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Abstract

Recently, the self-consistency decoding strat-001
egy has shown the ability to improve per-002
formance for complex reasoning tasks with003
large language models (LLMs). However, the004
costs may be high because the sampling pro-005
cess of the strategy will generate some low-006
probability text resulting in low-quality rea-007
soning paths. As a consequence, it requires008
a relatively large sampling number to obtain009
good aggregation performance. In this pa-010
per, we propose an alternative strategy, self-011
para-consistency. It first generates multiple012
paraphrases for each test question, then gen-013
erates reasoning paths for the original and all014
the paraphrased questions based on greedy de-015
coding, and finally selects the most consis-016
tent answer. Since all the candidate paths017
have relatively high probabilities, the sampling018
number could be much smaller than the self-019
consistency strategy. Extensive experiments020
on complex reasoning datasets demonstrate021
the effectiveness of our method in reducing the022
sampling number.023

1 Introduction024

Recently, large language models (LLMs) like GPT-025

3 were considered to have an emergent ability of026

Chain of Thought (CoT) prompting (Wei et al.,027

2022) to perform multi-step reasoning (Wei et al.,028

2023), though the term "emergent" is still de-029

bated (Schaeffer et al., 2023). While promising,030

the CoTs generated through greedy decoding may031

fall into local optimality. To alleviate this problem,032

Wei et al. (2022) proposed to sample a diverse set033

of CoTs and then aggregate them through majority034

voting, as shown in Figure 1(a).035

However, the self-consistency strategy may en-036

counter a key challenge in reality, which is the037

high cost due to the sampling process produc-038

ing low-probability reasoning paths and there-039

fore needing a relatively large number to achieve040

considerable performance. For example, Wei et041
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Figure 1: The comparison of self-consistency and
self-para-consistency: (a) The self-consistency strategy
samples diverse reasoning paths but includes some low-
probability paths; (b) The self-para-consistency trans-
fers the given questions into multiple paraphrases and
then generates the corresponding reasoning paths for
each paraphrase and the original question with greedy
decoding.

al. (2022) and Chen et al. (2022) set the sampling 042

number to 40, making the sampling process expen- 043

sive, especially for complex reasoning tasks with 044

long reasoning paths. 045

To alleviate this problem, we need to achieve 046

a better trade-off between the quality and the di- 047

versity of generated reasoning paths. In this pa- 048

per, we propose an alternative strategy, referred 049

to as self-para-consistency. Its key idea is to re- 050

tain the advantage of greedy decoding, which is 051

likely to have a higher average probability than the 052

sampling process. Then the diversity comes from 053

generating different paraphrases of the given ques- 054

tion. The intuition of paraphrasing is that LLMs 055

are shown to be sensitive to spurious features in 056

the prompts (Sclar et al., 2023), and therefore may 057

generate different text in response to paraphrases 058

in different expressions. 059

As shown in Figure 1(b), the proposed self-para- 060

consistency strategy consists of three steps. We 061
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first prompt an LLM to generate paraphrases and062

then generate the corresponding reasoning path for063

each paraphrase and the original question through064

greedy decoding. The last step is the same as the065

self-consistency strategy, which is to find the most066

consistent answer via majority voting. We conduct067

extensive experiments on 6 reasoning datasets, of068

which the results demonstrate effectiveness in re-069

ducing the sampling number.070

The contributions of this work are as follows:071

• We propose the self-para-consistency strat-072

egy to improve the reasoning performance of073

LLMs, which is a lower-cost alternative to074

self-consistency.075

• The self-para-consistency strategy can serve076

as a kind of uncertainty measurement077

method.078

• The extensive experiments demonstrate the079

effectiveness of reducing the generation costs080

by reducing the sampling number.081

2 Related Work082

Recently, CoT Prompting has demonstrated im-083

pressive performance (Wei et al., 2022) but has084

two challenges. The first is the inconsistency be-085

tween the reasoning path and the result. The sec-086

ond is the local optimality of the generated rea-087

soning path through greedy decoding (Wang et al.,088

2022). To address the inconsistency problem, a089

line of work has employed program languages090

instead of natural language to depict the reason-091

ing path, referred to program-of-thought (PoT)092

prompting (Chen et al., 2022; Gao et al., 2023; Lyu093

et al., 2023). To address the problem of local opti-094

mality, Wang et al. proposed the self-consistency095

strategy based on CoT prompting (Wang et al.,096

2022).097

The Quality-Diversity Trade-Off. Due to098

the diversity of natural language, there is a099

quality-diversity trade-off in text generation sys-100

tems (Montahaei et al., 2019; Zhang et al., 2021).101

Although tuning the temperature or other parame-102

ters of LLMs can switch on the quality-diversity103

trade-off curve, previous studies suggest another104

type of diversity improvement (Hu et al., 2017;105

Wang et al., 2017; Ruan et al., 2020; Shao et al.,106

2021). By sampling a latent variable z, text gener-107

ation models can further improve diversity while108

still using greedy decoding or beam search. Our109

method is inspired by this work, as we suppose110

that different prompts can involve extra diversity 111

while still keeping considerable quality through 112

greedy decoding. 113

3 Methodology 114

3.1 The Framework and Notation 115

As shown in Figure 1, the proposed self-para- 116

consistency strategy consists of three steps: 1) 117

paraphrasing the given question into multiple para- 118

phrases, 2) generating corresponding reasoning 119

paths via greedy decoding, and 3) aggregating the 120

answers based on majority voting. We formalize 121

the three steps in the following paragraphs. 122

Given a testing question x, we first prompt an 123

LLM (parameterized by θ) to generate k − 1 para- 124

phrased questions Gpara = x′ii = 1k−1 where 125

k > 1. The prompt for paraphrasing is denoted 126

by Ipara, then the paraphrasing process can be for- 127

malized as: 128

Pθ(Gpara | x, Ipara) =

k−1∏
i=1

Pθ(x
′
i | x, Ipara, G

<i
para)

(1) 129

where G<i
para denotes the subgroup containing the 130

already generated i− 1 paraphrases. It means that 131

all the k−1 paraphrases are generated sequentially. 132

In this way, the LLM tends to generate different 133

paraphrases. 134

In the second step, we collect the original ques- 135

tion and the k− 1 generated paraphrases, and then 136

prompt the LLM to generate k reasoning paths 137

Rpath = rii = 1k in parallel. This step can be for- 138

malized as: 139

Pθ(Rpath | x,Gpara, Iinst) =

Pθ(r1 | x, Iinst) ·
k−1∏
i=1

Pθ(ri+1 | x′i, Iinst)
(2) 140

where Iinst denotes the instruction prompt to gener- 141

ate reasoning paths. We denote r1 as the reasoning 142

path for the original question x. Equation 2 means 143

that the generation of reasoning paths can be par- 144

allelized. Greedy decoding is then performed fol- 145

lowing Equation 1 and 2. The diversity is no 146

longer from the sampling process of the LLM’s 147

decoder but comes from the paraphrasing process 148

instead. 149

In the final step, the process is the same as with 150

self-consistency (Wang et al., 2022). We also as- 151

sume each reasoning path ri is coupled with the 152

answer ai where ri → ai. This can be easily 153
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Question: Jackie is trying to decide 
whether to do her taxes herself or 
hire an accountant. If she does the 
taxes herself, she'll be able to do 3 
fewer hours of freelance work, 
losing $35/hour in missed income. 
The accountant charges $90. How 
much more money will she have if 
she hires the accountant?

    # --code snip--
    freelance_income_lost = 
freelance_hours_saved * 
freelance_hourly_rate
    total_cost_with_accountant = 
freelance_income_lost + 
accountant_fee
    # --code snip--

✗

Question: {question}
To solve the math word problem, please 
rephrase the text above into 2 new paraphrases 
to make it clearer. Note that do not add non-
existent or remove existing things.
Rephrased Question 1:
{{text1}}
Rephrased Question 2:
{{text2}}

Question: {question}
Rephrased Question: {rephrased_question}
Let's break the problem and generate Python 
codes to get the answer:
```python
def solution():
    {{code}}
    return result
```

Question: {question}
Rephrased Question: {rephrased_question}
Solution: {solution}

Question: {question}
Rephrased Question: {rephrased_question}
Solution:

Question: {question}
Let's break down…
(omit some text here)

    # --code snip--
    additional_money = 
freelance_income - 
accountant_fee
    # --code snip--

    # --code snip--
    additional_money = 
freelance_income - 
accountant_fee
    # --code snip--

✔ ✔

greedy decoding

greedy decoding

majority vote

1

2

3

2

Figure 2: Illustration of the self-para-consistency with k = 3, which first prompts the LLM to generate 2 para-
phrased questions based on PoT prompting for numerical reasoning. Then the LLM generates PoTs for the original
question and paraphrased questions through greedy decoding. Finally, the answer is aggregated via majority vot-
ing.

achieved because CoT prompting can generate the154

answer in the final tokens of ri, and PoT prompt-155

ing can get the answer by executing the codes,156

which takes a majority vote over the answers aiki=1157

by:argmaxa
∑k

i=1 1 (ai = a).158

3.2 Prompting Details159

We then introduce the two prompts Ipara and Iinst160

in detail. We show a case in numerical reasoning161

in Figure 2 where k = 3 and the LLM needs to162

generate 2 paraphrases following the instruction163

Ipara in the first step. {question} in Ipara denotes164

the original question. {{text1}} and {{text2}} de-165

note the placeholders for the output paraphrases.166

In the second step, when prompting the LLM167

with Iinst, there is a slight difference between the168

paraphrased question x′i and the original question169

x. As shown in Figure 2, for generating reasoning170

paths for paraphrased questions, we put both x′i171

and x into Iinst because only including x′i will lose172

some key information in practice (with GPT-3.5)173

due to the imperfect paraphrasing process. For the174

original question, we simply remove the line start-175

ing with "Rephrased Question: ", as shown in the176

left gray box of Figure 2.177

It worth noting that Iinst can also be combined 178

with in-context learning, where Iinst will consist of 179

T few-shot demonstrations denoted by D′
demo = 180

{xi, x′i, ri}Ti=1 without the instruction text for the 181

paraphrased question. For the original question, 182

Iinst will consist of Ddemo = {xi, ri}Ti=1. 183

4 Experiments 184

4.1 Datasets 185

We conducted experiments on 5 reasoning 186

datasets, which we categorized into three main 187

classes: (1) The in-distribution numerical reason- 188

ing datasets, comprising GSM8K (Cobbe et al., 189

2021), SVAMP (Patel et al., 2021), and AS- 190

DIV (Miao et al., 2020). (2) An out-of-distribution 191

numerical dataset, GSM8K-hard, modified from 192

GSM8K where the numbers in the questions were 193

replaced with significantly larger values (Gao 194

et al., 2023). (3) A symbolic reasoning dataset, 195

date understanding sourced from BIG-bench (Suz- 196

gun et al., 2022), requiring inference of dates 197

based on contextual information. 198

We realize that there are more reasoning 199

datasets in previous work (Wang et al., 2022; 200
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In-Distribution Out-of-Distribution

GSM8K SVAMP ASDIV GSMHARD

CoT 70.3 80.1 84.7 31.1
Zero-Shot-PAL 76.8 82.5 85.8 56.8

+ Self-ConsistencyT=0.4,k=5 80.9 84.9 87.0 58.8
+ Self-ConsistencyT=0.7,k=5 82.0 86.3 87.2 59.8
+ Self-ConsistencyT=1.0,k=5 78.5 86.9 86.3 58.7
+ Self-ConsistencyT=0.4,k=10 81.5 86.2 86.1 58.8
+ Self-ConsistencyT=0.7,k=10 83.4 86.8 88.4 60.6
+ Self-ConsistencyT=1.0,k=10 83.7 85.9 87.9 60.5

+ Self-Para-Consistencyk=3 83.8 88.0 87.8 66.3

Table 1: Results of different methods on datasets for numerical reasoning. The bold represents the best scores.

Chen et al., 2022; Gao et al., 2023) like201

MAWPS (Koncel-Kedziorski et al., 2016), but202

those datasets are relatively easy for GPT-3.5 with203

PoT prompting, making them less distinguishable204

for different methods.205

4.2 Baselines206

Since PoT prompting has outperformed CoT207

prompting in complex reasoning tasks and PoT208

can obtain more consistent output formats than209

CoTs, the basic baseline in this paper is PoT210

prompting, also known as PAL (Gao et al., 2023).211

Based on PoT, the self-consistency strategy is per-212

formed with different temperatures T and sam-213

pling number k. Our method self-para-consistency214

set the sampling number k = 3 as we do not want215

to increase the costs and k = 3 is the smallest216

number to perform majority voting.217

The GPT-3.5-turbo-0613 version is used for218

both baselines and our method. The temperature219

of our method is set to 0.0 in both the paraphras-220

ing and reasoning stages. For date understanding,221

we use the same few-shot PoT examples as (Gao222

et al., 2023).223

4.3 Main Results224

The results of our method and baseline meth-225

ods are shown in Table 1 and 2. Overall, our226

method self-para-consistency achieves the best227

performance on 4 out of 5 datasets.228

For numerical reasoning, Self-Para-229

Consistencyk=3 improves the accuracy of the230

baseline Zero-Shot-PAL by 7.0, 5.0, and 9.5231

points on GSM8K, SVAMP and GSMHARD,232

respectively. For date understanding, Self-Para-233

Consistencyk=3 improves the accuracy of the234

baseline Zero-Shot-PAL by 1.8 points.235

Compared with Self-ConsistencyT=0.7,k=5,236

Self-Para-Consistencyk=3 outperforms it237

DATE

Few-Shot-PALGPT-3.5 77.2

+ Self-ConsistencyT=0.4,k=5 76.2
+ Self-ConsistencyT=0.7,k=5 78.0
+ Self-ConsistencyT=1.0,k=5 76.7
+ Self-ConsistencyT=0.4,k=10 77.0
+ Self-ConsistencyT=0.7,k=10 77.8
+ Self-ConsistencyT=1.0,k=10 77.8

+ Self-Para-Consistencyk=3 79.0

Table 2: Results of different methods on the dataset
for date understanding. The bold represents the best
scores.

on all 5 datasets. Compared with Self- 238

ConsistencyT=0.7,k=10, Self-Para-Consistencyk=3 239

outperforms it on 4 out of 5 datasets with 7 less 240

reasoning paths required. 241

Compared with different datasets, our method 242

improves most on GSM-HARD, which is typi- 243

cally an OOD dataset where the training data of 244

LLMs do not contain such large numbers. It shows 245

that the paraphrasing may introduce extra improve- 246

ments over simply using non-deterministic decod- 247

ing strategy for OOD data. 248

5 Conclusion 249

In this paper, we propose the self-para-consistency 250

strategy, which serves as an alternative to the self- 251

consistency strategy with lower costs. The pro- 252

posed method first prompts the LLM to gener- 253

ate multiple paraphrases sequentially, and then 254

generate reasoning paths in parallel. The di- 255

versity comes from paraphrasing instead of non- 256

deterministic decoding strategies. Extensive ex- 257

periments show the effectiveness of the proposed 258

method. 259
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