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Abstract

Despite the remarkable achievements of neural radiance fields (NeRF) in repre-
senting 3D scenes and generating novel view images, the aliasing issue, rendering
“jaggies” or “blurry” images at varying camera distances, remains unresolved in
most existing approaches. The recently proposed mip-NeRF has addressed this
challenge by rendering conical frustums instead of rays. However, it relies on
MLP architecture to represent the radiance fields, missing out on the fast training
speed offered by the latest grid-based methods. In this work, we present mip-Grid,
a novel approach that integrates anti-aliasing techniques into grid-based repre-
sentations for radiance fields, mitigating the aliasing artifacts while enjoying fast
training time. The proposed method generates multi-scale grids by applying simple
convolution operations over a shared grid representation and uses the scale-aware
coordinate to retrieve features at different scales from the generated multi-scale
grids. To test the effectiveness, we integrated the proposed method into the two
recent representative grid-based methods, TensoRF and K-Planes. Experimental
results demonstrate that mip-Grid greatly improves the rendering performance
of both methods and even outperforms mip-NeRF on multi-scale datasets while
achieving significantly faster training time. For code and demo videos, please see
https://stnamjef.github.io/mipgrid.github.io/.

1 Introduction

Neural radiance fields (NeRF [[19]]) have been remarkably successful in modeling and reconstructing
3D scenes. Since its seminal contributions to novel view synthesis, researchers have investigated
potential applications of NeRF across various domains in 3D computer vision and graphics, such
as dynamic scene representation [43] 24} 25| [15]], multi-view image generation [30, (6, 29, [32]], 3D
surface reconstruction [[14], 3D content creation [26, 16} |18 [17]], and SLAM [33] 47, 128]].

In a typical neural rendering setup, NeRF represents a particular scene, mapping input coordinates
(z,d), where x is the spatial coordinate, and d is the view direction, to its corresponding RGB colors
and density values (r, g, b, o). Due to its one-to-one mapping, NeRF suffers from aliasing effects
when rendering scenes of varying image resolutions; it is incapable of producing different values for
different resolutions given the same input coordinates. Mip-NeRF [1]] has addressed this issue by
introducing integrated positional encoding (IPE), which takes the volume of 3D conical frustums into
account. This allows MLPs to reason about the size and shape of each conical frustum, eliminating
the inherent ambiguity present in the original NeRF. While this approach provides a successful
multi-scale representation, using a variant of positional encoding necessitates MLP architectures for
the scene representations, which often leads to a long training time, even with contemporary GPUs.
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Figure 1: (a) A quantitative comparison of mip-TensoRF against its three baseline models and
mip-NeRF (see Sec.[d]for details). (b) Rendering samples of the lego scene in two different scales.

To accelerate the training time of NeRF, the grid-based representations with or without MLPs have
been extensively studied [9, 21} [8]]. These approaches allow faster retrieval of color and density values
at given input coordinates, reducing training time to less than an hour while maintaining rendering
performance. Furthermore, the recent hashing technique with sophisticated code optimization has
demonstrated that the training can be done in a few minutes [21]]. However, akin to the original NeRF,
these methods still implement the one-to-one mapping between input coordinates and the radiance
values, resulting in multi-scale ambiguity. In this paper, we seek to address this limitation, combining
grid-based representations for faster training and multi-scale representations for anti-aliasing.

A naive approach to implementing multi-scale representations using grid-based data structures,
drawing inspiration from mipmap approaches [41]], could involve training separate grid representations
for different scales. During the rendering process, we could look up or interpolate the appropriate grid
representations. While such an approach could resolve aliasing issues, it would substantially increase
the storage requirements. As NeRF has emerged as a new media paradigm, such as 3D photos and
videos, large data sizes would unduly waste valuable communication and storage resources.

With only a single-scale grid representation, an effective technique for mitigating aliasing effects
would be the multisampling [10] (or supersampling [40]]) method. Given the spatial coordinates and
scales, we can sample multiple points within the conical frustums and subsequently average features
extracted from the single-scale grid representation. This method can reduce the aliasing effects by
reasoning scales during the rendering process. However, this approach comes at a high computational
cost, directly proportional to the number of samples. Moreover, a similar study with MLP architecture
has shown it requires considerable amounts of samples to achieve comparable performance [1]].

This paper proposes mip-Grid, a novel method for anti-aliased grid representations that employs a
shared single-scale grid representation and a single-sampling approach. We generate multi-scale
grid representations by applying convolutions to the shared single-scale grid representation. Then,
the features are extracted by interpolating the generated multi-scale grid representations using an
additional input coordinate that can reason about the scales. Since the multi-scale grids are generated
during the rendering process, the proposed method minimizes additional storage costs. Furthermore,
the convolutions to generate multi-scale grids operate on reduced dimensions (2D or 1D instead of
3D convolutions), thereby not incurring substantial computational and memory costs. Lastly, the
proposed method can easily be integrated into the recently proposed grid representations, such as
factorized tensor representations [7] or plane-based representations [8]], with minimal modifications.

We integrated mip-Grid into two state-of-the-art grid-based NeRFs: TensoRF and K-Planes. The
resulting models, mip-TensoRF and mip-K-Planes, achieved significantly better performance com-
pared to the original TensoRF and K-Planes, and mip-TensoRF even outperformed mip-NeRF while
achieving significantly faster training time (Fig. [I}(a)). We observed that the aliasing artifacts (e.g.,
“jaggies™) are effectively removed from images rendered with the proposed method (Fig. [IH(b)),
which are visually more pleasing as well. Additionally, we conducted extensive ablation studies and
visualized the learned kernels to help readers understand how the proposed method works internally.



2 Related Work

2.1 Grid-based neural radiance fields

Representing continuous radiance fields with coordinate-based neural networks, NeRF can synthesize
view-consistent and photorealistic novel views. However, it requires a long training time due
to the spectral bias inherent in neural network training [27] and the need to query deep neural
networks thousands of times to render a single image. A line of work has addressed this issue by
encoding input coordinates with Fourier features [37] or learnable positional parameters that are
jointly optimized during the training. The latter approach uses various data structures, such as voxel
grids [9, 134], octrees [44. 35, 138]], and hash tables [21}|39]], to store the learnable parameters, each of
which is responsible for learning the location-aware features that are decoded into color and density
values. Encoding the low-dimensional input coordinates with the learnable parameters significantly
accelerates the training and reduces the rendering time, mitigating the inherent spectral bias and
eliminating the need to query the deep neural networks.

The dense voxel grid is a straightforward data structure to organize the learnable parameters in
3D space. Plenoxels [9] bake the radiance fields into dense voxel grids, resulting in 100x faster
convergence compared to the NeRF. However, cubically increasing memory usage makes the model
unscalable. PlenOctrees [44] reduce the memory footprint of Plenoxels at inference time by replacing
the dense grids with sparse octrees after the model convergence. This allows the model to discard
the empty space of a scene, but the memory requirement still increase cubically during training.
TensoRF [7] and other works [8, 5, 4] decompose the dense voxel grids into a set of matrices or
vectors, improving parameter efficiency and rendering quality.

The primary focus of our work lies in developing an anti-aliasing framework for decomposed grid
representations. While mip-NeRF has addressed the aliasing issue by introducing integrated positional
encoding, the discussion was limited to MLP-based radiance fields, and the direct application to grid
representations is not straightforward. We show that our method successfully removes the aliasing
artifacts in grid representations, significantly reducing the training time compared to mip-NeRF.

2.2 Anti-aliasing and mipmap

Representing a discrete signal through sampling requires a higher sampling rate than Nyquist
rate [31} 22] (twice the highest frequency of a given signal), and violating this rate occur aliasing
artifacts, such as jaggedness and flickering, resulting in a low-quality visualization. Anti-aliasing
has been widely studied in computer graphics, and it can be divided into two categories: post-
filtering and pre-filtering. Supersampling [40] is one of the most representative post-filtering methods,
which renders an image at a higher resolution than the target output resolution. Though effective,
supersampling requires high computational and memory costs. The pre-filtering methods [23] 42]
reduce the Nyquist rate by filtering a target signal into the low-frequency region before sampling in
order to meet the sampling theorem. Mipmap [41] is one of the pre-filtering methods designed for
real-time multi-scale rendering. It exploits a pre-filtered hierarchy of progressively lower resolution
signals, in which the appropriate level is selected based on the desired scale to render. Mipmap can
also represent a scene at arbitrary scales by interpolating the different levels of filtered signals.

Two concurrent works, Zip-NeRF [3]] and Tri-MipRF [ 1], incorporate anti-aliasing techniques into
grid-based NeRFs. Zip-NeRF approximates the integration of the grid representations by using
multisampling techniques [[10], which requires around 50 samplings to query a point during rendering.
On the other hand, Tri-MipRF introduces tri-plane mipmaps to represent multi-scale 3D scenes,
where the base level mipmap is trained during the reconstruction and the other levels of mipmaps are
constructed by downscaling the base level mipmap. Both methods are implemented based on the
tiny-cuda-nn [20]], a highly optimized deep learning framework, achieving fast training time.

Our work builds on the concept of mipmap in graphics to address the aliasing in grid representations.
We share some similarities with Tri-MipRF by incorporating a hierarchy of features that can be
decoded into color and density values at queried scales. However, while Tri-MipRF construct the
low-level mipmap by downscaling the previous level mipmap by a factor of 2, our method learns the
optimal kernels that can generate multi-scale grid representations. Moreover, unlike both Zip-NeRF
and Tri-MipRF, we aim to develop a simple framework that can be easily integrated into existing
grid-based NeRFs without extensive modifications and hyperparameter tuning.
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Figure 2: Multi-resolution and multi-scale grid representations: the ptl and pt2 are the same spatial
coordinates in 3D space. When rendering from varying camera distances, (a) multi-resolution
grid representations still retrieve the same features for both ptl and pt2, while (b) multi-scale grid
representations have distinct grids for each ptl and pt2, hence, effectively resolving scale ambiguity.

3 Method

3.1 Background: grid representations for neural radiance fields

Grid representations have proven to be highly successful in expediting the training time of NeRF [21}
7,19]. Combined with lightweight MLPs, typically followed by feature extraction from the grids, it
reduced the training times from days to hours or minutes. Furthermore, unlike the original NeRF that
relies on MLPs, grid-based approaches do not exhibit spectral bias inherent in neural networks [27].
Through the regularization and training techniques, it often surpasses the performance of the MLPs-
based methods while achieving significantly faster training time [21} [7]. In a typical setup, two
distinct grids represent density and RGB colors separately. Formally,

U:fa(37§ga)7 c=fc(a:,d;67gc), (D
where o € [0, 00) is density, ¢ EVJO, 1]? is RGB colors, G, € R¥*WxLxCs js 3 3D grid for the
density features, and G, € RH*WxLxCe i a 4D grid for appearance features. H, W, L are the
resolutions of the grids along each spatial axis X, Y, Z, while C,, and C. are the number of density
and appearance feature channels, respectively. Given an input coordinate, f, interpolates the density
features in G, and applies a non-linear activation function that outputs density values. Similarly, f.
extracts the appearance features from G, and normally takes an additional directional input d, and
then these inputs are passed through an MLP to generate RGB colors. The final RGB colors for a
given ray are generated using differentiable volume rendering [[12], and simple reconstruction loss is
used to train the G,;, G., and the parameters of the MLP 6.

3.2 Multi-resolution and multi-scale grid representations

Many recent studies have successfully utilized multi-resolution (or multi-level) grid representations to
encode various signals [21} 8]]. To avoid confusion, we would like to clarify that multi-resolution grids
refer to the usage of grids with different resolutions, while multi-scale grids refer to grids tailored to
each image scale. As illustrated in Fig. 2}(a), the multi-resolution grid representations are designed
to extract features from multiple grids with different resolutions, followed by aggregating operations
to combine the extracted features, such as concatenation, addition, or multiplication. This approach
draws inspiration from signal processing, encouraging the low-resolution grids to capture global and
smooth parts of the signal (low-frequency components), while high-resolution grids represent fine
details of the signal (high-frequency components). This decomposed representation is often parameter
efficient and better reconstructs the signals. In addition, the recent hashing-based technique [21]] also
leverages multi-resolution grids to disambiguate hash collisions.

However, due to its inherent one-to-one mapping nature, the current multi-resolution grid representa-
tions have limitations in addressing the aliasing issue. When provided with identical input coordinates,
the same features are extracted regardless of the camera distances (or scales). Consequently, the grid
representations tend to learn to render the average scale images when training on multi-scale images
(or images from varying camera distances). This results in “blurred” images when rendering higher
resolutions than the average training resolutions and “jaggies” when rendering at lower resolutions.



Fig. 2}(b) depicts multi-scale grid representations, where individual grids (or groups of neighboring
grids) are responsible for different scale images. In this setup, features are exclusively extracted
from a single grid or interpolated from neighboring grid representations. As a result, this method
can effectively address scale ambiguity by introducing distinct grids for different scales. While a
promising approach, it dramatically increases the space complexity, making it an impractical solution
for many potential NeRF applications, excessively exhausting communication and storage resources.

3.3 Shared grid and generating multi-scale grids

Since having distinct grid representations for different scales is not a viable solution, we propose to
generate multi-scale grids with minimal storage requirements. Inspired by mipmapping techniques
commonly used in computer graphics [41]], and also motivated by the fact that a significant amount
of information is shared across different scales, we use a shared grid representation and generate
multi-scale grids by applying a simple convolution over the shared grid. The modified radiance fields
with the generated multi-scale grids can be written as follows:

U:fo(xvs;ga)a C:fc($,87d;9,gc)7 (2)

where G, € RIxWxLxSxCs jg the generated multi-scale grids for the density features, and G, €
RHXWXLxSxCe ig the generated multi-scale grids for the appearance features. S is the number of
the generated multi-scale grids, and s is a scale-aware input coordinate.

There are several options for generating G. We can simply use Gaussian filtering, which has been
widely used in conventional computer graphics. However, it may not be the optimal filter for many
real-world scenarios. Alternatively, we can utilize convolution with learnable filters or leverage multi-
layer neural networks such as convolutional neural networks (CNNs) or Transformers. Although
complex neural networks can potentially yield better multi-scale representations, there is a trade-off
in terms of computational complexity and performance. This work primarily investigates a single
convolutional layer within our proposed multi-scale representations.

3.4 Scale-aware input coordinates

In order to reason about the scale, mip-NeRF introduced the integrated positional encoding to
augment input coordinates to disambiguate the radiance fields from different camera distances: the
original NeRF: (z,d) — (o, c) and mip-NeRF: (z,d,0?,02) — (o,c), where 07 € Rand 02 € R
are variances of the conical frustum with respect to its points interval along the ray and radius,
respectively. As a result, mip-NeRF can provide different radiance values for the same coordinates
(x,d), reflecting the radii of sampled points (02, 02) to effectively mitigate the aliasing artifacts.

In a similar vein, we introduce additional scale-aware coordinate, which is used to extract the features
from the generated multi-scale grid representations. Specifically, we introduce three types of scale
coordinates: the discrete scale coordinate, the continuous scale coordinate, and the 2-dimensional
scale coordinate. The discrete scale coordinate is defined as the mean of the pixel width and height
in the world coordinates scaled by 2/ V/12 []]. Since this value is unique for each image scale, we
can simply use the same value for all input coordinates (i.e., sampled points) of each image scale to
extract the features, not introducing extra computation to get per-point scale coordinates.

The continuous scale coordinate is the discrete scale coordinate scaled by the distance from the ray
origin to the sampled point. Training the model with the discrete scale coordinate alone can lead to
overfitting to given scales, making it challenging for the model to render images at unseen scales.
For instance, if a dataset includes four scales of images, the model might generate multi-scale grids
that overfit to those specific scales. In contrast, the continuous scale coordinate is not unique for
each image scale. Each sampled point has a distinct scale value, which allows the model to generate
multi-scale grids that can be smoothly interpolated into features across a broader range of scales.

The 2-dimensional scale coordinate consists of the continuous scale coordinate and the distance from
the ray origin to the sampled point. While reflecting the discrete or continuous scale coordinate
can effectively resolves scale ambiguity, we introduce the third one to provide readers with an
understanding of how high-dimensional scale coordinates can be integrated into our method. During
the rendering process, we apply convolution to the shared grid using two sets of kernels. We then
independently extract features from each multi-scale grids based on the respective scale coordinates
and average the feature sets to get the final features.
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Figure 3: The overall feature extraction pipeline in the proposed mip-TensoRF.

3.5 Mip-Grid

Current grid-based NeRFs typically involves certain versions of tensor factorization schemes. For ex-
ample, TensoRF used CP decomposition for compact models and proposed a new VM (vector-matrix)
factorization method for better rendering performance. K-Planes used plane-based factorization,
which has been very successful not only in 3D, but also in 2D and 4D scene generation. Thus, we
have integrated the proposed method into two prominent grid-based NeRFs: TensoRF and K-Planes.

3.5.1 Mip-TensoRF

In TensoRF, VM factorization for a density grid G is formulated as follows (we omitted the subscript

o for brevity):
R

G= v oM +ul o MX7 v o MXY, 3)
r=1
where v¥ € R denote the vector for X axis, M,YZ € RW*L is the matrix for Y and Z axes, R
is the rank, and o is a tensor product, hence v;X o MY? € RH*W>L e generate the multi-scale
vectors and matrices by applying 1D or 2D depth-wise convolutions over vectors and matrices. This
is equivalent to applying 3D convolutions over 3D tensors thanks to the linearity of convolution
operators. The i-th scale of a multi-scale grid G € R *WXLXS can be defined as follows:
R

5 b'e X YZ 3 .MYZ Y Y XZ 3 .MX% 4 z XY . .MXY
gi = Z(Ur *kzvﬁ )O(Mr *ki,r )+(Ur *kZT)O(MT *kiﬂ‘ )+(U7‘ *kzpﬂ')o(Mr *ki,r )7

r=1
. . “)
where * is the convolution operator, G; € RT*WxL ig j-th scale of the grid, kY~ € RF*f is i-th
. . X . .
depth-wise convolution filter for the vector v;¥, k¢, € R¥ is the filter for the rank , and K is the
kernel size. Similarly, kM ° € REXK xR is j_th depth-wise convolution filter for the matrix MY Z

and kM7 € REXK i the filter for the rank 7. Note that we have separate learnable kernels for each
rank, axis, and scale, which are more expressible than fixed Gaussian filters.

3.5.2 Mip-K-Planes

Similar to mip-TensoRF, we apply depth-wise convolutions over the plane-based grid representations.
In K-Planes, a grid G* € RP=*PyxDP=xE can be formulated as follows:

gk: —_ MYZ @MXZ ®]\4)(Y7 (5)
where MYZ ¢ RIXDyxD=xR JrXZ & RDaxIXDXR gnd \fXY ¢ RP=xDyx1xE denote three

grids for 3D scene representations. ©® denotes broadcast element-wise multiplication. For example,
MYZ & MXZ will have the shape of RP=*DPyxD=xE 1) D,, and D, denote the grid resolutions

in X, Y, and Z axes. Similar to Eq.[4, a multi-scale grid GF € RP=*DPvxD=xE for j_th scale can be
written as follows:

G = (M7 % KY%) © (MY w kX7 © (MY 4 17, ©
where k)7 € RIXEXKXR X2 ¢ REXIXEXR apd XY € REXKXIXE denote i-th depth-wise
convolution filters.
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Figure 4: A qualitative comparison of mip-TensoRF against the original TensoRF and the single-scale
TensoRF. The zoom-in parts of rendering samples in four different scales are shown. As resolution
decreases, two baseline models exhibit aliasing artifacts. Best viewed in color and zoom-in.

4 Experiment

4.1 Experimental setup

Implementation details We implemented two variants of mip-Grid: mip-TensoRF and mip-K-
Planes. Both models apply convolution to a shared grid representation using four learnable kernels
of size 3, where each kernel is responsible for generating different scales of grids. We trained mip-
TensoRF for 40k iterations on the multi-scale Blender dataset and 25k iterations on the multi-scale
LLFF dataset. All of its three baseline models were also trained for the same number of iterations.
We scaled the loss of each pixel following mip-NeRF [[]] to account for the scale differences. Note
that we began kernel training after the grid upsampling [7] was completed. Unlike mip-TensoRF,
we trained mip-K-Planes for 30k iterations and optimized the kernels from the beginning. All other
training hyperparameters remained the same as the original TensoRF-VM-192 and K-Planes.

As outlined in the Sec. [3] mip-Grid introduces three kinds of scale coordinates to extract features
from the generated multi-scale grids. We used the discrete scale coordinate to train mip-TensoRF
and mip-K-Planes, and for mip-TensoRF, we conducted a further evaluation using the continuous
scale coordinate and the 2D scale coordinate, examining the effectiveness of using more sophisticated
scale coordinates. In all tables showing the results of mip-Grid integrated models, abbreviations of
the scale coordinate types are provided in parentheses along with the name of each model.

Baseline models We compare our method against three baseline models: the original model, the
single-scale model, and the multi-scale model. The original models are the same as the TensoRF-
VM-192 and K-Planes, but we test them on the multi-scale dataset. The single-scale model is
trained on the multi-scale dataset with loss multipliers [[1]] and tested on the multi-scale dataset. The
multi-scale model is a set of four independent original models, each of which is trained and tested on
different scales of dataset. We include the latter two baseline models to show that naively training the
single-scale representations with multi-scale dataset cannot remove aliasing artifacts effectively, and
using four independent models requires four times more parameters than the original model.



Table 1: A model evaluation on the test set of multi-scale Blender dataset. The elapsed training time,
evaluated using a single RTX 4090 GPU, are shown at the rightmost column. For mip-NeRF, the time
elapsed for 100 iterations were measured and multiplied by 10000 to estimate the total runtime for 1
million iterations. Note that the multi-scale model has four times more parameters than the original
model.

PSNRT SSIM?t LPIPS| Time
Avg. \Full Res. 2 Res. i Res. Y Res. | Full Res. 2 Res. Y4 Res. ' Res. | Full Res. 2 Res. Y Res. ' Res. | (hours)
Mip-NeRF [1] \34.51 \ 32.63 34.34 3547 35.06 \ 0.9579 0.9703 0.9786 0.9833\ 0.0469 0.0260 0.0168 0.0120\ >30

TensoRF (original) 30.70| 33.13  33.27 30.02 26.40 | 0.9630 0.9704 0.9624 0.9358| 0.0474 0.0337 0.0488 0.0802| 0.16
TensoRF (single-scale) | 30.61 | 28.98 3242 3253 28.52 | 0.9295 0.9618 0.9703 0.9514| 0.1054 0.0608 0.0474 0.0697 | 0.17
TensoRF (multi-scale) |34.77| 33.33 35.74 35.44 34.57 | 0.9637 0.9757 0.9766 0.9775| 0.0456 0.0301 0.0279 0.0238 | 0.66
Mip-TensoRF 35.23| 3253 3540 36.58 36.41 | 0.9587 0.9757 0.9828 0.9857| 0.0533 0.0278 0.0200 0.0163 | 0.27

K-Planes (original) 29.76| 32.40 31.83 28.95 25.85 | 0.9615 0.9663 0.9570 0.9321| 0.0491 0.0369 0.0539 0.0861| 0.51
K-Planes (single-scale) | 30.07 | 32.13 32.35 29.54 26.24 | 0.9590 0.9667 0.9597 0.9356| 0.0525 0.0361 0.0497 0.0813| 0.51
K-Planes (multi-scale) |32.24| 32.59 33.60 32.34 30.58 | 0.9605 0.9696 0.9646 0.9580| 0.0508 0.0314 0.0396 0.0415| 2.02
Mip-K-Planes 32.27| 3320 33.03 32.73 31.12 | 0.9601 0.9691 0.9724 0.9689| 0.0512 0.0329 0.0291 0.0302| 0.60

Table 2: A model evaluation on the test set of multi-scale LLFF dataset. Note that the multi-scale
model has four times more parameters than the original model.

PSNRT SSIM?T LPIPS|
Avg. ‘Ful] Res. /2Res. YiRes. YsRes. | Full Res. 2Res. “iRes. "4Res. | Full Res. 2Res. iRes. "4 Res.

TensoRF (original) 26.03 | 2673 27.89 26.70 22.81 0.8386 0.8932 0.8964 0.8063 | 0.2044 0.1069 0.1099 0.1685
TensoRF (single-scale) | 27.33 | 24.48 2825 29.92 26.64 | 0.7457 0.8863 0.9375 0.8964 | 0.3114 0.1450 0.0851 0.1259
TensoRF (multi-scale) | 30.18 | 26.75 29.58 31.33 33.06 | 0.8378 0.9067 0.9487 0.9731 | 0.1992 0.1065 0.0632 0.0339
Mip-TensoRF 3048 | 26.51 29.69 32.18 33.52 | 0.8310 0.9165 0.9590 0.9762 | 0.2152 0.0946 0.0477 0.0316

Datasets All models were evaluated on the multi-scale Blender dataset [1]] with three different
metrics: PSNR, SSIM, and LPIPS (VGG) [46]. Mip-TensoRF and its baseline models were further
evaluated on the multi-scale LLFF dataset. To convert single-scale dataset to multi-scale dataset,
we bilinearly downsampled the images by a factor of 1, 2, 4, and 8, and rescaled the focal length
accordingly as typically done in other multi-scale NeRF literature [[11 3].

4.2 Results

Tab. [T shows the evaluation results on the multi-scale Blender dataset. Mip-TensoRF and mip-K-
Planes outperform their baseline models, achieving the highest average PSNR. Notably, mip-TensoRF
even surpasses mip-NeRF while significantly reducing the training time. The performance of the
original models experiences a substantial drop as the rendering resolution decreases, leading to
noticeable “jaggies” in the images rendered at the two lowest resolutions (Fig. d). The single-scale
models achieve better performance at the two lowest resolutions compared to the original models but
show worse results at other resolutions. This suggests that, to some extent, training with a multi-scale
dataset and employing the loss multipliers helps the model in reasoning about different scales, but this
approach does not entirely eliminate aliasing artifacts. On the other hand, the multi-scale models can
effectively represent different scales of a scene, achieving the best PSNR among the three baseline
models. Nevertheless, these models require four times more parameters than the original models,
which is undesirable in practical applications. Unlike others, our models successfully mitigate aliasing
artifacts while minimizing the additional number of parameters and computational cost.

We provide additional results of training mip-TensoRF with continuous and 2-dimensional scale
coordinates in Tab. [3] The first two models show only a marginal difference when evaluated at
the training resolutions. A similar trend is observed in evaluations at unseen resolutions, but there
is a clear difference when the image resolution is reduced from 4/8 resolution to 3/8 resolution,
suggesting that the continuous scale coordinate improves the model’s generalization performance.
Our method generates multiple sets of feature grids from a shared representation, and these feature
sets share many similarities. This allows different features to be smoothly interpolated and rendered
into visually pleasing images. However, more information needs to be removed as the output images
decrease in size, leading to relatively large differences between low-scale features. This explains the
marginal drop in PSNR at lower resolutions. Moreover, the model trained with 2D scale coordinate
outperforms the others, indicating that the additional scale coordinate (the distance from the ray
origin to the sampled point) can be beneficial for resolving the remaining scale ambiguity.



Table 3: An evaluation of mip-TensoRF trained with three different types of scale coordinates. All
models were trained on the multi-scale Blender dataset (with four different resolutions; Full Res., 4/8
Res., 2/8 Res., and 1/8 Res.) and tested on the test set of Blender dataset rescaled to eight resolutions.

PSNR?
Avg. | FullRes. %Res. %Res. %Res. %Res. %Res. %Res. Y Res.
Mip-TensoRF (disc.) 34.54 32.53 33.73 34.20 34.70 35.40 34.33 3593 35.50
Mip-TensoRF (cont.) 34.73 32.46 33.82 34.29 34.74 35.34 35.64 35.89 35.66
Mip-TensoRF (2D) 34.88 32.56 33.94 34.43 34.90 35.53 35.77 36.09 35.80
Shared grid Full Res. 1/2 Res. 1/4 Res. 1/8 Res.

Learned kernels

Figure 5: Visualization of generated multi-scale grids and learned kernels of mip-TensoRF. A single
channel in the XY plane of the appearance grids and the first four channels of the learned kernels
are shown. The first column of the first row displays a shared grid representation, and the generated
multi-scale grids are displayed from the second to the last column of the first row. Each column of
the second row shows the learned kernels that is used to generate the corresponding feature grids.

4.3 Visualization of learned kernels and multi-scale grids

We visualize the learned kernels and the generated multi-scale grids of mip-TensoRF to illustrate
how the learned patterns vary across scales. As depicted in Fig. 5} the high-scale kernels look
similar to Gaussian distribution, and their shape (i.e., the standard deviation) becomes larger as the
corresponding scale decreases. This observation aligns with our intuition that the kernels of low-scale
features should be smoother than those of high-scale features and demonstrates that our method
effectively learns optimal kernels for each scale. A similar phenomenon can be observed in the
visualization of feature grids, where high-frequency details are progressively removed as the feature
scale decreases. Although we do not provide the visualization of density kernels and grids due to the
limited space, the learned patterns closely resemble those of the appearance kernels and grids.

4.4 Ablation studies

Fixed Gaussian kernels and learnable kernels We compare mip-TensoRF with fixed Gaussian
kernels against the same model with learnable kernels. Both models were initialized with 2 sets of
standard deviations {1.0, 1.0, 1.0, 1.0} and {1.0, 1.5, 2.5, 4.0}, where the leftmost value was used
to set the kernel of the highest scale, and the rightmost value was used for the lowest scale. The
second set is to give an inductive bias that the low-scale features should be smoothed more than
high-scale features. The fixed Gaussian kernel initialized with the second set of standard deviations
significantly outperforms the other (Tab.[). This suggests that increasing standard deviations can be
a beneficial inductive bias. However, these fixed Gaussian kernels may not be optimal for each scale.
Instead of using heuristically selected kernels, our method fine-tunes the Gaussian kernels and finds
the optimal weights during the training. Experimental results demonstrate that the learnable approach
outperforms the fixed Gaussian approach, further confirming the effectiveness of our method (Tab. ).

The number of multi-scale grids and kernel size The proposed method involves two key hy-
perparameters: the number of multi-scale grids and the kernel size. We provide an evaluation of
mip-TensoRF with nine different combinations of these two values to give readers guidance on
hyperparameter configuration. As shown in Tab. |5} the number of multi-scale grids has little effect



Table 4: An evaluation of mip-TensoRF using fixed Gaussian kernels and learnable kernels, initialized
with different standard deviations. Trained and tested on the multi-scale Blender dataset.

PSNRT
Avg. ‘ Full Res. 2 Res. Y4 Res. % Res.

SSIMT
Full Res. 2 Res. Y4 Res. ' Res.

LPIPS|
Full Res. 2 Res. Y Res. % Res.

0.0991 0.0494 0.0332 0.0593

‘ Stdev. ‘

Fixed 1.0; 1.0; 1.0; 1.0 | 30.99 | 28.59 3246 33.75 29.15 | 0.9267 0.9627 0.9763 0.9574
X 1.0; 1.5;2.5;4.0 | 34.05 | 30.84 34.10 35.37 35.87 | 0.9478 0.9698 0.9787 0.9829 | 0.0697 0.0355 0.0255 0.0211
Learnable 1.0;1.0;1.0; 1.0 | 35.31 | 32.57 3543 36.64 36.59 | 0.9588 0.9759 0.9829 0.9863 | 0.0535 0.0275 0.0196 0.0150
1.0;1.5;2.5;4.0 | 35.40 | 32.62 3547 36.70 36.81 | 0.9593 0.9762 0.9832 0.9868 | 0.0529 0.0272 0.0192 0.0141

Table 5: An evaluation of mip-TensoRF varying two hyperparameters: N - the number of multi-scale
grids, K - the kernel size. Tested on the hotdog scene of the multi-scale Blender dataset.

PSNR? SSIM{ LPIPS]

N ‘ K ‘ Avg. ‘Fu]lRes. “2Res. YiRes. “sRes. | FullRes. /2Res. YiRes. “sRes. | FullRes. 2Res. "4Res. ' Res.

3 39.43 36.84  39.72 40.66 40.49 0.9792  0.9887 0.9917 0.9931 0.0379  0.0164 0.0104 0.0078
2 5 39.58 36.84 39.78 40.86 40.85 0.9790 0.9888 0.9918 0.9934 | 0.0382 0.0163 0.0099 0.0069
11 39.63 36.83  39.81 40.89 41.01 0.9789 0.9890 0.9920 0.9937 | 0.0381 0.0160 0.0096 0.0066

3 39.58 37.01 39.84 40.89 40.57 0.9795 0.9888 0.9918 0.9932 | 0.0375 0.0164 0.0102 0.0080
3 5 39.66 3698 3990 40.98 40.78 0.9796 0.9890 0.9920 0.9935 0.0367 0.0155 0.0095 0.0069
11 39.65 3692 39.83 40.95 40.90 0.9793 0.9890 0.9920 0.9937 0.0371 0.0157 0.0093 0.0067

3 39.60 37.03 3990 40.92 40.57 0.9797 0.9888 0.9919 0.9932 | 0.0367 0.0161 0.0099 0.0079
4 5 39.74 37.06 39.97 41.04 40.89 0.9798 0.9890 0.9920 0.9936 | 0.0365 0.0158 0.0095 0.0069
11 39.78 37.02 3997 41.07 41.06 0.9796  0.9890 0.9921 0.9938 | 0.0363 0.0158 0.0093 0.0068

on the rendering quality, but variations in kernel sizes result in relatively bigger differences in the
PSNR of low-scale images. Although different scales of grid representations share many similarities,
the low-scale grid should be smoothed enough to produce an image without aliasing artifacts, and
the kernel size is a critical factor controlling the smoothness of the grids. Using too small kernels
may introduce unnecessary high-frequency components in the low-scale grid. Nevertheless, there
is always a trade-off between rendering quality and speed, and users should consider their specific
usage purpose when determining the kernel size.

5 Limitations and discussion

The proposed method has not been tested on scenes involving more complex camera poses, such as
360-degree scenes [2, 45 [36] or free trajectories [39]]. However, addressing these scenarios would
require further technical development and a thorough parameter tuning. We plan to investigate how
the proposed method, or even the grid representation itself, can be extended to these scenarios.

Although the proposed method is significantly faster than mip-NeREF, it introduces additional com-
plexity to the system. Especially in terms of training time, our method needs more computational
resources to generate multi-scale grids and retrieve features. We implemented our model based on
TensoRF and K-Planes with minimal modifications, which makes the training time heavily rely on
the base models. Also, the implementation of the multi-scale grid generation and the feature retrieval
process has not been optimized yet. We strongly believe the training time and memory requirements
can be substantially improved by fusing the multi-scale grid generation and the feature retrieval
process as a single CUDA kernel or using the NeRF accelerating tool [13]].

6 Conclusion

We proposed mip-Grid, anti-aliased grid representations for NeRF. The proposed approach can
easily be integrated into the existing grid-based NeRFs, and the two methods using our approach,
mip-TensoRF and mip-K-Planes, have demonstrated that aliasing artifacts can be effectively removed.
Since we generate multi-scale grids from a shared grid representation and do not rely on supersam-
pling, the proposed method minimizes additional number of parameters and trains significantly faster
than the existing MLP-based anti-aliased NeRFs. We believe our work paves the way for a new
research direction toward alias-free NeRF leveraging the training efficiency of grid representations.
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