
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FRONTIERCO: REAL-WORLD AND LARGE-SCALE
EVALUATION OF MACHINE LEARNING SOLVERS FOR
COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning (ML) has shown promise for tackling combinatorial optimization
(CO), but much of the reported progress relies on small-scale, synthetic bench-
marks that fail to capture real-world structure and scale. A core limitation is that
ML methods are typically trained and evaluated on synthetic instance genera-
tors, leaving open how they perform on irregular, competition-grade, or industrial
datasets. We present FRONTIERCO, a benchmark for evaluating ML-based CO
solvers under real-world structure and extreme scale. FRONTIERCO spans eight
CO problems, including routing, scheduling, facility location, and graph problems,
with instances drawn from competitions and public repositories (e.g., DIMACS,
TSPLib). Each task provides both easy sets (historically challenging but now
solvable) and hard sets (open or computationally intensive), alongside standardized
training/validation resources. Using FRONTIERCO, we evaluate 16 representative
ML solvers—graph neural approaches, hybrid neural–symbolic methods, and
LLM-based agents—against state-of-the-art classical solvers. We find a persistent
performance gap that widens under structurally challenging and large instance
sizes (e.g., TSP up to 10M nodes; MIS up to 8M), while also identifying cases
where ML methods outperform classical solvers. By centering evaluation on real-
world structure and orders-of-magnitude larger instances, FRONTIERCO provides
a rigorous basis for advancing ML for CO.

1 INTRODUCTION

Combinatorial optimization (CO) lies at the heart of computer science, operations research, and
applied mathematics, with applications in routing, allocation, planning, and scheduling (Korte &
Vygen, 2012). Most CO problems are intractable or NP-hard, and decades of research have relied
on carefully engineered heuristics and exact solvers to make progress. Recently, machine learning
(ML) has been proposed as a way to automate algorithm design, raising the exciting possibility that
data-driven solvers could eventually rival or complement human-crafted methods.

Two main paradigms have emerged. Neural solvers use graph neural networks, reinforcement
learning, or diffusion models to directly generate or guide solutions (Cappart et al., 2023; Bengio
et al., 2020). Symbolic solvers, by contrast, leverage large language models (LLMs) to synthesize
executable algorithms, often refining them through self-feedback or iterative search (Romera-Paredes
et al., 2023; Liu et al., 2024; Ye et al., 2024; Novikov et al., 2025). Both paradigms have produced
intriguing successes on benchmark datasets, sparking optimism about ML’s role in CO.

Yet a central question remains unanswered: can ML-based solvers match or surpass state-of-
the-art (SOTA) human-designed algorithms on real-world CO problems? Existing benchmarks
do not allow us to answer this rigorously. They suffer from three limitations: (i) scale: most
focus on toy instances orders of magnitude smaller than real applications (Kool et al., 2019; Luo
et al., 2023); (ii) realism: synthetic datasets often fail to capture structural diversity; and (iii) data
realism and coverage, i.e., most ML evaluations rely on synthetic generators, which limits insight
into performance on irregular, non-Euclidean, or competition-grade instances that classical solvers
routinely tackle. As a result, ML methods are often assessed at modest scales and on structurally
simplified distributions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FrontierCO

Figure 1: Overview of FRONTIERCO.

To address these limitations, we present FRONTIERCO,
a benchmark that evaluates ML-based solvers under real-
world structure and extreme instance sizes across eight
CO problems from five categories (Figure 1). Unlike eval-
uations based solely on synthetic data, FRONTIERCO in-
tegrates instances from TSPLib, Reinelt (1991), DIMACS
challenges (Johnson & McGeoch, 1993), CFLP testbeds
(Avella et al., 2009), and other competition or repository
sources, and complements them with standardized train-
ing/validation resources. For each problem we provide
two test sets: easy (once challenging, now solvable by
SOTA classical methods) and hard (open or computation-
ally intensive). We intentionally include structurally
challenging cases (e.g., PUC hypercubes (Rosseti et al.,
2001); SAT-induced MIS (Xu et al., 2007)) and push
scale by orders of magnitude to reflect real-world diffi-
culty. Concretely, FRONTIERCO scales to TSP with 10M
nodes and MIS with 8M nodes. Prior larger-scale ML
evaluations (e.g., DIMES) scaled to TSP graphs with 10K nodes, while early neural TSP studies
commonly used ≤ 100 nodes (Kool et al., 2019).

Using this benchmark, we conduct a systematic, cross-paradigm evaluation of ML-based CO solvers.
Our study covers 16 representative approaches, including end-to-end neural solvers, neural-enhanced
heuristics (Bengio et al., 2020; Cappart et al., 2023), and LLM-based agentic methods (Sun et al.,
2025), and compares them directly against the best human-designed solvers. This unified evaluation
reveals several key insights: (i) ML methods still lag significantly behind SOTA human solvers,
especially on hard instances; (ii) neural solvers demonstrate the potential to enhance simple human
heuristics, but in general struggle with scalability, non-local structure, and distribution shift; (iii)
LLM-based solvers sometimes may outperform the SOTA classical solvers but display high variance
due to their incapability in understanding the effectiveness of different algorithms they are trained on.

Our contributions are threefold.

1. Benchmark under real-world structure and extreme scale. A unified evaluation suite
across eight problems that pairs competition/real-world instances with hard, structurally
irregular cases and orders-of-magnitude larger sizes than prior ML evaluations (e.g., TSP:
10M vs. 10k; MIS: 8M vs. 11k (Qiu et al., 2022)).

2. Unified evaluation. We conduct a rigorous comparison of 16 ML-based solvers against
state-of-the-art classical baselines, under standardized protocols.

3. Empirical insights. We identify fundamental limitations of current ML approaches, while
also highlighting the potential and future research directions for ML-based solvers.

2 FRONTIERCO: THE PROPOSED BENCHMARK

2.1 FORMAL OBJECTIVE AND EVALUATION METRICS

We follow Papadimitriou & Steiglitz (1982) in denoting a combinatorial optimization (CO) problem
instance as s, a solution as x ∈ Xs, and defining the objective as

min
x∈Xs

cs(x) = cost(x; s) + valid(x; s), (1)

where cost(x; s) is a problem-specific objective (e.g., the tour length in routing problems), and
valid(x; s) penalizes constraint violations—taking value ∞ if x is infeasible, and 0 otherwise. Note
that any maximization problem can be turned into a minimization one by negating the objective sign,
and we treat all problems in its minimization version for unified evaluation in this work.

To accommodate the varying scales of different problem instances, we define the primal gap as:

pg(x; s) =

1, if x is infeasible or cost(x; s) · c∗ < 0,
|cost(x; s)− c∗|

max{|cost(x; s)|, |c∗|}
, otherwise,

(2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where c∗ is the (precomputed) optimal or best-known cost for instance s, and pg(x; s) denotes the
primal gap (Berthold, 2006) of x with respect to c∗. Note the primal gap is always in the range [0, 1].

2.2 DOMAIN COVERAGE

This study focuses on eight types of CO problems that have gained increasing attention in recent
machine learning research. These problems are:

• MIS (Maximum Independent Set): Find the largest subset of non-adjacent vertices in a graph,
whose minimization version (corresponding to Equation 1) is to minimize the negative set size.

• MDS (Minimum Dominating Set): Find the smallest subset of vertices such that every vertex
in the graph is either in the subset or adjacent to a vertex in the subset.

• TSP (Traveling Salesman Problem): Find the shortest possible tour that visits each city exactly
once and returns to the starting point. We focus on the 2D Euclidean space in this work.

• CVRP (Capacitated Vehicle Routing Problem): Determine the optimal set of delivery routes
for a fleet of vehicles with limited capacity to serve a set of customers.

• CFLP (Capacitated Facility Location Problem): Choose facility locations and assign clients
to them to minimize the total cost, subject to facility capacity constraints.

• CPMP (Capacitated p-Median Problem): Select p facility locations and assign clients to them
to minimize the total distance, while ensuring that no facility exceeds its capacity.

• FJSP (Flexible Job-Shop Scheduling Problem): Schedule a set of jobs on machines where
each operation can be processed by multiple machines, aiming to minimize the makespan while
respecting job precedence and machine constraints.

• STP (Steiner Tree Problem): Find a minimum-cost tree that spans a given subset of terminals
in a graph, possibly including additional intermediate nodes.

The dataset statistics are summarized in Table 1, with additional details provided in the Appendix
B. Note that only test data are collected from the listed sources; training and validation data gen-
erated from the same synthetic generator to ensure they are from the same distribution (but may at
different scales and set size dependent on the model efficiency/scalability), in order to ensure the fair
comparison among neural and LLM solvers (see Section 2.5).

Graph-based problems (MIS and MDS) and routing problems (TSP and CVRP) have been widely
used to evaluate end-to-end neural solvers (Qiu et al., 2022; Zhang et al., 2023; Sun & Yang, 2023;
Sanokowski et al., 2025), as these tasks often admit relatively straightforward decoding strategies
to transform probabilistic model output into feasible solutions. In contrast, facility location and
scheduling problems (such as CFLP, CPMP, and FJSP) involve more complex and interdependent
constraints, making them better suited to hybrid approaches that combine neural networks with
traditional solvers (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b). Tree-based
problems have received comparatively less attention in neural CO, yet we include a representative
case (e.g., STP) due to their fundamental importance in the broader CO landscape. All of the above
problems can also be directly handled by symbolic solvers, enabling comprehensive and comparable
evaluations across solver paradigms (Romera-Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

2.3 PROBLEM INSTANCES

For each CO problem type, we collect a diverse pool of problem instances from problem-specific
and comprehensive CO libraries (Reinelt, 1991; Xu et al., 2007), major CO competitions (Johnson &
McGeoch, 1993; PACE, 2025), and evaluation sets reported in recent research papers.

Due to rapid progress in CO, many instances from earlier archives can now be effectively solved by
SOTA problem-specific solvers, often achieving an optimality gap below 1% within a 1-hour time
budget. We select a representative subset of such instances as our easy set, which serves to validate
the baseline effectiveness of ML-based solvers.

With a high-level goal to advance the CO solvers on open challenges, we also construct a hard set
comprising open benchmark instances widely used to assess cutting-edge human-designed algorithms.
Many of these instances lack known optimal solutions and remain beyond the reach of existing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Summary of collected problem instances.

Problem Test Set Sources Attributes Easy Set Hard Set

MIS 2nd DIMACS Challenge
BHOSLib

Instances
Nodes

36
1,404–7,995,464

16
1,150–4,000

MDS PACE Challenge 2025 Instances
Nodes

20
2,671–675,952

20
1,053,686–4,298,062

TSP TSPLib
8th DIMACS Challenge

Instances
Cities

29
1,002–18,512

19
10,000–10,000,000

CVRP Golden et al. (1998)
Arnold et al. (2019)

Instances
Cities

20
200–483

10
3,000–30,000

CFLP Avella & Boccia (2009)
Avella et al. (2009)

Instances
Facilities
Customers

20
1,000
1,000

30
2,000
2,000

CPMP
Lorena & Senne (2004; 2000)
Stefanello et al. (2015)
Gnägi & Baumann (2021)

Instances
Facilities
Medians

31
100–4,461
10–1,000

12
10,510–498,378
100–2,000

FJSP Behnke & Geiger (2012)
Naderi & Roshanaei (2021)

Instances
Jobs
Machines

60
10–100
10–20

20
10–100
20–60

STP Leitner et al. (2014)
Rosseti et al. (2001)

Instances
Nodes

23
7,565–71,184

50
64–4,096

heuristics. As a result, they are less susceptible to heuristic hacking, where neural solvers or LLM-
based agents rely on handcrafted decoding strategies or memorize prior solutions, rather than learning
to solve the problem from first principles. Importantly, our hard set is not defined merely by instance
size. Instead, we emphasize structurally complex cases, such as hypercube graphs in STP (Rosseti
et al., 2001) or SAT-induced MIS (Xu et al., 2007), which require models to understand and reason
about intricate problem structures.

2.4 SOTA SOLVERS AND BEST KNOWN SOLUTIONS (BKS)

We identify the SOTA solver for each CO problem type based on published research papers and
competition leaderboards. The selected solvers include: KaMIS (Lamm et al., 2017) for MIS, LKH-3
(Helsgaun, 2017) for TSP, HGS (Vidal et al., 2012) for CVRP, GB21-MH (Gnägi & Baumann, 2021),
a hybrid metaheuristic, for CPMP, and SCIP-Jack (Rehfeldt et al., 2021) for STP. For problems
where no dominant problem-specific solver is available (e.g., MDS, CFLP, FJSP), we rely on general-
purpose commercial solvers, such as Gurobi (Gurobi Optimization, LLC, 2024) for MDS and CFLP
(Mixed Integer Programming), and CPLEX (Cplex, 2009) for FJSP (Constraint Programming).
Among them, Gurobi, CPLEX and SCIP-Jack are exact solvers; the rest are heuristic-based.

Prior evaluations of ML-based CO solvers often relied on self-generated synthetic test instances,
leading to difficulties in fair comparison across papers. These instances are sensitive to imple-
mentation details such as random seeds and Python versions, introducing undesirable variability
and inconsistency. To address this, we provide standardized BKS for all test-set instances in our
benchmark. These BKS are collected from published literature and competition leaderboards, and
are further validated using the corresponding SOTA solvers executed on our servers. For instances
lacking known BKS, such as the MDS instances from the PACE Challenge 2025 (PACE, 2025), or
for benchmarks with outdated references, such as those in the CFLP literature, we run the designated
SOTA solver for up to two hours to obtain high-quality reference solutions.

2.5 STANDARDIZED TRAINING/VALIDATION DATA

Similar to BKS, inconsistencies in self-generated training and validation data can also contribute
to difficulties in cross-paper comparisons. To address this, FRONTIERCO provides standardized

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

training sets for neural solvers and development sets for LLM agents, generated using a variety of
problem-specific instance generators (details in Appendix B).

We also release a complete toolkit that includes a data loader, an evaluation function, and an abstract
solving template tailored for LLM-based agents. The data loader and evaluation function are hidden
from the agents to prevent data leakage. The solving template provides a natural language problem
description along with Python starter code specifying the expected input and output formats. An
example prompt is provided in Appendix C.3.

3 EVALUATION DESIGN

3.1 IMPLEMENTATION SETTINGS

In light of the difficulty and scale of our problem instances, we allow a maximum solving time of
one hour per problem instance, as most solvers, including both classical and ML-based solvers, may
require such a time to obtain a single feasible solution (see efficiency analysis in Appendix E).

For fair comparison, each solver is executed on a single CPU core of a dual AMD EPYC 7313
16-Core processor, and neural solvers are run on a single NVIDIA RTX A6000 GPU. Since the
solving time is influenced by factors such as compute hardware (CPU vs. GPU), solver type (exact vs.
heuristic), and implementation language (C++ vs. Python), we use the primal gap (Equation 2) as
the primary evaluation metric, and solving time is reported for reference only. For any infeasible
solution, we assign a primal gap of 1 and a solving time of 3600 seconds. The arithmetic mean of the
primal gaps and geometric mean of solving time are reported across our experiments.

3.2 REPRESENTATIVE NEURAL SOLVERS FOR COMPARATIVE EVALUATION

In addition to the SOTA human-designed solvers described in Section 2.4, we include a curated set of
machine learning-based CO solvers from recent literature. The neural solvers are tailored to specific
problem categories they are developed for:

• DiffUCO (Sanokowski et al., 2024): An unsupervised diffusion-based neural solver for MIS
and MDS that learns from the Lagrangian relaxation objective.

• SDDS (Sanokowski et al., 2025): A more scalable version of DiffUCO for MIS and MDS, with
efficient training process.

• RLNN (Feng & Yang, 2025a): A neural sampling framework that enhances exploration in CO
by enforcing expected distances between sampled and current solutions.

• LEHD (Luo et al., 2023): A hybrid encoder-decoder model for TSP and CVRP, with strong
generalization to real-world instances.

• DIFUSCO (Sun & Yang, 2023): A diffusion-based approach for TSP that achieves strong
scalability, solving instances with up to 10,000 cities.

• SIL (Luo et al., 2023): A linear-complexity transformer solver that achieves extreme scalability,
handling routing instances with up to 100,000 cities.

• DeepACO (Ye et al., 2023): A neural solver that adapts Ant Colony Optimization (ACO)
principles to learn metaheuristic strategies.

• tMDP (Scavuzzo et al., 2022): A reinforcement learning framework that models the branching
process in Mixed Integer Program (MIP) solver as a tree-structured Markov Decision Process.

• SORREL (Feng & Yang, 2025b): A reinforcement learning method that leverages suboptimal
demonstrations and self-imitation learning to train branching policies in MIP solvers.

• GCNN (Gasse et al., 2019): A graph convolutional network (GNN)-guided solver for MIPs,
which learns to guide branching decisions within a branch-and-bound framework.

• IL-LNS (Sonnerat et al., 2021): A neural large neighborhood search method for Integer Linear
Programs (ILPs) that is trained to predict the locally optimal neighborhood choice.

• CL-LNS (Huang et al., 2023): A contrastive learning-based large neighborhood search approach
for ILPs which advances the imitation learning strategy in IL-LNS.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• MPGN (Lei et al., 2022): A reinforcement learning-based approach for FJSP that employs
multi-pointer graph networks to capture complex dependencies and generate efficient schedules.

• L-RHO (Li et al., 2025a): A learning-guided rolling horizon optimization method that integrates
machine learning predictions into the rolling horizon framework.

Since STP is not well studied by existing neural methods, we consider both reinforcement
learning (RL) and supervised learning (SL) baselines, predicting the Steiner points. The Taka-
hashi–Matsuyama algorithm (Takahashi & Matsuyama, 1980) is then applied for decoding.

3.3 REPRESENTATIVE LLM-BASED AGENTS FOR COMPARATIVE EVALUATION

Our LLM-based solvers are selected based on the CO-Bench evaluation protocol (Sun et al., 2025),
including both general-purpose prompting approaches and CO-specific iterative strategies:

• FunSearch (Romera-Paredes et al., 2023): An evolutionary search framework that iteratively
explores the solution space and refines candidates through backtracking and pruning.

• Self-Refine (Madaan et al., 2023; Shinn et al., 2023): A feedback-driven refinement method in
which the LLM improves its own output via iterative self-refinement.

• ReEvo (Ye et al., 2024): A self-evolving agent that leverages past trajectories—both successful
and failed—to refine its future decisions through reflective reasoning.

All LLM-based solvers are evaluated across the full set of eight CO problem types in our benchmark.

4 RESULTS

We summarize the comparative results in Figure 2 and Table 2. See detailed results in Appendix D.
Note that the primal gap is computed relative to the best known solution (BKS), so its absolute
value does not directly reflect the inherent difficulty of the instance—especially in cases where
no known optimum exists.

We draw several key observations from our results. First, there is a substantial performance
gap between human-designed state-of-the-art (SOTA) solvers and ML-based solvers across all
problem types and difficulty levels. Strikingly, this gap is more pronounced in our benchmark than
in previously published results. For instance, LEHD reports only a 0.72% gap on a standard TSP
benchmark (Kool et al., 2019), whereas on our new benchmark the gap widens to 10% on easy TSP
instances and an alarming 77% on hard instances. A major factor behind this discrepancy lies in the
training and evaluation protocols. Prior studies typically trained neural solvers on synthetic graphs
of a fixed size (e.g., 1000 nodes) and evaluated them on test instances of the same size, ensuring
aligned conditions. In contrast, our datasets incorporate substantial variability in both graph size and
structure across training and test sets. This setup better reflects real-world deployment scenarios but
also introduces significant distribution shifts, under which LEHD and many other ML-based methods
experience severe performance degradation in FRONTIERCO.

Second, neural solvers face serious scalability challenges. Although they used to be treated as
efficient heuristics on large-scale, difficult instances, we find that in practice this is often not the case.
Neural networks typically address the non-convexity of CO problems through over-parameterization
(Allen-Zhu et al., 2019), which inflates single-value variables into high-dimensional representations
and leads to frequent out-of-memory failures (observed in 4 of 8 problems; see Appendix D).
Inference efficiency is an additional bottleneck. For example, the auto-regressive solver LEHD (Luo
et al., 2023) requires running a transformer model (Vaswani et al., 2017) for 10M steps to produce
a single solution on our largest TSP instance, failing to return any solution within the 1-hour time
limit. Similar inefficiencies exist even on easier instances or under shorter time budgets (Appendix E).
Addressing these issues through integration of reduction techniques (Andersen & Andersen, 1995)
and the design of more compact neural architectures is thus an important direction for future research.

Third, LLM-based agents show the potential to outperform prior human-designed SOTA solvers.
For example, Self-Refine surpasses KaMIS on the easy MIS set, and FunSearch outperforms HGS on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Primal gap (%) across eight CO problems on easy and hard sets (lower is better). Classical
(blue), neural (green), and LLM-based agents (red). Bars marked with * indicate at least one infeasible
run on that test set; in such cases we assign gap 1 and time 3600 seconds (see Section 3.1).

the hard CVRP set. A closer inspection of these methods reveals their algorithmic sophistication: Self-
Refine applies kernelization to simplify MIS instances, solves small kernels exactly using a Tomita-
style max-clique algorithm, and employs ARW-style heuristics with solution pools, crossover, and
path-relinking for larger instances. Similarly, FunSearch builds an Iterated Local Search framework
for CVRP, enhanced with regret insertion and Variable Neighborhood Descent. These results highlight
the promise of LLM-based approaches in automatically developing competitive, and in some cases
superior, solvers for CO.

Fourth, despite their promise, LLM-based agents exhibit substantial performance variability.
For example, while they perform comparably to the SOTA solver HGS on the hard CVRP set,
they fall dramatically short on TSP—even though both are routing problems. We hypothesize that
this stems from the nature of LLM training: while models are exposed to diverse human-designed
heuristics and can combine them in novel ways, they generally lack the ability to reliably assess
the effectiveness of the generated algorithms. As a result, each sampling run may randomly yield
a different, not necessarily effective, strategy. This absence of internal reasoning abilities largely
restricts the applicability of LLM agents to hard-to-verify tasks and raises safety concerns when they
generate resource-intensive algorithms for large instances (e.g., frequent out-of-memory issues on
CPMP during evolving). Current agentic frameworks tend to focus on problems that are challenging

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

yet easy to verify, strongly relying on external feedback. In contrast, FRONTIERCO provides a
hard-to-verify benchmark (but still verifiable for evaluation purposes) that highlights the reasoning
capabilities of the LLM themselves.

Table 2: The average primal gap achieved by LLM
agentic solvers over all eight CO problems.

Method Avg. Gap ↓
(All)

Avg. Gap ↓
(Easy)

Avg. Gap ↓
(Hard)

FunSearch 20.35% 10.05% 30.65%
Self-Refine 15.11% 8.18% 22.03%
ReEvo 13.25% 7.25% 19.25%

Table 3: Ablation study on the effective-
ness of the neural module.

TSP-Easy CFLP-Easy
Method Gap ↓ Method Gap ↓
LKH-3 0.03 % Gurobi 0.00%
2-OPT 20.09% SCIP 6.50%
DIFUSCO 4.19% GCNN 3.22%

5 DISCUSSIONS

5.1 DOES THE NEURAL MODULE HELP?

Considering the performance gap between neural solvers and SOTA solvers, a natural question arises:
does the neural module actually contribute to improved performance? To explore this, we conduct
an ablation study by removing the neural component from the underlying algorithm of each neural
solver. We evaluate two representative pairs: DIFUSCO (Sun & Yang, 2023) vs. 2-OPT, and GCNN
(Gasse et al., 2019) vs. SCIP (Achterberg, 2009). The results are summarized in Table 3.

The results show that both DIFUSCO and GCNN significantly improve upon their respective heuristic
baselines, indicating a meaningful contribution from the neural module. However, such improvement
is still far from being comparable to the SOTA classical solvers. Overall, our findings suggest that
neural components can enhance human-designed heuristics, but such improvement is typically
realized when built on relatively weak base algorithms. Whether similar gains can be achieved
when enhancing already strong heuristics remains unclear.

5.2 DO NEURAL SOLVERS CAPTURE GLOBAL STRUCTURE?

Most neural solvers are based on graph neural networks (GNNs)1, which rely on local message
passing. While they have demonstrated strong performance on routing problems such as TSP and
CVRP—which involve complex global constraints—the majority of existing evaluations are limited
to 2D Euclidean instances. Compared to general graph problems, Euclidean instances—such as
those in metric TSP—often exhibit favorable local structures (e.g., triangle inequality), which can be
explicitly exploited by certain algorithms to achieve improved performance (Karlin et al., 2021). In
contrast, general graph problems such as MIS lack such spatial regularities, and neural solvers often
perform poorly on them (Angelini & Ricci-Tersenghi, 2022; Böther et al., 2022).

To explicitly evaluate the ability of neural solvers in capturing global structure, we leverage the rich
source of STP instances, which includes both Euclidean and non-Euclidean graphs (see Appendix B.8
for details). We train two separate GNNs to predict Steiner nodes, using ground truth labels generated
by SCIP-Jack (Rehfeldt et al., 2021). One model is trained on Euclidean instances, and the other on
non-Euclidean instances. The training dynamics are shown in Figure 3.

The results reveal a clear contrast: while the GNN quickly achieves a high F1 score in predicting
Steiner points on Euclidean graphs, it fails to make any progress on non-Euclidean ones. This
suggests that existing GNNs implicitly rely on locality and cannot really capture the global structure.
These findings underscore a fundamental limitation in the expressive power of current neural solvers.

5.3 WHAT KINDS OF ALGORITHMS DO LLM-BASED SOLVERS DISCOVER?

To better understand the algorithmic strategies developed by LLM-based solvers, we visualize the
key words corresponding to their generated algorithms using the word cloud in Figure 4, where the
size of each word reflects its frequency of appearance across algorithms.

1By GNN, we refer to general message passing frameworks including attention-based neural architectures.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Training dynamics of neural solvers on
Euclidean and non-Euclidean STP instances.

Figure 4: Word cloud of the algorithms gener-
ated by LLM-based solvers.

A clear pattern emerges: classical metaheuristics—particularly simulated annealing (SA) and large
neighborhood search (LNS)—consistently appear across a diverse set of problems and often form the
foundation of LLM-generated algorithms. This highlights a shared reliance on well-established
CO algorithms that effectively balance exploration and exploitation. While current LLMs still
fall short of demonstrating novel algorithmic reasoning (algorithms that cannot be mapped to existing
ones) in CO, their strategies tend to replicate known metaheuristics and problem-specific techniques
from the literature. Interestingly, we observe that their performance does not critically depend on
integrating existing solvers, suggesting that LLMs can autonomously construct plausible and often
effective algorithms. This adaptability is particularly promising for rapidly tackling new problem
variants or classical problems with additional constraints, indicating strong potential for LLMs in
zero-shot or few-shot algorithm design scenarios.

6 RELATED WORK

Current machine-learning approaches to CO fall into two broad categories: neural and symbolic
solvers. Neural solvers primarily train a graph neural network (GNN) model with standard machine
learning objectives (Bengio et al., 2020; Cappart et al., 2023). The trained GNN is then used either to
predict complete solutions (Luo et al., 2023; Sun & Yang, 2023; Sanokowski et al., 2024; 2025) or to
guide classical heuristics such as branch-and-bound (Gasse et al., 2019; Scavuzzo et al., 2022; Feng
& Yang, 2025b) and large neighborhood search (Sonnerat et al., 2021; Huang et al., 2023; Feng et al.,
2025). Symbolic solvers instead attempt to generate executable programs that solve the problem,
exploring the space of algorithmic primitives with reinforcement learning (Kuang et al., 2024a;b)
or leveraging LLM agents for code generation (Romera-Paredes et al., 2023; Ye et al., 2024; Liu
et al., 2024; Novikov et al., 2025). Despite these advances, empirical studies have mostly focused on
synthetic benchmarks (Kool et al., 2019; Zhang et al., 2023; Berto et al., 2025; Bonnet et al., 2024;
Ma et al., 2025) falling short in scalability and diversity, or restricted to a single type of CO problems
(Thyssens et al., 2023; Li et al., 2025b). Besides, the lack of training instances in existing LLM
agentic benchmarks (Fan et al., 2024; Tang et al., 2025; Sun et al., 2025) also hinders the further
development. To bridge these gaps, we introduce a comprehensive benchmark with both realistic
evaluation instances and diverse training data sources.

7 CONCLUSION

We present FRONTIERCO, a new benchmark designed to rigorously evaluate ML-based CO solvers
under realistic, large-scale, and diverse problem settings. Through a unified empirical study, we reveal
that while current ML methods show potential, including both neural and LLM-based solvers, they
continue to fall short of state-of-the-art human-designed algorithms in terms of structural reasoning,
generalization, and scalability. However, our findings also uncover promising avenues: neural
solvers can enhance certain human heuristics, and LLMs discover better usage of existing algorithms.
We hope FRONTIERCO will serve as a foundation for advancing the design and evaluation of
next-generation ML-based CO solvers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Details of data collection are provided in Appendix B. The implementations of neural solvers are
taken from the official public repositories of each method, as referenced in Section 3.2. All remaining
code, including that for classical solvers, BKS computation, and LLM agent solvers, is available at
https://anonymous.4open.science/r/FrontierCO-82E3.

REFERENCES

11th DIMACS Implementation Challenge: Steiner Tree Problems. Website, 2013-2014. URL https:
//dimacs11.zib.de/. Co-organized by DIMACS and ICERM. Available at https://
dimacs11.zib.de/.

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computa-
tion, 1:1–41, 2009.

Tobias Achterberg, Timo Berthold, and Gregor Hendel. Rounding and propagation heuristics for
mixed integer programming. In Operations Research Proceedings 2011: Selected Papers of
the International Conference on Operations Research (OR 2011), August 30-September 2, 2011,
Zurich, Switzerland, pp. 71–76. Springer, 2012.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
in overparameterized neural networks, going beyond two layers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf.

Guilherme Almeida, Elisangela Martins de Sá, Sérgio Souza, and Marcone Souza. A hybrid iterated
local search matheuristic for large-scale single source capacitated facility location problems.
Journal of Heuristics, 30:1–28, 12 2023. doi: 10.1007/s10732-023-09524-9.

Erling Andersen and Knud Andersen. Presolving in linear programming. Math. Program., 71:
221–245, 12 1995. doi: 10.1007/BF01586000.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than
classical greedy algorithms in solving combinatorial optimization problems like maximum indepen-
dent set. Nature Machine Intelligence, 5(1):29–31, December 2022. ISSN 2522-5839. doi: 10.1038/
s42256-022-00589-y. URL http://dx.doi.org/10.1038/s42256-022-00589-y.

Florian Arnold, Michel Gendreau, and Kenneth Sörensen. Efficiently solving very large-scale routing
problems. Comput. Oper. Res., 107(C):32–42, July 2019. ISSN 0305-0548. doi: 10.1016/j.cor.
2019.03.006. URL https://doi.org/10.1016/j.cor.2019.03.006.

Pasquale Avella and Maurizio Boccia. A cutting plane algorithm for the capacitated facility
location problem. Computational Optimization and Applications, 43(1):39–65, May 2009.
doi: 10.1007/s10589-007-9125-x. URL https://ideas.repec.org/a/spr/coopap/
v43y2009i1p39-65.html.

Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasilyev. An effective heuristic for
large-scale capacitated facility location problems. Journal of Heuristics, 15:597–615, 12 2009.
doi: 10.1007/s10732-008-9078-y.

Vahid Roshanaei Bahman Naderi, Rubén Ruiz. Repository for mixed-integer programming versus
constraint programming for shop scheduling problems: New results and outlook. 2023. doi:
10.5281/zenodo.7541223. URL https://github.com/INFORMSJoC/2021.0326.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.
org/doi/abs/10.1126/science.286.5439.509.

10

https://anonymous.4open.science/r/FrontierCO-82E3
https://dimacs11.zib.de/
https://dimacs11.zib.de/
https://dimacs11.zib.de/
https://dimacs11.zib.de/
https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/62dad6e273d32235ae02b7d321578ee8-Paper.pdf
http://dx.doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1016/j.cor.2019.03.006
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://github.com/INFORMSJoC/2021.0326
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

D. Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling prob-
lem with work centers. 2012. URL https://api.semanticscholar.org/CorpusID:
54531116.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon, 2020.

Timo Berthold. Primal heuristics for mixed integer programs. PhD thesis, Zuse Institute Berlin
(ZIB), 2006.

Timo Berthold. Measuring the impact of primal heuristics. Operations Research Letters, 41(6):
611–614, 2013.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou,
Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool,
Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon,
Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Combinatorial
Optimization Benchmark. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2025. URL https://github.com/ai4co/rl4co.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,
Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn Neil
Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock, Siddarth
Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a
diverse suite of scalable reinforcement learning environments in JAX. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=C4CxQmp9wc.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=mk0HzdqY7i1.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Marco Caserta and Stefan Voß. A general corridor method-based approach for capacitated fa-
cility location. International Journal of Production Research, 58(13):3855–3880, 2020. doi:
10.1080/00207543.2019.1636320. URL https://doi.org/10.1080/00207543.2019.
1636320.

Antonia Chmiela, Elias Boutros Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch and bound. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=fEImgFxKU63.

G. Cornuejols, R. Sridharan, and J.M. Thizy. A comparison of heuristics and relaxations for the
capacitated plant location problem. European Journal of Operational Research, 50(3):280–297,
1991. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(91)90261-S. URL https:
//www.sciencedirect.com/science/article/pii/037722179190261S.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop
scheduling problem: A review. European Journal of Operational Research, 314(2):409–432,
2024. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.05.017. URL https://www.
sciencedirect.com/science/article/pii/S037722172300382X.

11

https://api.semanticscholar.org/CorpusID:54531116
https://api.semanticscholar.org/CorpusID:54531116
https://github.com/ai4co/rl4co
https://openreview.net/forum?id=C4CxQmp9wc
https://openreview.net/forum?id=C4CxQmp9wc
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1
https://doi.org/10.1080/00207543.2019.1636320
https://doi.org/10.1080/00207543.2019.1636320
https://openreview.net/forum?id=fEImgFxKU63
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://www.sciencedirect.com/science/article/pii/S037722172300382X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Juan Diaz and Elena Fernandez. Hybrid scatter search and path relinking for the capacitated
p-median problem. European Journal of Operational Research, 169:570–585, 02 2006. doi:
10.1016/j.ejor.2004.08.016.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 4092–4114, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.225.

Shengyu Feng and Yiming Yang. Regularized langevin dynamics for combinatorial optimization. In
International conference on machine learning. PMLR, 2025a.

Shengyu Feng and Yiming Yang. Sorrel: Suboptimal-demonstration-guided reinforcement learning
for learning to branch. In The 39th Annual AAAI Conference on Artificial Intelligence, 2025b.

Shengyu Feng, Zhiqing Sun, and Yiming Yang. Spl-lns: Sampling-enhanced large neighborhood
search for solving integer linear programs, 2025. URL https://arxiv.org/abs/2508.
16171.

Zhang-Hua Fu, Sipeng Sun, Jintong Ren, Tianshu Yu, Haoyu Zhang, Yuanyuan Liu, Lingxiao Huang,
Xiang Yan, and Pinyan Lu. A hierarchical destroy and repair approach for solving very large-scale
travelling salesman problem, 2023. URL https://arxiv.org/abs/2308.04639.

Sune Gadegaard, A. Klose, and Lars Nielsen. An improved cut-and-solve algorithm for the single-
source capacitated facility location problem. EURO Journal on Computational Optimization, 6, 04
2017. doi: 10.1007/s13675-017-0084-4.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

Mario Gnägi and Philipp Baumann. A matheuristic for large-scale capacitated clustering. Computers
& Operations Research, pp. 105304, 2021.

Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The impact of metaheuristics
on solving the vehicle routing problem: Algorithms, problem sets, and computational results. 1998.
URL https://api.semanticscholar.org/CorpusID:61757468.

Gianfranco Guastaroba and M.Grazia Speranza. Kernel search for the capacitated facility location
problem. Journal of Heuristics, 18:1–41, 12 2012. doi: 10.1007/s10732-012-9212-8.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems, 12 2017.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International conference
on machine learning. PMLR, 2023.

David J. Johnson and Michael A. Trick. Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society,
USA, 1996. ISBN 0821866095.

David S. Johnson and Catherine C. McGeoch. Network Flows and Matching: First DIMACS
Implementation Challenge. American Mathematical Society, USA, 1993. ISBN 0821865986.

F. Jordan Srour and Steef van de Velde. Are stacker crane problems easy? a statistical study.
Computers & Operations Research, 40(3):674–690, 2013. ISSN 0305-0548. doi: https://
doi.org/10.1016/j.cor.2011.06.017. URL https://www.sciencedirect.com/science/
article/pii/S0305054811001791. Transport Scheduling.

12

https://arxiv.org/abs/2508.16171
https://arxiv.org/abs/2508.16171
https://arxiv.org/abs/2308.04639
https://api.semanticscholar.org/CorpusID:61757468
https://www.gurobi.com
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S0305054811001791
https://www.sciencedirect.com/science/article/pii/S0305054811001791

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daniel Juhl, David Warme, Pawel Winter, and Martin Zachariasen. The geosteiner software pack-
age for computing steiner trees in the plane: an updated computational study. Mathematical
Programming Computation, 10, 02 2018. doi: 10.1007/s12532-018-0135-8.

Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, pp. 32–45, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451009. URL https:
//doi.org/10.1145/3406325.3451009.

Yasuhito Kawano. A reduction from an lwe problem to maximum independent set problems. Scientific
Reports, 13, 05 2023. doi: 10.1038/s41598-023-34366-7.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer
Publishing Company, Incorporated, 5th edition, 2012. ISBN 3642244874.

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye HAO, Bin Li,
and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first
deep symbolic discovery framework. In The Twelfth International Conference on Learning
Representations, 2024a.

Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, Jianye Hao, and Feng Wu. Towards
general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
25623–25641. PMLR, 21–27 Jul 2024b.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. J. Heuristics, 23(4):207–229, 2017. doi: 10.1007/
s10732-017-9337-x. URL https://doi.org/10.1007/s10732-017-9337-x.

Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng
Tang. A multi-action deep reinforcement learning framework for flexible job-shop scheduling
problem. Expert Systems with Applications, 205:117796, 2022. ISSN 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2022.117796. URL https://www.sciencedirect.com/science/
article/pii/S0957417422010624.

Markus Leitner, Ivana Ljubic, Martin Luipersbeck, Markus Prossegger, and Max Resch. New
real-world instances for the steiner tree problem in graphs, 01 2014.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 177–187, New York, NY, USA,
2005. Association for Computing Machinery. ISBN 159593135X. doi: 10.1145/1081870.1081893.
URL https://doi.org/10.1145/1081870.1081893.

Sirui Li, Wenbin Ouyang, Yining Ma, and Cathy Wu. Learning-guided rolling horizon optimization for
long-horizon flexible job-shop scheduling. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=Aly68Y5Es0.

Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
ML4TSPBench: Drawing methodological principles for TSP and beyond from streamlined de-
sign space of learning and search. In The Thirteenth International Conference on Learning
Representations, 2025b. URL https://openreview.net/forum?id=grU1VKEOLi.

13

https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/3406325.3451009
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1007/s10732-017-9337-x
https://www.sciencedirect.com/science/article/pii/S0957417422010624
https://www.sciencedirect.com/science/article/pii/S0957417422010624
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/1081870.1081893
https://openreview.net/forum?id=Aly68Y5Es0
https://openreview.net/forum?id=grU1VKEOLi

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In ICML, 2024.

Luiz A.N. Lorena and Edson L.F. Senne. Local search heuristics for capacitated p-median problems.
08 2000.

Luiz A.N. Lorena and Edson L.F. Senne. A column generation approach to capacitated p-median
problems. Computers & Operations Research, 31(6):863–876, 2004. ISSN 0305-0548. doi: https:
//doi.org/10.1016/S0305-0548(03)00039-X. URL https://www.sciencedirect.com/
science/article/pii/S030505480300039X.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
RBI4oAbdpm.

Jiale Ma, Wenzheng Pan, Yang Li, and Junchi Yan. ML4CO-bench-101: Benchmark machine
learning for classic combinatorial problems on graphs. In The Thirty-ninth Annual Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2025. URL https:
//openreview.net/forum?id=ye4ntB1Kzi.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651, 2023.

Bahman Naderi and Vahid Roshanaei. Critical-path-search logic-based benders decomposition
approaches for flexible job shop scheduling. INFORMS Journal on Optimization, 4, 08 2021. doi:
10.1287/ijoo.2021.0056.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic discovery,
2025. URL https://arxiv.org/abs/2506.13131.

Ibrahim Osman. Capacitated clustering problems by hybrid simulated annealing and tabu search,
international transactions in operational research, 1, 317-336. International Transactions in
Operational Research, 1:317–336, 07 1994. doi: 10.1016/0969-6016(94)90032-9.

PACE, 2025. Pace 2025 Challenge: Dominating Set. Website, 2025. URL https://
pacechallenge.org/2025/ds/. Parameterized Algorithms and Computational Experi-
ments Challenge. Available at https://pacechallenge.org/2025/ds/.

Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity, volume 32. 01 1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.1164450.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Daniel Rehfeldt, Yuji Shinano, and Thorsten Koch. Scip-jack: An exact high performance solver for
steiner tree problems in graphs and related problems. In Hans Georg Bock, Willi Jäger, Ekaterina
Kostina, and Hoang Xuan Phu (eds.), Modeling, Simulation and Optimization of Complex Processes
HPSC 2018, pp. 201–223, Cham, 2021. Springer International Publishing. ISBN 978-3-030-55240-
4.

14

https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=ye4ntB1Kzi
https://openreview.net/forum?id=ye4ntB1Kzi
https://arxiv.org/abs/2506.13131
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Gerhard Reinelt. Tsplib - a traveling salesman problem library. INFORMS J. Comput., 3(4):376–
384, 1991. URL http://dblp.uni-trier.de/db/journals/informs/informs3.
html#Reinelt91.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
models. Nature, 625:468 – 475, 2023.

Isabel Rosseti, Marcus Poggi, Celso Ribeiro, Eduardo Uchoa, and Renato Werneck. New benchmark
instances for the steiner problem in graphs. 08 2001. doi: 10.1007/978-1-4757-4137-7 28.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. In ICML, 2024. URL https://openreview.
net/forum?id=AFfXlKFHXJ.

Sebastian Sanokowski, Wilhelm Franz Berghammer, Haoyu Peter Wang, Martin Ennemoser, Sepp
Hochreiter, and Sebastian Lehner. Scalable discrete diffusion samplers: Combinatorial optimization
and statistical physics. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=peNgxpbdxB.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. Learning to branch with tree MDPs. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=M4OllVd70mJ.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: language agents with verbal reinforcement learning. In Neural Information
Processing Systems, 2023.

Jiwoo Son, Zhikai Zhao, Federico Berto, Chuanbo Hua, Changhyun Kwon, and Jinkyoo Park. Neural
combinatorial optimization for real-world routing, 2025. URL https://arxiv.org/abs/
2503.16159.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Statistisches Bundesamt. Gemeinden in deutschland nach fläche, bevölkerung und postleitzahl am
31.03.2017 (1. quartal), 2017. URL https://www.destatis.de/DE/ZahlenFakten/
LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/
Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx?blob=publicationFile.
Accessed: 20 September 2017.

Fernando Stefanello, Olinto C. B. de Araújo, and Felipe M. Müller. Matheuristics for the capacitated
p-median problem. International Transactions in Operational Research, 22(1):149–167, 2015. doi:
https://doi.org/10.1111/itor.12103. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/itor.12103.

Mike Steglich. A hybrid heuristic based on self-organising maps and binary linear programming
techniques for the capacitated p-median problem. 06 2019. doi: 10.7148/2019-0267.

Weiwei Sun, Shengyu Feng, Shanda Li, and Yiming Yang. Co-bench: Benchmarking language model
agents in algorithm search for combinatorial optimization, 2025. URL https://arxiv.org/
abs/2504.04310.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Éric D. Taillard and Keld Helsgaun. Popmusic for the travelling salesman problem. Eur. J. Oper.
Res., 272:420–429, 2019. URL https://api.semanticscholar.org/CorpusID:
52900855.

15

http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=peNgxpbdxB
https://openreview.net/forum?id=M4OllVd70mJ
https://arxiv.org/abs/2503.16159
https://arxiv.org/abs/2503.16159
https://api.semanticscholar.org/CorpusID:236154746
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103
https://arxiv.org/abs/2504.04310
https://arxiv.org/abs/2504.04310
https://openreview.net/forum?id=JV8Ff0lgVV
https://api.semanticscholar.org/CorpusID:52900855
https://api.semanticscholar.org/CorpusID:52900855

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hiromitsu Takahashi and Akira Matsuyama. An approximate solution for the steiner problem in
graphs. Mathematica Japonica, 24(6):573–577, 1980.

Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. Grapharena: Evaluating and im-
proving large language models on graph computation. In International Conference on Learning
Representations, 2025.

Daniela Thyssens, Tim Dernedde, Jonas K. Falkner, and Lars Schmidt-Thieme. Routing arena: A
benchmark suite for neural routing solvers, 2023. URL https://arxiv.org/abs/2310.
04140.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research,
60(3):611–624, 2012. doi: 10.1287/opre.1120.1048. URL https://doi.org/10.1287/
opre.1120.1048.

Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. J. Artif. Int.
Res., 12(1):93–103, March 2000. ISSN 1076-9757.

Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint sat-
isfaction: Easy generation of hard (satisfiable) instances. Artificial Intelligence, 171(8):514–
534, 2007. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2007.04.001. URL https:
//www.sciencedirect.com/science/article/pii/S0004370207000653.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems,
2023.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=sTjW3JHs2V.

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used exclusively for supportive purposes, such as adapting
baseline implementations, processing data, generating plots, and refining the manuscript text. Impor-
tantly, LLMs were not involved in data collection/synthesis, experimental design and result analysis,
and therefore did not influence the scientific contributions of this work.

B DATA COLLECTION DETAILS

This section outlines the data collection process for all problems, covering both test and training/vali-
dation instances. Since the training instance generation for neural solvers varies significantly across
methods, we omit low-level details such as the number of instances and parameter settings. Instead,
we focus on describing the generation of the validation set (test cases used to provide feedback
for iterative agent refinement) used for LLM-based solvers.

16

https://arxiv.org/abs/2310.04140
https://arxiv.org/abs/2310.04140
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.1 MAXIMUM INDEPENDENT SET

To construct suitable test instances, we conduct a comprehensive re-evaluation of the datasets collected
by Böther et al. (2022). We find that some large real-world graphs (Leskovec & Krevl, 2014), such
as ai-caida (Leskovec et al., 2005) with up to 26,475 nodes, are not particularly challenging for SOTA
classical solvers like KaMIS (Lamm et al., 2017), which can solve them within seconds. Therefore,
we select two moderately sized but more challenging datasets.

The easy test set comprises complementary graphs of the maximum clique instances from the 2nd
DIMACS Challenge (Johnson & Trick, 1996), while the hard test set consists of the largest 16
instances (each with over 1,000 nodes) from the BHOSLib benchmark (Xu et al., 2007), derived from
SAT reductions. Since the original links have expired, we obtain these instances and their BKS from
a curated mirror2. For those interested in additional sources of high-quality MIS instances, we also
highlight vertex cover instances from the 2019 PACE Challenge3, reductions from coding theory4,
and recent constructions derived from learning-with-errors (LWE) (Kawano, 2023), which provide a
promising strategy for generating challenging MIS instances.

Training instances are generated using the RB model (Xu & Li, 2000), widely adopted in recent
neural MIS solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We synthesize 20 instances
with 800–1,200 nodes for our LLM validation set.

B.2 MINIMUM DOMINATING SET

Despite the popularity of MDS in evaluating neural solvers (Zhang et al., 2023; Sanokowski et al.,
2024; 2025), we find a lack of high-quality publicly available benchmarks. We therefore rely on
the PACE Challenge 20255, using the exact track instances as our easy set and the heuristic track
instances as the hard set. From each, we selected the 20 instances with the highest primal-dual gaps
after a one-hour run with Gurobi. Reference BKS are obtained by extending the solving time to two
hours.

Training instances are Barabási–Albert graphs (Barabási & Albert, 1999) with 800–1,200 nodes,
consistent with previous literature (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We generate
20 such instances for the LLM validation set.

B.3 TRAVELING SALESMAN PROBLEM

We source TSP instances from the 8th DIMACS Challenge6 and TSPLib7. The easy test set includes
symmetric 2D Euclidean TSP instances (distance type EUC 2D, rounding applied) from TSPLib with
over 1,000 cities, all with known optimal solutions. This aligns with settings used in prior neural TSP
solvers (Karlin et al., 2021).

The hard test set consists of synthetic instances from the DIMACS Challenge with at least 10,000
cities (Fu et al., 2023). We obtain BKS from the LKH website8.

Training instances follow the standard practice of uniformly sampling points in a unit square (Kool
et al., 2019). For simplicity, we reuse DIMACS instances with 1,000 nodes as our LLM validation
set, since they are drawn from the same distribution, except scaling the coordinates by a constant.

2https://iridia.ulb.ac.be/˜fmascia/maximum_clique/
3https://pacechallenge.org/2019/
4https://oeis.org/A265032/a265032.html
5https://pacechallenge.org/2025/
6http://archive.dimacs.rutgers.edu/Challenges/TSP/
7http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
8http://webhotel4.ruc.dk/˜keld/research/LKH/DIMACS_results.html

17

https://iridia.ulb.ac.be/~fmascia/maximum_clique/
https://pacechallenge.org/2019/
https://oeis.org/A265032/a265032.html
https://pacechallenge.org/2025/
http://archive.dimacs.rutgers.edu/Challenges/TSP/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 CAPACITATED VEHICLE ROUTING PROBLEM

We collect CVRP instances from the 12th DIMACS Challenge9 and CVRPLib10, which have signif-
icant overlap. From these, we select the Golden (Golden et al., 1998) and Belgium (collected by
Arnold et al. (Arnold et al., 2019)) instances as our easy and hard sets, respectively. We discard the
route length constraints in the first eight Golden instances in our experiments. All BKS are retrieved
from the CVRPLib website.

Training data generation follows the method used in DeepACO (Ye et al., 2023). Each instance
includes up to 500 cities, with demands in [1, 9] and capacity fixed at 50. We generate 15 total
validation instances for LLMs, with 5 each for 20, 100, and 500 cities.

B.5 CAPACITATED FACILITY LOCATION PROBLEM

Following the benchmark setup in previous works (Guastaroba & Speranza, 2012; Caserta & Voß,
2020), we select instances from Test Bed 1 (Avella & Boccia, 2009) and Test Bed B (Avella et al.,
2009) as our easy and hard test sets, respectively. The easy set includes the 20 largest instances
from Test Bed 1, each with 1,000 facilities and 1,000 customers. The hard set consists of the 30
largest instances from Test Bed B, each with 2,000 facilities and 2,000 customers. All instances are
downloaded from the OR-Brescia website11.

Notably, our easy instances are already significantly larger than the most challenging instances
typically used in neural solver evaluations (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang,
2025b), which contain at most 100 facilities and 400 customers. All easy instances can be solved
exactly by Gurobi. For the hard instances, as all available BKS identified in the literature (Caserta
& Voß, 2020) are inferior to those obtained by Gurobi, we rerun Gurobi for two hours to obtain
improved reference solutions.

Overall, we find that Gurobi already demonstrates strong performance on standard CFLP variants,
in which each customer may be served by multiple facilities. Consequently, the single-source
CFLP variant—where each customer must be assigned to exactly one facility—has become a more
compelling and actively studied problem in recent CO literature (Gadegaard et al., 2017; Caserta
& Voß, 2020; Almeida et al., 2023). Several corresponding benchmarks are also available on the
OR-Brescia website.

For training data, we adopt the synthetic generation method from Cornuejols et al. (Cornuejols
et al., 1991), producing 20 instances with 100 facilities and 100 customers for LLM validation. This
generation method is widely used in existing neural branching works (Gasse et al., 2019; Scavuzzo
et al., 2022; Feng & Yang, 2025b), and forms part of the construction for Test Bed 1 (Avella & Boccia,
2009).

B.6 CAPACITATED p-MEDIAN PROBLEM

We follow the evaluation setup in recent works on CRMP (Stefanello et al., 2015; Gnägi & Baumann,
2021). Instances with fewer than 10,000 facilities are assigned to the easy set; larger ones go to the
hard set. Easy instances include 6 real-world São José dos Campos instances (Lorena & Senne, 2004)
and 25 adapted TSPLib instances (Lorena & Senne, 2000; Stefanello et al., 2015). These are sourced
from INPE12 and SomAla13 websites. Hard instances are large-scale problems introduced by Gnägi
and Baumann (Gnägi & Baumann, 2021), downloaded from their GitHub14. BKS are derived by
combining the best GB21-MH results and values reported in (Stefanello et al., 2015; Steglich, 2019;
Gnägi & Baumann, 2021).

9http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
10http://vrp.galgos.inf.puc-rio.br/index.php/en/
11https://or-brescia.unibs.it/home
12http://www.lac.inpe.br/˜lorena/instancias.html
13http://stegger.net/somala/index.html
14https://github.com/phil85/GB21-MH

18

http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://or-brescia.unibs.it/home
http://www.lac.inpe.br/~lorena/instancias.html
http://stegger.net/somala/index.html
https://github.com/phil85/GB21-MH

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In total, we collect 31 easy and 12 hard instances, all using Euclidean distances. Additional alterna-
tives include spherical-distance instances (Diaz & Fernandez, 2006; Statistisches Bundesamt, 2017)
and high-dimensional instances (Gnägi & Baumann, 2021).

We synthesize training data with Osman’s method (Osman, 1994). The validation set for LLMs are
generated by fixing the number of facilities at 500 and varying medians p in {5, 10, 20, 50}. Each
setting includes 5 instances.

B.7 FLEXIBLE JOB-SHOP SCHEDULING PROBLEM

We collect FJSP instances from two recent benchmark sets commonly used in the evaluation of classi-
cal FJSP solvers. The easy test set consists of instances introduced by Behnke and Geiger (Behnke &
Geiger, 2012), available via a GitHub mirror15. The hard test set includes 24 of the largest instances
(with 100 jobs) from a benchmark proposed by Naderi and Roshanaei (Naderi & Roshanaei, 2021),
which we obtain from the official repository16. These two datasets are selected based on recent
comparative studies in the literature (Bahman Naderi, 2023; Dauzère-Pérès et al., 2024).

Based on our literature review, the strongest results have been reported by the CP-based Benders
decomposition method (Naderi & Roshanaei, 2021); however, the source code is not publicly
available. As a result, we adopt a constraint programming approach using CPLEX, which has
demonstrated consistently strong performance relative to other commercial solvers and heuristic
methods (Bahman Naderi, 2023).

Training data is generated following the same protocol used in Li et al. (Li et al., 2025a). Specifically,
we synthesize 20 instances, each with 20 machines and 10 jobs, to form the LLM validation set.

B.8 STEINER TREE PROBLEM

We collect STP instances from SteinLib17 and the 11th DIMACS Challenge18. The easy set includes
Vienna-GEO instances (Leitner et al., 2014), which—despite having tens of thousands of nodes—are
solvable within minutes by SCIP-Jack. The hard set comprises PUC instances (Rosseti et al., 2001),
most of which cannot be solved within one hour by SCIP-Jack and even lack known optima. BKS
are determined by taking the best value between SCIP-Jack’s one-hour primal bound and published
solutions from SteinLib or Vienna-GEO (Leitner et al., 2014). We also highlight the 2018 PACE
Challenge19 as a useful benchmark with varied difficulty levels.

Training data includes two generation strategies. The first generator corresponds to the hardest
instances in PUC (Rosseti et al., 2001), which constructs graphs from hypercubes with randomly
sampled (perturbed) edge weights. We generate 100 training instances for neural solvers and 10
validation instances for LLMs across dimensions 6–10. The second, based on GeoSteiner (Juhl et al.,
2018), samples 25,000-node graphs from a unit square. We include 15 such instances (10 for neural
solvers, 5 for LLMs)20, and add 45 adapted TSPLib instances (Juhl et al., 2018) to the neural training
set. The LLM training set also serves as the validation set for neural solvers.

C IMPLEMENTATION DETAILS

C.1 NEURAL SOLVERS

DiffUCO, SDDS. The DiffUCO/SDDS checkpoints used in our evaluation are taken directly from
the official repository21 and correspond to the models trained on the RB-Large dataset. For MIS (easy
and hard), we increase the number of inference steps to 50, while for MDS-easy we revert to the
default of 3 steps. Both models encounter out-of-memory issues on the MDS-hard set.

15https://github.com/Lei-Kun/FJSP-benchmarks
16https://github.com/INFORMSJoC/2021.0326
17https://steinlib.zib.de/steinlib.php
18https://dimacs11.zib.de/organization.html
19https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances
20http://www.geosteiner.com/instances/
21https://github.com/ml-jku/DIffUCO

19

https://github.com/Lei-Kun/FJSP-benchmarks
https://github.com/INFORMSJoC/2021.0326
https://steinlib.zib.de/steinlib.php
https://dimacs11.zib.de/organization.html
https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances
http://www.geosteiner.com/instances/
https://github.com/ml-jku/DIffUCO

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

RLNN. We use the official checkpoint trained on RB-[800–1200]22 for all evaluations. All inference
hyperparameters follow the original paper, except that we increase the number of inference steps to
100,000 on both MIS-easy and MIS-hard to fully utilize the 1-hour time budget.

DIFUSCO. We use the official checkpoint trained on TSP-1000023. Decoding uses the greedy
+ 2-OPT heuristic, and all other inference parameters follow the configuration used in the original
paper on TSP-10000.

LEHD. We use the optimal TSP and CVRP checkpoints from the official repository24. Decoding
employs the Parallel Local Reconstruction (PRC) heuristic. Instead of fixing the number of PRC
iterations, we continue iterating until the 3600-second time budget is exhausted.

DeepACO. For CVRP, we evaluate the official CVRP500 checkpoint25. After the neural construc-
tion phase, we follow the standard protocol and continue decoding using HGS until the time limit is
reached.

SIL. We use the default checkpoints from the official repository for TSPLib (trained on TSP-1000)
and CVRPLib (trained on CVRP-1000) 26. Similar to LEHD, decoding uses PRC and is iterated until
the solving time budget is exhausted.

tMDP, SORREL. We use the official checkpoints for the CFLP task from the tMDP27 and SOR-
REL28 repositories. For tMDP, we follow the DFS-based variant.

GCNN. For CFLP, GCNN is trained on 100,000 strong-branching samples collected from 10,000
instances. For CPMP, it is trained on 50,000 samples collected from 1,000 instances. Both training
procedures follow the methodology of Gasse et al. (2019).

IL-LNS, CL-LNS. Training data is constructed from local-branching trajectories on 200 instances.
We follow the default protocol, using 20% of variables to define the large neighborhood, and keep all
remaining hyperparameters identical to those in the official implementation29.

MPGN, L-RHO. Since the FJSP instances used in our experiments are already compatible with
those evaluated by MPGN30 and L-RHO31, we adopt their exact hyperparameter settings, including
the 450 training instances generated by Li et al. (2025a).

C.2 LLM SOLVERS

Self-Refine In our implementation, we run 64 iterations. In each iteration, the LLM receives the
previous best-performing code and its dev-set evaluation results, then generates the next code. We
use o4-mini with a medium reasoning budget and default sampling parameters. The dev evaluation
timeout is 300s, although the LLM is prompted to write algorithms for a 3600s timeout. After 64
iterations, we evaluate the best dev-set code on the test set with a 3600s timeout.

FunSearch We follow the official FunSearch implementation and modify the prompt to fit our
tasks. We set the number of islands to 10, functions per prompt to 2, the reset period to 2 hours, and
run 64 iterations with a 300s dev evaluation timeout. After 64 iterations, we evaluate the best dev-set
code on the test set with a 3600s timeout.

22https://github.com/Shengyu-Feng/RLD4CO
23https://github.com/Edward-Sun/DIFUSCO
24https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD
25https://github.com/henry-yeh/DeepACO
26https://github.com/CIAM-Group/SIL
27https://github.com/lascavana/rl2branch
28https://github.com/Shengyu-Feng/SORREL
29https://github.com/facebookresearch/CL-LNS
30https://github.com/wrqccc/FJSP-DRL
31https://github.com/mit-wu-lab/l-rho

20

https://github.com/Shengyu-Feng/RLD4CO
https://github.com/Edward-Sun/DIFUSCO
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD
https://github.com/henry-yeh/DeepACO
https://github.com/CIAM-Group/SIL
https://github.com/lascavana/rl2branch
https://github.com/Shengyu-Feng/SORREL
https://github.com/facebookresearch/CL-LNS
https://github.com/wrqccc/FJSP-DRL
https://github.com/mit-wu-lab/l-rho

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ReEvo We follow the official ReEvo implementation and modify the prompt to fit our tasks. We set
the population size to 10, initial population size to 4, mutation rate to 0.5, and run 64 iterations with a
300s dev evaluation timeout. After 64 iterations, we evaluate the best dev-set code on the test set
with a 3600s timeout.

C.3 EXAMPLE PROMPT

Our query prompts basically consist of two parts: the description of the problem background and the
starter code for LLM to fill in. The following is an example prompt on TSP.

The evaluation example

Problem Description
The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem
where, given a set of cities with known pairwise distances, the objective is to find the shortest
possible tour that visits each city exactly once and returns to the starting city. More formally,
given a complete graph G = (V, E) with vertices V representing cities and edges E with
weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting
each vertex exactly once) of minimum total weight.
Starter Code
def solve(**kwargs):

"""
Solve a TSP instance.

Args:
- nodes (list): List of (x, y) coordinates representing

cities in the TSP problem
Format: [(x1, y1), (x2, y2), ..., (xn, yn)]

Returns:
dict: Solution information with:

- ’tour’ (list): List of node indices representing the
solution path

Format: [0, 3, 1, ...] where numbers
are indices into the nodes list

"""
Your function must yield multiple solutions over time, not

just return one solution
Use Python’s yield keyword repeatedly to produce a stream of

solutions
Each yielded solution should be better than the previous one
while True:

yield {
’tour’: [],

}

D DETAILED RESULTS

Table 4–11 present the detailed results for the evaluated methods in Section 4. A result is marked
with ∗ if the method suffers from the out-of-memory or timeout issue before obtaining a feasible
solution (assigned a primal gap 1 and runtime 3600 seconds) on any instance in this benchmark. Note
that the geometric mean and standard deviation is reported for the solving time.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: Comparative Results on MIS.

MIS Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
KaMIS 1.51 ± 0.43% 223 ±× 5.62 s 2.65 ± 0.81% 274 ±× 1.29s

DiffUCO 9.54 ± 9.82% 154 ±× 1.18 s 6.45 ± 1.43% 19 ±× 1.29 s
SDDS 11.85 ± 12.47% 223 ±× 1.14 s 5.24 ± 1.12% 27 ±× 1.22 s
RLNN 6.29 ± 8.81% 532 ±× 3.24 s 6.31 ± 2.76% 1064 ±× 1.65 s

FunSearch 1.87 ± 3.63% 3600 ±× 1.00 s 4.97 ± 0.92% 3600 ±× 1.00 s
Self-Refine 1.30 ± 3.89% 3600 ±× 1.00 s 4.02 ± 0.97% 3600 ±× 1.00 s
ReEvo 1.44 ± 4.05% 3600 ±× 1.00 s 4.81 ± 0.95% 3600 ±× 1.00 s

Table 5: Comparative Results on MDS.

MDS Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
Gurobi 0.00 ± 0.00% 3600 ±× 1.00 s 0.63% ± 2.74% 3600 ±× 1.00 s

DiffUCO 71.86 ± 21.56% 54 ±× 26.86 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s
SDDS 66.21 ± 12.80% 54 ±× 27.01 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s

FunSearch 41.83 ± 48.67% 3600 ±× 1.00 s 95.21 ± 11.43% 3600 ±× 1.00 s
Self-Refine 6.19 ± 4.42% 3600 ±× 1.00 s 5.71 ± 3.49% 3600 ±× 1.00 s
ReEvo 7.52 ± 4.50% 3600 ±× 1.00 s 5.81 ± 5.24% 3600 ±× 1.00 s

Table 6: Comparative Results on TSP.

TSP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
LKH-3 0.03 ± 0.05% 65 ±× 8.90 s 2.89 ± 1.58% 21 ±× 6.69 s

LEHD 10.23 ± 9.37% 487 ±× 4.20 s ∗76.84 ± 34.23% ∗1347 ±× 1.63 s
DIFUSCO 4.19 ± 1.20% 555 ±× 2.45 s ∗69.04 ± 45.57% ∗2850 ±× 1.66 s
SIL 2.51 ± 1.56% 3600 ±× 1.00 s 21.34 ± 34.23% 3600 ±× 1.00 s

FunSearch 6.79 ± 5.80% 3600 ±× 1.00 s 35.82 ± 25.62% 3600 ±× 1.00 s
Self-Refine 6.29 ± 5.35% 3600 ±× 1.00 s 32.00 ± 17.44% 3600 ±× 1.00 s
ReEvo 5.65 ± 6.16% 3600 ±× 1.00 s 37.77 ± 38.57% 3600 ±× 1.00 s

Table 7: Comparative Results on CVRP.

CVRP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
HGS 0.11 ± 0.18% 3600 ±× 1.00 s 6.74 ± 2.50% ∗3600 ±× 1.00 s

LEHD 1.97 ± 0.92% 893 ±× 1.74 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s
DeepACO 4.42 ± 1.56% 50 ±× 1.64 s ∗27.69 ± 36.18% ∗3333 ±× 1.12s
SIL 10.90 ± 8.17% 3600 ±× 1.00 s 11.35 ± 4.46% 3600 ±× 1.00 s

FunSearch 5.27 ± 3.70% 3600 ±× 1.00 s 6.52 ± 2.67% 3600 ±× 1.00 s
Self-Refine 3.86 ± 1.63% 3600 ±× 1.00 s 27.50 ± 6.19% 3600 ±× 1.00 s
ReEvo 7.16 ± 3.42% 3600 ±× 1.00 s 10.01 ± 2.83% 3600 ±× 1.00 s

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Comparative Results on CFLP.

CFLP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
Gurobi 0.00 ± 0.00% 308 ±× 1.93 s 0.01 ± 0.02% 3136 ±× 1.34 s

tMDP 3.54 ± 3.14% 3581 ±× 1.00 s 55.35 ± 21.7% 3600 ±× 1.00 s
SORREL 3.46 ± 2.51% 3600 ±× 1.00 s 55.35 ± 21.7% 3600 ±× 1.00 s
GCNN 3.22 ± 3.10% 3551 ±× 1.07 s 55.35 ± 21.7% 3600 ±× 1.00 s

FunSearch 7.31 ± 0.75% 3600 ±× 1.00 s 7.41 ± 3.26% 3600 ±× 1.00 s
Self-Refine 27.08 ± 10.79% 3600 ±× 1.00 s 24.93 ± 21.56% 3600 ±× 1.00 s
ReEvo 12.89 ± 1.70% 3600 ±× 1.00 s 12.79 ± 6.40% 3600 ±× 1.00 s

Table 9: Comparative Results on CPMP.

CPMP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
GB21-MH 0.53 ± 0.49% 541 ±× 8.49 s 0.32 ± 0.37% 3600 ±× 1.00 s

IL-LNS ∗80.57 ± 36.75% ∗2636 ±× 1.92 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s
CL-LNS ∗81.45 ± 36.21% ∗2649 ±× 1.92 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s
GCNN ∗42.91 ± 28.66% ∗2143 ±× 3.68 s ∗100.00 ± 0.00% ∗3600 ±× 1.00 s

FunSearch 3.96 ± 3.77% 3600 ±× 1.00 s ∗77.32 ± 41.06% ∗3600 ±× 1.00 s
Self-Refine 2.84 ± 2.57% 3600 ±× 1.00 s ∗74.05 ± 39.50% ∗3600 ±× 1.00 s
ReEvo 3.40 ± 3.14% 3600 ±× 1.00 s ∗70.64 ± 43.61% ∗3600 ±× 1.00 s

Table 10: Comparative Results on FJSP.

FJSP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
CPLEX 0.00 ± 0.00% 702 ±× 17.01 s 0.01 ± 0.04% 3600 ±× 1.00 s

MPGN 12.78 ± 4.04% 9 ±× 4.26 s 1.50 ± 0.85% 69 ±× 1.90 s
L-RHO 27.20 ± 12.97% 21 ±× 1.87 s 1.03 ± 0.86% 58 ±× 2.49 s

FunSearch 5.05 ± 3.57% 3600 ±× 1.00 s 12.10 ± 2.90% 3600 ±× 1.00 s
Self-Refine 6.66 ± 2.48% 3600 ±× 1.00 s 1.14 ± 1.27% 3600 ±× 1.00 s
ReEvo 5.61 ± 2.78% 3600 ±× 1.00 s 2.16 ± 1.72% 3600 ±× 1.00 s

Table 11: Comparative Results on STP.

STP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
SCIP-Jack 0.00 ± 0.00% 22 ±× 5.43 s 0.50 ± 0.62% 717 ±× 26.70 s

RL 14.00 ± 3.31% 31 ±× 8.40 s 13.10 ± 6.52% 1 ±× 4.44 s
SL 14.00 ± 3.31% 31 ±× 8.40 s 13.10 ± 6.52% 1 ±× 4.44 s

FunSearch 8.29 ± 5.44% 3600 ±× 1.00 s 5.82 ± 4.86% 3600 ±× 1.00 s
Self-Refine 11.23 ± 6.04% 3600 ±× 1.00 s 6.93 ± 3.96% 3600 ±× 1.00 s
ReEvo 14.36 ± 3.53% 3600 ±× 1.00 s 10.03 ± 6.43% 3600 ±× 1.00 s

E EFFICIENCY ANALYSIS OF NEURAL SOLVERS

Neural solvers are typically motivated as fast heuristics that avoid the heavy computation of exact
classical solvers. However, existing evaluations often overlook that many classical solvers can

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

also operate as fast heuristics when given restricted time budgets. To illustrate this point, we
take TSP as an example and compare commonly used fast-mode configurations of both classical and
neural methods. Specifically, we include LKH-3 under the POPMUSIC setting (Taillard & Helsgaun,
2019) with 1,000 trials, DIFUSCO with 50 inference steps and greedy decoding, LEHD with greedy
decoding, and SIL with 10 Parallel Local Reconstruction (PRC) steps. The comparative results on
several TSPLib instances across different scales are shown in Table 12.

Table 12: Comparison between the fast version of classical and neural solvers on TSPLib instances
across different scales.

TSP-easy LKH-3 LEHD DIFUSCO SIL
Instances Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓ Gap ↓ Time ↓
pr1002 0.70% 0.2s 17.02% 6s 4.25% 3s 0.82% 27s
fl1400 0.40% 0.3s 10.52% 6s 28.37% 8s 5.53% 31s
pr2392 0.68% 0.4s 10.97% 18s 14.80% 15s 3.46% 38s
pcb3038 0.68% 1s 14.70% 20s 11.85% 31s 3.27% 28s
fnl4461 0.76% 1s 16.00% 81s 3.50% 34s 2.64% 39s
rl5915 1.43% 2s 9.42% 169s 3.31% 52s 5.41% 39s
rl11894 2.25% 4s 27.56% 1204 31.47% 130s 6.41% 37s
usa13509 1.53% 4s 41.75% 1765s 33.14% 164s 11.33% 42s
brd14051 1.39% 4s 29.19% 1981s 30.37% 167s 6.14% 39s
d15112 0.12% 5s 26.49% 2464s 3.20% 278s 5.21% 40s
d18512 1.22% 5s 29.64% 4767s 30.67% 266s 5.56% 41s

The results indicate that neural solvers remain substantially less effective than LKH-3 when all
methods are run in their fast configurations. As instance size grows from 1,002 to 18,512 nodes,
LKH-3 requires only five additional seconds while still delivering near-optimal solutions. In contrast,
DIFUSCO needs an extra six minutes, and LEHD requires over an hour, merely to obtain a single
feasible tour. SIL is notably more scalable than both LEHD and DIFUSCO—its runtime increases
much more modestly, reflecting meaningful progress in ML-based solvers. However, its optimality
gap remains large, and it shows no clear advantage over LKH-3 in either runtime or solution quality.

F EXPANDED EXPLANATION OF METRICS

The primal gap used in this work is defined as

pg(x; s) =


1, if x is infeasible or cost(x; s) · c⋆ < 0,

|cost(x; s)− c⋆|
max{|cost(x; s)|, |c⋆|}

, otherwise,
(3)

where c⋆ denotes the optimal objective value.

This metric has been popularly used in classical solvers (Berthold, 2006; 2013; Achterberg et al.,
2012), the DIMACS challenge (DIM, 2013-2014), and recent neural solvers (Nair et al., 2020;
Chmiela et al., 2021; Huang et al., 2023).

For maximization problems such as MIS, we convert the task into an equivalent minimization problem
by negating the objective.

By definition, our primal gap is strictly bounded within the range [0, 1] (i.e., 0% to 100%), where 0 is
optimal and 1 is the worst possible score. Any feasible solution will result in a gap strictly less than 1.
We set the primal gap for infeasible solutions to 1 to flag them as failures, aligning with the intuition
that infeasible solutions are never better than feasible ones.

A summary of all tasks in FRONTIERCO, including their objective definitions and sign conventions,
is provided in Table 13.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 13: Summary of problem types, objective definitions, and sign conventions.

Problem Type Original Objective Sign of c∗

MIS Maximization maximize set size -
MDS Minimization minimize set size +
TSP Minimization minimize tour cost +
CVRP Minimization minimize total route cost +
CFLP Minimization minimize facility + assignment cost +
CPMP Minimization minimize total distance +
FJSP Minimization minimize makespan +
STP Minimization minimize Steiner tree cost +

G ADDITIONAL ANALYSES ON NON-EUCLIDEAN CHALLENGES IN TSP

To further highlight the difficulty posed by non-Euclidean CO instances—a challenge largely over-
looked in current ML4CO evaluations—we incorporate an additional Asymmetric TSP (ATSP)
benchmark composed of non-Euclidean / non-metric instances. These instances originate from real-
world datasets (Jordan Srour & van de Velde, 2013) spanning stacker-crane operations, transportation
and routing tasks, robotic motion planning, and data-compression problems. Dataset statistics and
evaluation results are reported in Table 14 and Table 15, respectively. RRNCO (Son et al., 2025), a
recent neural solver designed for real-world ATSP instances are used for evaluation.

Table 14: Summary of ATSP instances.

Problem Test Set Sources Attributes Easy Set Hard Set

ATSP Jordan Srour & van de Velde (2013) Instances
Cities

31
131

33
323–932

Table 15: Comparative Results on ATSP.

ATSP Easy Hard

Method Gap ↓ Time ↓ Gap ↓ Time ↓
LKH-3 0.00 ± 0.00% 1927 ±× 1.31 s 0.08 ± 0.09% 705 ±× 2.52 s

RRNCO 1.42 ± 0.69% 3600 ±× 1.00 s 15.46 ± 7.88% 3600 ±× 1.00 s

FunSearch 0.00 ± 0.00% 3600 ±× 1.00 s 3.52 ± 5.26% 3600 ±× 1.00 s
Self-Refine 0.50 ± 0.81% 3600 ±× 1.00 s 10.94 ± 11.16% 3600 ±× 1.00 s

It can be seen that although the largest ATSP instance, which is from the hard set, only contains 932
nodes, it is way challenging than the easy (metric) TSP instances at the small scale (∼ 1000 nodes),
where the former could not be solved to optimum within 1 hour while the latter could be solved to
optimum in seconds. The clear performance difference for RRNCO on TSP instances and ATSP
instances, shown in Table 16, also reflects the challenges of non-Euclidean instances.

Table 16: Performance comparison of RRNCO on TSP and ATSP Instances.

TSP ATSP
Instance pr1002 u1060 vm1084 rbg443 dc895 dc932

RRNCO 1.81% 5.01% 3.23% 23.96% 10.58% 8.29%

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H DISCUSSIONS IN SOLVER DEPLOYMENT

Beyond solution quality and solving time, we observe substantial variation in deployment cost across
solver families. In general, neural solvers rely heavily on GPUs and require significantly more
memory than classical solvers, making them more expensive to deploy in practice. LLM-based
solvers, while consuming considerable API credits or training resources during the evolutionary
or development phase, incur relatively low deployment cost during inference once the solver is
finalized.

26

	Introduction
	FrontierCO: the Proposed Benchmark
	Formal Objective and Evaluation Metrics
	Domain Coverage
	Problem Instances
	SOTA Solvers and Best Known Solutions (BKS)
	Standardized Training/Validation Data

	Evaluation Design
	Implementation Settings
	Representative Neural Solvers for Comparative Evaluation
	Representative LLM-based Agents for Comparative Evaluation

	Results
	Discussions
	Does the Neural Module Help?
	Do Neural Solvers Capture Global Structure?
	What Kinds of Algorithms Do LLM-based Solvers Discover?

	Related Work
	Conclusion
	The Use of Large Language Models
	Data Collection Details
	Maximum Independent Set
	Minimum Dominating Set
	Traveling Salesman Problem
	Capacitated Vehicle Routing Problem
	Capacitated Facility Location Problem
	Capacitated p-Median Problem
	Flexible Job-Shop Scheduling Problem
	Steiner Tree Problem

	Implementation Details
	Neural Solvers
	LLM Solvers
	Example Prompt

	Detailed Results
	Efficiency Analysis of Neural Solvers
	Expanded Explanation of Metrics
	Additional Analyses on Non-Euclidean Challenges in TSP
	Discussions in Solver Deployment

