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Abstract

Assumptions about invariances or symmetries in
data can significantly increase the predictive power
of statistical models. Many commonly used ma-
chine learning models are constraint to respect cer-
tain symmetries, such as translation equivariance in
convolutional neural networks, and incorporating
other symmetry types is actively being studied. Yet,
learning invariances from the data itself remains an
open research problem. It has been shown that the
marginal likelihood offers a principled way to learn
invariances in Gaussian Processes. We propose a
weight-space equivalent to this approach, by min-
imizing a lower bound on the marginal likelihood
to learn invariances in neural networks, resulting
in naturally higher performing models.

1 INTRODUCTION

Intuitively, invariances allow models to extrapolate, or rather
‘generalise’, beyond training data (see Figure 1 for an ex-
treme example). An invariant model does not change in
output when the input is changed by transformations to
which it is deemed invariant. The most straightforward way
to achieve this, is perhaps by enlarging the dataset with
transformed examples: a process known as data augment-
ation. A link between invariance and data augmentation
in kernel space was made by Dao et al. [2019]. We show
that this invariance can equivalently be described as trans-
formations on the weights, similar to Cohen and Welling
[2016] where a neural network is constrained to respect
rotational symmetry through rotated weight copies. We do
what is common in Bayesian model selection and find the
correct invariance using the marginal likelihood. Optimiz-
ing the marginal likelihood has proven an effective way
to learn invariances in Gaussian Processes (GPs) [van der
Wilk et al., 2018], but is not tractable for commonly used

neural networks. To overcome this, we propose a lower
bound of the marginal likelihood capable of learning invari-
ances in neural networks. By learning distributions on affine
groups, we can select the correct invariance for a particular
task, without having to perform cross-validation or even
requiring a separate validation set. We succesfully learn the
correct invariance on different MNIST and CIFAR-10 image
classification tasks leading to better performing models.

2 RELATED WORK

Convolutional neural networks (CNNs) have been success-
ful in a wide range of problems and played a key role in
the success of Deep Learning [LeCun et al., 2015]. It is
commonly understood that the translational symmetries that
arise from effective weight-sharing in CNNs is an important
driver for its outstanding performance on many tasks.

In Cohen and Welling [2016], a group-theoretical framework
was proposed extending CNNs beyond translational sym-
metries, and demonstrated this for discrete group actions.
Many studies since have proposed ways to incorporate other
symmetries in neural network weights, such as continuous
rotation, scale and translation, into the weights of neural
networks [Worrall et al., 2017, Weiler et al., 2018, Marcos
et al., 2017, Esteves et al., 2017, Weiler and Cesa, 2019, Bek-
kers, 2019] and recent efforts allow practical equivariance in
neural networks for arbitrary symmetry groups [Finzi et al.,
2021]. Nevertheless, weight symmetries are typically fixed,
must be known in advance, and can not be adjusted.

Some studies have proposed invariance learning with data
augmentations [Cubuk et al., 2018, Lorraine et al., 2020],
but thus do not embed symmetry in weights and often re-
quire a validation loss. [Zhou et al., 2020] do learn invari-
ances as weight-sharing, but require a meta-learning proced-
ure with an additional validation loss. Benton et al. [2020]
circumvent the need for validation data by learning a distri-
bution of input transformations directly on the training loss.
But, in doing so rely on an additional explicit regularization
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Figure 1: Illustration of extrapolating behaviour further away from toy data for models with no invariance (left), some
invariance (middle) up to strict invariance (right). Model prediction plotted as contour and datapoints as ×’s and #’s.

term that depends on how invariances are parameterised.
Similar to this work, Schwöbel et al. [2020] propose to use
a lower bound, but again only considers a distribution in the
input space rather than on weights.

We learn invariant weights by optimizing the marginal likeli-
hood: the common method in Bayesian statistics to perform
model selection, which is parameterization independent with
the aim of being generally applicable to any chosen paramet-
erization of invariance. Interestingly, it has been shown that
the marginal likelihood objective coincides with an exhaust-
ive leave-p-out cross-validation averaged over all values of
p and held-out test sets [Fong and Holmes, 2020].

Lastly, in Topological VAEs [Keller and Welling, 2021]
capsules with ‘rolling’ feature activations show similarities
to the deterministically sampled features obtained from our
method, but differ in the reliance on ‘temporal coherence’.

3 ON INVARIANT MODELLING

A model f(·) is deemed ‘strictly invariant’ its output is unaf-
fected by a set of transformations: f(Tg ◦ x) = f(x),∀g ∈
G,x ∈ X where each transformation Tg is governed by a
group action g ∈ G forming a group G. We can obtain an
invariant model by averaging model outputs over all trans-
formations Tg. Although group theory introduces a rigid
mathematical framework that is often used to describe and
incorporate symmetries in statistical and machine learning
models, it is restricted in the sense that the set of transforma-
tions that generate a group is always closed, by the definition
of a group. To illustrate, imagine the classic MNIST image
recognition problem [LeCun et al., 1998]: here invariance to
rotations up to a certain angle allows for better extrapolation
to tilded versions of fitted digits and thus more robust predic-
tions and increased sample efficiency. However, invariance
to full 360 degree rotations (all SO(2) group actions) may
prohibit us from differentiating between a ‘6’ and a ‘9’. In
an effort to overcome this issue, we follow Dao et al. [2019],
Raj et al. [2017], van der Wilk et al. [2018], Benton et al.
[2020] and construct our invariant function fθ(x;η) from a
non-invariant function gθ(x) by summing over the orbit:

fθ(x;η) =

∫
gθ(T (x))pη(T )dT, (1)

where pη(T ) denotes a density over the group action trans-
formations parameterised by a vector η. Through this con-
struction, we hope to induce a relaxed notion of invariance
upon the model, sometimes referred to as ‘insensitivity’
[van der Wilk et al., 2018], ‘soft-invariance’ [Benton et al.,
2020], or ‘deformation stability’ [Bronstein et al., 2021].
The special case in which the density pη(T ) is uniformly
distributed over the orbit results in the ‘Reynolds operator’
from Group Theory, which averages functions and thereby
induces a ‘strict invariance’ over the entire group.

3.1 INVARIANT SHALLOW NEURAL NETWORK

We construct our invariant function from a single-layer non-
invariant neural network:

gθ(T (x)) = σ (W2 ◦ ϕ (W1 ◦ T ◦ x)) , (2)

where σ(·) is the soft-argmax function, x is the input, and
W1 and W2 are the respective first and second layer weights
and biases. We omitted the bias terms for notational clarity.

In this study, we consider two flavours for our neural net-
work gθ, namely an RFF-network and ReLU-network. In
the RFF-network, first layer weights W1 are initialiased
as Random Fourier Reatures (RFF) [Rahimi et al., 2007]
and a cosine activation function ϕ(·) = cos(·) is used. For
the ReLU-network, both first and second layer weights W1

and W2 are learned and we consider a ReLU non-linearity
ϕ(x) = max(0, x) for the activation function.

The RFF-network is interesting because we obtain a weight-
space equivalent that is as close as possible to a GP with a
radial basis function kernel (RBF), with exact correspond-
ence in the infinite-width limit. From van der Wilk et al.
[2018], we know that in this case the marginal likelihood
is tight and can be used to learn invariance. The ReLU-
network, on the other hand, is interesting as it more closely
resembles the commonly used architectures in the Deep
Learning (DL) community: basis weights are typically not
fixed and the ReLU is one of the most commonly used ac-
tivation functions in DL. In our experiments, we find that
we can learn invariances with both the RFF-network and
ReLU-network, indicating that for our purposes the bound
on the marginal likelihood remains sufficiently tight for
more general shallow architectures.
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Figure 2: Predicted invariance over training iterations for models initialised with different amounts of invariance when
trained on fully rotated MNIST (left), partially rotated MNIST (middle) and regular MNIST (right).

Section 3.7 will discuss how variational inference is used to
learn a variational distribution q over the parameters in the
second layer: θ = vec(W2).

3.2 INVARIANCE IN THE WEIGHTS

In Equations 1-2, we showed how we construct an invariant
function by integrating or summing over transformed input
samples T (x). Yet, instead of explicitly performing these
transformations on the input, we can obtain a mathemat-
ically equivalent invariant function by considering trans-
formations on the weights. Note that the inner term of
our neural network definition in Equation 2, we have that
(W1 ◦ T ) ◦ x = W1 ◦ (T ◦ x) are equal, by associativity
of matrix transformations. In other words, first applying
transformation T on the weights, similar to the typical con-
struction of equivariant layers, is equivalent to first applying
it to the input, which could be interpret as built-in data
augmentation. In practice, however, differences between
the two could still arise if applying T requires approxim-
ations (e.g. interpolation between discrete pixels). In our
experiments we will consider transforming the weights, thus
demonstrating that invariance can be ‘built into’ the model.

Coordinate data and imaging data We consider simple
affine transformations, which can be represented as T ∈
R3×3 matrices. For 2d vector data, applying the transforma-
tions amounts to regular matrix multiplications, which only
requires appending a single 1-entry to the data vectors. For
2d images, where data points x ∈ RWH correspond to
W ×H pixel grids, applying T in image space requires in-
terpolation. Here, we could use bilinear interpolation, which
can also be written in matrix formula form. We use the grid
sample operation (as used in [Jaderberg et al., 2015]) which
acts on the weight matrix values W1 and outputs an equally
shaped matrix. The operation treats the HW -dimensional
row vectors of W1 as a grid of H × W points where the
coordinates of the point are transformed according to the
affine transformation matrix T . The resulting values are ob-
tained by interpolating the values of transformed pixels at
the original grid coordinates using bilinear interpolation.

3.3 AFFINE LIE GROUP
REPARAMETERIZATION

The transformations that are applied on the weights and will
define the invariances of the network are sampled from a
probability distribution. To allow learnable invariances, we
define a learnable probability distribution over the trans-
formations pη(T ) parameterised by η. We will refer to η as
the ‘invariance parameters’, as they parameterise to which
transformations to which our network becomes invariant.
To learn this distribution with back-propagation, we must
make sure that samples taken from the distribution are dif-
ferentiable with respect to the invariance parameter η. For
affine transformed weights, we consider a procedure sim-
ilar to what Benton et al. [2020] used to augment inputs,
utilising the re-parameterization trick [Kingma and Welling,
2013] to remain differentiable. The distribution defines inde-
pendent Gaussian probabilities over infinitesimal generators
around their origin. sampling noise from a k-cubed uniform
distribution ϵ ∼ U [−1, 1]k. With k=6 generator matrices
G1, · · · ,G6 and learnable parameters η = [η1, · · · , η6]T
we can separately parameterise translation in x, translations
in y, rotations, scaling in x, scaling in y, and shearing (see
Appendix D). A sample T ∼ pη(T ) can be obtained by
transforming noise ϵ:

T = exp

(∑
i

ϵiηiGi

)
, ϵ ∼ U [−1, 1]k (3)

with matrix exponential exp(M) =
∑∞

n=0
1
n!M

n. A dis-
tribution over the subgroup of 2d rotations SO(2) can be
achieved by only learning the parameter for rotational in-
variance ηrot = η3 and fixing ηi = 0 for all i ̸= 3. Then,

T (rot) =

cos(ϵ3ηrot) − sin(ϵ3ηrot) 0
sin(ϵ3ηrot) cos(ϵ3ηrot) 0

0 0 1

 (4)

By learning ηrot, we can effectively interpolate between no
invariance at ηrot = 0 to full rotational invariance at ηrot ≡ π.
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(a) Feature bank #1 over training iterations.
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(b) Feature bank #2 over training iterations.

Figure 3: Illustration of converging filter banks of two features. Features are initialised randomly with almost no invariance
and converge to particular filters with practically full (±179) rotational invariance after training on the fully-rotated MNIST.

Similarly, we can define a distribution over the subgroup
of 2d translations T(2) by fixing ηi = 0 for all i > 2 and
learning the translational invariance parameters η1 and η2:

T (trans) =

1 0 ϵ1η1
0 1 ϵ2η2
0 0 1

 (5)

We include full derivations including scaling in Appendix E.
In general, η = 0 corresponds to no invariance and increas-
ing individual elements of η also increases insensitivity to
corresponding transformations towards full invariance.

3.4 STOCHASTIC OR DETERMINISTIC
SAMPLING

To estimate fθ(x;η) from Equation 1, we approximate the
integral with a Monte Carlo (MC) estimate:

f̂θ(x;η) =
1

S

S∑
i=1

gθ(Ti(x)) (6)

where S transformations are stochastically sampled from
the distribution Ti ∼ pη(T ). Samples can be differenti-
ated with respect to invariance parameter η using the ‘re-
parameterization trick’ (see Section 3.3). We know that MC
is an unbiased estimator, and thus

fθ(x;η) = ET

[
f̂θ(x;η)

]
(7)

with ET := E∏S
i=1 pη(Ti)

. Unlike stochastic MC sampling,
we can obtain a deterministic surrogate of the procedure
by replacing the stochastic samples from the noise source
U [−1, 1]k with linearly spaced points along its k-cubed do-
main. This procedure is similar to quadrature in classical

numerical integration, or from a programming perspective,
as applying the re-parameterization trick on a fixed ‘lin-
space’ instead of uniform noise. A visualization of a dis-
cretely sampled filter bank of a model learning rotational
invariance over training iterations is shown in Figure 3. By
ensuring sufficient and equally spaced samples, determin-
istic sampling can be used to ensure reliable and robust
inference at test time. Similar to the stochastic sampling,
this deterministic procedure is also differentiable and can
thus be used during training. We find, however, that de-
terministic sampling is only suitable when the number of
invariances dim(η) is very small (see Section 3.5). Never-
theless, deterministic sampling can be theoretically interest-
ing and allow our model to be interpret as a generalization
of other architectures. For instance, a single convolutional
layer where the kernel is discretely and deterministically
convolved over an image followed by spatial pooling, can
be interpret as an instance of our invariant MLP with a spe-
cific affine invariance transformation in which weights are
‘zoomed-in’ and deterministically sampled and reapplied
over the image plane.

3.5 PRACTICAL TRANSFORMATION SAMPLING

If η comprises multiple elements, the sampling suffers
from the curse of dimensionality as the number of re-
quired samples grows exponentially with larger K. To il-
lustrate, a sparse 3 quadrature points in K = 6 dimensions
would already require 36 = 729 samples with deterministic
sampling. In general, we found that stochastic MC sampling
resulted in the most stable training behaviour and there-
fore used this when training the models in the experimental
section, except for Figure 3 where deterministic sampling
was used for both training and visualization of rotationally
invariant filter bank.



(a) Sampled filters of affine model trained on regular mnist. (b) Sampled filters of affine model trained on rotated mnist.

(c) Sampled filters of affine model trained on scaled mnist. (d) Sampled filters of affine model trained on translated mnist.

Figure 4: Stochastic samples of learned filter banks of a model capable of learning affine invariances. The same model learns
features that are insensitive to different kinds of transformations dependent on the data it was trained on.

3.6 LOWER BOUNDING THE MARGINAL
LIKELIHOOD

We have a (typically large) vector θ containing the model
parameters and a (typically small) vector for the invariance
parameters η. The approach we take in this paper is to
perform Bayesian Model Selection and integrate out θ but
find a point-estimate over η:

η̂ = argmax
η

p(D|η) = argmax
η

[∫
p(D|θ)p(θ|η)dθ

]
(8)

where p(D|η) is the marginal likelihood [Murphy, 2012]
or model evidence, sometimes called empirical Bayes or
type-II ML. The technique has been shown effective in GPs
to learn hyper-parameters Williams and Rasmussen [2006]
and invariances van der Wilk et al. [2018], but is typically
intractable for neural networks. We derive a lower bound
that allows for optimization of the marginal likelihood in
neural networks using stochastic variational inference:

log p(D) ≥ Eθ [log p(D|θ)]− KL(q(θ|µ,Σ)||p(θ))
= Eθ [log p(y|fθ(x;η))]− KL(q(θ|µ,Σ)||p(θ))

= Eθ

[
log p

(
y
∣∣∣ET

[
f̂θ(x;η)

])]
− KL(q(θ|µ,Σ)||p(θ))

≥ Eθ

[
ET

[
log p(y|f̂θ(x;η))

]]
− KL(q(θ|µ,Σ)||p(θ))

(9)

with expectations Eθ := Eq(θ) and ET := E∏S
i=1 pη(Ti)

. We
begin Eq 9 with the standard evidence lower bound (ELBO)
derived from variational inference. In the second and third
line, we expand the likelihood and plug-in Equation 7. In the
last line, we use Jensen’s inequality together with the fact
that our log-likelihood is a convex function. The resulting
lower bound comprises an expected log-likelihood term that
can be estimated by taking the average cross-entropy on
mini-batches of data (see Section 3.7) and a KL-divergence
between two multivariate Gaussians which can efficiently be
computed in closed-form. Note, we integrate out model para-
meter vector θ, which is part of the KL-term, whereas the

vector parameterizing the invariances η is only part of the
first term. We optimise the derived lower bound w.r.t. both
η and θ every iteration with stochastic gradient descent.

3.7 VARIATIONAL INFERENCE

To summarise, we propose to learn invariances using
stochastic variational inference [Hoffman et al., 2013] and
derived a lower bound of the marginal likelihood, or evid-
ence lower bound (ELBO) that can be optimised using a
gradient descent methods, such as Adam [Kingma and Ba,
2014]. Variational inference minimises the KL-divergence
between an variational posterior and the true posterior on
our free model parameters p(θ|D), where θ = vec(W2).
For the approximate posterior, we choose a multivariate
Gaussian distribution q(θ|µ,Σ) := N (θ|µ,Σ) paramet-
erised by variational parameters µ and block-diagonal cov-
ariance Σ with a separate block for each output class. The
covariance is parameterised as a Cholesky decomposition
Σ = LTL, which is a common trick to maintain compu-
tational stability to ensure a positive semi-definite Σ and
does not influence the model. We obtain a differentiable
Monte Carlo estimate of q(θ) by sampling L times from the
variational distribution, using the reparameterization trick
[Kingma and Welling, 2013], and maximise the ELBO:

L = Eθ

[
ET

[
log p(y|f̂θ(x;η))

]]
− KL(q(θ|µ,Σ)||p(θ))

≈ 1

L

L∑
l=1

[
log p(y| 1

S

S∑
i=1

gθl
(Ti(x))︸ ︷︷ ︸

Cross-entropy

]
− KL(q(θ)||p(θ))︸ ︷︷ ︸

Closed-form KL

(10)

where we can choose L{=}1 given a sufficiently
large batch size. We obtain a Stochastic Gradient Vari-
ational Bayes (SGVB) estimate of the lower bound
N
M

∑M
i=1 L̃(θ, {xi}, {yi}) [Kingma and Welling, 2013] to

allow efficient training on mini batches of data. Full deriva-
tions can be found in Appendix A.



Test Accuracy ELBO

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

MLP + fixed 5◦ rotation 79.29 86.71 96.00 -1.07 -0.80 -0.36
MLP + fixed 45◦ rotation 87.35 91.13 95.93 -0.63 -0.49 -0.26
MLP + fixed 90◦ rotation 90.33 91.69 94.69 -0.52 -0.44 -0.30
MLP + fixed 135◦ rotation 91.19 91.04 92.13 -0.45 -0.45 -0.36
MLP + fixed 175◦ rotation 91.57 90.47 90.97 -0.43 -0.47 -0.45
MLP + learned rotation 91.72 92.34 96.40 -0.43 -0.42 -0.26

Table 1: Test Accuracy and ELBO scores on MNIST using RFF neural network1. For each dataset, we observe that the
correct level of invariance for that dataset corresponds with highest ELBO and also correlates with best test accuracy. In
addition, we find that automatically learned invariance converges to ELBO and test accuracies similar or beyond the found
optimal values from the models with fixed invariance.

4 EXPERIMENTS AND RESULTS

We implemented our method in PyTorch [Paszke et al.,
2017] and show results on a toy problem with different
degrees of rotational invariance in Figure 1 with 1024 RFF
features, σ = 5, and T applied on the weights.

The following sections will describe experiments on differ-
ent MNIST and CIFAR-10 image classification tasks where
T is applied on the weights by using the bilinear grid res-
ampling as described in Section 3.2 and Jaderberg et al.
[2015] in combination with small 0.1 sigma Gaussian blur
to bandlimit high frequencies. We used Adam [Kingma and
Ba, 2014] for optimization in combination with a learn-
ing rate of 0.001 (β1 = 0.9, β2 = 0.999) cosine annealed
[Loshchilov and Hutter, 2016] to zero. Parameters were ini-
tialised as µc = 0, Lc = I for all classes c, σ = 0.3, and
α = 1.0. We use S = 32 samples from pη(T ), L = 1 and a
batch size of 128.

4.1 ON THE NECESSITY OF A BAYESIAN
APPROACH

To investigate to what extent the variational inference is
required to learn invariances, we compare our approach
with regular maximum likelihood using Adam. We train
one model that uses our objective (Variational Inference),
and another model where we replaced the variational dis-
tribution q(θ) with a point-estimate and omitted the KL-
term to get a regular cross-entropy loss. Interestingly, when
trained on fully-rotated MNIST in Figure 5, we find that the
model trained with cross-entropy was completely incapable
of learning the correct invariance, whereas our VI-based
approach does learn the invariance. We hypothesise that
maximum likelihood alone is not enough to learn invariance,
as invariance is a constraint on the weights and thus does
not help to fit the data better, whereas marginal likelihood
also favours simpler models. This result substantiates the
use of marginal likelihood (or a lower bound thereof) for
hyper-parameter selection for neural networks, and invari-

ance learning in particular. More broadly speaking, it proves
a convincing case for probabilistic machine learning models,
such as Bayesian neural networks, beyond their oft-cited
use for uncertainty estimation.
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Figure 5: Predicted invariance over training iterations with
non-Bayesian point-estimate optimised with cross-entropy
and approximate Bayesian inference. A regular point es-
timate can not learn invariances, whereas our VI-based ap-
proach does learn the invariance.

4.2 IDENTIFYING INVARIANCE WITH ELBO

To evaluate whether the ELBO is capable of identifying
the apt level of invariance, we consider models with differ-
ent fixed values of rotational invariance ηrot and one model
where ηrot is learned. We then evaluate the models on three
different versions of MNIST on which we artifically im-
posed different amounts of rotational invariance by ran-
domly transforming the dataset beforehand. In ‘fully rotated
MNIST’, we rotate every image with a random uniformly
sampled angle in range [−180◦, 180◦]. In ‘partially rotated
MNIST’ images are rotated with a random angle within
[−90◦, 90◦]. Lastly, we also consider the ‘regular MNIST’
dataset without any alterations.

1As explained in Section 3.1, we use the RFF neural network
to ensure a tight lower bound and for comparison purposes. Higher
accuracies on MNIST and CIFAR-10 were achieved with a ReLU
neural network as reported in Table 2 and Table 3.



From Table 1, we observe that for each dataset the model
with the best ELBO corresponds to the model with the right
amount of invariance, also correlating with best test accur-
acy. This finding indicates that the ELBO can correctly
identify the required level of invariance, and confirms that
choosing the right invariance leads to better generalization
on the test set. On regular MNIST, we observe that a small
amount of invariance yields better ELBO than no invariance.
This could be explained by some intrinsic rotational vari-
ation within the dataset. Furthermore, we find that the ELBO
of the model with learned invariance ηrot corresponds to the
optimal ELBO in the set of models with fixed invariance.
Therefore, we find that in this case, we can use the ELBO
to learn invariances in a differentiable manner. Additional
results can be found in Appendix C.

4.3 RECOVERING INVARIANCE FROM INITIAL
CONDITIONS

To investigate robustness to different initial conditions, we
repeat the experiment where we learn invariance parameters
η during during training on fully-rotated, partially rotated
and regular MNIST data but with different initial values,
corresponding to rotational invariance of [±5◦, ±45◦, ±90◦,
±135◦, ±175◦] degrees. Results of this experiments for the
RFF neural network are shown in Figure 2, and a similar
figure for the ReLU neural network is attached in Appendix
C.2. For most initial conditions, we observe that we can suc-
cesfully learn and recover the ‘correct’ amount of invariance
for each dataset. One exception being initial 175◦ degrees on
partially rotated dataset, which suggests that training with
low initial invariance could be advantageous in practice, for
this method. Nevertheless, we conclude that our model can
recover invariance relatively robustly independent of initial
conditions.

4.4 LEARNING INVARIANCE IN RELU
NETWORK

So far, we have only considered the set-up where we learn
the output layer W2 and keep the first layer W1 initialised
as fixed RFF-features in combination with a cosine cos(·)
activation function. We chose this fixed basis function model
to ensure a sufficiently tight bound on marginal likelihood
where the only source of looseness is the non-Gaussian
likelihood. Now, we will let loose of these constraints and
consider a general single hidden layer neural network with
ReLU non-linearity ϕ(x) = max(x, 0) with Xavier [Kumar,
2017] initialised weights and 1024 hidden units, where we
learn both the input layer W1 the output layer W2. We
optimise the model using the same variational inference
procedure.

We find that we are still able to learn invariances in the
setting where parameters of both input and output layer are

learned (full comparison in Appendix C). In Figure 3, we
plot an illustration of a feature bank (row vector in W1 with
7 samples equally spaced between −ηrot and ηrot and plotted
over training iterations). The top of the figure shows the
randomly initialised features without any rotational invari-
ance at the beginning of training. After training on a fully
rotated MNIST, the features converge to a particular filter
with practically full ±179◦ rotational invariance, as shown
on the bottom of the same figure.

4.5 OTHER TRANSFORMATIONS

To explore invariance to transformations other than rotation,
we allow for different kinds of affine invariance transform-
ations, namely rotation, translation, scale and full affine
transformations (see Section 3.3). Again, we use the ReLU-
network where both layers are learned.

In Table 2, we evaluate and compare models that can learn
affine invariances with two non-invariant baselines, namely
a regular Gaussian Process regression with RBF kernel
baseline (SGPR) and a regular shallow neural network
baseline (MLP). We use SGPR as a reference, because we
know the training procedure is reliable and to ensure enough
capacity is given to the single layer MLP. We separately
trained the models on fully-rotated, translated, scaled and
original versions of MNIST (see Appendix D for details).
We find that models with learned invariances (bottom four
rows) outperform the model with no invariance (top two
rows) in all cases. As expected, a translationally invariant
model performs better on a dataset that contains randomly
translated examples, and similarly, the rotationally and scale
invariant models perform best on the respective rotated and
scaled versions of MNIST. In line with our expectations, the
model capable of learning affine invariances performs best
overall. Moreover, by inspecting the learned coefficients of
η after training we verified that the learned transformations
correspond to the dataset the it was trained on. This can also
be observed in Figure 4 by inspecting the resulting learned
filter banks samples after training on different datasets.

Test Accuracy

Model
Fully rotated

MNIST
Translated

MNIST
Scaled
MNIST

Regular
MNIST

SGPR 91.19 89.22 72.10 97.52
MLP 90.35 89.34 96.61 98.10
MLP + Rotation (ours) 98.05 94.08 97.62 98.64
MLP + Translation (ours) 93.59 97.87 97.98 98.76
MLP + Scale (ours) 93.80 94.30 98.06 98.35
MLP + Affine (ours) 98.14 97.66 98.31 98.93

Table 2: Test Accuracy scores for learned invariance using
different transformations in a shallow ReLU neural network
on the MNIST dataset.

We repeated the same experiment on the CIFAR-10 data-
set Krizhevsky et al. [2009] and trained on fully-rotated,
translated, scaled version and the original version of the



(a) Deterministic samples from learned rotationally invariant filter bank. (b) Stochastic samples from learned rotationally invariant filter bank.

(c) Deterministic samples from learned rotationally invariant filter bank. (d) Stochastic samples from learned rotationally invariant filter bank.

Figure 6: Visualization of samples from learned filter banks using discrete sampling learned on different versions of
CIFAR-10. The invariant transformations are learned starting from no invariance dependent on the data it was trained on.

CIFAR-10 dataset and plot test accuracies in Table 3. We
consistently find that the best performing models are those
that are parameterised such that it can learn the invariance
that corresponds the dataset, typically resulting in several
percentage points of improved accuracy compared to the
MLP baseline. Furthermore, if we parameterise the MLP
with the more general affine invariance, capable of express-
ing rotation, translation and scale invariances, we always
achieve similar or improved results compared to model from
the models parameterised with a a single invariance. Sim-
ilar to the MNIST experiments, we find that the MLP with
general affine invariances can select the correct invariance
based on the used training data. Here we also verified this
by inspecting the θ, and found that the learned invariance
always matches the invariances that we expect for the corres-
ponding dataset. For example, the model capable of learning
affine invariances correctly learned to be rotationally invari-
ant (η3 ≈ π and ηi ≈ 0 for i ̸= 3) after training on the
fully-rotated CIFAR-10 dataset.

Test Accuracy

Model
Fully rotated
CIFAR-10

Translated
CIFAR-10

Scaled
CIFAR-10

Regular
CIFAR-10

MLP 41.24 40.75 46.56 54.49
MLP + Rotation (ours) 46.04 40.71 46.77 54.72
MLP + Translation (ours) 40.99 45.20 47.44 55.79
MLP + Scale (ours) 40.92 41.22 49.28 54.72
MLP + Affine (ours) 46.12 45.77 48.81 55.44

Table 3: Test Accuracy scores for learned invariance using
different transformations in a shallow ReLU neural network
on the CIFAR-10 dataset.

5 DISCUSSION AND CONCLUSION

In this paper, we propose a single training procedure cap-
able that can learn invariant weights in neural networks
automatically from data. We follow what is common in
Bayesian statistics and optimise the marginal likelihood to
perform Bayesian model selection: a method that has been
proven capable to learn invariances in GPs [van der Wilk
et al., 2018]. We propose a lower bound to allow optimiza-
tion of the marginal likelihood in shallow neural networks.

On MNIST and CIFAR-10 image classification tasks, we
demonstrate that we can automatically learn weights that
are invariant to correct correct affine transformations, solely
using training data. Furthermore, we show that this leads to
better generalization and higher predictive test accuracies.

The marginal likelihood is a general model selection method
and is parameterization independent. Therefore, we can ex-
pect it to work on other invariances and other model archi-
tectures. In this work, we focussed on affine transformations,
but it would be interesting to consider more complex para-
meterizable transformations over the image space, such as
diffeomorphic vector fields [Schwöbel et al., 2020]. We
showed that we can learn invariance by sampling a learned
compactly supported continuous probability distribution
over group actions in common Lie groups. Allowing dis-
crete groups would either require differentiating through a
discrete probability distribution, for instance utilizing the
Gumbel-Softmax trick [Jang et al., 2016]), or, by treating the
discrete group as a subgroup of some Lie group and learn to
approximately distribute all continuous density pη(T ) to the
group actions of the subgroup. Furthermore, it would be in-
teresting to consider more flexible and complex probability
densities over group actions, such as a mixture distributions
or normalizing flows [Rezende and Mohamed, 2015, Tabak
and Turner, 2013], capable of expressing multiple modes as
in [Falorsi et al., 2019]. We found that we could succesfully
learn invariance using marginal likelihood, also referred to
as Empirical Bayes or Type-II ML, which is not possible
with regular maximum likelihood (Type-I ML). To do so,
we relied on η being small and learning higher dimensional
invariances might therefore require more sophisticated meth-
ods or additional priors on η. Lastly, this work focuses on
single layer neural networks, and we will consider deeper
architectures in future work. For deeper models, we should
ask the question whether the bound on the marginal likeli-
hood will stay sufficiently tight [Dutordoir et al., 2021, Ober
and Aitchison, 2020, Immer et al., 2021].

To conclude, we hope our findings inspire other works to
allow neural networks that automatically learn symmetries
from data.
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