

000 001 002 003 004 005 006 007 008 009 010 011 012 FRONTIERCO: REAL-WORLD AND LARGE-SCALE EVALUATION OF MACHINE LEARNING SOLVERS FOR COMBINATORIAL OPTIMIZATION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Machine learning (ML) has shown promise for tackling combinatorial optimization (CO), but much of the reported progress relies on small-scale, synthetic benchmarks that fail to capture real-world structure and scale. A core limitation is that ML methods are typically trained and evaluated on synthetic instance generators, leaving open how they perform on irregular, competition-grade, or industrial datasets. We present FRONTIERCO, a benchmark for evaluating ML-based CO solvers under real-world structure and extreme scale. FRONTIERCO spans eight CO problems, including routing, scheduling, facility location, and graph problems, with instances drawn from competitions and public repositories (e.g., DIMACS, TSPLib). Each task provides both easy sets (historically challenging but now solvable) and hard sets (open or computationally intensive), alongside standardized training/validation resources. Using FRONTIERCO, we evaluate **16 representative ML solvers**—graph neural approaches, hybrid neural-symbolic methods, and LLM-based agents—against state-of-the-art classical solvers. We find a persistent performance gap that widens under structurally challenging and large instance sizes (e.g., TSP up to 10M nodes; MIS up to 8M), while also identifying cases where ML methods outperform classical solvers. By centering evaluation on real-world structure and orders-of-magnitude larger instances, FRONTIERCO provides a rigorous basis for advancing ML for CO.

1 INTRODUCTION

Combinatorial optimization (CO) lies at the heart of computer science, operations research, and applied mathematics, with applications in routing, allocation, planning, and scheduling (Korte & Vygen, 2012). Most CO problems are intractable or NP-hard, and decades of research have relied on carefully engineered heuristics and exact solvers to make progress. Recently, machine learning (ML) has been proposed as a way to automate algorithm design, raising the exciting possibility that data-driven solvers could eventually rival or complement human-crafted methods.

Two main paradigms have emerged. *Neural solvers* use graph neural networks, reinforcement learning, or diffusion models to directly generate or guide solutions (Cappart et al., 2023; Bengio et al., 2020). *Symbolic solvers*, by contrast, leverage large language models (LLMs) to synthesize executable algorithms, often refining them through self-feedback or iterative search (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024; Novikov et al., 2025). Both paradigms have produced intriguing successes on benchmark datasets, sparking optimism about ML’s role in CO.

Yet a central question remains unanswered: **can ML-based solvers match or surpass state-of-the-art (SOTA) human-designed algorithms on real-world CO problems?** Existing benchmarks do not allow us to answer this rigorously. They suffer from three limitations: (i) **scale**: most focus on toy instances orders of magnitude smaller than real applications (Kool et al., 2019; Luo et al., 2023); (ii) **realism**: synthetic datasets often fail to capture structural diversity; and (iii) **data realism and coverage**, i.e., most ML evaluations rely on synthetic generators, which limits insight into performance on irregular, non-Euclidean, or competition-grade instances that classical solvers routinely tackle. As a result, ML methods are often assessed at modest scales and on structurally simplified distributions.

To address these limitations, we present FRONTIERCO, a benchmark that evaluates ML-based solvers under **real-world structure** and **extreme instance sizes** across eight CO problems from five categories (Figure 1). Unlike evaluations based solely on synthetic data, FRONTIERCO integrates instances from TSPLib, Reinelt (1991), DIMACS challenges (Johnson & McGeoch, 1993), CFLP testbeds (Avella et al., 2009), and other competition or repository sources, and complements them with standardized training/validation resources. For each problem we provide two test sets: easy (once challenging, now solvable by SOTA classical methods) and hard (open or computationally intensive). **We intentionally include structurally challenging cases** (e.g., PUC hypercubes (Rossetti et al., 2001); SAT-induced MIS (Xu et al., 2007)) and push scale by orders of magnitude to reflect real-world difficulty. Concretely, FRONTIERCO scales to TSP with 10M nodes and MIS with 8M nodes. Prior larger-scale ML evaluations (e.g., DIMES) scaled to TSP graphs with 10K nodes, while early neural TSP studies commonly used ≤ 100 nodes (Kool et al., 2019).

Using this benchmark, we conduct a systematic, cross-paradigm evaluation of ML-based CO solvers. Our study covers 16 representative approaches, including end-to-end neural solvers, neural-enhanced heuristics (Bengio et al., 2020; Cappart et al., 2023), and LLM-based agentic methods (Sun et al., 2025), and compares them directly against the best human-designed solvers. This unified evaluation reveals several key insights: (i) ML methods still lag significantly behind SOTA human solvers, especially on hard instances; (ii) neural solvers demonstrate the potential to enhance simple human heuristics, but in general struggle with scalability, non-local structure, and distribution shift; (iii) LLM-based solvers sometimes may outperform the SOTA classical solvers but display high variance due to their incapability in understanding the effectiveness of different algorithms they are trained on.

Our contributions are threefold.

1. **Benchmark under real-world structure and extreme scale.** A unified evaluation suite across eight problems that pairs competition/real-world instances with hard, structurally irregular cases and orders-of-magnitude larger sizes than prior ML evaluations (e.g., TSP: 10M vs. 10k; MIS: 8M vs. 11k (Qiu et al., 2022)).
2. **Unified evaluation.** We conduct a rigorous comparison of 16 ML-based solvers against state-of-the-art classical baselines, under standardized protocols.
3. **Empirical insights.** We identify fundamental limitations of current ML approaches, while also highlighting the potential and future research directions for ML-based solvers.

2 FRONTIERCO: THE PROPOSED BENCHMARK

2.1 FORMAL OBJECTIVE AND EVALUATION METRICS

We follow Papadimitriou & Steiglitz (1982) in denoting a combinatorial optimization (CO) problem instance as s , a solution as $x \in \mathcal{X}_s$, and defining the objective as

$$\min_{x \in \mathcal{X}_s} c_s(x) = \text{cost}(x; s) + \text{valid}(x; s), \quad (1)$$

where $\text{cost}(x; s)$ is a problem-specific objective (e.g., the tour length in routing problems), and $\text{valid}(x; s)$ penalizes constraint violations—taking value ∞ if x is infeasible, and 0 otherwise. **Note that any maximization problem can be turned into a minimization one by negating the objective sign, and we treat all problems in its minimization version for unified evaluation in this work.**

To accommodate the varying scales of different problem instances, we define the primal gap as:

$$\text{pg}(x; s) = \begin{cases} 1, & \text{if } x \text{ is infeasible or } \text{cost}(x; s) \cdot c^* < 0, \\ \frac{|\text{cost}(x; s) - c^*|}{\max\{|\text{cost}(x; s)|, |c^*|\}}, & \text{otherwise,} \end{cases} \quad (2)$$

Figure 1: Overview of FRONTIERCO.

108 where c^* is the (precomputed) optimal or best-known cost for instance s , and $\text{pg}(x; s)$ denotes the
 109 *primal gap* (Berthold, 2006) of x with respect to c^* . Note the primal gap is always in the range $[0, 1]$.
 110

111 **2.2 DOMAIN COVERAGE**
 112

113 This study focuses on eight types of CO problems that have gained increasing attention in recent
 114 machine learning research. These problems are:
 115

- 116 • **MIS (Maximum Independent Set):** Find the largest subset of non-adjacent vertices in a graph,
 117 whose minimization version (corresponding to Equation 1) is to minimize the negative set size.
- 118 • **MDS (Minimum Dominating Set):** Find the smallest subset of vertices such that every vertex
 119 in the graph is either in the subset or adjacent to a vertex in the subset.
- 120 • **TSP (Traveling Salesman Problem):** Find the shortest possible tour that visits each city exactly
 121 once and returns to the starting point. We focus on the 2D Euclidean space in this work.
- 122 • **CVRP (Capacitated Vehicle Routing Problem):** Determine the optimal set of delivery routes
 123 for a fleet of vehicles with limited capacity to serve a set of customers.
- 124 • **CFLP (Capacitated Facility Location Problem):** Choose facility locations and assign clients
 125 to them to minimize the total cost, subject to facility capacity constraints.
- 126 • **CPMP (Capacitated p -Median Problem):** Select p facility locations and assign clients to them
 127 to minimize the total distance, while ensuring that no facility exceeds its capacity.
- 128 • **FJSP (Flexible Job-Shop Scheduling Problem):** Schedule a set of jobs on machines where
 129 each operation can be processed by multiple machines, aiming to minimize the makespan while
 130 respecting job precedence and machine constraints.
- 131 • **STP (Steiner Tree Problem):** Find a minimum-cost tree that spans a given subset of terminals
 132 in a graph, possibly including additional intermediate nodes.

133 The dataset statistics are summarized in Table 1, with additional details provided in the Appendix
 134 B. Note that only test data are collected from the listed sources; training and validation data generated
 135 from the same synthetic generator to ensure they are from the same distribution (but may at
 136 different scales and set size dependent on the model efficiency/scalability), in order to ensure the fair
 137 comparison among neural and LLM solvers (see Section 2.5).
 138

139 Graph-based problems (MIS and MDS) and routing problems (TSP and CVRP) have been widely
 140 used to evaluate end-to-end neural solvers (Qiu et al., 2022; Zhang et al., 2023; Sun & Yang, 2023;
 141 Sanokowski et al., 2025), as these tasks often admit relatively straightforward decoding strategies
 142 to transform probabilistic model output into feasible solutions. In contrast, facility location and
 143 scheduling problems (such as CFLP, CPMP, and FJSP) involve more complex and interdependent
 144 constraints, making them better suited to hybrid approaches that combine neural networks with
 145 traditional solvers (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b). Tree-based
 146 problems have received comparatively less attention in neural CO, yet we include a representative
 147 case (e.g., STP) due to their fundamental importance in the broader CO landscape. All of the above
 148 problems can also be directly handled by symbolic solvers, enabling comprehensive and comparable
 149 evaluations across solver paradigms (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

150 **2.3 PROBLEM INSTANCES**
 151

152 For each CO problem type, we collect a diverse pool of problem instances from problem-specific
 153 and comprehensive CO libraries (Reinelt, 1991; Xu et al., 2007), major CO competitions (Johnson &
 154 McGeoch, 1993; PACE, 2025), and evaluation sets reported in recent research papers.
 155

156 Due to rapid progress in CO, many instances from earlier archives can now be effectively solved by
 157 SOTA problem-specific solvers, often achieving an optimality gap below 1% within a 1-hour time
 158 budget. We select a representative subset of such instances as our *easy set*, which serves to validate
 159 the baseline effectiveness of ML-based solvers.

160 With a high-level goal to advance the CO solvers on open challenges, we also construct a *hard set*
 161 comprising open benchmark instances widely used to assess cutting-edge human-designed algorithms.
 Many of these instances lack known optimal solutions and remain beyond the reach of existing

Table 1: Summary of collected problem instances.

Problem	Test Set Sources	Attributes	Easy Set	Hard Set
MIS	2nd DIMACS Challenge BHOSLib	Instances	36	16
		Nodes	1,404–7,995,464	1,150–4,000
MDS	PACE Challenge 2025	Instances	20	20
		Nodes	2,671–675,952	1,053,686–4,298,062
TSP	TSPLib 8th DIMACS Challenge	Instances	29	19
		Cities	1,002–18,512	10,000–10,000,000
CVRP	Golden et al. (1998) Arnold et al. (2019)	Instances	20	10
		Cities	200–483	3,000–30,000
CFLP	Avella & Boccia (2009) Avella et al. (2009)	Instances	20	30
		Facilities	1,000	2,000
		Customers	1,000	2,000
CPMP	Lorena & Senne (2004; 2000) Stefanello et al. (2015) Gnägi & Baumann (2021)	Instances	31	12
		Facilities	100–4,461	10,510–498,378
		Medians	10–1,000	100–2,000
FJSP	Behnke & Geiger (2012) Naderi & Roshanaei (2021)	Instances	60	20
		Jobs	10–100	10–100
		Machines	10–20	20–60
STP	Leitner et al. (2014) Rossetti et al. (2001)	Instances	23	50
		Nodes	7,565–71,184	64–4,096

heuristics. As a result, they are less susceptible to *heuristic hacking*, where neural solvers or LLM-based agents rely on handcrafted decoding strategies or memorize prior solutions, rather than learning to solve the problem from first principles. Importantly, our hard set is not defined merely by instance size. Instead, we emphasize structurally complex cases, such as hypercube graphs in STP (Rossetti et al., 2001) or SAT-induced MIS (Xu et al., 2007), which require models to understand and reason about intricate problem structures.

2.4 SOTA SOLVERS AND BEST KNOWN SOLUTIONS (BKS)

We identify the SOTA solver for each CO problem type based on published research papers and competition leaderboards. The selected solvers include: KaMIS (Lamm et al., 2017) for MIS, LKH-3 (Helsgaun, 2017) for TSP, HGS (Vidal et al., 2012) for CVRP, GB21-MH (Gnägi & Baumann, 2021), a hybrid metaheuristic, for CPMP, and SCIP-Jack (Rehfeldt et al., 2021) for STP. For problems where no dominant problem-specific solver is available (e.g., MDS, CFLP, FJSP), we rely on general-purpose commercial solvers, such as Gurobi (Gurobi Optimization, LLC, 2024) for MDS and CFLP (Mixed Integer Programming), and CPLEX (Cplex, 2009) for FJSP (Constraint Programming). Among them, Gurobi, CPLEX and SCIP-Jack are exact solvers; the rest are heuristic-based.

Prior evaluations of ML-based CO solvers often relied on self-generated synthetic test instances, leading to difficulties in fair comparison across papers. These instances are sensitive to implementation details such as random seeds and Python versions, introducing undesirable variability and inconsistency. To address this, we provide standardized BKS for all test-set instances in our benchmark. These BKS are collected from published literature and competition leaderboards, and are further validated using the corresponding SOTA solvers executed on our servers. For instances lacking known BKS, such as the MDS instances from the PACE Challenge 2025 (PACE, 2025), or for benchmarks with outdated references, such as those in the CFLP literature, we run the designated SOTA solver for up to two hours to obtain high-quality reference solutions.

2.5 STANDARDIZED TRAINING/VALIDATION DATA

Similar to BKS, inconsistencies in self-generated training and validation data can also contribute to difficulties in cross-paper comparisons. To address this, FRONTIERCO provides standardized

216 training sets for neural solvers and development sets for LLM agents, generated using a variety of
 217 problem-specific instance generators (details in Appendix B).

218 We also release a complete toolkit that includes a data loader, an evaluation function, and an abstract
 219 solving template tailored for LLM-based agents. The data loader and evaluation function are hidden
 220 from the agents to prevent data leakage. The solving template provides a natural language problem
 221 description along with Python starter code specifying the expected input and output formats. An
 222 example prompt is provided in Appendix C.3.

224 3 EVALUATION DESIGN

225 3.1 IMPLEMENTATION SETTINGS

228 In light of the difficulty and scale of our problem instances, we allow a maximum solving time of
 229 one hour per problem instance, as most solvers, including both classical and ML-based solvers, may
 230 require such a time to obtain a single feasible solution (see efficiency analysis in Appendix E).

232 For fair comparison, each solver is executed on a single CPU core of a dual AMD EPYC 7313
 233 16-Core processor, and neural solvers are run on a single NVIDIA RTX A6000 GPU. Since the
 234 solving time is influenced by factors such as compute hardware (CPU vs. GPU), solver type (exact vs.
 235 heuristic), and implementation language (C++ vs. Python), **we use the primal gap (Equation 2) as**
 236 **the primary evaluation metric, and solving time is reported for reference only**. For any infeasible
 237 solution, we assign a primal gap of 1 and a solving time of 3600 seconds. The arithmetic mean of the
 238 primal gaps and geometric mean of solving time are reported across our experiments.

239 3.2 REPRESENTATIVE NEURAL SOLVERS FOR COMPARATIVE EVALUATION

241 In addition to the SOTA human-designed solvers described in Section 2.4, we include a curated set of
 242 machine learning-based CO solvers from recent literature. The neural solvers are tailored to specific
 243 problem categories they are developed for:

- 245 • **DiffUCO** (Sanokowski et al., 2024): An unsupervised diffusion-based neural solver for MIS
 246 and MDS that learns from the Lagrangian relaxation objective.
- 247 • **SDDS** (Sanokowski et al., 2025): A more scalable version of DiffUCO for MIS and MDS, with
 248 efficient training process.
- 249 • **RLNN** (Feng & Yang, 2025a): A neural sampling framework that enhances exploration in CO
 250 by enforcing expected distances between sampled and current solutions.
- 251 • **LEHD** (Luo et al., 2023): A hybrid encoder-decoder model for TSP and CVRP, with strong
 252 generalization to real-world instances.
- 253 • **DIFUSCO** (Sun & Yang, 2023): A diffusion-based approach for TSP that achieves strong
 254 scalability, solving instances with up to 10,000 cities.
- 255 • **SIL** (Luo et al., 2023): A linear-complexity transformer solver that achieves extreme scalability,
 256 handling routing instances with up to 100,000 cities.
- 257 • **DeepACO** (Ye et al., 2023): A neural solver that adapts Ant Colony Optimization (ACO)
 258 principles to learn metaheuristic strategies.
- 259 • **tMDP** (Scavuzzo et al., 2022): A reinforcement learning framework that models the branching
 260 process in Mixed Integer Program (MIP) solver as a tree-structured Markov Decision Process.
- 261 • **SORREL** (Feng & Yang, 2025b): A reinforcement learning method that leverages suboptimal
 262 demonstrations and self-imitation learning to train branching policies in MIP solvers.
- 263 • **GCNN** (Gasse et al., 2019): A graph convolutional network (GNN)-guided solver for MIPs,
 264 which learns to guide branching decisions within a branch-and-bound framework.
- 265 • **IL-LNS** (Sonnerat et al., 2021): A neural large neighborhood search method for Integer Linear
 266 Programs (ILPs) that is trained to predict the locally optimal neighborhood choice.
- 267 • **CL-LNS** (Huang et al., 2023): A contrastive learning-based large neighborhood search approach
 268 for ILPs which advances the imitation learning strategy in IL-LNS.

- **MPGN** (Lei et al., 2022): A reinforcement learning-based approach for FJSP that employs multi-pointer graph networks to capture complex dependencies and generate efficient schedules.
- **L-RHO** (Li et al., 2025a): A learning-guided rolling horizon optimization method that integrates machine learning predictions into the rolling horizon framework.

Since STP is not well studied by existing neural methods, we consider both reinforcement learning (**RL**) and supervised learning (**SL**) baselines, predicting the Steiner points. The Takahashi–Matsuyama algorithm (Takahashi & Matsuyama, 1980) is then applied for decoding.

3.3 REPRESENTATIVE LLM-BASED AGENTS FOR COMPARATIVE EVALUATION

Our LLM-based solvers are selected based on the CO-Bench evaluation protocol (Sun et al., 2025), including both general-purpose prompting approaches and CO-specific iterative strategies:

- **FunSearch** (Romera-Paredes et al., 2023): An evolutionary search framework that iteratively explores the solution space and refines candidates through backtracking and pruning.
- **Self-Refine** (Madaan et al., 2023; Shinn et al., 2023): A feedback-driven refinement method in which the LLM improves its own output via iterative self-refinement.
- **ReEvo** (Ye et al., 2024): A self-evolving agent that leverages past trajectories—both successful and failed—to refine its future decisions through reflective reasoning.

All LLM-based solvers are evaluated across the full set of eight CO problem types in our benchmark.

4 RESULTS

We summarize the comparative results in Figure 2 and Table 2. See detailed results in Appendix D. **Note that the primal gap is computed relative to the best known solution (BKS), so its absolute value does not directly reflect the inherent difficulty of the instance**—especially in cases where no known optimum exists.

We draw several key observations from our results. **First, there is a substantial performance gap between human-designed state-of-the-art (SOTA) solvers and ML-based solvers** across all problem types and difficulty levels. Strikingly, this gap is more pronounced in our benchmark than in previously published results. For instance, LEHD reports only a 0.72% gap on a standard TSP benchmark (Kool et al., 2019), whereas on our new benchmark the gap widens to 10% on easy TSP instances and an alarming 77% on hard instances. A major factor behind this discrepancy lies in the training and evaluation protocols. Prior studies typically trained neural solvers on synthetic graphs of a fixed size (e.g., 1000 nodes) and evaluated them on test instances of the same size, ensuring aligned conditions. In contrast, our datasets incorporate substantial variability in both graph size and structure across training and test sets. This setup better reflects real-world deployment scenarios but also introduces significant distribution shifts, under which LEHD and many other ML-based methods experience severe performance degradation in FRONTIERCO.

Second, neural solvers face serious scalability challenges. Although they used to be treated as efficient heuristics on large-scale, difficult instances, we find that in practice this is often not the case. Neural networks typically address the non-convexity of CO problems through over-parameterization (Allen-Zhu et al., 2019), which inflates single-value variables into high-dimensional representations and leads to frequent out-of-memory failures (observed in 4 of 8 problems; see Appendix D). Inference efficiency is an additional bottleneck. For example, the auto-regressive solver LEHD (Luo et al., 2023) requires running a transformer model (Vaswani et al., 2017) for 10M steps to produce a single solution on our largest TSP instance, failing to return any solution within the 1-hour time limit. Similar inefficiencies exist even on easier instances or under shorter time budgets (Appendix E). Addressing these issues through integration of reduction techniques (Andersen & Andersen, 1995) and the design of more compact neural architectures is thus an important direction for future research.

Third, LLM-based agents show the potential to outperform prior human-designed SOTA solvers. For example, Self-Refine surpasses KaMIS on the easy MIS set, and FunSearch outperforms HGS on

Figure 2: Primal gap (%) across eight CO problems on easy and hard sets (lower is better). Classical (blue), neural (green), and LLM-based agents (red). Bars marked with * indicate at least one infeasible run on that test set; in such cases we assign gap 1 and time 3600 seconds (see Section 3.1).

the hard CVRP set. A closer inspection of these methods reveals their algorithmic sophistication: Self-Refine applies kernelization to simplify MIS instances, solves small kernels exactly using a Tomita-style max-clique algorithm, and employs ARW-style heuristics with solution pools, crossover, and path-relinking for larger instances. Similarly, FunSearch builds an Iterated Local Search framework for CVRP, enhanced with regret insertion and Variable Neighborhood Descent. These results highlight the promise of LLM-based approaches in automatically developing competitive, and in some cases superior, solvers for CO.

Fourth, despite their promise, LLM-based agents exhibit substantial performance variability. For example, while they perform comparably to the SOTA solver HGS on the hard CVRP set, they fall dramatically short on TSP—even though both are routing problems. We hypothesize that this stems from the nature of LLM training: while models are exposed to diverse human-designed heuristics and can combine them in novel ways, they generally lack the ability to reliably assess the effectiveness of the generated algorithms. As a result, each sampling run may randomly yield a different, not necessarily effective, strategy. This absence of internal reasoning abilities largely restricts the applicability of LLM agents to hard-to-verify tasks and raises safety concerns when they generate resource-intensive algorithms for large instances (e.g., frequent out-of-memory issues on CPMP during evolving). Current agentic frameworks tend to focus on problems that are challenging

yet easy to verify, strongly relying on external feedback. In contrast, FRONTIERCO provides a hard-to-verify benchmark (but still verifiable for evaluation purposes) that highlights the reasoning capabilities of the LLM themselves.

Table 2: The average primal gap achieved by LLM agentic solvers over all eight CO problems.

Method	Avg. Gap ↓ (All)	Avg. Gap ↓ (Easy)	Avg. Gap ↓ (Hard)
FunSearch	20.35%	10.05%	30.65%
Self-Refine	15.11%	8.18%	22.03%
ReEvo	13.25%	7.25%	19.25%

Table 3: Ablation study on the effectiveness of the neural module.

TSP-Easy		CFLP-Easy	
Method	Gap ↓	Method	Gap ↓
LKH-3	0.03%	Gurobi	0.00%
2-OPT	20.09%	SCIP	6.50%
DIFUSCO	4.19%	GCNN	3.22%

5 DISCUSSIONS

5.1 DOES THE NEURAL MODULE HELP?

Considering the performance gap between neural solvers and SOTA solvers, a natural question arises: does the neural module actually contribute to improved performance? To explore this, we conduct an ablation study by removing the neural component from the underlying algorithm of each neural solver. We evaluate two representative pairs: DIFUSCO (Sun & Yang, 2023) vs. 2-OPT, and GCNN (Gasse et al., 2019) vs. SCIP (Achterberg, 2009). The results are summarized in Table 3.

The results show that both DIFUSCO and GCNN significantly improve upon their respective heuristic baselines, indicating a meaningful contribution from the neural module. However, such improvement is still far from being comparable to the SOTA classical solvers. Overall, our findings suggest that **neural components can enhance human-designed heuristics, but such improvement is typically realized when built on relatively weak base algorithms**. Whether similar gains can be achieved when enhancing already strong heuristics remains unclear.

5.2 DO NEURAL SOLVERS CAPTURE GLOBAL STRUCTURE?

Most neural solvers are based on graph neural networks (GNNs)¹, which rely on local message passing. While they have demonstrated strong performance on routing problems such as TSP and CVRP—which involve complex global constraints—the majority of existing evaluations are limited to 2D Euclidean instances. Compared to general graph problems, Euclidean instances—such as those in metric TSP—often exhibit favorable local structures (e.g., triangle inequality), which can be explicitly exploited by certain algorithms to achieve improved performance (Karlin et al., 2021). In contrast, general graph problems such as MIS lack such spatial regularities, and neural solvers often perform poorly on them (Angelini & Ricci-Tersenghi, 2022; Böther et al., 2022).

To explicitly evaluate the ability of neural solvers in capturing global structure, we leverage the rich source of STP instances, which includes both Euclidean and non-Euclidean graphs (see Appendix B.8 for details). We train two separate GNNs to predict Steiner nodes, using ground truth labels generated by SCIP-Jack (Rehfeldt et al., 2021). One model is trained on Euclidean instances, and the other on non-Euclidean instances. The training dynamics are shown in Figure 3.

The results reveal a clear contrast: **while the GNN quickly achieves a high F1 score in predicting Steiner points on Euclidean graphs, it fails to make any progress on non-Euclidean ones**. This suggests that existing GNNs implicitly rely on locality and cannot really capture the global structure. These findings underscore a fundamental limitation in the expressive power of current neural solvers.

5.3 WHAT KINDS OF ALGORITHMS DO LLM-BASED SOLVERS DISCOVER?

To better understand the algorithmic strategies developed by LLM-based solvers, we visualize the key words corresponding to their generated algorithms using the word cloud in Figure 4, where the size of each word reflects its frequency of appearance across algorithms.

¹By GNN, we refer to general message passing frameworks including attention-based neural architectures.

Figure 3: Training dynamics of neural solvers on Euclidean and non-Euclidean STP instances.

Figure 4: Word cloud of the algorithms generated by LLM-based solvers.

A clear pattern emerges: classical metaheuristics—particularly simulated annealing (SA) and large neighborhood search (LNS)—consistently appear across a diverse set of problems and often form the foundation of LLM-generated algorithms. **This highlights a shared reliance on well-established CO algorithms that effectively balance exploration and exploitation.** While current LLMs still fall short of demonstrating novel algorithmic reasoning ([algorithms that cannot be mapped to existing ones](#)) in CO, their strategies tend to replicate known metaheuristics and problem-specific techniques from the literature. Interestingly, we observe that their performance does not critically depend on integrating existing solvers, suggesting that LLMs can autonomously construct plausible and often effective algorithms. This adaptability is particularly promising for rapidly tackling new problem variants or classical problems with additional constraints, indicating strong potential for LLMs in zero-shot or few-shot algorithm design scenarios.

6 RELATED WORK

Current machine-learning approaches to CO fall into two broad categories: neural and symbolic solvers. Neural solvers primarily train a graph neural network (GNN) model with standard machine learning objectives (Bengio et al., 2020; Cappart et al., 2023). The trained GNN is then used either to predict complete solutions (Luo et al., 2023; Sun & Yang, 2023; Sanokowski et al., 2024; 2025) or to guide classical heuristics such as branch-and-bound (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023; Feng et al., 2025). Symbolic solvers instead attempt to generate executable programs that solve the problem, exploring the space of algorithmic primitives with reinforcement learning (Kuang et al., 2024a;b) or leveraging LLM agents for code generation (Romera-Paredes et al., 2023; Ye et al., 2024; Liu et al., 2024; Novikov et al., 2025). **Despite these advances, empirical studies have mostly focused on synthetic benchmarks (Kool et al., 2019; Zhang et al., 2023; Berto et al., 2025; Bonnet et al., 2024; Ma et al., 2025) falling short in scalability and diversity**, or restricted to a single type of CO problems (Thyssens et al., 2023; Li et al., 2025b). Besides, the lack of training instances in existing LLM agentic benchmarks (Fan et al., 2024; Tang et al., 2025; Sun et al., 2025) also hinders the further development. To bridge these gaps, we introduce a comprehensive benchmark with both realistic evaluation instances and diverse training data sources.

7 CONCLUSION

We present FRONTIERCO, a new benchmark designed to rigorously evaluate ML-based CO solvers under realistic, large-scale, and diverse problem settings. Through a unified empirical study, we reveal that while current ML methods show potential, including both neural and LLM-based solvers, they continue to fall short of state-of-the-art human-designed algorithms in terms of structural reasoning, generalization, and scalability. However, our findings also uncover promising avenues: neural solvers can enhance certain human heuristics, and LLMs discover better usage of existing algorithms. We hope FRONTIERCO will serve as a foundation for advancing the design and evaluation of next-generation ML-based CO solvers.

486 REPRODUCIBILITY STATEMENT
487488 Details of data collection are provided in Appendix B. The implementations of neural solvers are
489 taken from the official public repositories of each method, as referenced in Section 3.2. All remaining
490 code, including that for classical solvers, BKS computation, and LLM agent solvers, is available at
491 <https://anonymous.4open.science/r/FrontierCO-82E3>.
492493 REFERENCES
494495 11th DIMACS Implementation Challenge: Steiner Tree Problems. Website, 2013-2014. URL <https://dimacs11.zib.de/>. Co-organized by DIMACS and ICERM. Available at <https://dimacs11.zib.de/>.
496
497498 Tobias Achterberg. Scip: solving constraint integer programs. *Mathematical Programming Computation*, 1:1–41, 2009.
499
500501 Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
502 mixed integer programming. In *Operations Research Proceedings 2011: Selected Papers of*
503 *the International Conference on Operations Research (OR 2011), August 30-September 2, 2011,*
504 *Zurich, Switzerland*, pp. 71–76. Springer, 2012.
505506 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
507 in overparameterized neural networks, going beyond two layers. In H. Wallach,
508 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*
509 *vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
510 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf.
511512 Guilherme Almeida, Elisangela Martins de Sá, Sérgio Souza, and Marcone Souza. A hybrid iterated
513 local search matheuristic for large-scale single source capacitated facility location problems.
514 *Journal of Heuristics*, 30:1–28, 12 2023. doi: 10.1007/s10732-023-09524-9.
515516 Erling Andersen and Knud Andersen. Presolving in linear programming. *Math. Program.*, 71:
517 221–245, 12 1995. doi: 10.1007/BF01586000.
518519 Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than
520 classical greedy algorithms in solving combinatorial optimization problems like maximum indepen-
521 dent set. *Nature Machine Intelligence*, 5(1):29–31, December 2022. ISSN 2522-5839. doi: 10.1038/
522 s42256-022-00589-y. URL <http://dx.doi.org/10.1038/s42256-022-00589-y>.
523524 Florian Arnold, Michel Gendreau, and Kenneth Sørensen. Efficiently solving very large-scale routing
525 problems. *Comput. Oper. Res.*, 107(C):32–42, July 2019. ISSN 0305-0548. doi: 10.1016/j.cor.
526 2019.03.006. URL <https://doi.org/10.1016/j.cor.2019.03.006>.
527528 Pasquale Avella and Maurizio Boccia. A cutting plane algorithm for the capacitated facility
529 location problem. *Computational Optimization and Applications*, 43(1):39–65, May 2009.
530 doi: 10.1007/s10589-007-9125-x. URL <https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html>.
531532 Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasilyev. An effective heuristic for
533 large-scale capacitated facility location problems. *Journal of Heuristics*, 15:597–615, 12 2009.
534 doi: 10.1007/s10732-008-9078-y.
535536 Vahid Roshanaei Bahman Naderi, Rubén Ruiz. Repository for mixed-integer programming versus
537 constraint programming for shop scheduling problems: New results and outlook. 2023. doi:
538 10.5281/zenodo.7541223. URL <https://github.com/INFORMSJoC/2021.0326>.
539540 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *Science*, 286
541 (5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL <https://www.science.org/doi/abs/10.1126/science.286.5439.509>.
542

540 D. Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling prob-
 541 lem with work centers. 2012. URL <https://api.semanticscholar.org/CorpusID:54531116>.

543

544 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
 545 a methodological tour d'horizon, 2020.

546 Timo Berthold. *Primal heuristics for mixed integer programs*. PhD thesis, Zuse Institute Berlin
 547 (ZIB), 2006.

548

549 Timo Berthold. Measuring the impact of primal heuristics. *Operations Research Letters*, 41(6):
 550 611–614, 2013.

551

552 Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
 553 Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou,
 554 Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool,
 555 Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon,
 556 Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial
 557 Optimization Benchmark. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge
 Discovery and Data Mining*, 2025. URL <https://github.com/ai4co/r14co>.

558

559 Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
 560 Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
 561 Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn Neil
 562 Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock, Siddarth
 563 Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a
 564 diverse suite of scalable reinforcement learning environments in JAX. In *The Twelfth International
 565 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=C4CxQmp9wc>.

566

567 Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
 568 What's wrong with deep learning in tree search for combinatorial optimization. In *International
 569 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=mk0HzdqY7i1>.

570

571 Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
 572 Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of
 573 Machine Learning Research*, 24(130):1–61, 2023.

574

575 Marco Caserta and Stefan Voß. A general corridor method-based approach for capacitated fa-
 576 cility location. *International Journal of Production Research*, 58(13):3855–3880, 2020. doi:
 577 10.1080/00207543.2019.1636320. URL <https://doi.org/10.1080/00207543.2019.1636320>.

578

579 Antonia Chmiela, Elias Boutros Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
 580 Learning to schedule heuristics in branch and bound. In A. Beygelzimer, Y. Dauphin, P. Liang,
 581 and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL
 582 <https://openreview.net/forum?id=fEImgFxKU63>.

583

584 G. Cornuejols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relaxations for the
 585 capacitated plant location problem. *European Journal of Operational Research*, 50(3):280–297,
 586 1991. ISSN 0377-2217. doi: [https://doi.org/10.1016/0377-2217\(91\)90261-S](https://doi.org/10.1016/0377-2217(91)90261-S). URL <https://www.sciencedirect.com/science/article/pii/037722179190261S>.

587

588 IBM ILOG Cplex. V12. 1: User's manual for cplex. *International Business Machines Corporation*,
 589 46(53):157, 2009.

590

591 Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop
 592 scheduling problem: A review. *European Journal of Operational Research*, 314(2):409–432,
 593 2024. ISSN 0377-2217. doi: <https://doi.org/10.1016/j.ejor.2023.05.017>. URL <https://www.sciencedirect.com/science/article/pii/S037722172300382X>.

594 Juan Diaz and Elena Fernandez. Hybrid scatter search and path relinking for the capacitated
 595 p-median problem. *European Journal of Operational Research*, 169:570–585, 02 2006. doi:
 596 10.1016/j.ejor.2004.08.016.

597

598 Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
 599 benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei
 600 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the
 601 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4092–4114, Bangkok,
 602 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 603 acl-long.225.

604 Shengyu Feng and Yiming Yang. Regularized langevin dynamics for combinatorial optimization. In
 605 *International conference on machine learning*. PMLR, 2025a.

606 Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning
 607 for learning to branch. In *The 39th Annual AAAI Conference on Artificial Intelligence*, 2025b.

608

609 Shengyu Feng, Zhiqing Sun, and Yiming Yang. Spl-Ins: Sampling-enhanced large neighborhood
 610 search for solving integer linear programs, 2025. URL <https://arxiv.org/abs/2508.16171>.

611

612 Zhang-Hua Fu, Sipeng Sun, Jintong Ren, Tianshu Yu, Haoyu Zhang, Yuanyuan Liu, Lingxiao Huang,
 613 Xiang Yan, and Pinyan Lu. A hierarchical destroy and repair approach for solving very large-scale
 614 travelling salesman problem, 2023. URL <https://arxiv.org/abs/2308.04639>.

615

616 Sune Gadegaard, A. Klose, and Lars Nielsen. An improved cut-and-solve algorithm for the single-
 617 source capacitated facility location problem. *EURO Journal on Computational Optimization*, 6, 04
 618 2017. doi: 10.1007/s13675-017-0084-4.

619

620 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
 621 torial optimization with graph convolutional neural networks. In *Advances in Neural Information
 622 Processing Systems 32*, 2019.

623

624 Mario Gnägi and Philipp Baumann. A matheuristic for large-scale capacitated clustering. *Computers
 625 & Operations Research*, pp. 105304, 2021.

626

627 Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The impact of metaheuristics
 628 on solving the vehicle routing problem: Algorithms, problem sets, and computational results. 1998.
 629 URL <https://api.semanticscholar.org/CorpusID:61757468>.

630

631 Gianfranco Guastaroba and M.Grazia Speranza. Kernel search for the capacitated facility location
 632 problem. *Journal of Heuristics*, 18:1–41, 12 2012. doi: 10.1007/s10732-012-9212-8.

633

634 Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
 635 salesman and vehicle routing problems, 12 2017.

636

637 Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
 638 neighborhoods for integer linear programs with contrastive learning. In *International conference
 639 on machine learning*. PMLR, 2023.

640

641 David J. Johnson and Michael A. Trick. *Cliques, Coloring, and Satisfiability: Second DIMACS
 642 Implementation Challenge, Workshop, October 11-13, 1993*. American Mathematical Society,
 643 USA, 1996. ISBN 0821866095.

644

645 David S. Johnson and Catherine C. McGeoch. *Network Flows and Matching: First DIMACS
 646 Implementation Challenge*. American Mathematical Society, USA, 1993. ISBN 0821865986.

647

F. Jordan Srour and Steef van de Velde. Are stacker crane problems easy? a statistical study.
Computers & Operations Research, 40(3):674–690, 2013. ISSN 0305-0548. doi: <https://doi.org/10.1016/j.cor.2011.06.017>. URL <https://www.sciencedirect.com/science/article/pii/S0305054811001791>. Transport Scheduling.

648 Daniel Juhl, David Warme, Paweł Winter, and Martin Zachariasen. The geosteiner software pack-
 649 age for computing steiner trees in the plane: an updated computational study. *Mathematical*
 650 *Programming Computation*, 10, 02 2018. doi: 10.1007/s12532-018-0135-8.
 651

652 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
 653 algorithm for metric tsp. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on*
 654 *Theory of Computing*, STOC 2021, pp. 32–45, New York, NY, USA, 2021. Association for
 655 Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451009. URL <https://doi.org/10.1145/3406325.3451009>.
 656

657 Yasuhito Kawano. A reduction from an lwe problem to maximum independent set problems. *Scientific*
 658 *Reports*, 13, 05 2023. doi: 10.1038/s41598-023-34366-7.
 659

660 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
 661 *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ByxBFsRqYm>.
 662

663 Bernhard Korte and Jens Vygen. *Combinatorial Optimization: Theory and Algorithms*. Springer
 664 Publishing Company, Incorporated, 5th edition, 2012. ISBN 3642244874.
 665

666 Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye HAO, Bin Li,
 667 and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first
 668 deep symbolic discovery framework. In *The Twelfth International Conference on Learning*
 669 *Representations*, 2024a.

670 Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, Jianye Hao, and Feng Wu. Towards
 671 general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
 672 from bipartite graph. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
 673 Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International*
 674 *Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp.
 675 25623–25641. PMLR, 21–27 Jul 2024b.

676 Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
 677 near-optimal independent sets at scale. *J. Heuristics*, 23(4):207–229, 2017. doi: 10.1007/
 678 s10732-017-9337-x. URL <https://doi.org/10.1007/s10732-017-9337-x>.
 679

680 Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng
 681 Tang. A multi-action deep reinforcement learning framework for flexible job-shop scheduling
 682 problem. *Expert Systems with Applications*, 205:117796, 2022. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2022.117796>. URL <https://www.sciencedirect.com/science/article/pii/S0957417422010624>.
 683

684 Markus Leitner, Ivana Ljubic, Martin Luipersbeck, Markus Prossegger, and Max Resch. New
 685 real-world instances for the steiner tree problem in graphs, 01 2014.
 686

687 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. <http://snap.stanford.edu/data>, June 2014.
 688

689 Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
 690 diameters and possible explanations. In *Proceedings of the Eleventh ACM SIGKDD International*
 691 *Conference on Knowledge Discovery in Data Mining*, KDD '05, pp. 177–187, New York, NY, USA,
 692 2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081893.
 693 URL <https://doi.org/10.1145/1081870.1081893>.
 694

695 Sirui Li, Wenbin Ouyang, Yining Ma, and Cathy Wu. Learning-guided rolling horizon optimization for
 696 long-horizon flexible job-shop scheduling. In *The Thirteenth International Conference on Learning*
 697 *Representations*, 2025a. URL <https://openreview.net/forum?id=Aly68Y5Es0>.
 698

699 Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
 700 ML4TSPBench: Drawing methodological principles for TSP and beyond from streamlined de-
 701 sign space of learning and search. In *The Thirteenth International Conference on Learning*
 702 *Representations*, 2025b. URL <https://openreview.net/forum?id=grU1VKEOLi>.
 703

702 Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
 703 Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
 704 model. In *ICML*, 2024.

705

706 Luiz A.N. Lorena and Edson L.F. Senne. Local search heuristics for capacitated p-median problems.
 707 08 2000.

708 Luiz A.N. Lorena and Edson L.F. Senne. A column generation approach to capacitated p-median
 709 problems. *Computers & Operations Research*, 31(6):863–876, 2004. ISSN 0305-0548. doi: [https://doi.org/10.1016/S0305-0548\(03\)00039-X](https://doi.org/10.1016/S0305-0548(03)00039-X). URL <https://www.sciencedirect.com/science/article/pii/S030505480300039X>.

712

713 Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
 714 with heavy decoder: Toward large scale generalization. In *Thirty-seventh Conference on Neural
 715 Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=RBI4oAbdpm>.

717

718 Jiale Ma, Wenzheng Pan, Yang Li, and Junchi Yan. ML4CO-bench-101: Benchmark machine
 719 learning for classic combinatorial problems on graphs. In *The Thirty-ninth Annual Conference
 720 on Neural Information Processing Systems Datasets and Benchmarks Track*, 2025. URL <https://openreview.net/forum?id=ye4ntB1Kzi>.

721

722 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 723 Nouha Dziri, Shrimai Prabhumiye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
 724 Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
 725 self-feedback. *ArXiv*, abs/2303.17651, 2023.

726

727 Bahman Naderi and Vahid Roshanaei. Critical-path-search logic-based benders decomposition
 728 approaches for flexible job shop scheduling. *INFORMS Journal on Optimization*, 4, 08 2021. doi:
 10.1287/ijoo.2021.0056.

729

730 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Paweł Lichocki, Ivan Lobov, Brendan
 731 O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
 732 integer programs using neural networks. *arXiv preprint arXiv:2012.13349*, 2020.

733

734 Alexander Novikov, Ngan Vuu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 735 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
 736 Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
 737 meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
 2025. URL <https://arxiv.org/abs/2506.13131>.

738

739 Ibrahim Osman. Capacitated clustering problems by hybrid simulated annealing and tabu search,
 740 international transactions in operational research, 1, 317-336. *International Transactions in
 741 Operational Research*, 1:317–336, 07 1994. doi: 10.1016/0969-6016(94)90032-9.

742

743 PACE, 2025. Pace 2025 Challenge: Dominating Set. Website, 2025. URL <https://pacechallenge.org/2025/ds/>. Parameterized Algorithms and Computational Experi-
 744 ments Challenge. Available at <https://pacechallenge.org/2025/ds/>.

745

746 Christos Papadimitriou and Kenneth Steiglitz. *Combinatorial Optimization: Algorithms and Com-
 747 plexity*, volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.

748

749 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
 750 optimization problems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
 751 (eds.), *Advances in Neural Information Processing Systems*, 2022.

752

753 Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. Scip-jack: An exact high performance solver for
 754 steiner tree problems in graphs and related problems. In Hans Georg Bock, Willi Jäger, Ekaterina
 755 Kostina, and Hoang Xuan Phu (eds.), *Modeling, Simulation and Optimization of Complex Processes
 HPSC 2018*, pp. 201–223, Cham, 2021. Springer International Publishing. ISBN 978-3-030-55240-
 4.

756 Gerhard Reinelt. Tsplib - a traveling salesman problem library. *INFORMS J. Comput.*, 3(4):376–
 757 384, 1991. URL <http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91>.

758

759 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 760 M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
 761 Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
 762 Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
 763 models. *Nature*, 625:468 – 475, 2023.

764

765 Isabel Rosseti, Marcus Poggi, Celso Ribeiro, Eduardo Uchoa, and Renato Werneck. New benchmark
 766 instances for the steiner problem in graphs. 08 2001. doi: 10.1007/978-1-4757-4137-7_28.

767

768 Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
 769 unsupervised neural combinatorial optimization. In *ICML*, 2024. URL <https://openreview.net/forum?id=AFFX1KFHXJ>.

770

771 Sebastian Sanokowski, Wilhelm Franz Berghammer, Haoyu Peter Wang, Martin Ennemoser, Sepp
 772 Hochreiter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization
 773 and statistical physics. In *The Thirteenth International Conference on Learning Representations*,
 774 2025. URL <https://openreview.net/forum?id=peNgxpbdxB>.

775

776 Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
 777 and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal, Danielle
 778 Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022.
 779 URL <https://openreview.net/forum?id=M4OllVd70mJ>.

780

781 Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
 782 Yao. Reflexion: language agents with verbal reinforcement learning. In *Neural Information
 783 Processing Systems*, 2023.

784

785 Jiwoo Son, Zhikai Zhao, Federico Berto, Chuanbo Hua, Changhyun Kwon, and Jinkyoo Park. Neural
 786 combinatorial optimization for real-world routing, 2025. URL <https://arxiv.org/abs/2503.16159>.

787

788 Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
 789 neighborhood search algorithm for mixed integer programs. *ArXiv*, abs/2107.10201, 2021. URL
 790 <https://api.semanticscholar.org/CorpusID:236154746>.

791

792 Statistisches Bundesamt. Gemeinden in deutschland nach fläche, bevölkerung und postleitzahl am
 793 31.03.2017 (1. quartal), 2017. URL <https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx?blob=publicationFile>.
 794 Accessed: 20 September 2017.

795

796 Fernando Stefanello, Olinto C. B. de Araújo, and Felipe M. Müller. Matheuristics for the capacitated
 797 p-median problem. *International Transactions in Operational Research*, 22(1):149–167, 2015. doi:
 798 <https://doi.org/10.1111/itor.12103>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103>.

799

800 Mike Steglich. A hybrid heuristic based on self-organising maps and binary linear programming
 801 techniques for the capacitated p-median problem. 06 2019. doi: 10.7148/2019-0267.

802

803 Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language model
 804 agents in algorithm search for combinatorial optimization, 2025. URL <https://arxiv.org/abs/2504.04310>.

805

806 Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial optimi-
 807 zation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
 808 <https://openreview.net/forum?id=JV8FF01gVV>.

809

810 Éric D. Taillard and Keld Helsgaun. Popmusic for the travelling salesman problem. *Eur. J. Oper.
 811 Res.*, 272:420–429, 2019. URL <https://api.semanticscholar.org/CorpusID:52900855>.

810 Hiromitsu Takahashi and Akira Matsuyama. An approximate solution for the steiner problem in
 811 graphs. *Mathematica Japonica*, 24(6):573–577, 1980.

812

813 Jianheng Tang, Qifan Zhang, Yuhang Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and im-
 814 proving large language models on graph computation. In *International Conference on Learning
 815 Representations*, 2025.

816 Daniela Thyssens, Tim Dernedde, Jonas K. Falkner, and Lars Schmidt-Thieme. Routing arena: A
 817 benchmark suite for neural routing solvers, 2023. URL <https://arxiv.org/abs/2310.04140>.

818

819 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 820 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 821 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 822 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 823 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

824

825 Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
 826 genetic algorithm for multidepot and periodic vehicle routing problems. *Operations Research*,
 827 60(3):611–624, 2012. doi: 10.1287/opre.1120.1048. URL <https://doi.org/10.1287/opre.1120.1048>.

828

829

830 Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. *J. Artif. Int.
 831 Res.*, 12(1):93–103, March 2000. ISSN 1076-9757.

832

833 Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint sat-
 834 isfaction: Easy generation of hard (satisfiable) instances. *Artificial Intelligence*, 171(8):514–
 835 534, 2007. ISSN 0004-3702. doi: <https://doi.org/10.1016/j.artint.2007.04.001>. URL <https://www.sciencedirect.com/science/article/pii/S0004370207000653>.

836

837

838 Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
 839 systems for combinatorial optimization. In *Advances in Neural Information Processing Systems*,
 840 2023.

841

842 Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
 843 and Guojie Song. Reeve: Large language models as hyper-heuristics with reflective evolution. In
 844 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

845

846 Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
 847 Let the flows tell: Solving graph combinatorial problems with GFlownets. In *Thirty-seventh
 848 Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=sTjW3JHs2V>.

849

850

851 **A THE USE OF LARGE LANGUAGE MODELS**

852

853 Large Language Models (LLMs) were used exclusively for supportive purposes, such as adapting
 854 baseline implementations, processing data, generating plots, and refining the manuscript text. Impor-
 855 tantly, LLMs were not involved in data collection/synthesis, experimental design and result analysis,
 856 and therefore did not influence the scientific contributions of this work.

857

858 **B DATA COLLECTION DETAILS**

859

860 This section outlines the data collection process for all problems, covering both test and training/vali-
 861 dation instances. Since the training instance generation for neural solvers varies significantly across
 862 methods, we omit low-level details such as the number of instances and parameter settings. **Instead,**
 863 **we focus on describing the generation of the validation set (test cases used to provide feedback**
for iterative agent refinement) used for LLM-based solvers.

864
865

B.1 MAXIMUM INDEPENDENT SET

866

To construct suitable test instances, we conduct a comprehensive re-evaluation of the datasets collected by Böther et al. (2022). We find that some large real-world graphs (Leskovec & Krevl, 2014), such as ai-caida (Leskovec et al., 2005) with up to 26,475 nodes, are not particularly challenging for SOTA classical solvers like KaMIS (Lamm et al., 2017), which can solve them within seconds. Therefore, we select two moderately sized but more challenging datasets.

871

The easy test set comprises complementary graphs of the maximum clique instances from the 2nd DIMACS Challenge (Johnson & Trick, 1996), while the hard test set consists of the largest 16 instances (each with over 1,000 nodes) from the BHOSLib benchmark (Xu et al., 2007), derived from SAT reductions. Since the original links have expired, we obtain these instances and their BKS from a curated mirror². For those interested in additional sources of high-quality MIS instances, we also highlight vertex cover instances from the 2019 PACE Challenge³, reductions from coding theory⁴, and recent constructions derived from learning-with-errors (LWE) (Kawano, 2023), which provide a promising strategy for generating challenging MIS instances.

872

Training instances are generated using the RB model (Xu & Li, 2000), widely adopted in recent neural MIS solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We synthesize 20 instances with 800–1,200 nodes for our LLM validation set.

873

883

884

B.2 MINIMUM DOMINATING SET

885

Despite the popularity of MDS in evaluating neural solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025), we find a lack of high-quality publicly available benchmarks. We therefore rely on the PACE Challenge 2025⁵, using the exact track instances as our easy set and the heuristic track instances as the hard set. From each, we selected the 20 instances with the highest primal-dual gaps after a one-hour run with Gurobi. Reference BKS are obtained by extending the solving time to two hours.

892

Training instances are Barabási–Albert graphs (Barabási & Albert, 1999) with 800–1,200 nodes, consistent with previous literature (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We generate 20 such instances for the LLM validation set.

893

897

B.3 TRAVELING SALESMAN PROBLEM

898

We source TSP instances from the 8th DIMACS Challenge⁶ and TSPLib⁷. The easy test set includes symmetric 2D Euclidean TSP instances (distance type EUC_2D, rounding applied) from TSPLib with over 1,000 cities, all with known optimal solutions. This aligns with settings used in prior neural TSP solvers (Karlin et al., 2021).

904

The hard test set consists of synthetic instances from the DIMACS Challenge with at least 10,000 cities (Fu et al., 2023). We obtain BKS from the LKH website⁸.

905

906

Training instances follow the standard practice of uniformly sampling points in a unit square (Kool et al., 2019). For simplicity, we reuse DIMACS instances with 1,000 nodes as our LLM validation set, since they are drawn from the same distribution, except scaling the coordinates by a constant.

910

911

912

²https://iridia.ulb.ac.be/~fmascia/maximum_clique/

913

³<https://pacechallenge.org/2019/>

914

⁴<https://oeis.org/A265032/a265032.html>

915

⁵<https://pacechallenge.org/2025/>

916

⁶<http://archive.dimacs.rutgers.edu/Challenges/TSP/>

917

⁷<http://comopt.ifii.uni-heidelberg.de/software/TSPLIB95/>

⁸http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html

918 B.4 CAPACITATED VEHICLE ROUTING PROBLEM
919920 We collect CVRP instances from the 12th DIMACS Challenge⁹ and CVRPLib¹⁰, which have significant
921 overlap. From these, we select the Golden (Golden et al., 1998) and Belgium (collected by
922 Arnold et al. (Arnold et al., 2019)) instances as our easy and hard sets, respectively. **We discard the**
923 **route length constraints in the first eight Golden instances in our experiments.** All BKS are retrieved
924 from the CVRPLib website.925 Training data generation follows the method used in DeepACO (Ye et al., 2023). Each instance
926 includes up to 500 cities, with demands in [1, 9] and capacity fixed at 50. We generate 15 total
927 validation instances for LLMs, with 5 each for 20, 100, and 500 cities.
928929 B.5 CAPACITATED FACILITY LOCATION PROBLEM
930931 Following the benchmark setup in previous works (Guastaroba & Speranza, 2012; Caserta & Voß,
932 2020), we select instances from Test Bed 1 (Avella & Boccia, 2009) and Test Bed B (Avella et al.,
933 2009) as our easy and hard test sets, respectively. The easy set includes the 20 largest instances
934 from Test Bed 1, each with 1,000 facilities and 1,000 customers. The hard set consists of the 30
935 largest instances from Test Bed B, each with 2,000 facilities and 2,000 customers. All instances are
936 downloaded from the OR-Brescia website¹¹.
937938 Notably, our easy instances are already significantly larger than the most challenging instances
939 typically used in neural solver evaluations (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang,
940 2025b), which contain at most 100 facilities and 400 customers. All easy instances can be solved
941 exactly by Gurobi. For the hard instances, as all available BKS identified in the literature (Caserta
942 & Voß, 2020) are inferior to those obtained by Gurobi, we rerun Gurobi for two hours to obtain
943 improved reference solutions.
944945 Overall, we find that Gurobi already demonstrates strong performance on standard CFLP variants,
946 in which each customer may be served by multiple facilities. Consequently, the single-source
947 CFLP variant—where each customer must be assigned to exactly one facility—has become a more
948 compelling and actively studied problem in recent CO literature (Gadegaard et al., 2017; Caserta
949 & Voß, 2020; Almeida et al., 2023). Several corresponding benchmarks are also available on the
950 OR-Brescia website.
951952 For training data, we adopt the synthetic generation method from Cornuejols et al. (Cornuejols
953 et al., 1991), producing 20 instances with 100 facilities and 100 customers for LLM validation. This
954 generation method is widely used in existing neural branching works (Gasse et al., 2019; Scavuzzo
955 et al., 2022; Feng & Yang, 2025b), and forms part of the construction for Test Bed 1 (Avella & Boccia,
956 2009).
957958 B.6 CAPACITATED p -MEDIAN PROBLEM
959960 We follow the evaluation setup in recent works on CRMP (Stefanello et al., 2015; Gnägi & Baumann,
961 2021). Instances with fewer than 10,000 facilities are assigned to the easy set; larger ones go to the
962 hard set. Easy instances include 6 real-world São José dos Campos instances (Lorena & Senne, 2004)
963 and 25 adapted TSPLib instances (Lorena & Senne, 2000; Stefanello et al., 2015). These are sourced
964 from INPE¹² and SomAla¹³ websites. Hard instances are large-scale problems introduced by Gnägi
965 and Baumann (Gnägi & Baumann, 2021), downloaded from their GitHub¹⁴. BKS are derived by
966 combining the best GB21-MH results and values reported in (Stefanello et al., 2015; Steglich, 2019;
967 Gnägi & Baumann, 2021).
968969 ⁹<http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/>970 ¹⁰<http://vrp.galgos.inf.puc-rio.br/index.php/en/>971 ¹¹<https://or-brescia.unibs.it/home>972 ¹²<http://www.lac.inpe.br/~lorena/instancias.html>973 ¹³<http://stegger.net/somala/index.html>974 ¹⁴<https://github.com/phil85/GB21-MH>

972 In total, we collect 31 easy and 12 hard instances, all using Euclidean distances. Additional alterna-
 973 tives include spherical-distance instances (Diaz & Fernandez, 2006; Statistisches Bundesamt, 2017)
 974 and high-dimensional instances (Gnägi & Baumann, 2021).

975 We synthesize training data with Osman’s method (Osman, 1994). The validation set for LLMs are
 976 generated by fixing the number of facilities at 500 and varying medians p in $\{5, 10, 20, 50\}$. Each
 977 setting includes 5 instances.

979 B.7 FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

981 We collect FJSP instances from two recent benchmark sets commonly used in the evaluation of classi-
 982 cal FJSP solvers. The easy test set consists of instances introduced by Behnke and Geiger (Behnke &
 983 Geiger, 2012), available via a GitHub mirror¹⁵. The hard test set includes 24 of the largest instances
 984 (with 100 jobs) from a benchmark proposed by Naderi and Roshanaei (Naderi & Roshanaei, 2021),
 985 which we obtain from the official repository¹⁶. These two datasets are selected based on recent
 986 comparative studies in the literature (Bahman Naderi, 2023; Dauzère-Pérès et al., 2024).

987 Based on our literature review, the strongest results have been reported by the CP-based Benders
 988 decomposition method (Naderi & Roshanaei, 2021); however, the source code is not publicly
 989 available. As a result, we adopt a constraint programming approach using CPLEX, which has
 990 demonstrated consistently strong performance relative to other commercial solvers and heuristic
 991 methods (Bahman Naderi, 2023).

992 Training data is generated following the same protocol used in Li et al. (Li et al., 2025a). Specifically,
 993 we synthesize 20 instances, each with 20 machines and 10 jobs, to form the LLM validation set.

995 B.8 STEINER TREE PROBLEM

997 We collect STP instances from SteinLib¹⁷ and the 11th DIMACS Challenge¹⁸. The easy set includes
 998 Vienna-GEO instances (Leitner et al., 2014), which—despite having tens of thousands of nodes—are
 999 solvable within minutes by SCIP-Jack. The hard set comprises PUC instances (Rossetti et al., 2001),
 1000 most of which cannot be solved within one hour by SCIP-Jack and even lack known optima. BKS
 1001 are determined by taking the best value between SCIP-Jack’s one-hour primal bound and published
 1002 solutions from SteinLib or Vienna-GEO (Leitner et al., 2014). We also highlight the 2018 PACE
 1003 Challenge¹⁹ as a useful benchmark with varied difficulty levels.

1004 Training data includes two generation strategies. The first generator corresponds to the hardest
 1005 instances in PUC (Rossetti et al., 2001), which constructs graphs from hypercubes with randomly
 1006 sampled (perturbed) edge weights. We generate 100 training instances for neural solvers and 10
 1007 validation instances for LLMs across dimensions 6–10. The second, based on GeoSteiner (Juhl et al.,
 1008 2018), samples 25,000-node graphs from a unit square. We include 15 such instances (10 for neural
 1009 solvers, 5 for LLMs)²⁰, and add 45 adapted TSPLib instances (Juhl et al., 2018) to the neural training
 1010 set. The LLM training set also serves as the validation set for neural solvers.

1012 C IMPLEMENTATION DETAILS

1014 C.1 NEURAL SOLVERS

1016 **DiffUCO, SDDS.** The DiffUCO/SDDS checkpoints used in our evaluation are taken directly from
 1017 the official repository²¹ and correspond to the models trained on the RB-Large dataset. For MIS (easy
 1018 and hard), we increase the number of inference steps to 50, while for MDS-easy we revert to the
 1019 default of 3 steps. Both models encounter out-of-memory issues on the MDS-hard set.

1020 ¹⁵<https://github.com/Lei-Kun/FJSP-benchmarks>

1021 ¹⁶<https://github.com/INFORMSJoC/2021.0326>

1022 ¹⁷<https://steinlib.zib.de/steinlib.php>

1023 ¹⁸<https://dimacs11.zib.de/organization.html>

1024 ¹⁹<https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances>

1025 ²⁰<http://www.geosteiner.com/instances/>

²¹<https://github.com/ml-jku/DiffUCO>

1026 **RLNN.** We use the official checkpoint trained on RB-[800–1200]²² for all evaluations. All inference
 1027 hyperparameters follow the original paper, except that we increase the number of inference steps to
 1028 100,000 on both MIS-easy and MIS-hard to fully utilize the 1-hour time budget.
 1029

1030 **DIFUSCO.** We use the official checkpoint trained on TSP-10000²³. Decoding uses the greedy
 1031 + 2-OPT heuristic, and all other inference parameters follow the configuration used in the original
 1032 paper on TSP-10000.
 1033

1034 **LEHD.** We use the optimal TSP and CVRP checkpoints from the official repository²⁴. Decoding
 1035 employs the Parallel Local Reconstruction (PRC) heuristic. Instead of fixing the number of PRC
 1036 iterations, we continue iterating until the 3600-second time budget is exhausted.
 1037

1038 **DeepACO.** For CVRP, we evaluate the official CVRP500 checkpoint²⁵. After the neural construction
 1039 phase, we follow the standard protocol and continue decoding using HGS until the time limit is
 1040 reached.
 1041

1042 **SIL.** We use the default checkpoints from the official repository for TSPLib (trained on TSP-1000)
 1043 and CVRPLib (trained on CVRP-1000)²⁶. Similar to LEHD, decoding uses PRC and is iterated until
 1044 the solving time budget is exhausted.
 1045

1046 **tMDP, SORREL.** We use the official checkpoints for the CFLP task from the tMDP²⁷ and SOR-
 1047 REL²⁸ repositories. For tMDP, we follow the DFS-based variant.
 1048

1049 **GCNN.** For CFLP, GCNN is trained on 100,000 strong-branching samples collected from 10,000
 1050 instances. For CPMP, it is trained on 50,000 samples collected from 1,000 instances. Both training
 1051 procedures follow the methodology of Gasse et al. (2019).
 1052

1053 **IL-LNS, CL-LNS.** Training data is constructed from local-branching trajectories on 200 instances.
 1054 We follow the default protocol, using 20% of variables to define the large neighborhood, and keep all
 1055 remaining hyperparameters identical to those in the official implementation²⁹.
 1056

1057 **MPGN, L-RHO.** Since the FJSP instances used in our experiments are already compatible with
 1058 those evaluated by MPGN³⁰ and L-RHO³¹, we adopt their exact hyperparameter settings, including
 1059 the 450 training instances generated by Li et al. (2025a).
 1060

C.2 LLM SOLVERS

1061 **Self-Refine** In our implementation, we run 64 iterations. In each iteration, the LLM receives the
 1062 previous best-performing code and its dev-set evaluation results, then generates the next code. We
 1063 use o4-mini with a medium reasoning budget and default sampling parameters. The dev evaluation
 1064 timeout is 300s, although the LLM is prompted to write algorithms for a 3600s timeout. After 64
 1065 iterations, we evaluate the best dev-set code on the test set with a 3600s timeout.
 1066

1067 **FunSearch** We follow the official FunSearch implementation and modify the prompt to fit our
 1068 tasks. We set the number of islands to 10, functions per prompt to 2, the reset period to 2 hours, and
 1069 run 64 iterations with a 300s dev evaluation timeout. After 64 iterations, we evaluate the best dev-set
 1070 code on the test set with a 3600s timeout.
 1071

²²<https://github.com/Shengyu-Feng/RLD4CO>

²³<https://github.com/Edward-Sun/DIFUSCO>

²⁴https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD

²⁵<https://github.com/henry-yeh/DeepACO>

²⁶<https://github.com/CIAM-Group/SIL>

²⁷<https://github.com/lascavana/r12branch>

²⁸<https://github.com/Shengyu-Feng/SORREL>

²⁹<https://github.com/facebookresearch/CL-LNS>

³⁰<https://github.com/wrqccc/FJSP-DRL>

³¹<https://github.com/mit-wu-lab/l-rho>

1080
 1081 **ReEvo** We follow the official ReEvo implementation and modify the prompt to fit our tasks. We set
 1082 the population size to 10, initial population size to 4, mutation rate to 0.5, and run 64 iterations with a
 1083 300s dev evaluation timeout. After 64 iterations, we evaluate the best dev-set code on the test set
 1084 with a 3600s timeout.

1085 **C.3 EXAMPLE PROMPT**

1087 Our query prompts basically consist of two parts: the description of the problem background and the
 1088 starter code for LLM to fill in. The following is an example prompt on TSP.

1089 The evaluation example

1091 **Problem Description**

1092 The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem
 1093 where, given a set of cities with known pairwise distances, the objective is to find the shortest
 1094 possible tour that visits each city exactly once and returns to the starting city. More formally,
 1095 given a complete graph $G = (V, E)$ with vertices V representing cities and edges E with
 1096 weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting
 1097 each vertex exactly once) of minimum total weight.

1098 **Starter Code**

```
1099 def solve(**kwargs):
1100     """
1101     Solve a TSP instance.
1102
1103     Args:
1104         - nodes (list): List of (x, y) coordinates representing
1105             cities in the TSP problem
1106             Format: [(x1, y1), (x2, y2), ..., (xn, yn)]
1107
1108     Returns:
1109         dict: Solution information with:
1110             - 'tour' (list): List of node indices representing the
1111                 solution path
1112                 Format: [0, 3, 1, ...] where numbers
1113                 are indices into the nodes list
1114             """
1115         # Your function must yield multiple solutions over time, not
1116         # just return one solution
1117         # Use Python's yield keyword repeatedly to produce a stream of
1118         # solutions
1119         # Each yielded solution should be better than the previous one
1120         while True:
1121             yield {
1122                 'tour': [],
1123             }
```

1123 **D DETAILED RESULTS**

1125 Table 4–11 present the detailed results for the evaluated methods in Section 4. A result is marked
 1126 with * if the method suffers from the out-of-memory or timeout issue before obtaining a feasible
 1127 solution (assigned a primal gap 1 and runtime 3600 seconds) on any instance in this benchmark. Note
 1128 that the geometric mean and standard deviation is reported for the solving time.

1129
 1130
 1131
 1132
 1133

1134
1135
1136 Table 4: Comparative Results on MIS.
1137
1138

MIS	Easy		Hard	
	Method	Gap ↓	Time ↓	Gap ↓
KaMIS		1.51 ± 0.43 %	223 ± _x 5.62 s	2.65 ± 0.81 %
DiffUCO		9.54 ± 9.82 %	154 ± _x 1.18 s	6.45 ± 1.43 %
SDDS		11.85 ± 12.47 %	223 ± _x 1.14 s	5.24 ± 1.12 %
RLNN		6.29 ± 8.81 %	532 ± _x 3.24 s	6.31 ± 2.76 %
FunSearch		1.87 ± 3.63 %	3600 ± _x 1.00 s	4.97 ± 0.92 %
Self-Refine		1.30 ± 3.89 %	3600 ± _x 1.00 s	4.02 ± 0.97 %
ReEvo		1.44 ± 4.05 %	3600 ± _x 1.00 s	4.81 ± 0.95 %

1147
1148 Table 5: Comparative Results on MDS.
1149

MDS	Easy		Hard	
	Method	Gap ↓	Time ↓	Gap ↓
Gurobi		0.00 ± 0.00 %	3600 ± _x 1.00 s	0.63% ± 2.74 %
DiffUCO		71.86 ± 21.56 %	54 ± _x 26.86 s	*100.00 ± 0.00 %
SDDS		66.21 ± 12.80 %	54 ± _x 27.01 s	*100.00 ± 0.00 %
FunSearch		41.83 ± 48.67 %	3600 ± _x 1.00 s	95.21 ± 11.43 %
Self-Refine		6.19 ± 4.42 %	3600 ± _x 1.00 s	5.71 ± 3.49 %
ReEvo		7.52 ± 4.50 %	3600 ± _x 1.00 s	5.81 ± 5.24 %

1160
1161 Table 6: Comparative Results on TSP.
1162

TSP	Easy		Hard	
	Method	Gap ↓	Time ↓	Gap ↓
LKH-3		0.03 ± 0.05 %	65 ± _x 8.90 s	2.89 ± 1.58 %
LEHD		10.23 ± 9.37 %	487 ± _x 4.20 s	*76.84 ± 34.23 %
DIFUSCO		4.19 ± 1.20 %	555 ± _x 2.45 s	*69.04 ± 45.57 %
SIL		2.51 ± 1.56 %	3600 ± _x 1.00 s	21.34 ± 34.23 %
FunSearch		6.79 ± 5.80 %	3600 ± _x 1.00 s	35.82 ± 25.62 %
Self-Refine		6.29 ± 5.35 %	3600 ± _x 1.00 s	32.00 ± 17.44 %
ReEvo		5.65 ± 6.16 %	3600 ± _x 1.00 s	37.77 ± 38.57 %

1174
1175 Table 7: Comparative Results on CVRP.
1176

CVRP	Easy		Hard	
	Method	Gap ↓	Time ↓	Gap ↓
HGS		0.11 ± 0.18 %	3600 ± _x 1.00 s	6.74 ± 2.50 %
LEHD		1.97 ± 0.92 %	893 ± _x 1.74 s	*100.00 ± 0.00%
DeepACO		4.42 ± 1.56 %	50 ± _x 1.64 s	*27.69 ± 36.18 %
SIL		10.90 ± 8.17 %	3600 ± _x 1.00 s	11.35 ± 4.46 %
FunSearch		5.27 ± 3.70 %	3600 ± _x 1.00 s	6.52 ± 2.67 %
Self-Refine		3.86 ± 1.63 %	3600 ± _x 1.00 s	27.50 ± 6.19 %
ReEvo		7.16 ± 3.42 %	3600 ± _x 1.00 s	10.01 ± 2.83 %

Table 8: Comparative Results on CFLP.

CFLP	Easy		Hard			
	Method	Gap ↓	Time ↓	Method	Gap ↓	Time ↓
Gurobi	0.00 ± 0.00 %	308 ± _x 1.93 s		0.01 ± 0.02 %	3136 ± _x 1.34 s	
tMDP	3.54 ± 3.14 %	3581 ± _x 1.00 s		55.35 ± 21.7 %	3600 ± _x 1.00 s	
SORREL	3.46 ± 2.51 %	3600 ± _x 1.00 s		55.35 ± 21.7 %	3600 ± _x 1.00 s	
GCNN	3.22 ± 3.10 %	3551 ± _x 1.07 s		55.35 ± 21.7 %	3600 ± _x 1.00 s	
FunSearch	7.31 ± 0.75 %	3600 ± _x 1.00 s		7.41 ± 3.26 %	3600 ± _x 1.00 s	
Self-Refine	27.08 ± 10.79 %	3600 ± _x 1.00 s		24.93 ± 21.56 %	3600 ± _x 1.00 s	
ReEvo	12.89 ± 1.70 %	3600 ± _x 1.00 s		12.79 ± 6.40 %	3600 ± _x 1.00 s	

Table 9: Comparative Results on CPMP.

CPMP	Easy		Hard			
	Method	Gap ↓	Time ↓	Method	Gap ↓	Time ↓
GB21-MH	0.53 ± 0.49 %	541 ± _x 8.49 s		0.32 ± 0.37 %	3600 ± _x 1.00 s	
IL-LNS	*80.57 ± 36.75 %	*2636 ± _x 1.92 s		*100.00 ± 0.00 %	*3600 ± _x 1.00 s	
CL-LNS	*81.45 ± 36.21 %	*2649 ± _x 1.92 s		*100.00 ± 0.00 %	*3600 ± _x 1.00 s	
GCNN	*42.91 ± 28.66 %	*2143 ± _x 3.68 s		*100.00 ± 0.00 %	*3600 ± _x 1.00 s	
FunSearch	3.96 ± 3.77 %	3600 ± _x 1.00 s		*77.32 ± 41.06 %	*3600 ± _x 1.00 s	
Self-Refine	2.84 ± 2.57 %	3600 ± _x 1.00 s		*74.05 ± 39.50 %	*3600 ± _x 1.00 s	
ReEvo	3.40 ± 3.14 %	3600 ± _x 1.00 s		*70.64 ± 43.61 %	*3600 ± _x 1.00 s	

Table 10: Comparative Results on FJSP.

FJSP	Easy		Hard			
	Method	Gap ↓	Time ↓	Method	Gap ↓	Time ↓
CPLEX	0.00 ± 0.00 %	702 ± _x 17.01 s		0.01 ± 0.04 %	3600 ± _x 1.00 s	
MPGN	12.78 ± 4.04 %	9 ± _x 4.26 s		1.50 ± 0.85 %	69 ± _x 1.90 s	
L-RHO	27.20 ± 12.97 %	21 ± _x 1.87 s		1.03 ± 0.86 %	58 ± _x 2.49 s	
FunSearch	5.05 ± 3.57 %	3600 ± _x 1.00 s		12.10 ± 2.90 %	3600 ± _x 1.00 s	
Self-Refine	6.66 ± 2.48 %	3600 ± _x 1.00 s		1.14 ± 1.27 %	3600 ± _x 1.00 s	
ReEvo	5.61 ± 2.78 %	3600 ± _x 1.00 s		2.16 ± 1.72 %	3600 ± _x 1.00 s	

Table 11: Comparative Results on STP.

STP	Easy		Hard			
	Method	Gap ↓	Time ↓	Method	Gap ↓	Time ↓
SCIP-Jack	0.00 ± 0.00 %	22 ± _x 5.43 s		0.50 ± 0.62 %	717 ± _x 26.70 s	
RL	14.00 ± 3.31 %	31 ± _x 8.40 s		13.10 ± 6.52 %	1 ± _x 4.44 s	
SL	14.00 ± 3.31 %	31 ± _x 8.40 s		13.10 ± 6.52 %	1 ± _x 4.44 s	
FunSearch	8.29 ± 5.44 %	3600 ± _x 1.00 s		5.82 ± 4.86 %	3600 ± _x 1.00 s	
Self-Refine	11.23 ± 6.04 %	3600 ± _x 1.00 s		6.93 ± 3.96 %	3600 ± _x 1.00 s	
ReEvo	14.36 ± 3.53 %	3600 ± _x 1.00 s		10.03 ± 6.43 %	3600 ± _x 1.00 s	

E EFFICIENCY ANALYSIS OF NEURAL SOLVERS

Neural solvers are typically motivated as fast heuristics that avoid the heavy computation of exact classical solvers. However, existing evaluations often overlook that many classical solvers can

1242 **also operate as fast heuristics when given restricted time budgets.** To illustrate this point, we
 1243 take TSP as an example and compare commonly used fast-mode configurations of both classical and
 1244 neural methods. Specifically, we include LKH-3 under the POPMUSIC setting (Taillard & Helsgaun,
 1245 2019) with 1,000 trials, DIFUSCO with 50 inference steps and greedy decoding, LEHD with greedy
 1246 decoding, and SIL with 10 Parallel Local Reconstruction (PRC) steps. The comparative results on
 1247 several TSPLib instances across different scales are shown in Table 12.

1249 Table 12: Comparison between the fast version of classical and neural solvers on TSPLib instances
 1250 across different scales.

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263		1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263		1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263		1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263	
	TSP-easy Instances	1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263						
pr1002	0.70%	0.2s	17.02%	6s	4.25%	3s	0.82%	27s
fl1400	0.40%	0.3s	10.52%	6s	28.37%	8s	5.53%	31s
pr2392	0.68%	0.4s	10.97%	18s	14.80%	15s	3.46%	38s
pcb3038	0.68%	1s	14.70%	20s	11.85%	31s	3.27%	28s
fnl4461	0.76%	1s	16.00%	81s	3.50%	34s	2.64%	39s
rl5915	1.43%	2s	9.42%	169s	3.31%	52s	5.41%	39s
rl11894	2.25%	4s	27.56%	1204	31.47%	130s	6.41%	37s
usa13509	1.53%	4s	41.75%	1765s	33.14%	164s	11.33%	42s
brd14051	1.39%	4s	29.19%	1981s	30.37%	167s	6.14%	39s
d15112	0.12%	5s	26.49%	2464s	3.20%	278s	5.21%	40s
d18512	1.22%	5s	29.64%	4767s	30.67%	266s	5.56%	41s

1264
 1265 The results indicate that neural solvers remain substantially less effective than LKH-3 when all
 1266 methods are run in their fast configurations. As instance size grows from 1,002 to 18,512 nodes,
 1267 LKH-3 requires only five additional seconds while still delivering near-optimal solutions. In contrast,
 1268 DIFUSCO needs an extra six minutes, and LEHD requires over an hour, merely to obtain a single
 1269 feasible tour. SIL is notably more scalable than both LEHD and DIFUSCO—its runtime increases
 1270 much more modestly, reflecting meaningful progress in ML-based solvers. However, its optimality
 1271 gap remains large, and it shows no clear advantage over LKH-3 in either runtime or solution quality.

F EXPANDED EXPLANATION OF METRICS

1274 The primal gap used in this work is defined as
 1275

$$1276 \text{pg}(x; s) = \begin{cases} 1, & \text{if } x \text{ is infeasible or } \text{cost}(x; s) \cdot c^* < 0, \\ \frac{|\text{cost}(x; s) - c^*|}{\max\{|\text{cost}(x; s)|, |c^*|\}}, & \text{otherwise,} \end{cases} \quad (3)$$

1283 where c^* denotes the optimal objective value.

1284 This metric has been popularly used in classical solvers (Berthold, 2006; 2013; Achterberg et al.,
 1285 2012), the DIMACS challenge (DIM, 2013-2014), and recent neural solvers (Nair et al., 2020;
 1286 Chmiela et al., 2021; Huang et al., 2023).

1287 For maximization problems such as MIS, we convert the task into an equivalent minimization problem
 1288 by negating the objective.

1289 By definition, our primal gap is strictly bounded within the range $[0, 1]$ (i.e., 0% to 100%), where 0 is
 1290 optimal and 1 is the worst possible score. Any feasible solution will result in a gap strictly less than 1.
 1291 We set the primal gap for infeasible solutions to 1 to flag them as failures, aligning with the intuition
 1292 that infeasible solutions are never better than feasible ones.

1293 A summary of all tasks in FRONTIERCO, including their objective definitions and sign conventions,
 1294 is provided in Table 13.

1296
1297
1298 Table 13: Summary of problem types, objective definitions, and sign conventions.
1299
1300
1301
1302
1303
1304
1305
1306

Problem	Type	Original Objective	Sign of c^*
MIS	Maximization	maximize set size	-
MDS	Minimization	minimize set size	+
TSP	Minimization	minimize tour cost	+
CVRP	Minimization	minimize total route cost	+
CFLP	Minimization	minimize facility + assignment cost	+
CPMP	Minimization	minimize total distance	+
FJSP	Minimization	minimize makespan	+
STP	Minimization	minimize Steiner tree cost	+

1307
1308
1309

G ADDITIONAL ANALYSES ON NON-EUCLIDEAN CHALLENGES IN TSP

1310
1311

1312 To further highlight the difficulty posed by non-Euclidean CO instances—a challenge largely over-
1313 looked in current ML4CO evaluations—we incorporate an additional Asymmetric TSP (ATSP)
1314 benchmark composed of non-Euclidean / non-metric instances. These instances originate from real-
1315 world datasets (Jordan Srour & van de Velde, 2013) spanning stacker-crane operations, transportation
1316 and routing tasks, robotic motion planning, and data-compression problems. Dataset statistics and
1317 evaluation results are reported in Table 14 and Table 15, respectively. RRNCO (Son et al., 2025), a
1318 recent neural solver designed for real-world ATSP instances are used for evaluation.

1319
1320 Table 14: Summary of ATSP instances.

Problem	Test Set Sources	Attributes	Easy Set	Hard Set
ATSP	Jordan Srour & van de Velde (2013)	Instances Cities	31 131	33 323–932

1325
1326
1327 Table 15: Comparative Results on ATSP.

ATSP	Easy		Hard	
	Method	Gap ↓	Time ↓	Gap ↓
LKH-3	0.00 ± 0.00 %	1927 ± _x 1.31 s	0.08 ± 0.09 %	705 ± _x 2.52 s
RRNCO	1.42 ± 0.69 %	3600 ± _x 1.00 s	15.46 ± 7.88 %	3600 ± _x 1.00 s
FunSearch	0.00 ± 0.00 %	3600 ± _x 1.00 s	3.52 ± 5.26 %	3600 ± _x 1.00 s
Self-Refine	0.50 ± 0.81 %	3600 ± _x 1.00 s	10.94 ± 11.16 %	3600 ± _x 1.00 s

1338 It can be seen that although the largest ATSP instance, which is from the hard set, only contains 932
1339 nodes, it is way challenging than the easy (metric) TSP instances at the small scale (~ 1000 nodes),
1340 where the former could not be solved to optimum within 1 hour while the latter could be solved to
1341 optimum in seconds. The clear performance difference for RRNCO on TSP instances and ATSP
1342 instances, shown in Table 16, also reflects the challenges of non-Euclidean instances.

1343
1344 Table 16: Performance comparison of RRNCO on TSP and ATSP Instances.

	TSP			ATSP		
Instance	pr1002	u1060	vm1084	rbg443	dc895	dc932
RRNCO	1.81%	5.01%	3.23%	23.96%	10.58%	8.29%

H DISCUSSIONS IN SOLVER DEPLOYMENT

Beyond solution quality and solving time, we observe substantial variation in deployment cost across solver families. In general, neural solvers rely heavily on GPUs and require significantly more memory than classical solvers, making them more expensive to deploy in practice. LLM-based solvers, while consuming considerable API credits or training resources during the evolutionary or development phase, incur relatively low deployment cost during inference once the solver is finalized.

1350
1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403