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Abstract

Aligning model representations to humans has
been found to improve robustness and general-
ization. However, such methods often focus on
standard observational data. Synthetic data is pro-
liferating and powering many advances in machine
learning; yet, it is not always clear whether syn-
thetic labels are perceptually aligned to humans –
rendering it likely model representations are not
human aligned. We focus on the synthetic data
used in mixup: a powerful regularizer shown to
improve model robustness, generalization, and cal-
ibration. We design a comprehensive series of
elicitation interfaces, which we release as HILL
MixE Suite, and recruit 159 participants to pro-
vide perceptual judgments along with their uncer-
tainties, over mixup examples. We find that human
perceptions do not consistently align with the la-
bels traditionally used for synthetic points, and
begin to demonstrate the applicability of these find-
ings to potentially increase the reliability of down-
stream models, particularly when incorporating hu-
man uncertainty. We release all elicited judgments
in a new data hub we call H-Mix.

1 INTRODUCTION

Synthetic data is proliferating, fueled by increasingly power-
ful generative models, e.g. [Goodfellow et al., 2014a, Dhari-
wal and Nichol, 2021]. These data are not only consumed
directly by people – but, as training predictive models on
synthetic data has been found to unlock tremendous ad-
vances in machine learning (ML) [Silver et al., 2016, de
Melo et al., 2022, Emam et al., 2021, Jordon et al., 2022],
synthetic data is increasingly employed to train algorithms
serving as engines of many applications humans may in-
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Figure 1: Framework overview. A) Synthetic data generating
process used in mixup; B) and C) depict elicitation settings:
B) participants endorse a synthetic image to match a label,
C) participants infer the label for a synthetic image and
provide their uncertainty in the corresponding inference.

teract with. However, it is not always clear whether human
perceptual judgments of synthetically-generated data match
the generative process used to create them.

Aligning networks to match humans’ perceptual inferences
could be a way to further ensure model reliability, trustwor-
thiness, downstream performance, and robustness [Nanda
et al., 2021, Chen et al., 2022, Fel et al., 2022, Sucholutsky
and Griffiths, 2023]. If these data are not aligned with human
percepts, then performance potentially could be improved
by altering such signals to better match the richness of hu-
man judgments: this has proven effective when aligning
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models with human probabilistic knowledge and percep-
tual uncertainty [Collins et al., 2022a, Sanders et al., 2022,
Sucholutsky et al., 2023]. We argue that one ought to ver-
ify whether synthetic data aligns with human perception,
and if not, explore whether training with human-relabeled
examples improves model performance.

In this work, we take a step in this direction by focusing on
mixup [Zhang et al., 2018]: a method whereby a model is
trained only on synthetic, linear combinations of conven-
tional training examples. We focus on mixup for three key
reasons. First, the generative process for synthetic mixup
examples is very simple, and provides us with direct access
to the “ground truth” generative model parameters; that is,
we have precise control over the mixing coefficient used
to create the mixed image. This enables us to compare any
discrepancy between human perceptual judgments and this
parameter explicitly. A generative model of the likes of a
generative adversarial network (GAN) [Goodfellow et al.,
2014a] or diffusion model [Ho et al., 2020] does not as
easily permit these kinds of precise comparisons. Second,
despite this simplicity, mixup is a powerful and popular
training-time method that has been leveraged to address
model fairness [Chuang and Mroueh, 2020], improve model
calibration [Thulasidasan et al., 2019, Zhang et al., 2022],
and increase model robustness via regularizing the form of
category boundaries learned implicitly [Zhang et al., 2020,
Verma et al., 2022]. mixup is frequently used as a strong
benchmark for many new data augmentation and regular-
ization techniques [Hendrycks et al., 2019, 2022]. Third,
prior work in human categorical perception – revealing that
humans show non-linear “warping” effects along category
boundaries [Harnad, 2003, Folstein et al., 2013, Goldstone
and Hendrickson, 2010] – suggests that humans will dif-
fer in their percepts from the linear category boundaries
encouraged by mixup.

To that end, we consider whether mixup labels match hu-
man perception, and if not, how the labeling scheme can
be improved to better align with human intuition – and
human uncertainty – to potentially enhance model perfor-
mance. We focus on two flavors of elicitation: 1) having
participants “construct” a midpoint between categories by
selecting from a set of synthetic images, and 2) eliciting
traces of humans’ broader category boundary across a range
of mixed images by having participants directly intervene
on the synthetic label, along with their uncertainty in their
judgments. We design three online elicitation interfaces to
address these questions, which we offer as The Human-in-
the-Loop Mixup Elicitation Suite (HILL MixE Suite).
We collect judgments from over 150 humans on these syn-
thetically combined images, which we release in a dataset
we call “Human Mixup” or H-Mix1. We then demonstrate
one of the possible use cases of this data: as adjusted training

1All data, elicitation interfaces, and experiment code will be
included in our repository.

data for deep networks to improve model generalization, cal-
ibration, and adversarial robustness. We depict our general
framework in Fig. 1. Our data (H-Mix) and general elicita-
tion paradigm (e.g., HILL MixE Suite) could support
a range of downstream applications: from serving as new
training labels for machine learning or benchmarking model
alignment to auditing synthetic data, and informing cogni-
tive science studies, among others. We see our work as a
step in the exciting direction of a human-centric perspective
on synthetic data powering many ML algorithms, which
emphasizes the potential utility of human uncertainty in
human-in-the-loop systems.

2 PROBLEM FORMULATION

2.1 DECOUPLING DATA AND LABEL MIXING IN
MIXUP

We first review mixup [Zhang et al., 2018] and explicate
the recipe by which synthetic examples are created. We
employ the nomenclature and notation around “mixup poli-
cies” from [Liu et al., 2021b]. We assume access to a finite
set of N samples {(x1, y1), (x2, y2, · · · , (xN , yN )}. mixup
training consists of constructing synthetic training examples
(x̃, ỹ) via linear combinations of pairs of the training obser-
vations (xi, yi), (xj , yj) for i, j ∈ [1, N ], corresponding to
the following data and label mixing functions:

Data Mixing: f(xi, xj , λf ) = λfxi+(1−λf )xj = x̃ (1)

Label Mixing: g(yi, yj , λg) = λgyi+(1−λg)yj = ỹ (2)

where λf and λg are defined as the data mixing coefficient
and label mixing coefficient, respectively. We refer to the
combined images xi, xj and their labels yi, yj as the end-
points. For a specified mixing coefficient λ, we denote the
resultant image as x̃. mixup typically assumes λf = λg.
We instead decouple the data and label mixing functions to
permit a more general formulation where the data and label
mixing functions can have different coefficients.

2.2 HUMAN-IN-THE-LOOP MIXUP

Our decoupling allows us to probe whether human percepts
align with either the mixing policy over the observations
(f ) or the targets (g). Human alignment of these mixing
policies could be important for several reasons. First, we
may want to understand how well the synthetic data used to
power many models deployed on the web matches human
perceptual judgments, thus ensuring model trustworthiness.
Second, given that these policies do afford mixup down-
stream niceties–such as improved generalization, robustness,
and calibration– we believe it is worth exploring whether
modulating such data to be more human-aligned can yield
similar, or better, performance boosts. We, therefore, pose

https://github.com/cambridge-mlg/hill-mixup


two questions to separate groups of human participants to
better elucidate alignment of the mixup synthetic data con-
struction:

RQ1: What x̃ do participants believe matches a given ỹ?

RQ2: Conditioned on x̃, what do humans perceive as ỹ?

Unless otherwise noted, we focus on the setting where we
maintain the structural form of f and g; that is, they are each
parameterized by a single mixing coefficient. We discuss
alternative functional forms which may more flexibly cap-
ture the richness of human percepts of these synthetically-
constructed images in the Supplement.

3 SELECTING A MATCHING MIDPOINT
(RQ1)

We first consider holding g fixed and creating a perceptually-
aligned input. We liken this setting to counterfactual data
creation from [Kaushik et al., 2019].

3.1 PROBLEM SETTING

In our setup, we inform participants that they will observe
samples combined from particular categories yi, yj . We fix
the label mixing coefficient, λg (here, to 0.5 – but our proce-
dure could be extended to arbitrary mixing coefficients) and
ask participants to construct a viable x̃ that would be per-
ceived as the λg mixture of the categories. Ideally, we may
want to see what kind of example the participant may select
from the full space of possible examples (in our case, im-
ages); for simplicity, we restrict that participants choose a x̃
from a set of M pre-constructed linear interpolations which
we refer to as {x̃j}Mj=1, which we refer to as X̃M . Each x̃j

is the result of executing f for a given λf . Here, we consider
a sweep of over the mixing coefficients [0.0, 0.1, ...0.9, 1.0].
From their selected image, we can uncover how their percep-
tion of the data-generating process differs relative to what
was actually used to create said selected image.

3.2 ELICITATION PARADIGM

We design two means of eliciting people’s selection of a x̃:

1. Interface 1 (Construct): participants use their key-
board to iterate over X̃M (ordered), where key presses
increment or decrement j by one such that x̃j are cy-
cled through at increments of 0.1. One mixed example
is displayed on the screen at a time. Participants press
“Next” when they are happy with the selected x̃j .

2. Interface 2 (Select-Shuffled): participants see
all x̃ ∈ X̃M on the screen at once. Mixed examples
are shuffled and thus presented in an unordered fashion.

Participants indicate their selection by clicking on the
x̃j they think best matches λg .

Example interfaces, and design rationales, are depicted in
the Supplement. As mentioned, participants are explicitly
told the categories being combined (y1, y2) and are asked to
indicate the image that they think is most likely to be per-
ceived as the 50/50 combination of the mixed images by 100
other crowdsourced workers. Such elicitation language is
drawn from [Chung et al., 2019], following a recommended
practice in high-fidelity human subject elicitation whereby
participants are asked to assume a third-person perspec-
tive when responding [Prelec, 2004, Oakley and O’Hagan,
2010].

Stimuli and Participants We focus on a random subset
of the CIFAR-10 test images, a dataset containing low-
resolution images drawn from ten categories of objects and
animals (e.g., truck, ship, cat, dog) [Krizhevsky et al., 2009].
We use the test set as this permits downstream comparisons
against CIFAR-10H: an expansive set of approximately 51
human annotators’ judgments about each example [Peterson
et al., 2019, Battleday et al., 2020]. From each unique cat-
egory combination (e.g., truck-dog, ship-cat, cat-dog), we
sample 6 random images from each of the categories and
linearly combine them in pixel-space. We sample 249 such
image pairings, and for each, we sweep over the space of 11
mixing coefficients incremented by 0.1 between λf = 0.0
and λf = 1.0 (totaling 2739 synthetically mixed images
in total). We recruit a total of 70 participants from Pro-
lific [Palan and Schitter, 2018] and hosted on Pavlovia. 45
participants were allocated to Construct, which was sub-
divided into two conditions based on the starting point of the
selection: 23 participants started at the λf = 0.9 mixing co-
efficient, and 22 participants were assigned always starting
at λf = 0.1. The remaining 25 participants were allocated
to Select-Shuffled. Further details are included in the
Supplement.

3.3 INVESTIGATING DATA MIXING ALIGNMENT
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Figure 2: Averaging human participants’ selections per im-
age pair reveals the typical pair is minimally relabeled.

We find that, in aggregate, humans’ selections indicate align-
ment with the underlying mixing coefficient (see Fig. 2),
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Figure 3: Participants do not always endorse the 50/50 point
suggesting misalignment in the data labeling policy. The
bar plot depicts extracted mixing coefficient of individuals’
selections for the perceptually-aligned midpoints.

which is stable across elicitation methodology. However, we
cannot conclude from these data that the mixup data policy
is aligned with humans. If we look at the selections made
by individual humans, we see that a substantial portion en-
dorsed a x̃ which differed from that which would naturally
be assumed in mixup (see Fig. 3). Example image pairs that
yield high relabeling across interface types are shown in Fig.
4. We identify 9 such image pairs that are highly relabeled
(which we define as |λh − 0.5| ≥ 0.15, where we let λh

be the mixing coefficient used to generate the x̃ selected by
humans) across interface types. This picture suggests that
indeed human percepts are not consistently aligned with the
synthetic data construction process – and that perhaps with
a larger set of stimuli, more such examples can be recovered.
Note, there are a total of 101 image pairs that are endorsed
by at least one interface as in need of high relabeling. More
work is needed to elucidate whether discrepancies in rela-
beling were induced by the varied interface design or simply
individual differences among the participants recruited.

Takeaways These data suggest that while in general, the
50/50 combined image is recoverable – at an individual
level, such percepts are more nuanced. Our data, which we
include as part of H-Mix, indicate systematic differences
in perceptions of synthetically-constructed data. These dif-
ferences emerge somewhat robustly across elicitation types.
We next turn to richer traces of humans’ perceptual repre-
sentations of these synthetically-generated data.

4 ELUCIDATING ALIGNMENT OF THE
LABEL MIXING POLICY (RQ2)

The above elicitations have focused only on the 50/50 point;
however, mixup trains on synthetically-generated images
sampled for a wide range of mixing coefficients. It, there-
fore, warrants study to analyze human perceptual alignment
over a richer spectrum of mixing coefficients. We consider
instead eliciting humans’ judgments over what the label

mixing coefficient λg ought to be. Studying the alignment
of g could push forward a deeper understanding of what
the data often used to train mixup and similar methods even
means to humans, and potentially further motivate the de-
sign of alternative relabeling schemes (see Section 5). We
therefore now focus on utilizing human input to design a
perceptually-aligned target mixup policy gh.

4.1 PROBLEM SETTING

We assume f is a linear mixing policy over inputs employed
in [Zhang et al., 2018]. To form our human-aligned target
policy, we want to find a function gh(yi, yj , λ) = ỹ such
that ỹ perceptually corresponds to the associated mixed
input f(xi, xj , λ) = λxi + (1− λ)xj = x̃. How do we get
ỹ from people efficiently?

We consider matching λg to what humans infer λf to be. In
this setup, we assume humans are aware of the generative
processes f and gh, and are shown the mixed image x̃ and
underlying labels yi, yj . People are then tasked with forming
a probabilistic judgment as to what the underlying mixing
coefficient is that generated the observed image x̃ when
given the underlying yi, yj – e.g., judging P (λf |x̃, yi, yj).

If human perception is aligned to the underlying linear
mixup policies, then the human predicted mixing coefficient
λh should be equivalent to λf , rendering λf = λg = λ a
sensible mixing scheme. However, if human estimates are
not aligned, we may consider setting λg = λh to make g
yield a ỹ which best corresponds to humans’ percepts of x̃.

4.2 ELICITATION PARADIGM

To elicit such information, we design a new interface where
subjects infer the mixing coefficient between two given la-
bels. We show each worker a mixed image and tell them the
categories that were mixed to generate the image. Partici-
pants also provide us with their uncertainty in their inference.
As some image combinations appear quite convoluted, we
reason that subjects’ confidence in their inference – or lack
therefore – may provide interesting signals as to the percep-
tual sensibility of the mixed images. We run our relabeling
experiment on N = 81 participants again through Prolific
[Palan and Schitter, 2018]. Further details are included in
the Supplement.

Stimuli selection Similar to Section 3.2, we sample im-
ages to mix from CIFAR-10 [Krizhevsky et al., 2009].
We do so in a class-balanced fashion: 46 mixed images
are sampled for each of the 45 possible class combina-
tions, resulting in 2070 total stimuli. Each mixed image
is formed by constructed by selecting a data mixing coeffi-
cient λf ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.



Figure 4: Example image pairs where substantial relabeling of the 50/50 point was recommended across all interface types.
Synthetic images highlighted in blue received the most endorsements from participants across all interface types, with
images in green receiving the second most. For row three, participants were split equally between two selections. The mixing
coefficient (λf or λh) used to construct the images is shown along the bottom.
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Figure 5: We uncover a sigmoidal relationship between
humans’ inferred mixing coefficient (λh, blue) as compared
to the mixing coefficient used to generate the image (λg , red)
suggestive of misalignment. We depict the median, along
with the 25th and 75th percentiles. The red line indicates
what the exact parallel between λh and λf would look like
(highlighting perceived human deviation).

4.3 VALIDATING THE MIXING COEFFICIENT
AGAINST HUMAN RESPONSES

We now compare the human-inferred mixing coefficient
against the generating coefficient and analyze participants’
uncertainty in such inferences. We also conduct a prelimi-
nary exploration into the relationship between participants’
predicted uncertainty and the ambiguity of the underlying
images being combined.

4.3.1 Relationship between Generating Mixing
Coefficient and Alignment

We consider whether participants recover the data mix-
ing coefficient: in Fig. 5, we show the median relabeling
for images at given coefficients. We observe a non-linear,

Figure 6: Examples of average human relabelings of the
generating mixing coefficient reveal discrepancies.

roughly sigmoidal structure to human relabelings, consistent
with past research in human categorical perception [Harnad,
2003, Goldstone and Hendrickson, 2010, Folstein et al.,
2013, Destler et al., 2019]. The aggregate recovery of the
50/50 point corroborates our findings in RQ1. However, we
find that the picture is nuanced: wide confidence bounds
suggest there are mixed images for which inferred mixing
coefficients are substantially different from the parameteri-
zation assumed in mixup. Qualitative inspection of averaged
relabelings for particular images (Fig. 6) – and across cat-
egory pairs (Fig. 7) – also reveals such misalignment. We
recommend future work to investigate why particular cate-
gory pairs, for this dataset, are yielding different boundaries.

4.3.2 Analyzing Human Uncertainty

We next look closer at the reported human uncertainty in
the mixing coefficient. First, we investigate whether human
uncertainty estimates depend on the mixing coefficient as-
signed. Indeed, we do observe that humans’ uncertainty



Figure 7: “Category boundaries” elicited from humans display a diverse structure. Many – though not all – deviate from
linearity assumed in mixup. We overlay examples of synthesized stimuli, ordered by the λf used to create them.

tracks with the mixing coefficient (see Table 1); participants
have the lowest confidence (i.e., highest uncertainty) for
images generated from λf = 0.5.

Table 1: Participants’ average reported confidence, or uncer-
tainty, in their inference of the mixing coefficient (higher
confidence means less uncertainty). Error bars indicate stan-
dard deviation across participants. The mixing coefficient
here is computed as |0.5− λf | due to symmetry (a mixing
coefficient of 0.1 is as extreme as 0.9).

Mixing Coefficient Reported Confidence

0.1 0.79 ± 0.17
0.25 0.72 ± 0.20
0.5 0.63 ± 0.20

Additionally, while intuitive, we probe whether there are
specific predictors of when and why a mixed image may
be hard to label – e.g., perhaps images which are naturally
ambiguous become even more muddled when combined.
We use the entropy of the CIFAR-10H labels as a measure
of image “ambiguity”[Peterson et al., 2019, Battleday et al.,
2020]. Recall, CIFAR-10H labels are constructed from
many annotator’s judgments about the most probable image
category; entropy is therefore computed over the frequencies
of these class selections and captures some sense of the
amount of disagreement between annotators.

We compare humans’ elicited confidence in their mixing
coefficient, and the amount of relabeling (|λh−λf |) against
the entropy of the CIFAR-10H labels of the images be-
ing combined. We find in Fig. 8 that if both endpoints are
high entropy under CIFAR-10H (where we consider “high”
being entropy ≥ 0.5), participants report markedly lower
confidence in their inference than if both endpoints have
low entropy (entropy ≤ 0.1). However, we do not find a
significant effect of endpoint entropy and amount of rela-
beling. This suggests that the ambiguity of the underlying
images being mixed plays some role in determining when
the resulting synthetic image may be hard to label, but there

Low Entropy High Entropy
Endpoint Entropy

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d 
C

on
fid

en
ce

Impact of Endpoint Entropy on Annotator Confidence

Figure 8: Uncertainty reported by annotators in their in-
ference of λ, as a factor of whether the combined labels
yi, yj are high or low entropy. Entropy is measured over the
CIFAR-10H human-derived labels.

remains a question as to what can predict high amounts of
relabeling from participants. We leave these questions for
future investigation.

We can go further in the study of human uncertainty over
mixup examples by directly eliciting soft labels from each
individual over the entire space of possible classes, inspired
by [Collins et al., 2022a]. We include a preliminary inves-
tigation into eliciting richer forms of human uncertainty
over mixup examples, which lend additional nuance to the
discrepancy between human perceptual judgments and the
synthetic labels classically used in mixup, in the Supplement.
In particular, our primary finding is that people sometimes
place probability mass on classes which are different from
the endpoint classes being combined (see Figure 9). We in-
clude the elicited soft labels in our release of H-Mix; these
soft labels are small-scale at present (from N = 8 partici-
pants, see Supplement), and we have not yet explored their
computational implications, but see grounds for leveraging
richer forms of human uncertainty in this vein as ripe for
future work.

Takeaways Our dataset, H-Mix, highlights discrepancies
between humans’ internal models of synthetically generated
data compared to what is traditionally used in mixup. We



Figure 9: Example combined image (λf = 0.5; horse/ship)
which has been relabeled by humans (blue) through the
elicitation of individual soft labels our soft label elicitation
(see Supplement); here, we average the individual soft labels
derived from the two different participants who annotated
the image. The label which would be used by mixup is
shown in red.

observe variable labeling policies on a category-pair basis
and uncover a likely relationship between the strength of
the mixing coefficient and ambiguity of the underlying com-
bined images with participants’ reported uncertainty in their
judgments. We also preview even richer discrepancies be-
tween human percepts and the functional form of the mixup
mixing policies (see Supplement).

5 LEARNING WITH HUMAN
RELABELINGS AND UNCERTAINTY

In addressing RQ1 and RQ2, this work illuminates that hu-
man perceptual judgments do not consistently recover the
parameters of the generative model traditionally used to
construct data in mixup. These findings beg the question:
if we instead align synthetic examples with human percep-
tual judgments, how would this impact model performance?
Such a question is important to consider in the pursuit of
more trustworthy ML systems: better generalization, robust-
ness, calibration, and a richer understanding of whether the
models are trained on human-aligned data could all poten-
tially engender more stakeholder trust [Zerilli et al., 2022].

To that end, we consider two initial empirical studies of the
impact of training on human perceptual judgments of syn-
thetic examples: one, wherein we compare training models
with varied forms of labels on the specific set of 2070 mixed
images from H-Mix, and another where we go beyond the
collected examples and consider a first attempt at construct-
ing a generic human-aligned label mixing policy. Here, we
focus on the data collected for RQ2; i.e., for given x̃ how
should we change ỹ. We encourage leveraging and scaling
the data collected in RQ1 for future work.

5.1 RELABELING DIRECTLY WITH H-MIX

Setup We train a PreAct ResNet-18 [He et al., 2016] and
VGG-11 [Simonyan and Zisserman, 2014] over 7,000 regu-
lar CIFAR-10 images (following the split used by [Collins
et al., 2022a]) combined with the 2,070 synthetically mixed
images where we vary the labels. While we would ideally
study human relabelings for every synthetic image that could
be generated with f , we only have labels for a small sub-
set and instead compare using our labels versus traditional
mixup labels over a finite, augmenting set of combined im-
ages. 5 seeds are run per variant per architecture. Results
are averaged across architectures.

Evaluation We evaluate a suite of metrics over 3,000 ex-
amples from CIFAR-10H, a dataset containing labels from
many humans over the CIFAR-10 test set [Peterson et al.,
2019]. We compare: cross entropy between the model-
predicted and the human-derived label distributions (CE),
model calibration following [Hendrycks et al., 2022] and
robustness to the Fast Gradient Sign Method (FGSM) adver-
sarial attack [Goodfellow et al., 2014b], again following the
set-up of [Collins et al., 2022a].

Leveraging Human Relabelings for ML Training We first
compare learning with our averaged human-inferred mix-
ing parameters against the classical mixup labels over the
same 2070 synthetically-mixed images. We include sanity
checks with completely random and uniform labels for the
synthetic examples, as well as a baseline not including any
synthetic examples (“No Aug”). Interestingly, we find in
Table 2 that aligning the mixed example labels with aver-
aged human labels yields worse model performance. We
think these results are worth highlighting: it is not always
the case that aligning models to human perception yields
performance gains, possibly due to the recently discovered
U-shaped relationship between representational alignment
and generalization [Sucholutsky and Griffiths, 2023].

The Value of Human Uncertainty Information However,
the human-inferred λg alone does not capture the richness
of human perceptual judgments over synthetic images: par-
ticipants at times reported being uncertain in their infer-
ences. Therefore, we account for human uncertainty (ω) in
the inference of the synthetic data generating parameter to
construct softer ỹ (see Supplement for details). We find sub-
stantial performance boosts come from leveraging human
uncertainty. Such data suggest that indeed, aligning models
in accordance with human perceptual inferences could have
advantages – and suggests that confidence could offer a po-
tent modulator signal worth considering eliciting. This is in
line with core ideas from Dempster-Shafer Theory [Shafer,
1976, Dempster, 1967], that soft labels should be expressed
as one set of values representing the mixture weights, and
a second associated set of values representing uncertainty
about that mixture (i.e., belief and plausibility).



Table 2: Comparing performance when varying the form of
the synthetic labels on the 2070 mixed images. Results aver-
aged over 5 seeds, with error bars depicting 95% confidence
intervals (CIs) across seed performance.

Label Type CE FGSM Calib

Regular
(No Aug) 2.02±0.12 13.12±2.65 0.28±0.011
+ Random 2.11±0.13 12.81±2.84 0.24±0.014
+ Uniform 2.16±0.14 12.71±2.79 0.25±0.012
+ mixup 1.65±0.11 10.62±2.44 0.23±0.005
+ Ours
(Relabel) 1.78±0.12 11.69±2.90 0.24±0.009
(Relabel & ω) 1.48±0.06 8.89±1.59 0.19±0.001

5.2 GENERALIZING RELABELING

So far, we have focused on varying the labels of a pre-
supposed augmenting set of mixed images; however, the set
was comparatively small (2070 images) and therefore does
not directly mimic the mixup learning paradigm. In practice,
mixup is typically applied over the entire dataset; that is, on
each batch, a new mixing coefficient is sampled, resulting
in often entirely new images being generated per batch. It is
infeasible to consider recruiting human participants to rela-
bel every such image. Automated human-aligned labeling
policies are therefore worth considering. We argue that our
data offers a prime starting point to explore such questions.

We offer a preliminary alternative label mixing policy based
on the human data we have collected in H-Mix. Inspired
by the non-linearities we observe at a category level, we use
scipy.curve_fit to fit a logistic function per category
pair. For each batch, we swap in our label mixing policy to
map from the sampled generating mixing coefficient to an
approximately more human-perceptually aligned coefficient.
Such fits only account for humans’ relabelings, not their
uncertainty. Accounting for human confidence in automated
label policies is a ripe direction for future work.

Setup We follow the same ensembling and evaluation
methodology laid out in Section 5.1, but now run traditional
mixup following [Zhang et al., 2018] where generating mix-
ing coefficients are sampled from a Beta(1, 1) distribution
(i.e., uniform on (0, 1)).

Results We observe (see Table 3) a striking parity in per-
formance across models. These data highlight that with the
addition of even a relatively small number of human anno-
tations through HMix to alter the labeling policy, we find
that robustness to adversarial attacks increases at negligble
cost to performance or calibration. As in [Sucholutsky and
Griffiths, 2023], human representation alignment may be
useful for other downstream, untested tasks: training on
more human-aligned data-generating policies could induce

Table 3: Training with mixing policies fitted per category
pair, compared against full mixup. Results averaged over 5
seeds, with 95% CI error bars.

Label Policy CE FGSM Calib

mixup 1.15±0.08 7.46±2.40 0.10±0.01
Human-Fits (Ours) 1.16±0.08 7.32±2.27 0.10±0.01

functional fits that are preferable to stakeholders even if we
see no objective improvement along particular performance
measures. We recommend such studies for future work.

Takeaways Human perceptual judgments can be leveraged
to construct alternative synthetic data-generating policies
to train ML systems; however, such induced methods of
aligning with (approximations) of human perception are
not automatic salves. Our results highlight that constructing
more human-aligned label policies, particularly through
capturing and representing human uncertainty, is promising,
but more work is needed before generalizing conclusions.

6 DISCUSSION

(Mis)alignment of Mixup Examples Through a series of
novel user studies, we uncover that the synthetic exam-
ples used in mixup do not consistently align with humans’
perceptual representations. We find indications that partici-
pants’ uncertainty in their inferred mixing coefficients tracks
with the degree of ambiguity of the original images that are
combined. As we have begun to explore empirically, such
relabeling may impact downstream model performance: re-
aligning mixup labels with humans’ reported judgments can
impact learning, with human uncertainty seemingly poised
to provide a strong supervisory signal – corroborating [Pe-
terson et al., 2019, Collins et al., 2022b, Sucholutsky et al.,
2023]. The collation of humans’ inferences of the mixup gen-
erative parameters could also be used to benchmark whether
models are aligned with human percepts, say if H-Mix is
used as a held-out or probe set [Gruber et al., 2018]. We rec-
ommend such directions for future work, particularly those
focused on the uncertainty elicitation in H-Mix. We release
additional soft labels over mixed examples which further
highlight human perceptual misalignment (see Supplement).

Scaling Human-Centric Data Relabeling A key challenge
for human-centric relabeling of synthetically-generated data
(not unique to mixup) is that a nearly infinite variety can be
generated. It is not reasonable to expect humans to judge
all possibilities, nor to provide their uncertainty over all
labels.Any attempt at human-in-the-loop relabeling faces
the obstacle of identifying which examples to relabel, and
how to handle cases that cannot be relabeled. While we take
steps to address the latter through fitting generic functions
per class pair that enable sampling of arbitrary mixing coef-



ficients, we highly encourage researchers to consider lever-
aging our H-Mix to develop alternative human-grounded
automated synthetic data policies.

To address the former, we encourage looking to smarter
ways to select examples to query people over – rather than
random selection as we have done – such as [Liu et al.,
2021a, 2017]. Additionally, our results raise the related
question: are there particular relabelings that are hurting
model performance? Prior works have demonstrated how
cleaning data can reduce model error [Pleiss et al., 2020].
We encourage future work in this direction in the context of
H-Mix. Additionally, our results raise the related question:
are there particular relabelings that are hurting model perfor-
mance? Prior works have demonstrated how cleaning data
can reduce model error [Pleiss et al., 2020]. We encourage
future work in this direction in the context of H-Mix.

Limitations Thus far, we only consider human validation
and relabeling of mixup labels for a single image classifi-
cation dataset, CIFAR-10. This dataset is low-resolution.
Thus, the endpoint images – and the combinations of im-
ages – can be ambiguous and challenging to interpret. It
is possible that we may find humans to be more, or less,
aligned with the generative parameters for different image
datasets, or for entirely different data modalities, e.g., audio
or video. We encourage the application of the HILL MixE
Suite paradigm to other datasets. Moreover, as we have
many category pairs – arising even from just 10 categories
– we do not have a substantial number of synthetic exam-
ples per category pair (i.e., 46 synthetically-mixed images
for each of the 45 category pairs). This could impact the
stability of the category boundaries we elicit, e.g., poten-
tially leading to breaks of monotonicity (see Supplement A).
Further, as with many web-based human elicitation studies,
it is not always clear whether the responses returned arise
from individual differences in perception, participant noise,
or malicious behavior [Lease, 2011, Gadiraju et al., 2015].
We also do not train participants to provide calibrated uncer-
tainty; uncertainty judgments included in H-Mix – while
empirically useful for training – could be infused with classi-
cal biases in humans’ probabilistic self-reports [Lichtenstein
et al., 1977, Tversky and Kahneman, 1996, O’Hagan et al.,
2006, Sharot, 2011]. We also highlight that, aside from re-
peat trials, we are unable to capture whether participants’
percepts fluctuate – such instability is certainly a possibility
when considering cognitive neuroscience research around
perceptual dominance [Blake and Logothetis, 2002].

Extending to New Synthetic Data Paradigms In this work,
we focused on the synthetic data classically used in mixup,
as the simplicity of the data generating process – a sin-
gle mixing coefficient parameter – enables us to precisely
compare human versus traditional parameterizations of the
synthetic data construction process. We hope our work spurs
further study of aligning synthetic data generation with hu-
man perception and motivates the design of more human-

aligned synthetic data to improve ML systems, particularly
those focused on the interplay between model and human
uncertainty. We release the code of all interfaces included
in our HILL MixE Suite, which we hope will empower
researchers with additional tools to investigate humans’ per-
cepts over synthetically-constructed data. For instance, our
Select-Shuffled interface could readily be extended
to elicit stakeholders’ preferences, in the form of selection,
over any collection of constructed synthetic examples. As
demonstrated in [Ouyang et al., 2022], scalable human pref-
erence elicitation has wide utility.

7 CONCLUSION

Through a series of human participant elicitation studies, we
find that the synthetic examples generated via mixup differ
in fundamental ways from human perception, suggesting
misalignment of the data and label mixing policies. We offer
early indications that collating humans’ percepts of these
synthetic examples could impact model performance, partic-
ularly when modulated by elicited human uncertainty. Our
work further motivates the design of automated relabeling
procedures for synthetic examples which leverage elicited
human data (e.g., training a model to predict a likely hu-
man’s mixing coefficient) to sidestep inherent issues with
scaling human annotation over the space of possible syn-
thetic examples, particularly in eliciting and utilizing human
uncertainty. Synthetic data of all kinds are proliferating: we
encourage more researchers to consider these data from a
human-centric perspective; i.e., investigating whether the
samples align with human percepts, and if not, whether alter-
ing labels – specifically via human uncertainty – can yield
safer, more reliable models with improved generalization.
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