com/phil85/GB21-MH
14https://github.com/Lei-Kun/FJSP-benchmarks
15https://github.com/INFORMSJoC/2021.0326
16https://steinlib.zib.de/steinlib.php
17https://dimacs11.zib.de/organization.html
18https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances

18

http://www.lac.inpe.br/~lorena/instancias.html
http://stegger.net/somala/index.html
https://github.com/phil85/GB21-MH
https://github.com/Lei-Kun/FJSP-benchmarks
https://github.com/INFORMSJoC/2021.0326
https://steinlib.zib.de/steinlib.php
https://dimacs11.zib.de/organization.html
https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

solvers, 5 for LLMs)19, and add 45 adapted TSPLib instances (Juhl et al., 2018) to the neural training
set. The LLM training set also serves as the validation set for neural solvers.

C EXAMPLE PROMPT

Our query prompts basically consist of two parts: the description of the problem background and the
starter code for LLM to fill in. The following is an example prompt on TSP.

The evaluation example

Problem Description
The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem
where, given a set of cities with known pairwise distances, the objective is to find the shortest
possible tour that visits each city exactly once and returns to the starting city. More formally,
given a complete graph G = (V, E) with vertices V representing cities and edges E with
weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting
each vertex exactly once) of minimum total weight.
Starter Code
def solve(**kwargs):

"""
Solve a TSP instance.

Args:
- nodes (list): List of (x, y) coordinates representing

cities in the TSP problem
Format: [(x1, y1), (x2, y2), ..., (xn, yn)]

Returns:
dict: Solution information with:

- ’tour’ (list): List of node indices representing the
solution path

Format: [0, 3, 1, ...] where numbers
are indices into the nodes list

"""
Your function must yield multiple solutions over time, not

just return one solution
Use Python’s yield keyword repeatedly to produce a stream of

solutions
Each yielded solution should be better than the previous one
while True:

yield {
’tour’: [],

}

D DETAILED RESULTS

Table 4, 5, 6, and 7 present the detailed results for the evaluated methods in Section 4. A result is
marked with ∗ if the method suffers from the out-of-memory or timeout issue before obtaining a
feasible solution on any instance in this benchmark.

E EFFICIENCY ANALYSIS OF NEURAL SOLVERS

We adopt a 1-hour time limit in our evaluation to ensure that all solvers, especially neural approaches,
have sufficient time to produce at least one feasible solution. To examine this choice, we take TSP as

19http://www.geosteiner.com/instances/

19

http://www.geosteiner.com/instances/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Comparative Results on MIS and MDS

MIS Easy Hard MDS Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓ Method Gap ↓ Time Gap ↓ Time ↓ ↓
KaMIS 1.51% 223s 2.65% 274s Gurobi 0.00% 3600s 0.63% 3600s

DiffUCO 9.57% 154s 6.45% 19s DiffUCO 71.86% 54s 100.00%∗ 3600s∗

SDDS 11.85% 223s 5.24% 27s SDDS 66.21% 54s 100.00%∗ 3600s∗

RLNN 6.29% 532s 6.31% 1064s RLNN – – – –

FunSearch 1.87% 3600s 4.97% 3600s FunSearch 41.83% 3600s 95.21% 3600s
Self-Refine 1.30% 3600s 4.02% 3600s Self-Refine 6.19% 3600s 5.71% 3600s
ReEvo 1.44% 3600s 4.81% 3600s ReEvo 7.52% 3600s 5.81% 3600s

Table 5: Comparative Results on TSP and CVRP

TSP Easy Hard CVRP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓ Method Gap ↓ Time ↓ Gap ↓ Time ↓
LKH-3 0.03% 65s 2.89% 21s HGS 0.11% 3600s 6.74% 3600s

LEHD 10.23% 487s 76.84%∗ 1347s∗ LEHD 1.97% 893s 100.00%∗ 3600s∗

DIFUSCO 4.19% 555s 69.04%∗ 2850s∗ DeepACO 4.42% 50s 27.69%∗ 3333s∗

FunSearch 6.79% 3600s 35.82% 3600s FunSearch 5.27% 3600s 6.52% 3600s
Self-Refine 6.29% 3600s 32.00% 3600s Self-Refine 3.86% 3600s 27.50% 3600s
ReEvo 5.65% 3600s 37.77% 3600s ReEvo 7.16% 3600s 10.01% 3600s

Table 6: Comparative Results on CFLP and CPMP

CFLP Easy Hard CPMP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓ Method Gap ↓ Time ↓ Gap ↓ Time ↓
Gurobi 0.00% 308s 0.01% 3136s GB21-MH 0.53% 541s 0.32% 3600s

tMDP 3.54% 3581s 55.35% 3600s IL-LNS 80.57%∗ 3600s∗ 100.00%∗ 3600s∗

SORREL 3.46% 3600s 55.35% 3600s CL-LNS 81.45%∗ 3600s∗ 100.00%∗ 3600s∗

GCNN 3.22% 3551s 55.35% 3600s GCNN 42.91%∗ 2143s∗ 100.00%∗ 3600s∗

FunSearch 7.31% 3600s 7.41% 3600s FunSearch 3.96% 3600s 77.32%∗ 3600s∗

Self-Refine 27.08% 3600s 24.93% 3600s Self-Refine 2.84% 3600s 74.05%∗ 3600s∗

ReEvo 12.89% 3600s 12.79% 3600s ReEvo 3.40% 3600s 70.64%∗ 3600s∗

Table 7: Comparative Results on FJSP and STP

FJSP Easy Hard STP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓ Method Gap ↓ Time ↓ Gap ↓ Time ↓
CPLEX 0.00% 702s 0.01% 3600s SCIP-Jack 0.00% 22s 0.50% 717s

MPGN 12.78% 9s 1.50% 69s RL 14.00% 31s 13.10% 1s
L-RHO 27.20% 21s 1.03% 58s SL 14.00% 31s 13.10% 1s

FunSearch 5.05% 3600s 12.10% 3600s FunSearch 8.29% 3600s 5.82% 3600s
Self-Refine 6.66% 3600s 1.14% 3600s Self-Refine 11.23% 3600s 6.93% 3600s
ReEvo 5.61% 3600s 2.16% 3600s ReEvo 14.36% 3600s 10.03% 3600s

an example and sample several instances from the TSP-easy set. Table 8 reports the time required by
LKH-3, LEHD, and DIFUSCO to obtain their first feasible solution.

The results show that neural solvers are far less time-efficient than LKH-3. When scaling from a
4,461-node instance to a 15,112-node instance, LKH-3 requires about five times more time yet still
achieves near-optimal solutions. By contrast, DIFUSCO takes around eight times longer, and LEHD

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

fnl4461 rl5919 d15112

Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓
LKH-3 0.00% 11s 2.35% 12s 0.17% 51s
LEHD 16.00% 81s 9.42% 169s 26.49% 2464s

DIFUSCO 3.50% 36s 3.31% 52s 3.20% 278s

Table 8: Time to obtain one feasible solution on TSP-easy instances. The instance name is shown,
where the number corresponds to the number of nodes in the graph.

more than thirty times longer, to produce even a single feasible solution. While this difference may
appear minor on small graphs (e.g., ∼1,000 nodes) where GPU acceleration can mask inefficiency, it
becomes prohibitive as problem sizes grow. This motivates the development of our large-scale CO
benchmark and justifies the choice of a 1-hour time limit.

To further address concerns that the long time budget might favor the classical solvers, we also
compare the three methods under short limits of 10 and 20 seconds. Table 9 summarizes the results.

10s 20s 3600s

Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓
LKH-3 27.98%∗ 7.0s∗ 17.78%∗ 8.1s∗ 0.03% 65s
LEHD 59.50%∗ 7.8s∗ 40.70%∗ 10.5s∗ 10.23% 487s

DIFUSCO 63.82%∗ 9.1s∗ 37.37%∗ 12.3s∗ 4.19% 555s

Table 9: Comparative results on TSP-easy under different time limits.

Even under very short limits, neural solvers do not gain an advantage. While LKH-3 exhibits some
degradation when forced to terminate early, it still outperforms LEHD and DIFUSCO by a large
margin. In fact, both neural solvers suffer from even more severe timeout issues, highlighting their
inefficiency at small budgets as well. On the other hand, DIFUSCO shows better scalability than
LEHD, suggesting the progress achieved in neural solver design. Overall, these results confirm that a
1-hour time limit is necessary for a fair evaluation, and that neural solvers remain both slower and
less effective compared to classical baselines.

21

	Introduction
	FrontierCO: the Proposed Benchmark
	Formal Objective and Evaluation Metrics
	Domain Coverage
	Problem Instances
	SOTA Solvers and Best Known Solutions (BKS)
	Standardized Training/Validation Data

	Evaluation Design
	Implementation Settings
	Representative Neural Solvers for Comparative Evaluation
	Representative LLM-based Agents for Comparative Evaluation

	Results
	Discussions
	Does the Neural Module Help?
	Do Neural Solvers Capture Global Structure?
	What Kinds of Algorithms Do LLM-based Solvers Discover?

	Related Work
	Conclusion
	The Use of Large Language Models
	Data Collection Details
	Maximum Independent Set
	Minimum Dominating Set
	Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Capacitated Facility Location Problem
	Capacitated p-Median Problem
	Flexible Job-Shop Scheduling Problem
	Steiner Tree Problem

	Example Prompt
	Detailed Results
	Efficiency Analysis of Neural Solvers

