Under review as a conference paper at ICLR 2026

MEMORIZE OR GENERALIZE? EVALUATING LLM
CODE GENERATION WITH CODE REWRITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated exceptional code gen-
eration capabilities. However, there is a growing debate whether LLMs are mostly
doing memorization (i.e., replicating or reusing large parts of their training data)
versus generalization (i.e., beyond training data). Existing evaluations largely
proxy memorization with surface/structural similarity, thereby conflating benign
reuse of repeated code with harmful recall and neglecting task correctness un-
der semantic variation. We define harmful memorization behaviorally as failure
at high similarity and introduce a semantic perturbation code rewriting, which
rewrites a semantically different answer at a similar difficulty level for a given
coding task, then reverse-engineers a novel coding task. We further propose Mem-
orization Risk Index (MRI), a normalized score that combines two signals: (i) how
similar the model’s answer for the rewritten task is to the original ground-truth
solution, and (ii) how much performance drops from the original task to its rewrit-
ten counterpart. MRI is high only when both conditions hold—when the model
outputs similar code but fails the perturbed task—thereby capturing harmful mem-
orization rather than benign reuse of repeated code. Empirical evaluations on code
generation benchmarks MBPP+ and BIGCODEBENCH reveal that (1) memoriza-
tion does not increase with larger models and in many cases alleviates as they
scale; (2) supervised fine-tuning (SFT) improves accuracy while introduces mem-
orization; (3) reinforcement learning with proximal policy optimization (PPO)
achieves a more balanced trade-off between memorization and generalization.

1 INTRODUCTION

Large language models (LLMs) have made incredible advances in automated code generation, and
are rapidly becoming essential tools in software development (Sourcegraph, 2024} Tabnine} [2024;
Team et al.} 2023 |Anthropicl 2025 (Chen et al., 2021). Modern code-focused LLMs can achieve
state-of-the-art performance on programming benchmarks (Roziere et al., 2024). For example, spe-
cialized models like Qwen-2.5 Coder (Hui et al.} 2024) and Code Llama (Roziere et al.,|2024) have
pushed the boundaries of translating natural language into code. These advancements raise an im-
portant question: when do LLMs truly generalize to new programming tasks, and when are they
merely reproducing memorized training examples?

Understanding memorization in code generation is critical. Existing evaluations largely measure
memorization via surface or structural overlap (e.g., regurgitation audits, contamination filters, and
entropy-based detectors) (Yang et al.| [2024; Riddell et al., 2024} Dong et al.| [2024), treating high
similarity as evidence of memorization. This conflates benign reuse of repeated code (i.e. idioms,
APIs) with harmful recall and, crucially, does not test whether the model solves the task under
semantic variation.

To systematically study harmful memorization, we build on the intuition that performance gaps
under semantic perturbations contribute to reveal whether a model is generalizing or harmful mem-
orizing. If a model simply recalls solutions, even small semantic changes could cause large accuracy
drops, often accompanied by high overlap with training-like code (Bayat et al., [2024)). Concretely,
we propose code-rewriting, which introduces semantic shifts to prompts while maintaining similar
syntax, to investigate whether the success of a model comes from genuine reasoning or harmful
memorization. To quantify these behaviors, we introduce Memorization Risk Index (MRI), a nor-

Under review as a conference paper at ICLR 2026

-
Pipeline Workflow Semantic Equivalent Semantic Different
- - (
(similar wording, J Xnut = £4(X): Wrlite a functIon to =g5(C)# C (One logic change):
different meaning fInd teh shraed Eelments from teh def func(sl,s2):
gVine wto sEt. return (sl&s2)
(O Mutation: add textual noise, same] L @ @
i s —
Searne Xppar = €5(X): Develop a function that [Ge”e’ate anew deSCflPtDﬂ}
. . base on
O Paraphrase: similar wording, same identifies the common elements
meaning kaefween two provided sets. @ =desc(C,.,): Write a function
P 7@/ to identify the common elements from
Prompt (X): Write a function to find theﬁ7 (" Solution (©): \ two provided sets by ensuring the
shared elements from the given two def func(sl,s2): result is sorted. @
sets. return (sl&s2
N N L eery J
+ - Does the new prompt accurately describe what the new code does? . ACCEPT @
>>> Recommendation:
- Is the rewritten task of similar difficulty to the original? REJECT D
4 N N N\
Execute and evaluate generated solution from candidate LLMs
- Solution on X: - Solution on X, ;¢ .‘é Solution on X, \!é
def func(sl,s2): a® def func(sl,s2): amo def func(sl,s2): ap def func(sl,s2): am
return (sl]s2) return (sl&s2) return (sl.union(s2)) return (s1&s2)
Similarity: High Performance Drop: High 5§ Answer: Wrong Answer: 25
Memorization = Similarity x Performance Drop: High Robustness, . = Low Robustnesspar =
\ /

Figure 1: Our proposed Code Rewriting vs. Popular semantic equivalent perturbations. X denotes text and C'
denotes code. that creates semantically different tasks, first rewrite a new code solution Chey
from the origin solution C, then generating a new description Xy based on Creyw. A judge agent will then
choose to accept or reject the task for quality assurance. Mutation and paraphrase that create
semantically equivalent tasks, are included for robustness evaluation as a comparison to memorization. All
perturbations are performed by GPT-5, shown as the ChatGPT logo. Generation prompts are in Appendix El

malized score that combines two signals: (i) how similar the model’s answer for the code rewriting
task is to the original ground-truth solution (combining both semantic and syntax level similarity),
and (ii) how much performance drops from the original task to its code rewriting counterpart. MRI
captures harmful memorization as failure under high similarity on code-rewriting tasks.

Terminology. In this paper, we use the term memorization to specifically denote harmful memo-
rization: which we define as cases that (1) exhibit high similarity to the original solution and (2)
lead to performance drops under semantically altered code rewriting. Unless otherwise stated, all
subsequent uses of “memorization” follow this definition.

To differentiate our method from existing work in evaluating robustness (Chen et al., 2024} 2023
Mastropaolo et al., 2023 Wang et al.,2022)), we also include two semantic-preserving perturbations,
mutation and paraphrase, as reference baselines. We report Relative Accuracy Drop (RAD) to mea-
sure LL.Ms performance consistency under semantic-preserving perturbations. Our primary analysis
still targets harmful memorization via the semantics-altering code-rewriting perturbation and MRI.

Our evaluation include coding benchmarks across different difficulty levels, from introductory prob-
lems in MBPP+ (Liu et al., 2023) to more difficult tasks in BIGCODEBENCH (Zhuo et al., 2024).
Furthermore, we investigate the effect of post-training strategies by comparing Supervised Fine-
Tuning (SFT) and Proximal Policy Optimization (PPO). Our results reveal the following trends: (1)
memorization does not increase with larger models and in many cases improves as they scale; (2)
memorization alleviates rapidly on simpler tasks but persists on more difficult ones; (3) SFT im-
proves raw accuracy but substantially amplifies memorization; (4) PPO achieves a more balanced
trade-off, mitigating memorization while maintaining competitive accuracy.

In summary, our work makes the following key contributions:

* We propose a novel automated pipeline for code rewriting, which rewrites a semantically differ-
ent answer at a similar difficulty level for a given coding question, then reverse-engineers a novel
coding question.

Under review as a conference paper at ICLR 2026

* We introduce MRI, a metric that captures harmful memorization as failure under high similarity
on code rewriting tasks, rather than treating similarity alone as memorization.

* We conduct a comprehensive empirical study across benchmarks and training strategies, providing
insights into when LLMs memorize in code generation.

2 RELATED WORK

2.1 CODE GENERATION WITH LLMSs

Large Language Models (LLMs) have shown remarkable ability in automated code generation.
Models such as ChatGPT (OpenAl et al.| [2024), Qwen-Coder (Hui et al. [2024), and DeepSeek-
Coder (Guo et al., 2024) have pushed the boundaries in the coding domain, notably with ChatGPT
achieving state-of-the-art performance on challenging benchmarks such as BIGCODEBENCH (Zhuo
et al.l [2024), LiveCodeBench (Jain et al., 2024} and EvalPlus leaderboard (Liu et al., 2023)). While
LLM-based code generation models have made significant strides in translating natural language to
executable code, most evaluations focus on static benchmark performance, overlooking memoriza-
tion behaviors to prompt variations.

2.2 MEMORIZATION IN CODE GENERATION

A model that memorizes may output correct-looking solutions simply because it has seen near-
identical problems during pre-training, rather than reasoning about program semantics (Pappu et al.,
2024;|Duan et al., 2024; [Kassem et al.,2024; |Carlini et al., 2019; Bayat et al.| 2024} Xie et al.| [2024)).
Such behavior can mislead evaluation benchmarks, inflate metrics, and compromise trustworthiness
when models are deployed in real-world development environments (Hartmann et al.,[2023;|Lu et al.,
2024; Staab et al., [2023} [Zanella-Béguelin et al., 2020).

In code generation, prior work operationalizes general memorization as regurgitation—via prefix to
suffix extraction, mass sampling with clone detection against the training corpus, and contamination-
aware splits of HumanEval/MBPP (Chen et al., [2021)—and under these measurements reports that
the measured general memorization rate increases with model size (Yang et al.| [2024; |Al-Kaswan
et al.l 2024; Wang et al., [2024). However, general memorization is not inherently harmful: if a
training-like solution still satisfies the a semantic different question, re-use does not constitute risk
(it is correct and passes tests) (Bayat et al.| 2024)). To distinguish harmful memorization from gen-
uine generalization, we introduce code-rewriting, which deliberately shifts task semantics while
preserving surface syntax, and we quantify it with a Memorization Risk Index (MRI) that multi-
plies similarity to the original solution by the relative accuracy drop under the semantic shift (high
only when the answer copied surface forms but fail on the task with new semantics). [Lai et al.
(2022) uses semantic perturbations—changing the reference solution’s semantics without increas-
ing difficulty—to probe general memorization; unlike their manually authored data-science tasks,
we perform automated code rewriting and introduce MRI.

3 METHODOLOGY

3.1 CODE REWRITING

Code rewriting is used to evaluate a model’s memorization via solving semantically different prob-
lems that are superficially similar to original tasks. The automated pipeline to generate code rewrit-
ing tasks is shown in[Figure 1] Specifically, we first modify one logic in ground truth solution while
preserving the original function signature—including the function name, input, and output format.
We then generate a new task description that reflects the altered code while similar to origin tasks in
syntax. Formally, let x € T be the original prompt in text space T and ¢ € C'its ground truth code
solution in code space C. We apply a rewriting function e that produces a new code ¢, = €3(c)
where ¢, # ¢ functionally but both ¢ and ¢;.¢,, share the same signature. The new prompt ¢, is
then generated from c;,,, resulting in a semantically different task:

Trew = desc(Crew) (D
where sig(Crew) = sigc), Crew # € 2)

Under review as a conference paper at ICLR 2026

where desc(-) denotes generating a description from code, and sig(-) extracts the function signature.
This process enables us to assess whether LLMs can recognize and solve tasks that share format but
differ in semantic content.

Data Validation. To ensure the reliability of code rewriting datasets, we conducted both LLM-
as-a-judge and manual quality assurance. For LLM-as-a-judge (shown in [Figure I), we forward
code rewriting tasks to GPT-5 (OpenAll [2025) to check (i) if the rewritten code match the rewritten
prompt and (ii) if the rewritten task align with the original task in difficulty. For manual validation,
two experienced python programmers randomly reviewed 10% of generated evolution problems for
all three evolution types to ensure their quality. We also provide 5 regressed tasks for each dataset
(PASSED in original but FAILED in code rewriting) in[Appendix D|to show difficulty alignment.

3.1.1 METRIC-MEMORIZATION RISK INDEX

MRI consists of two signals: (i) how similar the model’s answer for the rewritten task is to the
original ground-truth solution, and (ii) how much performance drops from the original task to its
rewritten counterpart.

(i) Similarity. For every rewritten task ¢ € 7.y, where T refers to a task set, we measure two
similarities between the model-generated solution for the rewritten version of task ¢ and the ground-
truth solution of its original version:

* Semantic level AST similarity: normalized tree-edit overlap between abstract-syntax trees
* Syntax level edit similarity: (1 — (Levenshtein distance/max-len), capturing token-level overlap.

Formally, let AST; € [0, 1] denote AST similarity, and let Edit; € [0, 1] denote edit similarity. We
combine these scores into a unified similarity score:

_AST; + Edit;

Si 3
5 3)
Because our analysis is corpus-level, we define the mean similarity over all rewritten tasks as:
1
Sim(Trew) = E Si, Sim € [0, 1]. 4)
(©) |7;ew| C [}

1€ Trew

(ii) Relative Accuracy Drop for Rewriting. For a task set 7, Pass@1 is reported as Acc(T). To

capture the performance loss induced by semantic rewriting, we define

Tori) — Acc(Trew)
Acce(Tori)

RAD,., = 0 when rewriting does not hurt accuracy and increases when it does; the max(0,)
prevents negative values when the performance on rewritten tasks happen to be better.

A
RADye,, = max <07 CC() , RADyey € [07 1]' 5)

MRI. Finally, we introduce the MRI, defined as the product of solution-similarity and relative
accuracy drop:

MRI = Sim(Trey) X RADyy, MRI € [0,1]. (6)

MRI is high only when both conditions for harmful memorization hold: (i) the model copies the orig-
inal solution’s surface form (high Sim (7)) and (ii) that copied solution now fails (high RAD ey).
This multiplicative design sharply distinguishes memorization from generalization.

3.2 MUTATION AND PARAPHRASE

To differentiate code rewriting from semantic-preserving perturbation techniques in work evaluat-
ing robustness (Chen et al., 2024; 2023; Mastropaolo et al.l 2023; [Wang et al., 2022), we include
mutation and paraphrase, as reference baselines. These two perturbations reveal if LLM could gen-
erate consistent and correct responses under minor surface level changes (L1 et al.|[2022). Mutation
and paraphrase are adapted in spirit from ReCode’s robustness benchmark (Wang et al., 2022).

Under review as a conference paper at ICLR 2026

Mutation. To assess whether LLMs are robust to superficial textual noise, mutation evolu-
tion applies small perturbations—such as word-scrambling, random-capitalization, and character-
noising—that preserve the underlying problem semantics. Formally, let x € T" denote the original
problem prompt in the text space 7'. Mutation evolution applies a perturbation functione; : T — T
such that the mutated prompt z,,,,,+ = €1 (x) preserves the original semantics:

Trmut = €1(T), T, Tput €T (7
where €; injects textual noise without altering the problem’s underlying meaning.

Paraphrase. Paraphrase evolution aims to evaluate whether LLMs can generalize to diverse sur-
face realizations of the same problem. In this setting, prompts are reworded textual expression but
preserve semantics. Formally, let x € T be the original prompt. We define a paraphrasing function
€ : T — T such that:

Lpar = 62(37)3 T, Tpar € T ®)

where x,,,, is a semantically equivalent but textually different paraphrase of .

3.2.1 METRIC—ROBUSTNESS RELATIVE ACCURACY DROP

Once we perturb a prompt without changing its semantics, what fraction of previously-solved tasks
remain solved? To answer this question and differentiate robustness with memorization, for each
semantic-preserving transformation p € {mut, par} (mutation/paraphrase), we define the Robust-
ness Relative Accuracy Drop:

Ace(Tori) — Ace(Tp)
Acc(Ton)
Here, Acc(-) denotes Pass@1 on the indicated task set RAD,, = 0 (high robustness)

when semantic-preserving changes do not hurt accuracy and increases toward 1 as performance
degrades (low robustness).

RAD, = max (0, > ., RAD, € [0,1]. 9)

3.3 FINE-TUNING METHODS

To investigate the memorization phenomenon, we use the original tasks in MBPP+ and BIG-
CODEBENCH for ﬁne-tunin More training details regarding SFT/RL can be found at

3.3.1 SUPERVISED FINE-TUNING

Supervised Fine-tuning adapts a pre-trained model to a specific task by training it on a labeled
dataset, teaching it to predict the correct label for each input. In our setup, coding problems serve as
the inputs, while code solutions act as the corresponding labels. However, overfitting occurs when
the model fits the training data too closely, reducing its ability to generalize to unseen tasks. This
is typically indicated by a rise in validation loss where model begin to memorize training examples.
Therefore, we distinguish between early-stage and late-stage memorization by the checkpoint where
the loss on the validation set begins to increase. We select such checkpoint for evaluation to
distinguish memorization from overfitting.

3.3.2 REINFORCEMENT LEARNING

Reinforcement Learning enhances fine-tuning efficiency. A leading method is Proximal Policy Opti-
mization (PPO)(Schulman et al.|[2017), which alternates between sampling data through interaction
with the environment, and optimizing a surrogate” objective function using stochastic gradient as-
cent. We utilize the same model architecture for the actor, critic, and reference models for simplicity,
and define the reward function based on the correctness of the generated code. Compared to other
reinforcement learning methods like DPO (Rafailov et al., [2024), we suggest that using accuracy
as the reward function offers a more direct and efficient optimization path. We evaluate using the
checkpoint that achieves the highest validation reward.

'For clarity, both SFT and PPO are initialized from the same base model and trained independently; PPO is
not performed on top of an SFT checkpoint.

Under review as a conference paper at ICLR 2026

4 EXPERIMENT SETUP

4.1 DATASETS

‘We conduct our evaluation on two widely-adopted code generation benchmarks: MBPP+ (Liu et al.,
2023) and BIGCODEBENCH (Zhuo et al., [2024).

Dataset Statistics. MBPP+ contains 378 tasks, and BIGCODEBENCH comprises 1140 tasks. We
use 4:1 train/test split for fine-tuning. For models without fine-tuning, we use the complete set of
benchmark tasks for evaluation. For models that undergo SFT and PPO, we train on the training
split and evaluate on the test split. Due to the small size of MBPP+ test split (n = 78), estimation
on this split may be imprecise and directional, we use BIGCODEBENCH to explore the impact of
fine-tuning strategies on memorization.

Task Generation. For each original task, we generate one perturbed variant for each of code
rewriting, mutation and paraphrase. More about the generation process is given in

4.2 MODELS

In this paper, we conduct the scale-up experiments on Qwen-2.5 series (Hui et al.| [2024), Qwen-
2.5-Coder series (Qwen et al.|[2025), Llama-3.1 series (Dubey et al., 2024)) and Llama-4 series (Al
2024). For fine-tuning, we choose Qwen-2.5-7B, and Qwen-2.5-Coder-7B. All training and infer-
ence were conducted on a server equipped with 4 NVIDIA A100 GPUs (80GB), with a total com-
putational budget of approximately 40 GPU hours, using PyTorch and HuggingFace Transformers.

5 RESULT ANALYSIS

5.1 MEMORIZATION ANALYSIS ON INSTRUCT MODELS

Memorization does not increase with larger models and in many cases decreases as they scale.
Across Qwen2.5 Instruct and its Coder Instruct families, scaling is associated with lower RAD ey
and hence lower MRI. On MBPP+ (see[Figure 2a] and [Figure 2b), Qwen-Instruct’s MRI falls from
0.0722 at ©.5B to 0.0113 at 14B, reaching 0.0000 at 32B, driven by a decrease in RADy,, from
0.2697 — 0.0414 — 0.0000. A similar pattern holds for Qwen-Coder (MRI 0.0615 — 0.0313 —
0.0354 as RAD,y, goes from 0.2663 — 0.0896 — 0.0993). Notably, Sim(7yew) does not uniformly
decline with scale (e.g., Qwen-Instruct: 0.2678 at @.5B — 0.3369 at 32B), indicating that larger
models may continue to reuse surface patterns; however, because their failures under semantic shifts
largely vanish, such reuse is not harmful and thus produces much lower MRI.

MBPP+ BigCodeBench

Model

Sim(Tew) (1) RADwy (1) MRI()) Sim(Tm) (1) RADiew (1) MRI(])
Llama-3.1-8B-Instruct 0.1486 0.0133 0.0020 0.2132 0.4444 0.0947
Llama-3.1-70B-Instruct 0.1518 0.0000 0.0000 0.2404 0.3676 0.0884
Llama-3.1-Instruct Series (mean) 0.1502 0.0067 0.0010 0.2268 0.4060 0.0916
Llama-4-Scout-17B-Instruct (16E) 0.1446 0.0160 0.0023 0.2343 0.3909 0.0916
Llama-4-Maverick-17B-Instruct (128E) 0.2669 0.0307 0.0082 0.2357 0.3953 0.0932
Llama-4-Instruct Series (mean) 0.2057 0.0234 0.0053 0.2350 0.3931 0.0924

Table 1: Memorization risk for Llama-3.1 and Llama-4 instruct models. MRI persists in harder tasks
(BIGCODEBENCH), as RAD.y, stays high even as Sim (7) is comparable.

On BIGCODEBENCH (see [Figure 2¢|and [Figure 2d), the effect from scaling up is milder and some-
times non-monotonic. Qwen-Instruct’s MRI drops from 0.1740 (@.5B) to 0.0841 (14B) but in-
creases to 0.1143 at 32B, with RADy,, trending from 0.6574 — 0.3694 — 0.3865. On the other
hand, Qwen-Coder shows a steadier decline (0.1778 — 0.1178 from @.5B—32B) with relatively
flat Sim(7rey). Overall, scale reduces memorization primarily by improving resistance to semantic

Under review as a conference paper at ICLR 2026

0.40 0.40
—o— SiM(Trew)
RAD, 1
0.35 row 0.35 T
<ot MRI(RADjey X Sim(Trew) 7 /./
- 0.30 i
I | / L

—e— Sim(Trew)
RADrew
=+ MRI(RADyey X Sim(7rew)

Score on MBPP+
o 1)
N N
S &
.
Score on MBPP+
o 1)
N N
S &
'\

0.15 0.15
0.10 0.10
005 005 | [T ——
000 L Ty - 0.00
0.58 1.58 3B 78 14B 328 0.58 1.5 3B 78 14B 328
Model Size (Qwen-2.5 Instruct series) Model Size (Qwen-2.5 Coder Instruct series)
(a) Qwen2.5 Instruct on MBPP+ (b) Qwen2.5 Coder Instruct on MBPP+
0.7 0.7
—o— Sim(Trew) —o— SiIM(Trew)
06 RADrew 06 RADrew
a++ MRI(RAD ey X Sim(Trew) : <o MRI(RAD ey X Sim(Trew)
{:E) 0.5 § 0.5
Q Q
o o
3 3
8 04 S 0.4
[¢] o
2 2 .
2 0.3 e 03 —_—
c 0. 13 . c 0.
5] —— 5]
b [/ * / o
g ? T g
® 02 & 02
P s e P I Y R N R et
0.0 0.0
0.5 1.58B 3B 7B 14B 328 0.5 1.58 3B 7B 14B 328
Model Size (Qwen-2.5 Instruct series) Model Size (Qwen-2.5 Coder Instruct series)
(c) Qwen2.5 Instruct on BIGCODEBENCH (d) Qwen2.5 Coder Instruct on BIGCODEBENCH

Figure 2: Scaling trends in MRI across Qwen-2.5 Instruct vs. Coder on MBPP+ and BIGCODEBENCH.

shifts (RADe,), while surface-form similarity can remain high. The gains are pronounced on sim-
pler tasks (MBPP+) and partially eroded on harder ones (BIGCODEBENCH); on BIGCODEBENCH,
the non-zero MRI is explained by persistently high RAD,,, with roughly unchanged Sim(7T;cw)-

We also evaluate on Llama families (see[Table T). While Llama 3.1 exhibit similarly low MRI as
scale increases, Llama 4 E| shows comparable MRI on both dataset. On MBPP+, the MRI from
Llama-3.1 (8B/70@B) declined in small degree (0.0020 — 0.0000), and Llama-4 models are near zero
(0.0023 and 0.0082); on BIGCODEBENCH, Llama-3.1 shifts little (0.0947 — 0.0884), and Llama-4
remains comparably low but non-zero (0.0932 and 0.0916). These results reveal a task-dependency
on harmful memorization: on easier problems, larger Llama models effectively drive RAD,e, — 0
(hence negligible MRI) even when Sim(7yey) is moderate, whereas on BIGCODEBENCH the non-
zero risk is dominated by persistent RAD,.,, = 0.4060 for Llama 3.1 series and 0.3931 for Llama 4
series at similar similarity levels.

5.1.1 ADDITIONAL FINDINGS

Memorization declines rapidly on simpler tasks but persists on more difficult ones. On the
introductory-level tasks in MBPP+ (see [Figure 2a] and [Figure 2b)), memorization risk (MRI) de-
creases notably as models scale up. For instance, for Qwen-2.5-Instruct’s MRI falls from 0.0722 at
0.5B parameters to effectively zero at 32B. Conversely, on the more challenging BIGCODEBENCH
(see|Figure 2c|and [Figure 2d), MRI values remain significant even at large scales (0.1178 for Qwen-
2.5-32B-Instruct). This discrepancy shows that while larger models better capture underlying se-
mantics changes, they do not completely eliminate memorization, especially in scenarios of chal-
lenging tasks that demand deeper reasoning.

The two Llama-4 variants we evaluate are MoE models with similar per-token activated compute; their
difference is mainly capacity (number of experts) rather than dense compute scaling.

Under review as a conference paper at ICLR 2026

Coder models encourages code reuse but does not substantially increase memorization.
Coder models yield higher Sim(7y) than their instruction-only counterparts. For instance, on BIG-
CODEBENCH, Qwen-2.5-Coder series scores 0.3237 £ 0.0086 vs. 0.2670 &+ 0.0268
for the instruction-only variant (mean % SD over 6 seeds). However, RAD,, remains
comparable across these variants, translating to only a slight increase in MRI (0.1367 + 0.0224
vs. 0.1142 + 0.0247, mean =+ SD over 6 seeds). This pattern suggests code-focused pre-training
promotes superficial reuse of training data without significantly increase harmful memorization.

5.2 IMPACT OF FINE-TUNING STRATEGIES ON MEMORIZATION

shows notable differences in memorization across different fine-tuning strategies on Qwen-
2.5-7B and Qwen-2.5-Coder-7B on BIGCODEBENCH.

—o— Acc(Ton) SiM(Tre) —#— RADrey —#— MRI
SFT improves accuracy but introduces 045 |7 —
high memorization risk. Models fine- 00 \-\.

2.5-7B-SFT, accuracy was boosted from g %
0.3158 — 0.3772 on BIGCODEBENCH
and increasing from 0.3684 — 0.4079 on
the coder counterpart. However, for both
Qwen-2.5-7B-SFT and Qwen-2.5-Coder- 0-10

7B-SFT, these improvements come with SET Base PPO SFT Base PPO
significant increases in memorization, as (a) Qwen 2.5 7B (b) Qwen 2.5 Coder 7B

indicated by much higher MRI scores Figure 3: Effect of fine-tuning on Qwen-2.5-7B (base and
(e.g. 0.0799 — 0.1747 for Qwen-2.5- Coder) on BIGCODEBENCH. SFT raises Acc(7ori) but also in-
7B-SFT and 0.1392 — 0.1921 on for creases Sim(7rew) and RADyey, inflating MRI; PPO preserves
Qwen-2.5-Coder-7B-SFT). These trends or modestly improves accuracy while keeping RADrew low,
reveals that SFT enhances surface-level yielding a better risk—accuracy trade-off. Checkpoints selected
accuracy at the expense of genuine gen- for SFT and PPO follows rules in subsection 3.3 Dataset

eralization. statistics can be found in

o
@ 0.25
0.20

;\
—_—

0.15

tuned via SFT consistently achieve accu- \
0.35 .
racy gains on original tasks. For Qwen- \7

PPO balances accuracy improvements and memorization risk. Across both variants, PPO pre-
serves baseline-level or higher accuracy while sharply reducing memorization risk relative to SFT.
On Qwen-2.5-7B, accuracy moves from 0.3158 — 0.3509 (PPO) vs 0.3772 (SFT), with MRI
0.0799 — 0.0795 (PPO) vs 0.1747 (SFT); Similar trend was revaled by Qwen-2.5-Coder-7B, where
accuracy is 0.3684 — 0.3728 (PPO) vs 0.4079 (SFT), with MRI 0.1392 — 0.1336 (PPO) vs 0.1921
(SFT). Overall, PPO yields a better risk—accuracy trade-off by keeping MRI near or below base
levels while offering milder accuracy gains, in contrast to SFT’s larger accuracy improvements ac-
companied by substantially higher MRI.

Implications for Fine-Tuning Decisions. The choice between SFT and reinforcement-based ap-
proaches such as PPO is ultimately determined by how one prioritizes the trade-off between accu-
racy and memorization risk. If maximizing accuracy is the priority and the risks associated with
memorization are acceptable, then SFT remains the optimal strategy. However, in settings where
generalization and minimizing memorization risk are critical, PPO provides a better balance by
offering modest accuracy improvements while considerably reducing memorization.

5.3 ROBUSTNESS TO SEMANTIC-PRESERVING PERTURBATIONS

We differentiate from memorization by using two semantic-preserving perturbations—mutation and
paraphrase—as reference baselines, and we quantify consistency under these baselines with RAD;
our primary analysis remains memorization via semantics-altering rewriting and MRI.

Mutation remains more challenging Across BIGCODEBENCH, mutation induces a moderate
RAD while paraphrase exhibits a milder influence on model accuracy: averaged over all models,
RADyu = 0.20 £ 0.12 and RAD, = 0.06 % 0.04, compared to a much larger semantics-altering
rewriting drop of RADy, = 0.46 & 0.09. On MBPP+, both mutation and rewriting are modest

Under review as a conference paper at ICLR 2026

(RADyy = 0.10£0.08, RADyey, = 0.1020.09), and paraphrase is essentially invariant (RADp,, =
0.01 £ 0.01). These results confirm that our primary memorization analysis (via rewriting and
MRI) targets a qualitatively different—and much stronger—source of variance than same-semantics
perturbations.

Scaling helps robustness to mutation; coder models show higher sensitivity to mutation on
harder tasks. Mutation accuracy drop decreases with model size on both benchmarks, while para-
phrase remains near-zero with small fluctuations at the high end. On BIGCODEBENCH, coder mod-
els are the most mutation-sensitive (e.g., Qwen-2.5-coder avg. RADp,,, = 0.25 4 0.12) versus their
instruction counterparts (0.20+0.13), with Llama families lower still (Llama-3.1 RAD,,, = 0.1050,
Llama-4 RADp, = 0.1206). On MBPP+, absolute drops are smaller for all families; Llama-4
shows the lowest RAD under mutation (RADy,,, = 0.0578). Paraphrase occasionally yields zero
or even negative drops (i.e., accuracy improves), consistent with minor wording changes sometimes
helping the model parse constraints.

Model MBPP+ BigCodeBench

Ace(Toi) (1) RADmu () RADpr () RADrwew (1) Ace(Ton) (1) RADmu({) RADpur () RADrew (1)
Qwen-2.5 0.5B-Instruct 0.4021 0.2763 0.0000 0.2697 0.0947 0.4352 0.0000 0.6574
Qwen-2.5-1.5B-Instruct 0.5767 0.2248 0.0000 0.2110 0.2281 0.2115 0.0000 0.5808
Qwen-2.5-3B-Instruct 0.6243 0.1144 0.0000 0.1017 0.3132 0.1989 0.0448 0.4734
Qwen-2.5-7B-Instruct 0.6852 0.0463 0.0000 0.0849 0.3798 0.1409 0.0878 0.4827
Qwen-2.5-14B-Instruct 0.7037 0.0338 0.0000 0.0414 0.3895 0.0631 0.0608 0.3694
Qwen-2.5-32B-Instruct 0.7513 0.0106 0.0000 0.0000 0.4404 0.1474 0.0757 0.3865
Qwen-2.5-Instruct (mean + SD) 0.62+0.12 0.12+0.11 0.00+£0.00 0.12+£0.10 031+0.13 020+0.13 0.04+£0.04 049=£0.11
Qwen-2.5-coder-0.5B-Instruct 0.4471 0.2367 0.0000 0.2663 0.1088 0.4677 0.0000 0.5484
Qwen-2.5-coder-1.5B-Instruct 0.5952 0.1378 0.0000 0.1778 0.2465 0.2954 0.0391 0.5196
Qwen-2.5-coder-3B-Instruct 0.6402 0.0909 0.0000 0.1074 0.3579 0.2304 0.0686 0.4804
Qwen-2.5-coder-7B-Instruct 0.7196 0.0662 0.0294 0.1140 0.4088 0.1803 0.1073 0.4549
Qwen-2.5-coder-14B-Instruct 0.7381 0.0394 0.0143 0.0896 0.4675 0.1463 0.0938 0.3846
Qwen-2.5-coder-32B-Instruct 0.7725 0.0171 0.0000 0.0993 0.4772 0.1857 0.1085 0.3695

Qwen-2.5-Coder-Instruct (mean = SD) ~ 0.65+£0.12 0.10£0.08 0.01 £0.01 0.14+£0.07 034+0.14 0254+0.12 0.07+0.04 0.46=+0.07

Llama-3.1-8B-Instruct 0.5529 0.1340 0.0000 0.0133 0.3079 0.1595 0.0513 0.4444
Llama-3.1-70B-Instruct 0.6984 0.0795 0.0189 0.0000 0.4175 0.0504 0.0399 0.3676
Llama-3.1-Instruct (mean) 0.6257 0.1068 0.0095 0.0067 0.3627 0.1050 0.0456 0.4060
Llama-4-Scout-17B-Instruct (16E) 0.6614 0.0200 0.0040 0.0160 0.4061 0.1058 0.0670 0.3909
Llama-4-Maverick-17B-Instruct (128E) 0.7751 0.0956 0.0375 0.0307 0.4860 0.1354 0.1119 0.3953
Llama-4-Instruct (mean) 0.7183 0.0578 0.0208 0.0234 0.4461 0.1206 0.0894 0.3931
All models (mean + SD) 0.65+0.11 0.10£0.08 0.01 £0.01 0.10£0.09 035+£0.12 020£0.12 0.06+0.04 0.46 £ 0.09

Table 2: Robustness under semantic-preserving mutation and paraphrase versus semantics-different
rewriting. Mutation induces moderate drops; paraphrase is nearly invariant; rewrites are most dis-
ruptive—especially on BIGCODEBENCH—suggesting harmful memorization beyond surface-level
robustness. The final row reports column-wise unweighted mean =+ sample SD across 16 modelsE]

6 CONCLUSION AND FUTURE WORKS

In this paper, we reframed memorization in code generation as (1) exhibit high similarity to the
golden solution of original tasks and (2) lead to performance drops under semantically modified vari-
ants. We measured such memorization with code rewriting—which preserves surface form while
changing task semantics—and the Memorization Risk Index (MRI) that multiplies solution simi-
larity with the relative accuracy drop (RAD) under rewriting. This design isolates harmful memo-
rization from benign reuse. Our experiments on MBPP+ and BIGCODEBENCH show: (i) harmful
memorization generally decreases with model scale on simpler tasks, (ii) persists more on harder
tasks, and (iii) SFT raises accuracy but inflates MRI, while PPO delivers a better risk—accuracy
trade-off. Taken together, these findings clarify when errors stem from harmful memorization rather
than generalization and motivate the following next steps: (a) mitigation approach: further research
is needed for reducing the impact of memorization. (b) evaluation transferability: while our current
evaluation metrics are tailored for code generation, exploring their applicability to other domains,
such as mathematical reasoning, could provide valuable insights.

3Mean is the unweighted arithmetic average computed per column across models; SD is the sample standard
deviation (unbiased, n—1 denominator). Values are rounded to two decimals.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our code rewriting, mutation and paraphrase pipeline is guided by ethical principles to ensure
responsible outcomes.

(1) Data: Our dataset is constructed from MBPP+ and BIGCODEBENCH dataset, which guarantees
ethical fairness. We actively work to eliminate any harmful or offensive content from the code
rewriting, mutation and paraphrase variant datasets to mitigate potential risks.

(2) Responsible Usage and License: The use of the code rewriting, mutation and paraphrase variant
datasets is intended solely for evaluating memorization in LLM code generation tasks. We encour-
age the responsible use of those datasets for educational and scientific purposes, while strongly
discouraging any harmful or malicious activities.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have illustrated the experiment details in the appendix,
such as task generation prompts in[Appendix B] training details in[Appendix Fland evolved-task gen-
eration configurations in For the dataset and code repository, all evolved tasks and the
prompts used during generation will be released publicly upon publication, ensuring reproducibility
and facilitating future research.

REFERENCES

Meta Al Introducing llama 4: Advancing multimodal intelligence, 2024. URL https://ai.meta.
com/blog/llama-4-multimodal-intelligence/.

Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. Traces of memorisation in large language
models for code. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE 24, pp. 1-12. ACM, April 2024. doi: 10.1145/3597503.3639133. URL
http://dx.doi.org/10.1145/3597503.3639133,

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet| 2025. Accessed: 2025-09-18.

Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
pitfalls of memorization: When memorization hurts generalization, 2024. URL https://arxiv.
org/abs/2412.07684.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Eval-
uating and testing unintended memorization in neural networks, 2019. URL https://arxiv.
org/abs/1802.08232.

Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. Nlperturbator: Studying the robustness of code
llms to natural language variations, 2024. URL https://arxiv.org/abs/2406.19783,

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Nuo Chen, Qiushi Sun, Jianing Wang, Ming Gao, Xiaoli Li, and Xiang Li. Evaluating and en-
hancing the robustness of code pre-trained models through structure-aware adversarial samples
generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association

10

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
http://dx.doi.org/10.1145/3597503.3639133
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2406.19783
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2026

for Computational Linguistics: EMNLP 2023, pp. 14857-14873, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023 findings-emnlp.991. URL
https://aclanthology.org/2023.findings-emnlp.991/.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models, 2024.
URL https://arxiv.org/abs/2402.15938.

Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ila R Fiete. Uncovering latent
memories: Assessing data leakage and memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and Robert
West. Sok: Memorization in general-purpose large language models, 2023. URL https://
arxiv.org/abs/2310.18362.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.
org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using llms to uncover memorization
of llms. arXiv preprint arXiv:2403.04801, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022. URL |https://arxiv.org/abs/2211.11501.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abql158. URL |http://dx.doi.org/10.1126/science.abql158.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuanjing Huang, and Xipeng Qiu. Scaling laws
for fact memorization of large language models, 2024. URL https://arxiv.org/abs/2406.
15720,

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
pirical study on github copilot, 2023. URL https://arxiv.org/abs/2302.00438.

11

https://aclanthology.org/2023.findings-emnlp.991/
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2211.11501
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2302.00438

Under review as a conference paper at ICLR 2026

OpenAl. Gpt-5. https://openai.com, 2025. Large Language Model.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6n Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Aneesh Pappu, Billy Porter, Ilia Shumailov, and Jamie Hayes. Measuring memorization in rlhf for
code completion, 2024. URL https://arxiv.org/abs/2406.11715.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

12

https://openai.com
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.11715

Under review as a conference paper at ICLR 2026

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
eration capabilities of language models, 2024. URL https://arxiv.org/abs/2403.04811.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Sourcegraph. Sourcegraph cody. https://sourcegraph.com/cody, 2024. Accessed: 2024-05-06.

Robin Staab, Mark Vero, Mislav Balunovié, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv preprint arXiv:2310.07298, 2023.

Tabnine. Tabnine. https://www. tabnine.com, 2024. Accessed: 2024-05-06.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shiqi Wang, Li Zheng, Haifeng Qian, Chenghao Yang, Zijian Wang, Varun Kumar, Mingyue Shang,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. 2022.
doi: 10.48550/arXiv.2212.10264. URL https://arxiv.org/abs/2212.10264.

Zhepeng Wang, Runxue Bao, Yawen Wu, Jackson Taylor, Cao Xiao, Feng Zheng, Weiwen Jiang,
Shanggian Gao, and Yanfu Zhang. Unlocking memorization in large language models with dy-
namic soft prompting, 2024. URL |https://arxiv.org/abs/2409.13853.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2024.
URL https://arxiv.org/abs/2410.23123.

Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and David Lo.
Unveiling memorization in code models. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE 24, pp. 1-13. ACM, April 2024. doi: 10.1145/
3597503.3639074. URL http://dx.doi.org/10.1145/3597503.3639074.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Riihle, Andrew Paverd, Olga
Ohrimenko, Boris Kopf, and Marc Brockschmidt. Analyzing information leakage of updates to
natural language models. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pp. 363375, 2020.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://sourcegraph.com/cody
https://www.tabnine.com
https://arxiv.org/abs/2212.10264
https://arxiv.org/abs/2409.13853
https://arxiv.org/abs/2410.23123
http://dx.doi.org/10.1145/3597503.3639074

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of a large language model (OpenAI’s GPT-5) during the preparation of this
work. Specifically:

* Task Generation: GPT-5 was employed to assist in generating tasks for code rewriting,
mutation, and paraphrase. The role of the LLM in this context was restricted to providing
task generation; all methodological design, filtering, and integration into our pipeline were
carried out by the authors.

* Writing Assistance: GPT-5 was additionally used as a language aid for correcting gram-
mar and improving clarity in the writing of the manuscript. The substantive content, re-
search ideas, technical contributions, and overall narrative were conceived and written by
the authors without reliance on the LLM.

Beyond these two use cases, no part of the research design, analysis, or interpretation depended on
LLM assistance.

B PROMPTS FOR TASK GENERATION

We provide the full instruction prompts used to generate each evolution variant (mutation, para-
phrasing, and code-rewriting) with GPT-5. For each evolution type, the system and user messages
are shown as passed to the API.

B.1 CODE-REWRITING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

\ J

Code-Rewriting Evolution User Prompt

User:

Given a coding task description (#The Given Prompt#) and its canonical solution (#Code#),
perform the following steps:

1. Modify the canonical solution to create #New Code# by altering only x*xONE*xx*x core
logic or structure. Do not add additional 'if statements' to the code. Avoid
superficial changes like variable renaming. Ensure the modified code has different

semantics in a way that *xxexpected difficulty equivalent to the original problem*xx.
Write a #New Entry Point# to the updated code. This function name must be very
similar or the same as the old entry point, and reflect the modified code's logic
changes if using #01ld Entry Point# could mislead the programmer on the
#Rewritten Prompt#.
2. Update #The Given Prompt# to create #Rewritten Prompt#. The new prompt must:”
- Match the original's ***input signaturex** exactly, but the output
format could be different a little bit.
- Reflect the modified code's logic changes explicitly.
Retain the original phrasing structure and ***avoid unnecessary rephrasingx**
in a way that the #Rewritten Prompt# syntactically very similar
to the #The Given Prompt#.

3. If any mismatch arises between new code and new prompt, revise either one
(without adding more changes) so all constraints in Steps 1-2 are simultaneously
satisfied.

Format your response exactly as:

,
\

Under review as a conference paper at ICLR 2026

New Code:
[code]

Explanation:
[logic changes]

Rewritten Prompt:
[updated description]

0ld Entry Point:
[original function name]

New Entry Point:
[updated function name]

B.2 CODE-REWRITING EVOLUTION LLM JUDGE

System Prompt

System: You are an expert code reviewer. Your task is to evaluate whether an evolved coding task maintains
appropriate quality standards in terms of prompt-code alignment and difficulty equivalence.

Code-Rewriting Evolution LLM Judging Prompt

User: Please evaluate the quality of this evolved coding task by analyzing two key aspects:

0riginal Task:

Prompt: {original_prompt}
Code: {original_code}
*xEvolved Task:=**

Prompt: {rewritten_prompt?}
Code: {rewritten_code}

xEvaluation Criteria:x=
1. **Prompt-Code Alignment*x: Does the new prompt accurately describe what the new code
does?
- Are the input/output specifications consistent?
- Does the prompt clearly communicate the expected behavior?
- Are there any ambiguities or mismatches?

2. *xDifficulty Equivalence*x: Is the evolved task of similar difficulty to the original?
- Does it require similar algorithmic thinking?
- Is the complexity level maintained (not significantly easier or harder)?
- Does it test similar programming concepts and skills?

**Response Format:xx
Provide your evaluation in the following format:

Alignment Score: [1-5, where 5 = perfect alignment, 1 = major misalignment]
Alignment Reasoning: [Brief explanation of why the prompt and code align or don't align]

Difficulty Score: [1-5, where 5 = equivalent difficulty, 3 = acceptable variation, 1 =
significantly different]
Difficulty Reasoning: [Brief explanation of difficulty comparison]

Overall Recommendation: [ACCEPT/REJECT]
Overall Reasoning: [Brief summary of your decision]
Please be thorough but concise in your evaluation.

\ J

15

Under review as a conference paper at ICLR 2026

B.3 MUTATION EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

J

Mutation Evolution User Prompt

User: Given a coding task description ”The Given Prompt” and its canonical solution ”Code”, perform the
following steps:

¢ X word-scrambling operations
* Y random-capitalization operations
¢ Z character-noising operations

Definitions (one “operation” = one change):

e **Word scrambling**: choose a single word (alphabetic token) and randomly shuffle its internal
letters.

¢ **Random capitalization**: flip the case of one letter (upper to lower or lower to upper) anywhere
in the text.

 Character noising: insert, delete, **or** substitute one character (letter, digit, or punctua-
tion).
Please gives your answers to "Mutation Prompt” without any additional text or explanation.

Response: Format your response as:

Mutation Prompt:
[Updated task description]

NOTE: The values X, Y, and Z — representing the number of word-scrambling, random-capitalization, and
character-noising operations respectively — are automatically computed based on the length of the original
prompt. Specifically, we apply a total of ~ 4 noise operations per 5 words. We first ensure at least one
operation of each type is included (i.e., X, Y, Z > 1), then randomly distribute the remaining operations
among the three types. This strategy ensures a consistent noise budget proportional to the prompt’s length
while maintaining diversity in corruption types.

\

B.4 PARAPHRASING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

Paraphrasing Evolution User Prompt

User: Given a coding-task description "The Given Prompt”, produce a paraphrased version called ”Para-
phrased Prompt”.

Guidelines:

1. Keep the task’s meaning, requirements, and input/output specifications identical.

2. Refresh the wording: use synonyms, change sentence order, or rephrase clauses to add light lin-
guistic “noise,” but do **not** drop or add information.

3. Preserve any code-related tokens (e.g., variable names, file names, I/O examples) exactly as they
appear unless the original prompt explicitly marks them as placeholders.

4. Retain the original structural cues—for example, if the prompt begins with *Write a Python func-

tion. .. , your rewrite should also begin with that instruction, albeit rephrased

Please gives your answers to “Paraphrased Prompt” without any additional text or explanation.
Response: Format your response as:

\ J

16

Under review as a conference paper at ICLR 2026

Paraphrased Prompt:
[Updated task description]

Additionally, we ensured the validity of test cases for all rewritten tasks across both datasets, and
validate each rewritten solution by making it pass its corresponding rewritten unit test. For MBPP+,
we reuse the official test case inputs and generate the expected outputs using the rewritten ground-
truth solutions, ensuring direct comparability. For BigCodeBench, we adopt the procedure outlined
in[Zhuo et al.| (2024), constructing test cases for each rewritten task based on their guidelines to guar-
antee consistency and correctness. We installed all packages required by both dataset for assessing
function correctness.

C EXAMPLES OF CLEARER PARAPHRASED PROMPTS

Mbpp/604

Original Prompt: Write a function to reverse words separated by spaces in a given string.
Paraphrased Prompt: Create a function that takes a string as input and returns the string
with all words, which are divided by spaces, reversed in order.

Mbpp/752

Original Prompt: Write a function to find the nth jacobsthal number.
https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ 0, 1, 1, 3, 5,
11,21, 43, 85, 171, 341, 683, 1365, 2731, ...

Paraphrased Prompt: Create a function that computes the nth Jacobsthal number. Refer
to https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ for more infor-
mation. The sequence begins as follows: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365,
2731, ...

Mbpp/753

| r
\

Original Prompt: Write a function to find minimum k records from tuple list.
https://www.geeksforgeeks.org/python-find-minimum-k-records-from-tuple-list/ - in this
case a verbatim copy of test cases.

Paraphrased Prompt: Create a function that retrieves the smallest k elements from a list
of tuples. Refer to https://www.geeksforgeeks.org/python-find-minimum-k-records-from-
tuple-list/ and use the provided test cases exactly as they are.

D EXAMPLES OF REGRESSED TASKS

We randomly selected 5 tasks from each of MBPP+ and BigCodeBench that PASSED in original
but FAILED in code_rewriting from the evaluation results in Qwen2.5-Coder-32B-Instruct. For each
task, we provide

* Original task prompt and its canonical solution

* Code_rewriting task prompt and the rewritten canonical solution

» Alignment and Difficulty analysis from GPT-5 to investigate (1) if the rewritten prompt
aligns with its rewritten solution; (2) whether the difficulty of rewritten task align with its
original version.

The following case studies confirms that such performance regression is not caused by the higher
difficulty on rewritten tasks.

17

Under review as a conference paper at ICLR 2026

MBPP+,

riginal, TASK 99

Write a function to convert the given

decimal number to its binary equivalent,
represented as a string with no leading
zeros.
assert

decimal_to_binary(8) '1000'

def decimal_to_binary(n):
return bin(n).replace("0b","")

o0
Alignment & Difficulty Analysis from GPT-5

the code’s b

tha Input/output tyr are cor

Difficulty:
milar

Both versions

Figure 4: Example of Task-99 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in

original but FAILED in code_rewriting.

MBPP+, original, TASK 224

Write a python function to count the number
of set bits (binary digits with value 1) in
a given number.

assert count_Set Bits(2) == 1

wun

def count_Set_Bits(n):
return bin(n)[2:].count('1")

(N J
Alignment & Difficulty Analysis from GPT-5
The code counts

> '10' - 1). The

ad of requir
identical concepts w

Figure 5: Example of Task-224 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in

original but FAILED in code_rewriting.

for

tl tent (int - str).)
1inor optional clarifications (e.g., assume non-negative integers; reversed string may begin

th no added

MBPP+, code_rewriting, TASK 99

Write a function to convert the given
decimal number to its binary equivalent,
represented as a string in reverse bit
order (least s ificant bit first).
assert decimal_to_binary_rev(8) ‘0001

wun

def decimal_to_binary_rev(n):
urn bin(n)[2:1[::-1]

the bi bin(n)
ith the

le L
‘0') don’t affect

. They require

MBPP+, code_rewritin TASK 224

Write a python function to count the number
of unset bits (binary digits with value 0)
in a given number's binary representation
(without leading zeros).

assert count_Unset Bits(2)

wnn

def count_Unset_Bits(n):
return bin(n)[2:].count('0")

integer

ch, com ty (0(k) over bit-length), and Python

comple

18

Under review as a conference paper at ICLR 2026

MBPP+, original, TASK 284

Write a function that takes in a list and
element and checks whether all items in the
list are equal to the given element.

assert check_element(["green", "orange",
"black", "white"], 'blue'’ False

def check_element(listl, element):
return all(v == element for v in listl)

Alignment & Difficulty Analysis from GPT-5

Alignment: e prompt explicitly states to compare
both the t and h list item vi
ing inpu

).lower()), which doesn’t m

Figure 6: Example of Task-284 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in

original but FAILED in code_rewriting.

MBPP+, gt

TASK 767

Write a python function to count the number
of pairs whose sum is equal to ‘sum’. The
funtion gets as input a list of numbers and
the sum,

assert get_pairs_count([1,1,1,1],2) == 6

def get_pairs_count(arr, sum_):
cnt =0
for n in arr:
cnt += arr.count(sum_ - n)
if sum_ - n n:
cnt -=1
return cnt / 2

Alignment & Difficulty Analysis from GPT-5

Alignment: Tt ompt explicitly a for or

© element, 0 es of 1 complement and su
(i, 1). It does not divide by 2, so each (i, j) and (

get_pair ount_ord 4([1,1,1,11, 12 matches
Difficulty
handling

use the same 0(n”) counting
1f-pairs). The evolved task te

Figure 7: Example of Task-767 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in

original but FAILED in code_rewriting.

MBPP+, code_rewriting, TASK 284

W

Write a function that takes in a list and
element and checks whether all items in the

list are equal to the given element when
compared case-insensitively (after
converting both to lowercase strings).
assert check_element_ci(["gr
ite"], 'blue')

“orange",
"black", "w

wan

def check_element_ci(listl, element):
target = str(element).lower()
return all(str(v).lower() == target for v
in listl)

omprehension ersion adds a minor

MBPP+, code_rewriting, TASK 767

wun

Write a python function to count the numb
of ordered pairs (i, j) with i j whose
sum is equal to ‘sum’. The funtion gets as
input a list of numbers and the sum,

assert get_pairs_count_ordered([1,1,1,1],2)

wun

def get_pairs_count_ordered(arr, sum_):
cnt =0
for n in arr:
cnt += arr.count(sum_ - n)
if sum_ - n
cnt
return cnt

j) with 1 # j summing to th . counts, for

hen the element e C t ding
The e r

Under review as a conference paper at ICLR 2026

MBPP+, original, TASK 279

Write a function to fin
number.
assert is_num_decagonal(3)

the nth decagona

def is_num_decagonal(n):

return 4 x n *x n - 3 * n

>0
Alignment & Difficulty Analysis from GPT-5

Alignment: The promp find the nth
is_num_dodecagonal(3

decagonal number”) ma

gonal vs. decagonal number

1 of form

Figure 8: Example of Task-279 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in

original but FAILED in code_rewriting.

BigCodeBench, original, T odeBench/1134

h of each file

reated files in the 't

with:

import os
import glob
import hashlib
ef task_func(source_dir
t 0s.path.exists(
FileNotFoundError(f

t 0s.path.exists
os.makedirs(t
fil [
for file_path in glob.glob(os
th open(file_p 'r') a
content f
hash_object
new_file p:
ith open(ne
outfile.write(f"{prefix}{
s .append(new_file_path)

asename(file_path))

digest()h\n

Alignment & Difficulty Analysis from GPT-5

—both matchi
subdirectorie

Figure 9:
PASSED in original but FAILED in code_rewriting.

MBPP+, code_rewritin TASK 279

wnn

Write a function to find the nth
dodecagonal number.

assert is_num_dodecagonal(3) =

wun

def is_num_dodecagonal(n):
return 5 * n *x n - 4 *n

the code’s formul - 4n and the t

L-number template P_k(n)=\frac{(k-

tion and im| entation effor the original.

deBench, cod riting, TASK BigCodeBench/1134

Computes the MD5 hash of each fi content in the
g with a p
in tar

to the original

overwritten.

he newly created files in the

tained code starting with:

source_dir, prefix='#Hash: '):

t hashlib
ask_func(source_dir, Hash: '):

‘{source_dir}'

for file_path in

with open(file_
content
hash_object

new_file_path
with open(n:

.path.join(source_dir, '*')):

shlib.md5(content.encode())
s.path.join(target_dir, os.path.basename(file_path))
file_path, 'w') as outfil,
tfile.write(f"{content}\n{prefix}{hash_object.hexdigest()}")
v_files.append(new

hashing, string

Example of Task-1134 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that

20

Under review as a conference paper at ICLR 2026

BigCodeBench, original, TASK BigCodeBench/16 BigCodeBench, code_rewriting, TASK BigCodeBench/16
‘.log' files in y to 2 .gz file and 3 3ackup @ s in ecified di ry and
named ‘logs_backup.tar.gz' and ecursivel e a lete the original

n for: FileNotFoundErr

the specified

th: d .
h to the kup file if logs are e e re E e ction sho output
found to backup E he path to the backup file if logs are found, otherwise returns a

und to p'.

, backup_dir='/path/to/backup

h/to/backu

import os
glo import glob
subprocess import subprocess
ef task_func(directory, backup_dir='/path/to/back f task_func(directory, b p h/to/backup'):
if not os.path ts(directory) if not
raise FileNotFoundError(f"'Dire y '{directory}' not found.") raise FileNotFoundError(f"Directory '{directory}' not found.")
f ob.glob(os.path. j ctory, '*.log')) log_files = glob.glob(os.path.join(ctory, '**', log'), recursive=Tr
if not log_files
return "No logs found to backup”
if not os _exists(backup_dir):
makedir up_dir)
backup_file = os.path.join(backup_dir, ‘logs_backup.tar. backup_file = os.path.join(backup_dir, 9 r
s.call([o, backup_file] + log_files) subprocess.call([', '-czvf', backup_file] + log_fil
r file in log_fil for file in log_files:
os.remove(file) 0s. remove(
return backup_file eturn back

[}
Alignment & Difficulty Analysis from GPT-5

Alignment: Th lved prompt correctl ecifies recursive backup of “.log” files and matches the code’s use of glob(..
same I/0 contract, same exception, backup location/name, and deletion of originals.

Difficulty: The change from flat to recursive matchi th recursive=True) is a minimal extension requiring the
ling, globbing, subprocess usage, file deletion). orithmic complexity and required skills are effectively

Figure 10: Example of Task-16 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

BigCodeBenc original, TASK BigCodeBench/330 BigCodeBench, code_rewriting, TASK BigCodeBench/330
Find the k largest numbers in a random nerated list Find the k smallest numbers in a random-g ted list
sing heapq. using heapq.
The function should output with: The function should output with:

tupl A tuple containing two 1lis tup A tuple containing two lists:

ated list of integers list[int The randomly generated list of int

with the s i ength. with the specifi

list[int t ound using heay list[int]: The k smallest numbers found usin
You should i r ting with: heapq.
o You should wri ontained code starting
import heap
import random import heapq
def task_func(list_length:5, k:int): import r

def task_func(list_length:5,

import heapq import heapq
import random import random
def task_func(list_length:5, k:int): def task_func(list_length:5, k:int):
numbers = [random.randint(0, 100) for _ 1 numbers = [random.randint(0, 100) for
range(list_length)] range(list_length)]
heapq.heapify(numbers) heapq.heapify(numbers)
largest_numbers = heapq.nlargest(k, numbers) largest_numbers = heapq.nsmallest(k, numbers)
return numbers, largest_numbers return numbers, largest_numbers

) @
Alignment & Difficulty Analysis from GPT-5

t numbers and r

Finding k smallest vs. k 3 and requires the same concepts and complexity (both effectively O(n log
rithmic thi

Figure 11: Example of Task-330 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

21

Under review as a conference paper at ICLR 2026

original, TASK BigCodeBench/59

d from the text of a Wik

utput with

es: The
title

inport wikipedia import wik
from wordcloud im c wordcloud import WordCloud
import t matplotlib.pyplot

c -f task_func(pa

e_title).content

p ured: {e}")
return No return None
Toud = W ().generate(text) wordcloud = WordCloud().g
.figure(figst 5)) plt.figure(figsize
mshow(wordcloud, interpolation: inear" plt. imshow(word
s('off') .axis('off')
plt.gca() g

) @
Alignment & Difficulty Analysis from GPT-5

Alignment: The code matches the evolved prompt by using wikipedia.summary(page_title) and returns a matp xes.Axes after plotting the
rd cloud. Input/output specs are followed, and the behavior is clear.

hange from full page content to summary does not alter the required concepts smplexity (same libraries, try/except,
). a ivalent in effor d gorithmic thinking.

Figure 12: Example of Task-59 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

'Black'
pattern

4 and a specific he res ould
5 @
be consist:

arting with: acro

from iter
from random import cho E from itertools import cycle
from random import cho
None) def k_func(n_colors, co , 'Green', L ‘', 'Purple'],

from itertools import cyc

from random import choice, see from itertools

def task_func(n_colors, colors D , 'Blue’, from random im

rng_seed=None) : k Green', ' 0 ‘Purple'],

seed(rng_seed) seed(rng_seed)
cle(colo colo cycle(colo
color_pattern = []
_ in range(n_colors): for i in range(n_colors):
color lor_cycle) choic rs color = choice(colors) if i
color_pattern.append(color) color_pattern.append(color)
return color_p return r_pattern

the e c use of ra ° i Lter f

random comple

Figure 13: Example of Task-868 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

22

Under review as a conference paper at ICLR 2026

E HARMLESS INTERNAL LOGIC MODIFICATIONS

We listed two representative cases from Llama3.1-8B-Instruct where a model has preserved all func-
tion and variable names yet altered only the internal implementation (e.g., swapping loops for com-
prehensions or changing search strategies), illustrating “harmless” syntactic similarity.

E.1 TAsk MBPP/18: LIST COMPREHENSION ;-; EXPLICIT LOOP

Model Answer in Original Set (list comprehension)

def remove_dirty_chars(string, second_string):
second_string_set = set(second_string)
filtered = [c for c in string if c not in second_string_set]
return ''.join(filtered)

Model Answer in Rewritten Set (explicit loop)
def remove_dirty_chars(string, second_string):
second_string_set = set(second_string)

result = []
for ¢ in reversed(string):
if ¢ not in second_string_set:
result.append(c)

return ''.join(reversed(result))

Here, the function name ‘remove_dirty_chars‘, parameters, lookup-set variable, and character vari-
able ‘c* all remain identical; only the comprehension is replaced by a two-step loop.

E.2 TASK MBPP/793: REVERSE-INDEX LOOKUP BINARY SEARCH

Model Answer in Original Set (slice + index)
def last(arr, x):
try:
return len(arr) - 1 - arr[::-1].index(x)
except ValueError:
return -1

Model Answer in Rewritten Set (binary search)
def last(arr, x):
low, high = @, len(arr) - 1
result = -1
while low <= high:
mid = (low + high) // 2
if arr[mid] == x:
result = mid
low = mid + 1
elif arr[mid] < x:
low = mid + 1
else:
high = mid - 1
return result

Again, ‘last’, ‘arr‘, and ‘x‘ are preserved; the lookup logic is simply swapped from a reverse-slice
search to an iterative binary-search routine.

F TRAINING DETAILS REGARDING SFT/RL

F.1 FINE-TUNING DETAILS

Framework and Compute. We adapted the Verl framework for supervised fine-tuning (SFT) and
Proximal Policy Optimization (PPO), using its PyTorch Fully Sharded Data Parallel (FSDP) backend
Experiments ran on a single machine (nnodes=1) with 2 GPUs (n_gpus_per_node=2). PPO rollouts
used the VLLM backend; optimization used AdamW.

23

Under review as a conference paper at ICLR 2026

Table 3: Compute and framework configuration

Item Setting

Framework Verl (PyTorch FSDP backend)
Nodes / GPUs nnodes=1, n_gpus_per_node=2
PPO rollout backend VLLM

Optimizer Adamw

Dataset and Prompting. Data followed Verl’s standard format and was exported as a . parquet
file with a 4:1 train/test split. Each problem description served as the prompt; the corresponding
code solution was the target response.

Table 4: Dataset summary

Aspect Details
Format .parquet (Verl standard)
Split 4:1 train:test

Input (prompt) Problem description
Target (response) Code solution
Prompt template ~ See quoted block above

The completed template we fed into the LLM was:

instruction_prefix = "Please provide a self-contained Python script that solves the
following problem in a markdown code block:"

response_prefix = "Below is a Python script with a self-contained function that solves
the problem and passes corresponding tests:"”

prompt_chat = [
{"role": "user", "content”: f"""\
{instruction_prefix}

{problem.strip()}

nnny
{"role": "assistant”, "content": f"""\

{response_prefix}

T Tpython

nnny

]

The problem is the description originally from the dataset, and we called the
tokenizer.apply_chat_template to the prompt_chat to get the model response.

F.1.1 SUPERVISED FINE-TUNING (SFT)

Default learning rate was 1 x 10~ for 20 epochs, with manual adjustments between 5 x 10~ and
1 x 1075 depending on model performance. We set max_prompt_length to 1024, batch size
to 64, and micro_batch_size_per_gpu to 8. The selected checkpoint (named model_name-SFT)
was the one immediately prior to observed overfitting, hence we can distinguish memorization from
overfitting.

Moreover, we choose the checkpoint at epoch 20 (named model_name-SFT-overfit) as the fully
overfitting epoch to measure the impact of overfitting to memorization.

F.1.2 PROXIMAL PoOLICY OPTIMIZATION (PPO)

Actor, critic, and reference models used identical architectures over 20 epochs. The reward was
binary: 1 if the generated response passed all test cases, else 0. We set max_prompt_length to 1024
and max_response_length to 512. Learning rates were 1 x 10~ for the critic and 1 x 1076 for the

24

Under review as a conference paper at ICLR 2026

Table 5: SFT hyperparameters

Parameter Value

Epochs 20

Learning rate Default 1 x 10~%; tuned 5 x 1076-1 x 10~°
max_prompt_length 1024

Batch size 64

micro_batch_size_per_gpu 8

save_freq
Checkpoint selection

after_each_epoch
Epoch immediately prior to overfitting

actor. We used batch size 64 with micro_batch_size_per_gpu 8, selecting the checkpoint with
the highest test reward (named model_name-PPO) to get the best performance.

Table 6: PPO setup and hyperparameters

Parameter Value

Architectures Actor/Critic/Reference identical
Epochs 20

Reward Binary (1 if all tests pass; else 0)
max_prompt_length 1024

max_response_length 512

Learning rate (critic) 1x107°

Learning rate (actor) 1x 1076

Batch size 64

micro_batch_size_per_gpu 8

save_freq 5

Checkpoint selection

Highest reward on validset

G EVOLVED-TASK GENERATION (GPT-5)

¢ API version: gpt-5-2025-08-07.
* Prompt template: shown in[Appendix B]

* Parameters: temperature: default; top-p: default; max-tokens 1080.

* Post-processing: regex clean-up.

* Budge: the estimated cost for generating one round of each evolution type (code rewriting, mu-
tation and paraphrase) for both MBPP+ and BigCodeBench is approximately 450 USD.

25

	Introduction
	Related Work
	Code Generation with LLMs
	Memorization in Code Generation

	Methodology
	Code Rewriting
	Metric-Memorization Risk Index

	Mutation and Paraphrase
	Metric—Robustness Relative Accuracy Drop

	Fine-Tuning Methods
	Supervised Fine-tuning
	Reinforcement Learning

	Experiment Setup
	Datasets
	Models

	Result Analysis
	Memorization Analysis on Instruct Models
	Additional Findings

	Impact of Fine-Tuning Strategies on Memorization
	Robustness to Semantic-Preserving Perturbations

	Conclusion and Future Works
	Use of Large Language Models (LLMs)
	Prompts for Task Generation
	Code-Rewriting Evolution
	Code-Rewriting Evolution LLM Judge
	Mutation Evolution
	Paraphrasing Evolution

	Examples of Clearer Paraphrased Prompts
	Examples of Regressed Tasks
	harmless internal logic modifications
	Task Mbpp/18: List Comprehension <-> Explicit Loop
	Task Mbpp/793: Reverse‑Index Lookup Binary Search

	Training details regarding SFT/RL
	Fine-Tuning Details
	Supervised Fine-Tuning (SFT)
	Proximal Policy Optimization (PPO)

	Evolved-Task Generation (GPT-5)

