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ABSTRACT

Currently, most advanced speech editing models are based on either neural codec
language models (NCLM) (e.g., VoiceCraft) or diffusion models (e.g., Voicebox).
Although NCLM can generate higher quality speech compared to diffusion models,
it suffers from a higher word error rate (WER) (Peng et al.| 2024)), calculated by
comparing the transcribed text to the input text. We identify that this higher WER
is due to attention errors (hallucinations), which make it difficult for NCLM to
accurately follow the target transcription. To maintain speech quality and address
the hallucination issue, we introduce VoiceNoNG, which combines the strengths of
both model frameworks. VoiceNoNG utilizes a latent flow-matching framework to
model the pre-quantization features of a neural codec. The vector quantizer in the
neural codec implicitly converts the regression problem into a token classification
task similar to NCLM. We empirically verified that this transformation is crucial
for enhancing the performance and robustness of the speech generative model. This
simple modification enables VoiceNoNG to achieve state-of-the-art performance
in both objective and subjective evaluations. Lastly, to mitigate the potential
risks posed by the speech editing model, we examine the performance of the
Deepfake detector in a new and challenging practical scenario. Audio examples
can be found on the demo page: https://anonymous.4open.science/
w/NoNG-8004/

1 INTRODUCTION

In recent years, speech editing technology has rapidly gained prominence, offering substantial benefits
across various domains. This technology enables users to seamlessly modify and enhance audio
recordings (Morrison et al.,2024)), addressing issues such as slips of the tongue, mispronunciations,
or transient background noise. Consequently, YouTubers and filmmakers can edit their speeches
without the need for re-recording, significantly boosting productivity and reducing costs. However,
like many technological advancements, the rise of speech editing also presents notable risks. The
same capabilities that make speech editing valuable for legitimate purposes can be exploited to create
sophisticated Deepfake audio (NBC News| 2024}, posing serious threats to security, privacy, and
public trust. As these tools become more accessible, malicious actors could use them to fabricate
convincing audio for disinformation, fraud, or other harmful activities, making it crucial to develop
and advance speech Deepfake detection technologies. The research community is increasingly
focused on building robust detection systems to identify manipulated speech (Zhang et al.,|2021b;
2022; Liu et al} [2024} Zhang et al., 2024; [Pan et al.| [2024), ensuring that the benefits of speech
editing can be enjoyed without compromising safety and security. Therefore, while speech editing
represents a significant leap forward in digital communication, it also underscores the need for
advanced detection methods to mitigate its potential dangers.

In this study, we first propose a state-of-the-art (SOTA) speech editing model, VoiceNoNG. To avoid
malicious applications, we also study the performance of the Deepfake detector in a practical new
challenging scenario. An introduction to these two topics is as follows:

1.1 SPEECH EDITING TECHNIQUES

In the early stages of speech editing, the process primarily involved cut-and-paste techniques to
replace the speech segments that needed to be changed with the target speech segments. However,
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this approach often resulted in unnatural intonation and noticeable boundaries. Voco (Jin et al.l [2017)
addressed this issue with voice conversion to make the voice even closer to the original. Morrison
et al.| (2021) performed speech editing under a single-speaker scenario to avoid the need for voice
conversion, which uses an utterance-level text-to-speech (TTS) system for context-aware synthesis,
followed by pitch-shifting, duration-stretching, and finally eliminating speech manipulation artifacts
by HiFi-GAN vocoding (Kong et al., 2020). Both of the above methods allow users to manually
fine-tune pitch, amplitude, and duration through a user interface to ensure natural transitions at the
boundaries.

In recent years, as speech synthesis technology has become more advanced, methods for speech
editing have generally been evolved into two main approaches: non-autoregressive speech infilling
(inpainting) (Borsos et al., 2022} |Bai et al.,|2022; Le et al., 2024; Jiang et al.| [2023} |Alexos & Baldi,
2024} Ruiz et al.| [2024)), and autoregressive causal generation (Tan et al.| 2021 [Wang et al.| [2024;
Peng et al., 2024)).

For the training of non-autoregressive model, the models take masked audio along with its transcript
as input, and the goal is to recover the masked segments. During speech editing, the segment to
be modified is simply masked with a new target transcript, and the corresponding edited speech
is generated. Non-autoregressive speech editing models can be further divided based on whether
explicit text-audio alignment is required. Models like A3T (Bai et al.l [2022), Voicebox (Le et al.|
2024), and FluentSpeech (Jiang et al., 2023) require explicit alignment, while models such as
SpeechPainter (Borsos et al., [2022)), AttentionStitch (Alexos & Baldi, 2024)), and Mapache (Ruiz
et al.| 2024)) implicitly learn the alignment through their attention mechanisms.

For autoregressive models, the challenge lies in how to condition the causal generation on both past
and future contexts. EditSpeech (Tan et al., 2021)) adopts an approach similar to non-autoregressive
methods, with the key difference being that masked generation is achieved through two decoders: a
forward decoder and a backward decoder. SpeechX (Wang et al., 2024) and VoiceCraft (Peng et al.,
2024) fall under the Neural Codec Language Model (NCLM) category. These models first convert
audio into discrete tokens by a neural codec, which are then trained as NCLMs through a next-token
prediction task. The target text and context information are provided through prompting to help the
model learn speech editing. The predicted tokens are then converted to a waveform using the neural
codec decoder.

Among these speech editing models, Voicebox (Le et al.,[2024) and VoiceCraft (Peng et al., [2024)
are the two most famous ones, and our proposed editing method, VoiceNoNG, is based on the
combination of these two methods. An overview of the input and output of current speech editing
models are shown in Figure

Original transcript:
With Great Power, comes Great Responsibility

Original audio:
Speech editing |
R —>
/ model /

Target transcript:
With more GPU, comes Great Responsibility

(Content:
With more GPU, comes Great Responsibility)

Figure 1: The input and output of speech editing models.

1.2 DEEPFAKE SPEECH DETECTION AND LOCALIZATION

To mitigate the potential harm caused by synthetic speech, challenges like ASVspoof (Kinnunen
et al.l 2017} Todisco et al.| 2019; |Yamagishi et al., 2021) and ADD (Yi et al.l 2023)) have been
launched to promote defensive research. These primarily address fully spoofed scenarios, where
the entire audio is generated through methods like text-to-speech or voice conversion. However,
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generating an entire speech may not always be necessary. If attackers have access to real samples
with significant overlap with the target transcript, they only need to manipulate short segments using
speech editing models. Compared to the conventional fully spoofed scenario, detecting and localizing
(Yiet al., 2021} Zhang et al.,[2021a;|Zhang & Siml [2022) partial spoof scenarios is more challenging.

Additionally, given the impressive compression capabilities of neural codecs, it is anticipated that they
will become a new standard for audio formats (e.g., mp3). For a Deepfake detector, it is insufficient
to simply distinguish between real and codec-resynthesized audio (Wu et al., 2024} Xie et al.| 2024).
A practical new threat to consider in partial spoof scenarios is differentiating between resynthesized
and edited speech (Le et al., 2024). In this context, the detector cannot identify edited speech merely
by recognizing specific patterns or artifacts generated by the codec. More details will be discussed in
Section[3.2

In summary, this paper makes several significant contributions:

1) We identify the hallucination-like problem in the autoregressive-based VoiceCraft model, which
makes it difficult to follow the target transcription accurately. This leads to a higher word error rate
(WER), calculated by comparing the transcribed text to the target transcription.

2) We propose VoiceNoNG, a speech editing model that combines the strengths of both Voicebox
and VoiceCraft, achieving SOTA performance in both objective and subjective evaluations.

3) We find that the vector quantizer module in the neural codec is crucial for developing a robust
speech editing model.

4) We extend the partial spoof detection setting to a more practical scenario. A new speech dataset
edited by VoiceNoNG will be released to support defensive research.

2 PROPOSED VOICENONG

As mentioned in the previous section, for the edited part to sound natural, the speaker characteristics
and background audio (e.g., noise, music, etc.) need to be consistent with the context. In this section,
we first discuss the drawbacks of Voicebox and VoiceCraft, and then explain how we address these
issues (Voicebox and VoiceCraft can be considered representative speech editing models based on
diffusion models and neural codec language models (NCLM), respectively).

Voicebox is a cutting-edge generative speech model based on a non-autoregressive flow-matching
approach. Its flow-matching framework allows it to directly learn to transform noise distributions
into audio data distributions, leading to more stable training, better generalization, and faster sample
generation compared to traditional diffusion-based methods. Furthermore, it is trained to perform
speech infilling task by conditioning on both past and future audio contexts with text transcript,
making Voicebox a versatile platform for various speech tasks, including zero-shot TTS synthesis,
speech editing, transient noise removal, and style conversion.

On the other hand, VoiceCraft is a Transformer-based NCLM that utilizes autoregressive conditioning
on bidirectional context to infill the masked neural speech codec tokens. VoiceCraft is built upon a
two-step token rearrangement procedure, comprising a causal masking step and a delayed stacking
step. The causal masking technique enables autoregressive generation with bidirectional context, and
the combination with delayed stacking facilitates efficient multi-codebook modeling.

However, both Voicebox and VoiceCraft have their drawbacks. Voicebox generates waveforms using
a HiFi-GAN vocoder with Mel spectrograms as input and is trained on a large-scale, clean audiobook
corpus, LibriLight (Kahn et al., 2020). These two factors result in Voicebox not being good at
generating speech with background audio.

On the other hand, VoiceCraft addresses the issue by training on GigaSpeech (Chen et al., [2021)),
which includes diverse audio conditions from sources like audiobooks, podcasts, and YouTube.
Additionally, it uses EnCodec (Défossez et al., |2022) for tokenization and waveform recovery.
However, VoiceCraft suffers from common hallucination-like problems found in large language
models (LLMs). These issues cause VoiceCraft to accidentally generate speech with unintended
long silences, slow speaking pace, or missing or repeated words. This will be discussed in detail
in the experiment section, with examples provided in the Appendix.
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To address the aforementioned issues, we propose VoiceNoNG, which aims to combine the strengths
of both Voicebox and VoiceCraft. To avoid hallucination problems and enable the generation of
speech with background audio, VoiceNoNG utilizes a latent flow-matching framework.

For the acoustic features, we use the Descript Audio Codec (DAC) (Kumar et al., [2024) instead of
Mel-spectrograms. Mel-spectrogram is primarily designed based on how humans perceive speech
signals, making it less suitable for modeling other audio types (e.g., noise, music, etc.). Besides being
trained on a diverse range of audio sources, another reason for using DAC is its ability to compress
the features into a discrete latent space through a vector quantizer (VQ). This provides additional
robustness against minor prediction errors from the editing model (Fu et al., 2024)). A small
error, as long as it is not larger than the token decision boundary, will still be mapped to the correct
token during VQ. This will be verified in section[3.1.6

In addition to the original flow-matching loss used in Voicebox, we apply a cross-entropy (CE) loss
to further enhance our model’s codec prediction accuracy after VQ. Since the codec token selection is
based on the distance between the prediction and the candidates in the dictionary C', we can formulate
this process as a probability distribution using the softmax operation. Consequently, the CE loss L.
can be calculated as follows:

Lee = _ﬁ S log erp(-|[(S(X): = Zill) 0

M| LSV eap(—|(S(X)e — Cull2)

where M represents the masked region, S(.) denotes our speech editing model with input features X,
Z is the original codec token before masking, and V is the size of the dictionary. This loss function
aims to minimize the distance between the prediction and the correct token while maximizing the
distance to other tokens. Similar to VoiceCraft, we use GigaSpeech as the training corpus, as its
diverse audio conditions enable our model to perform background-preserving speech editing.

3 EXPERIMENTS

3.1 SPEECH EDITING
3.1.1 SPEECH EDITING MODEL SETUP

Our proposed VoiceNoNG combines the strengths of both Voicebox and VoiceCraft, enabling our
model to perform background-preserving speech edits without the hallucination issues present in
VoiceCraft. To verify that our modifications lead to the desired improvements, we compared our
speech editing model with four other models: two different sizes of VoiceCraft (330M, 880M), and
two Voicebox models using Mel-spectrograms as the acoustic feature, trained on LibriLight and
GigaSpeech respectively. The results for VoiceCraft are based on the official code provided by the
authors. Since no code and model checkpoints are available for Voicebox, we reproduced the results.
Our Voicebox architecture settings are identical to those reported in the original Voicebox paper,
which features 330M parameters.

To delve into more details, DAC comprises three modules: an encoder that encodes the input
waveform into a fixed-dimension vector sequence (pre-quantization feature), a residual VQ module
that discretizes the encoded representations into tokens, and a decoder that decodes the quantized
representations (post-quantization feature) back into the waveform. In our experiments, we use the
pre-quantization feature as our acoustic feature and apply a CE loss calculated against the ground-truth
quantized token labels to enhance the token prediction accuracy of VoiceNoNG.

To demonstrate the impact of this setting, we also conduct an ablation study to highlight the benefits
of modeling pre-quantization features and incorporating the CE loss.

3.1.2 TRAINING AND TEST SETS FOR SPEECH EDITING

Unless otherwise noted, the training data used in our experiment is GigaSpeech. For evaluating
different speech editing models, we utilize the RealEdit dataset (Peng et al.| [2024)), a pioneering
benchmark that features 310 manually-crafted examples reflecting real-world editing scenarios.
This dataset includes tuples of original audio, original transcript, and edited transcript, meticulously
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crafted to ensure grammatical correctness and semantic coherence. RealEdit consists of 100 utterances
from the LibriTTS dataset (Zen et al.l 2019), 100 from YouTube (sourced from the GigaSpeech
test set (Chen et al., 2021))), and 110 from the Spotify Podcast dataset (Clifton et al., 2020). The
utterances range from 5 to 12 seconds in duration and encompass a diverse array of content, accents,
speaking styles, and recording conditions. The edits span various types—insertions, deletions, and
substitutions—across different lengths, from short (1-2 words) to long (7-12 words), with single or
multiple spans. This diversity makes RealEdit more challenging compared to other speech synthesis
evaluation datasets. By incorporating a wider array of editing scenarios and audio sources, RealEdit
provides a comprehensive benchmark for evaluating the performance and practicality of speech
editing models in diverse, real-world contexts.

For each speech editing model, we generate edited speech for every tuple of original audio, original
transcripts, and edited transcripts from the RealEdit dataset. We then evaluate these generated
speeches using the metrics introduced in the following subsections to compare the performance of
different models. During the objective evaluation, speech was generated with five different random
seeds, and we report the mean scores along with the standard deviation (shown in parentheses).

3.1.3 OBIJECTIVE EVALUATION FOR SPEECH INTELLIGIBILITY: WER

WER is an appropriate metric for evaluating TTS and speech editing since it provides a quantitative
assessment of how accurately a system converts text into speech. Table[I]displays the WER results for
various speech editing models using Whisper-large-v3 (Radford et al.| 2023)) as the ASR model. The
WER is computed by comparing the transcribed text to the target transcript provided by the RealEdit
datasets. Before calculating the WER, both texts were normalized using the whisper,normalizer

As indicated in the table, all flow-matching-based methods achieve lower WER than VoiceCraft,
which is consistent with the findings presented in the VoiceCraft paper (Peng et al.,2024). A closer
examination reveals that this is primarily due to the hallucination problem associated with VoiceCraft.
Neekhara et al.| (2024)) also highlights that LLM-based TTS models lack robustness, often producing
outputs with repeating words, missing words, and misaligned speech, particularly when the text
includes multiple instances of the same token. Examples of this hallucination issue can be found in
the Appendix, specifically in Tables [dland[5] Additionally, the results demonstrate that when the
training corpus for Voicebox is switched from LibriLight to GigaSpeech, the WER decreases across
all types of audio sources, and further reducing the WER is achieved by changing the acoustic feature
from Mel-spectrogram to DAC.

In our proposed models, we also perform an ablation study to illustrate the advantages of modeling
pre-quantization features and adding CE loss. When the output of our flow-matching model is the
pre-quantization features, it must be processed through the VQ and DAC decoder to reconstruct the
waveform. As noted in Section 2] the VQ module offers additional robustness against prediction
errors made by our model. In contrast, if the output is the post-quantization features (similar to
(Shen et al.| 2023))), only the DAC decoder is required for waveform reconstruction. As a result,
post-quantization features yield the highest WER on average. Incorporating CE loss helps improve
the token prediction accuracy of pre-quantization features, thereby reducing the WER.

It is essential to highlight that the WER results presented in Table || are calculated for the entire
utterance, and the unmasked regions are expected to exhibit the same WER. Consequently, the WER
differences among various editing models should be considerably more pronounced in the edited
regions. Additionally, while a lower WER signifies that the generated speech is more intelligible to
the ASR and contains more accurate content, it does not automatically imply that the overall quality
is better.

3.1.4 OBIJECTIVE EVALUATION FOR SPEECH QUALITY: SQUIM-(SI-SDR)

To assess the quality of the generated speech, we utilize a non-intrusive estimation of the scale-
invariant signal-to-distortion ratio (SI-SDR), referred to as SQUIM-(SI-SDR) from (Kumar et al.,
2023)). The results of the estimated quality scores are presented in Table 2} It is evident that the
SI-SDR for the original speech from LibriTTS is higher than that of the speech from YouTube
and Spotify. This finding corresponds with the characteristics of the datasets, as the speech from

'https://github.com/kurianbenoy/whisper_normalizer
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Table 1: WER evaluation of speech editing on the RealEdit dataset. An asterisk (*) indicates the

reproduced model.

\ WER (%)

| LibriTTS  YouTube Spotify Total

Original ‘ 1.84 6.13 5.87 4.65
VoiceCraft (330M) | 3.72 (0.13) 7.41(0.38) 4.63(0.14) 5.23 (0.16)
VoiceCraft (830M) 3.77 (0.41) 7.36(0.35) 5.43(0.33) 5.52(0.19)
Voicebox* (Libri, Mel) | 3.64 (0.19) 6.26 (0.19) 5.45(0.19) 5.13(0.08)
Voicebox* (Giga, Mel) | 3.48 (0.16) 6.03 (0.16) 5.36(0.13) 4.97 (0.12)
Proposed VoiceNoNG | 2.82 (0.20) 5.84(0.21) 4.92(0.21) 4.54(0.14)
Post-quantization | 3.16 (0.19) 5.59 (0.24) 5.38(0.22) 4.73 (0.18)
No CE loss 2.94(0.23) 5.81(0.18) 5.07(0.13) 4.62 (0.09)

Table 2: SQUIM-(SI-SDR) evaluation of speech editing on the RealEdit dataset. An asterisk (*)
indicates the reproduced model. We highlight the LibriTTS case in bold, as the scores for YouTube

and Spotify provide less clear insights.

\ SI-SDR

| LibriTTS YouTube Spotify Total

Original \ 23.94 19.55 19.22 20.85
VoiceCraft (330M) 22.22(0.08) 19.97 (0.08) 20.15(0.16) 20.76 (0.04)
VoiceCraft (830M) 22.53(0.07) 20.04 (0.06) 20.26 (0.13) 20.92 (0.08)
Voicebox* (Libri, Mel) | 19.49 (0.13) 17.96 (0.16) 16.32 (0.10) 17.88 (0.03)
Voicebox* (Giga, Mel) | 18.10 (0.41) 16.86(0.32) 15.83(0.17) 16.90 (0.20)
Proposed VoiceNoNG | 23.15(0.09) 19.29 (0.05) 19.04 (0.08) 20.44 (0.05)
Post-quantization 20.80 (0.26) 18.28 (0.11) 17.81(0.10) 18.93 (0.05)
No CE loss 23.36 (0.09) 19.30(0.09) 18.98 (0.06) 20.50 (0.04)

YouTube and Spotify contains some background audio. Although the SI-SDR scores offer less clear
information regarding the generated speech for YouTube and Spotify, we still provide the scores for
reference.

In the case of LibriTTS, we can observe that the speech quality produced by the proposed model
is the best and closely resembles the original speech. Conversely, the quality score for the speech
generated by Voicebox is the lowest, likely due to the limitations of the Mel-spectrogram and the
vocoder used. We also observed that if our proposed method utilized post-quantization features as
learning targets, the SI-SDR would significantly decrease. Furthermore, the standard deviations for
Voicebox (Giga, Mel) and post-quantization are considerably larger than those for other models. This
observation aligns with our listening experience, indicating that these models are less robust and more
likely to produce varying speech quality across the five random seeds. This further validates the
advantages of predicting pre-quantization features and employing the VQ module to correct
minor prediction errors.

3.1.5 SUBJECTIVE EVALUATION

To subjectively evaluate the performance of various speech editing methods, we conducted a listening
test using a 5-point scale. Participants listened to audio files, which could either be real or edited,
and rated them on a scale where 5 represented highly natural and unaltered audio, while 1 indicated
a strong belief that the audio had undergone partial editing (mainly follows (Peng et al.l [2024);
please refer to Figure[5]in the Appendix for detailed instructions). The naturalness score encompasses
factors such as smoothness, fluidity, and the absence of robotic or synthetic artifacts, all of which are
essential for assessing whether the speech sounds authentic to human listeners. 8 original speeches
were randomly selected from LibriTTS, YouTube, and Spotify, respectively. The corresponding
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Average subjective scores

Original  VoiceNoNG VoiceCraft Voicebox Post-quant.

Figure 2: Subjective scores of different speech editing methods.

edited speeches from VoiceCraft, Voicebox, the proposed VoiceNoNG, and VoiceNoNG with post-
quantization were then chosen, resulting in a total of (§x3)x5 = 120 utterances for each listener
to evaluate. The order of the audio playback was randomized, and 15 listeners participated in the
study. The experimental results (with a 95% confidence interval) are shown in Figure [2| revealing
that the naturalness of speeches edited by VoiceNoNG and VoiceCraft is comparable to that of the
original speech (detailed results for each subset can be found in the Appendix from Figure [§]to g).
In contrast, the performance of VoiceNoNG with post-quantization exhibits a significant decline,
warranting further analysis in the next section.

3.1.6 ROBUSTNESS BENEFITS FROM VQ MODULE
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Figure 3: Relationship between varying levels of noise added to pre-quantization and post-
quantization DAC features and the PESQ scores of the resulting resynthesized speech.

As shown in the previous experiments, the performance of VoiceNoNG declines when post-
quantization features are used as learning targets. To validate the advantages of predicting pre-
quantization features with VQ, we intentionally added Gaussian noise to these features to simulate
the prediction error incurred by the editing model. LibriTTS subset from the RealEdit dataset was
chosen for this experiment. In Figure 3] we present the PESQ scores for resynthe-
sized speech generated from the noisy DAC features at varying noise levels (the noise strength is first
normalized based on the dynamic range of the input features). This figure illustrates the robustness
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benefits of VQ, showing an approximate improvement of 0.2 PESQ scores under moderate noise
conditions.

3.2 DETECTION OF SPEECH EDITED BY VOICENONG

As demonstrated in the previous subjective evaluation, people find it challenging to distinguish
between speech edited by the proposed VoiceNoNG and real speech. To prevent malicious uses,
a reliable Deepfake detector is essential. This section explores a practical new threat within the
partial spoof scenario. Given the potential for neural codecs to become a new audio format standard,
the assumption that all codec-generated speech is fake may soon be unrealistic. Therefore, in the
following experiments, we classified codec-resynthesized speech as a new category. The original
binary classifier was extended to a ternary classifier with the labels: real, resynthesized, and edited.
Additionally, for the audio condition, besides the original VoiceNoNG setting where non-edited
segments come from the original audio, we consider a more challenging setting where non-edited
segments are also resynthesized from the codec. We refer to this condition as VoiceNoNG (resyn).

3.2.1 DEEPFAKE SPEECH DETECTOR MODEL SETUP

We built the w2v2-detector using a model architecture similar to the one that won first place in the
partially fake audio track at ADD2022 (Yi et al.| [2022), which also demonstrated strong performance
in our previous work. Specifically, the w2v2-detector employs a pretrained wav2vec2-base-960h
model (Baevski et al.,[2020) for feature extraction. We use a weighted sum of the 13 hidden states,
including the output from the CNN encoder, as our input features. These features are then projected
from 768 dimensions to 128 dimensions using a linear layer. The model then splits into two paths: the
frame-level branch and the utterance-level branch. In the frame-level branch, the projected features
pass through a linear layer to produce a 3-dimensional output representing the prediction for each
frame. In the utterance-level branch, the projected features undergo attentive statistics pooling (Okabe
et al.,2018) to compress the features into a single representation of the entire utterance, which is then
passed through a linear layer to generate the utterance-level prediction.

3.2.2 TRAINING AND TEST SETS FOR DEEPFAKE DETECTOR

We used LibriLight medium (Kahn et al., 2020) as the source audio files and generated the edited
speech using our proposed VoiceNoNG. The target transcripts were generated by prompting an LLM
(i.e., zephyr-7B-beta (Tunstall et al., 2023))). However, the edited transcripts may not always adhere
to the desired format. To address this, we used word-level Levenshtein distance (Levenshtein et al.,
1966) to identify substitutions, and then randomly selected words for replacement as our method of
edit manipulation.

The dataset was first categorized by speaker, prioritizing those with more audio samples for the
training set, and then sequentially allocating speakers to the validation and test sets. This approach
ensured that no speaker appeared in multiple sets, with the test set containing a significant number
of unseen speakers, enabling us to effectively assess the detector’s generalizability at the speaker
level. The dataset was divided into training, validation, and test sets, comprising 106,186, 34,744,
and 33,974 audio files, respectively. Additionally, the quantities of real, resynthesized, and edited
speech in the original VoiceNoNG and VoiceNoNG (resyn) settings were balanced within each set.

3.2.3 EXPERIMENTAL RESULTS

Table 3| presents the performance of the w2v2-detector in detecting and localizing speech edits made
by the proposed VoiceNoNG model. The table reveals that the utterance-level accuracy is nearly
100%, even under the VoiceNoNG (resyn) condition. However, as anticipated, the frame-level F1
score for the VoiceNoNG (resyn) condition is lower than that for VoiceNoNG. This indicates that it
is more challenging for the detector to differentiate between edited and non-edited resynthesized
segments at the frame level.

To examine how the amount of training data affects the detector’s performance, we included results
for different training set sizes in the table. The table indicates that approximately 40,000 samples
are sufficient to train a reliable DeepFake detector. Additionally, thanks to the advantages provided
by the self-supervised front-end (i.e., wav2vec2), only 5,000 examples are needed to achieve an
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Table 3: Detection and localization results of speech edited by VoiceNoNG.

# of training sample | frame F1 (%) / utterance accuracy (%)
‘ VoiceNoNG VoiceNoNG (resyn)

106,186 | 95.84/98.08 82.63/96.99
80,000 93.59/97.17 83.14/97.14
40,000 94.44797.17 81.28 /96.66
20,000 91.25794.85 80.89/92.83
5,000 89.39/91.32 76.45/88.01
1,000 65.97/79.07 56.86/64.61
500 58.83/72.79 47.48/66.19

utterance-level accuracy of around 90%. Figured]presents an example of frame-level detection results
for the VoiceNoNG (resyn) condition. Additional examples under different acoustic conditions can
be found in the Appendix (Figure[9]to[TT). Through this experiment, we discovered that while it is
challenging for people to differentiate between speech edited by the proposed VoiceNoNG and real
speech, the trained w2v2-detector is still capable of detecting subtle artifacts that distinguish real
audio from fake.

06 Waveform with Frame-level Predictions
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Figure 4: An example of frame-level detection for VoiceNoNG (resyn) condition. In the waveform,
the green sections represent resynthesized speech, while the orange sections indicate edited speech.
The dashed lines show the predicted scores of our detector for the three classes.

4 CONCLUSION

In this study, we first examine the limitations of current advanced speech editing models. Voicebox
produces lower-quality speech in the presence of background audio (e.g., noise, music), while Voice-
Craft struggles to accurately follow text input, a common hallucination-like issue with autoregressive
models. To address these challenges, we introduce VoiceNoNG, which leverages the strengths of both
models and achieves SOTA performance in both objective and subjective evaluations (we encourage
readers to listen to the demos on our demo page, which shows VoiceNoNG can keep the accent
and even successfully generate background music for movie editing!). We also identify the vector
quantizer module in the neural codec as crucial for achieving a robust speech editing model. Lastly,
to mitigate the potential risks posed by the speech editing model, we examine the performance of the
Deepfake detector in a new and challenging practical scenario.
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Appendix

Table 4: ASR results of sampling 5 times of edited 8173.294714_.000033.000000 .wav in the
RealEdit dataset. Words highlighted in red indicate missing words, while those in blue denote extra
words. Texts in parentheses signify simple substitution errors. Bolded texts indicate specific error
types from the LLM, such as missing or repeated words caused by hallucinations.

Ground truth:
”promise that you will not ask me to borrow any money from the bank for the bail of you for mister

van brandt she rejoined and i accept your help gratefully”
VoiceCraft:

1. ’promise that you will not ask me to borrow any money -from the bank for the bail of you (-for
+from) mister van (-brandt she +branch you) rejoined and i accept your help gratefully”

2. ”promise that you will not ask me to borrow any money -from the bank for the bail of you (-for
+from) mister van (-brandt she +branch you) rejoined and i accept your help gratefully”

3. ”promise that you will not ask me to borrow any money -from the bank for the bail of you (-for
+from) mister van (-brandt she +branch you) rejoined and i accept your help gratefully”

4. ”promise that you will not ask me to borrow any money from the bank for the bail of you for
mister van -brandt she +bunny of you for mister van branch you rejoined and i accept your help
(-gratefully +greatly”)

5. ”promise that you will not ask me to borrow any money from the bank for the bail of you for
mister van -brandt she rejoined +brawny of you for mister van branch you were joined and i

accept your help (-gratefully +greatly)”
Proposed VoiceNoNG:

1. ”’promise that you will not ask me to borrow any money from the bank for the (-bail +money) of
you for mister van (-brandt +brant) she rejoined and i +will accept your help gratefully”

2. ’promise that you will not ask me to borrow any money from the bank for the (-bail +money) of
you for mister van (-brandt +brant) she rejoined and i +will accept your help gratefully”

3. ’promise that you will not ask me to borrow any money from the bank for the (-bail +money) of
you for mister van (-brandt +brant) she rejoined and i +will accept your help gratefully”

4. ”’promise that you will not ask me to borrow any money from the bank for the (-bail +money) of
you for mister van (-brandt +brant) she rejoined and i +will accept your help gratefully”

5. ”promise that you will not ask me to borrow any money from the bank for the (-bail +money) of
you for mister van (-brandt +brant) she rejoined and i +will accept your help gratefully”
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Table 5: ASR results of sampling 5 times of edited YOU1000000101_.S0000132.wav in the
RealEdit dataset. Words highlighted in red indicate missing words, while those in blue denote extra
words. Texts in parentheses signify simple substitution errors. Bolded texts indicate specific error
types from the LLM, such as missing or repeated words caused by hallucinations.

Ground truth:
’yet anytime you and i question the schemes of the dogooders or dare to dig into any of their motives
were denounced as being against their humanitarian goals they say we are always against things we

are never for anything”
VoiceCraft:

1. ”’yet anytime you and i question the schemes of the (-dogooders +dog) or dare to dig into any of
their motives -were +we are denounced as gooders we are denounced as being against their
humanitarian goals they say we are always against things we are never for anything”

2. ”yet anytime you and i question the schemes of the (-dogooders +dog gooders) or dare to dig into
any of their -motives were +moo gooders we are denounced as being against their humanitarian
goals they say we are always against things we are never for anything”

3. ”yet anytime you and i question the schemes of the (-dogooders +dog gooters) or dare to dig into
any of their -motives were +moogooters we are denounced as being against their humanitarian
goals they say we are always against things we are never for anything”

4. ”yet anytime you and i question the schemes of the (-dogooders +dog owners) or dare to dig into
any of their motives -were +who gooders we are denounced as being against their humanitarian
goals they say we are always against things we are never for anything”

5. ”’yet anytime you and i question the schemes of the (-dogooders +dawgooders) or dare to dig into
any of their -motives were +motu gooders we are denounced as being against their humanitarian
goals they say we are always against things we are never for anything”

Proposed VoiceNoNG:

1. ”’yet anytime you and i question the schemes of the (-dogooders +dog eaters) or dare to dig into
any of their (-motives were +we are) denounced as being against their humanitarian goals they say
we are always against things (-we are +were) never for anything +and”

2. ’yet anytime you and i question the schemes of the (-dogooders +dog gooters) or dare to dig into
any of their (-motives were +we are) denounced as being against their humanitarian goals they say
we are always against things (-we are +were) never for anything +and”

3. ”’yet anytime you and i question the schemes of the (-dogooders +dog gooters) or dare to dig into
any of their (-motives were +we are) denounced as being against their humanitarian goals they say
we are always against things (-we are +were) never for anything +and”

4. ’yet anytime you and i question the schemes of the (-dogooders +doggoners) or dare to dig into
any of their (-motives were +we are) denounced as being against their humanitarian goals they say
we are always against things (-we are +were) never for anything +and”

5. ”’yet anytime you and i question the schemes of the (-dogooders +doggers) or dare to dig into any
of their (-motives were +we are) denounced as being against their humanitarian goals they say we are
always against things (-we are +were) never for anything +and”
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Instructions

Some of the speeches you will listen to may have been partially edited. Your task is to
assess the naturalness of the speech focusing solely on the speaker and background
audio coherence, prosody, emotion, and speech rate. Some of the audio may come from
internet videos and have background noise. Please ignore the noise, grammar, semantics,
or other linguistic factors in your evaluation.

Please rate each audio's naturalness (i.e., human-sounding) independently from 1-5. 1 is
least natural, and 5 is most natural.

Please use a headset to listen and adjust the volume level to your comfort. Each audio
should only be replayed at most twice.

Rate the naturalness from 1 (bad) to 5 (excellent) ?

1 2 3 4 5
(Bad) (Poor) (Fair) (Good) (Excellent)

Figure 5: Instruction of the subjective evaluation.
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Original ~ VoiceNoNG VoiceCraft  Voicebox Post-quant.

Figure 6: Subjective scores of different speech editing methods in the LibriTTS subset.
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Figure 7: Subjective scores of different speech editing methods in the Youtube subset.

Average subjective scores (Spotify)

Original ~ VoiceNoNG VoiceCraft  Voicebox Post-quant.

Figure 8: Subjective scores of different speech editing methods in the Spotify subset.
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Figure 9: An example of frame-level detection for VoiceNoNG condition. In the waveform, the blue
sections represent real speech, while the orange sections indicate edited speech.
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Figure 10: An example of frame-level detection for real condition.
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Figure 11: An example of frame-level detection for resynthesized condition.
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