

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMORIZE OR GENERALIZE? EVALUATING LLM CODE GENERATION WITH CODE REWRITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated exceptional code generation capabilities. However, there is a growing debate whether LLMs are mostly doing memorization (i.e., replicating or reusing large parts of their training data) versus generalization (i.e., beyond training data). Existing evaluations largely proxy memorization with surface/structural similarity, thereby conflating benign reuse of repeated code with harmful recall and neglecting task correctness under semantic variation. We define harmful memorization behaviorally as *failure at high similarity* and introduce a semantic perturbation *code rewriting*, which rewrites a semantically different answer at a similar difficulty level for a given coding task, then reverse-engineers a novel coding task. We further propose *Memorization Risk Index (MRI)*, a normalized score that combines two signals: (i) how similar the model’s answer for the rewritten task is to the original ground-truth solution, and (ii) how much performance drops from the original task to its rewritten counterpart. MRI is high only when both conditions hold—when the model outputs similar code but fails the perturbed task—thereby capturing harmful memorization rather than benign reuse of repeated code. Empirical evaluations on code generation benchmarks MBPP+ and BIGCODEBENCH reveal that (1) memorization does not increase with larger models and in many cases alleviates as they scale; (2) supervised fine-tuning (SFT) improves accuracy while introduces memorization; (3) reinforcement learning with proximal policy optimization (PPO) achieves a more balanced trade-off between memorization and generalization.

1 INTRODUCTION

Large language models (LLMs) have made incredible advances in automated code generation, and are rapidly becoming essential tools in software development (Sourcegraph, 2024; Tabnine, 2024; Team et al., 2023; Anthropic, 2025; Chen et al., 2021). Modern code-focused LLMs can achieve state-of-the-art performance on programming benchmarks (Rozière et al., 2024). For example, specialized models like Qwen-2.5 Coder (Hui et al., 2024) and Code Llama (Rozière et al., 2024) have pushed the boundaries of translating natural language into code. These advancements raise an important question: when do LLMs truly generalize to new programming tasks, and when are they merely reproducing memorized training examples?

Understanding memorization in code generation is critical. Existing evaluations largely measure memorization via surface or structural overlap (e.g., regurgitation audits, contamination filters, and entropy-based detectors) (Yang et al., 2024; Riddell et al., 2024; Dong et al., 2024), treating high similarity as evidence of memorization. This conflates benign reuse of repeated code (i.e. idioms, APIs) with harmful recall and, crucially, does not test whether the model solves the task under semantic variation.

To systematically study harmful memorization, we build on the intuition that performance gaps under semantic perturbations contribute to reveal whether a model is generalizing or harmful memorizing. If a model simply recalls solutions, even small semantic changes could cause large accuracy drops, often accompanied by high overlap with training-like code (Bayat et al., 2024). Concretely, we propose *code-rewriting*, which introduces semantic shifts to prompts while maintaining similar syntax, to investigate whether the success of a model comes from genuine reasoning or harmful memorization. To quantify these behaviors, we introduce Memorization Risk Index (MRI), a nor-

Figure 1: Our proposed Code Rewriting vs. Popular semantic equivalent perturbations. X denotes text and C denotes code. *Code rewriting* that creates semantically different tasks, first rewrite a new code solution C_{rew} from the origin solution C , then generating a new description X_{rew} based on C_{rew} . A judge agent will then choose to accept or reject the *code rewriting* task for quality assurance. *Mutation* and *paraphrase* that create semantically equivalent tasks, are included for robustness evaluation as a comparison to memorization. All perturbations are performed by GPT-5, shown as the ChatGPT logo. Generation prompts are in Appendix B.

malized score that combines two signals: (i) how similar the model’s answer for the *code rewriting* task is to the original ground-truth solution (combining both semantic and syntax level similarity), and (ii) how much performance drops from the original task to its *code rewriting* counterpart. MRI captures harmful memorization as *failure under high similarity* on code-rewriting tasks.

Terminology. In this paper, we use the term *memorization* to specifically denote *harmful memorization*: which we define as cases that (1) exhibit high similarity to the original solution and (2) lead to performance drops under semantically altered *code rewriting*. Unless otherwise stated, all subsequent uses of “memorization” follow this definition.

To differentiate our method from existing work in evaluating robustness (Chen et al., 2024; 2023; Mastropaolo et al., 2023; Wang et al., 2022), we also include two semantic-preserving perturbations, *mutation* and *paraphrase*, as reference baselines. We report Relative Accuracy Drop (RAD) to measure LLMs performance consistency under semantic-preserving perturbations. Our primary analysis still targets harmful memorization via the semantics-altering code-rewriting perturbation and MRI.

Our evaluation include coding benchmarks across different difficulty levels, from simpler problems in MBPP+ (Liu et al., 2023) to more difficult tasks in BIGCODEBENCH (Zhuo et al., 2024). Furthermore, we investigate the effect of post-training strategies by comparing Supervised Fine-Tuning (SFT) and Proximal Policy Optimization (PPO). Our results reveal the following trends: (1) **harmful** memorization does not increase with larger models and in many cases improves as they scale; (2) **harmful** memorization alleviates rapidly on simpler tasks but persists on more difficult ones; (3) SFT improves raw accuracy but substantially amplifies **harmful** memorization; (4) PPO achieves a more balanced trade-off, mitigating **harmful** memorization while maintaining competitive accuracy.

In summary, our work makes the following key contributions:

- We propose a novel **automated pipeline** for *code rewriting*, which rewrites a semantically different answer at a similar difficulty level for a given coding question, then reverse-engineers a novel coding question.

108 • We introduce MRI, a metric that captures harmful memorization as **failure under high similarity**
 109 on *code rewriting* tasks, rather than treating similarity alone as memorization.
 110 • We conduct a comprehensive empirical study across benchmarks and training strategies, providing
 111 insights into when LLMs memorize in code generation.
 112

113 **2 RELATED WORK**
 114

115 **2.1 CODE GENERATION WITH LLMs**
 116

117 Large Language Models (LLMs) have shown remarkable ability in automated code generation.
 118 Models such as ChatGPT (OpenAI et al., 2024), Qwen-Coder (Hui et al., 2024), and DeepSeek-
 119 Coder (Guo et al., 2024) have pushed the boundaries in the coding domain, notably with ChatGPT
 120 achieving state-of-the-art performance on challenging benchmarks such as BIGCODEBENCH (Zhuo
 121 et al., 2024), LiveCodeBench (Jain et al., 2024) and EvalPlus leaderboard (Liu et al., 2023). While
 122 LLM-based code generation models have made significant strides in translating natural language to
 123 executable code, most evaluations focus on static benchmark performance, overlooking memoriza-
 124 tion behaviors to prompt variations.
 125

126 **2.2 MEMORIZATION IN CODE GENERATION**
 127

128 A model that memorizes may output correct-looking solutions simply because it has seen near-
 129 identical problems during pre-training, rather than reasoning about program semantics (Pappu et al.,
 130 2024; Duan et al., 2024; Kassem et al., 2024; Carlini et al., 2019; Bayat et al., 2024; Xie et al., 2024).
 131 Such behavior can mislead evaluation benchmarks, inflate metrics, and compromise trustworthiness
 132 when models are deployed in real-world development environments (Hartmann et al., 2023; Lu et al.,
 133 2024; Staab et al., 2023; Zanella-Béguelin et al., 2020).
 134

135 In code generation, prior work operationalizes general memorization as *regurgitation*—via prefix to
 136 suffix extraction, mass sampling with clone detection against the training corpus, and contamination-
 137 aware splits of HumanEval/MBPP (Chen et al., 2021)—and under these measurements reports that
 138 the measured general memorization rate *increases with model size* (Yang et al., 2024; Al-Kaswan
 139 et al., 2024; Wang et al., 2024). However, general memorization is not inherently harmful: if a
 140 training-like solution still satisfies the a semantic different question, re-use does not constitute risk
 141 (it is correct and passes tests) (Bayat et al., 2024). To distinguish harmful memorization from gen-
 142 uine generalization, we introduce *code-rewriting*, which deliberately shifts task semantics while
 143 preserving surface syntax, and we quantify it with a *Memorization Risk Index (MRI)* that multi-
 144 plies similarity to the original solution by the relative accuracy drop under the semantic shift (high
 145 only when the answer copied surface forms but fail on the task with new semantics). Lai et al.
 146 (2022) uses semantic perturbations—changing the reference solution’s semantics without increas-
 147 ing difficulty—to probe general memorization; unlike their manually authored data-science tasks,
 148 we perform automated code rewriting and introduce MRI.
 149

150 **3 METHODOLOGY**
 151

152 **3.1 CODE REWRITING**
 153

154 *Code rewriting* is used to evaluate a model’s memorization via solving **semantically different**
 155 problems that are superficially similar to original tasks. The automated pipeline to generate *code rewriting*
 156 tasks is shown in Figure 1. Specifically, we first modify **one logic** in ground truth solution while
 157 preserving the original function signature—including the function name, input, and output format.
 158 We then generate a new task description that reflects the altered code while similar to origin tasks in
 159 syntax. Formally, let $x \in T$ be the original prompt in text space T and $c \in C$ its ground truth code
 160 solution in code space C . We apply a rewriting function ϵ_3 that produces a new code $c_{rew} = \epsilon_3(c)$
 161 where $c_{rew} \neq c$ functionally but both c and c_{rew} share the same signature. The new prompt x_{rew} is
 162 then generated from c_{rew} , resulting in a semantically different task:
 163

$$x_{rew} = \text{desc}(c_{rew}) \quad (1)$$

$$\text{where } \text{sig}(c_{rew}) = \text{sig}(c), \quad c_{rew} \neq c \quad (2)$$

162 where $\text{desc}(\cdot)$ denotes generating a description from code, and $\text{sig}(\cdot)$ extracts the function signature.
 163 This process enables us to assess whether LLMs can recognize and solve tasks that share format but
 164 differ in semantic content.
 165

166 **Data Validation.** To ensure the reliability of *code rewriting* datasets, we conducted both LLM-
 167 as-a-judge and manual quality assurance. For LLM-as-a-judge (shown in Figure 1), we forward
 168 *code rewriting* tasks to GPT-5 (OpenAI, 2025) to check (i) if the rewritten code match the rewritten
 169 prompt and (ii) if the rewritten task align with the original task in difficulty. For manual validation,
 170 two experienced python programmers randomly reviewed 10% of generated evolution problems for
 171 all three evolution types to ensure their quality. We also provide 5 regressed tasks for each dataset
 172 (PASSED in original but FAILED in *code rewriting*) in Appendix H to show difficulty alignment.
 173 **Additionally, we validate each rewritten solution by making it pass its corresponding rewritten unit**
 174 **test. Details about this process can be found in Appendix B.5.**

175 3.1.1 METRIC-MEMORIZATION RISK INDEX
 176

177 MRI consists of two signals: (i) how similar the model’s answer for the rewritten task is to the
 178 original ground-truth solution, and (ii) how much performance drops from the original task to its
 179 rewritten counterpart.
 180

181 **(i) Similarity.** For every rewritten task $i \in \mathcal{T}_{\text{rew}}$, where \mathcal{T} refers to a task set, we measure two
 182 similarities between the model-generated solution for the rewritten version of task i and the ground-
 183 truth solution of its original version:
 184

- Semantic level AST similarity: normalized tree-edit overlap between abstract-syntax trees
- Syntax level edit similarity: $(1 - (\text{Levenshtein distance}/\text{max-len}))$, capturing token-level overlap.

186 Formally, let $\text{AST}_i \in [0, 1]$ denote AST similarity, and let $\text{Edit}_i \in [0, 1]$ denote edit similarity. We
 187 combine these scores into a unified similarity score:
 188

$$S_i = \frac{\text{AST}_i + \text{Edit}_i}{2} \quad (3)$$

191 Because our analysis is corpus-level, we define the mean similarity over all rewritten tasks as:
 192

$$\text{Sim}(\mathcal{T}_{\text{rew}}) = \frac{1}{|\mathcal{T}_{\text{rew}}|} \sum_{i \in \mathcal{T}_{\text{rew}}} S_i, \quad \text{Sim} \in [0, 1]. \quad (4)$$

196 **(ii) Relative Accuracy Drop for Rewriting.** For a task set \mathcal{T} , Pass@1 is reported as $\text{Acc}(\mathcal{T})$. To
 197 capture the performance loss induced by semantic rewriting, we define
 198

$$\text{RAD}_{\text{rew}} = \max\left(0, \frac{\text{Acc}(\mathcal{T}_{\text{ori}}) - \text{Acc}(\mathcal{T}_{\text{rew}})}{\text{Acc}(\mathcal{T}_{\text{ori}})}\right), \quad \text{RAD}_{\text{rew}} \in [0, 1]. \quad (5)$$

201 $\text{RAD}_{\text{rew}} = 0$ when rewriting does not hurt accuracy and increases when it does; the $\max(0, \cdot)$
 202 prevents negative values when the performance on rewritten tasks happen to be better.
 203

204 **MRI.** Finally, we introduce the MRI, defined as the product of solution-similarity and relative
 205 accuracy drop:
 206

$$\text{MRI} = \text{Sim}(\mathcal{T}_{\text{rew}}) \times \text{RAD}_{\text{rew}}, \quad \text{MRI} \in [0, 1]. \quad (6)$$

208 **This multiplicative design let MRI** high only when both conditions for harmful memorization hold:
 209 (i) the model copies the original solution’s surface form (high $\text{Sim}(\mathcal{T}_{\text{rew}})$) and (ii) that copied solution
 210 now fails (high RAD_{rew}), **therefore distinguishes harmful** memorization from generalization.
 211

212 **Accounting for low baseline accuracy.** While RAD_{rew} is defined as a relative drop in accuracy,
 213 it can become numerically large when the baseline Pass@1 on the original tasks is very
 214 low. To avoid over-interpreting such cases, we only compute and compare RAD_{rew} and MRI for
 215 model-benchmark pairs that satisfy a simple competence threshold $\text{Acc}(\mathcal{T}_{\text{ori}}) \geq 10\%$ and at
 least 50 number of correctly solved original tasks. For settings below this threshold, we still report

216 $\text{Acc}(\mathcal{T}_{\text{ori}})$ and $\text{Acc}(\mathcal{T}_{\text{rew}})$, but mark RAD_{rew} and MRI as “N/A” and exclude them from cross-model
 217 MRI comparisons. The concrete statistical justification are provided in Appendix D.

218 We additionally report an instance-level variant of MRI (iMRI), which aggregates similarity and
 219 failure on a per-example basis. Detailed definition and results are in Appendix E, iMRI yields very
 220 similar trends and model rankings to our original MRI , showing that our findings are robust to both
 221 low-baseline effects and the choice of aggregation scheme.

223 3.2 MUTATION AND PARAPHRASE

225 To differentiate *code rewriting* from **semantic-preserving** perturbation techniques in work evaluating
 226 robustness (Chen et al., 2024; 2023; Mastropaolet al., 2023; Wang et al., 2022), we include
 227 *mutation* and *paraphrase*, as reference baselines. These two perturbations reveal if LLM could
 228 generate consistent and correct responses under minor surface level changes (Li et al., 2022). *Mutation*
 229 and *paraphrase* are adapted in spirit from ReCode’s robustness benchmark (Wang et al., 2022).

231 **Mutation.** To assess whether LLMs are robust to superficial textual noise, mutation evolution
 232 applies small perturbations—such as word-scrambling, random-capitalization, and character-
 233 noising—that preserve the underlying problem semantics. Formally, let $x \in T$ denote the original
 234 problem prompt in the text space T . Mutation evolution applies a perturbation function $\epsilon_1 : T \rightarrow T$
 235 such that the mutated prompt $x_{\text{mut}} = \epsilon_1(x)$ preserves the original semantics:

$$237 \quad x_{\text{mut}} = \epsilon_1(x), \quad x, x_{\text{mut}} \in T \quad (7)$$

239 where ϵ_1 injects textual noise without altering the problem’s underlying meaning.

241 **Paraphrase.** Paraphrase evolution aims to evaluate whether LLMs can generalize to diverse sur-
 242 face realizations of the same problem. In this setting, prompts are reworded textual expression but
 243 preserve semantics. Formally, let $x \in T$ be the original prompt. We define a paraphrasing function
 244 $\epsilon_2 : T \rightarrow T$ such that:

$$246 \quad x_{\text{par}} = \epsilon_2(x), \quad x, x_{\text{par}} \in T \quad (8)$$

247 where x_{par} is a semantically equivalent but textually different paraphrase of x .

249 3.2.1 METRIC—ROBUSTNESS RELATIVE ACCURACY DROP

251 Once we perturb a prompt without changing its semantics, what fraction of previously-solved tasks
 252 remain solved? To answer this question and differentiate robustness with memorization, for each
 253 semantic-preserving transformation $p \in \{\text{mut, par}\}$ (mutation/paraphrase), we define the **Robust-
 254 ness Relative Accuracy Drop**:

$$256 \quad \text{RAD}_p = \max\left(0, \frac{\text{Acc}(\mathcal{T}_{\text{ori}}) - \text{Acc}(\mathcal{T}_p)}{\text{Acc}(\mathcal{T}_{\text{ori}})}\right), \quad \text{RAD}_p \in [0, 1]. \quad (9)$$

259 Here, $\text{Acc}(\cdot)$ denotes Pass@1 on the indicated task set section 3.1.1. $\text{RAD}_p = 0$ (high robustness)
 260 when semantic-preserving changes do not hurt accuracy and increases toward 1 as performance
 261 degrades (low robustness).

263 3.3 FINE-TUNING METHODS

265 To investigate the memorization phenomenon, we use the original tasks in MBPP+ and BIG-
 266 CODEBENCH for fine-tuning¹ and only evaluated on their rewriting counterparts to decouple the
 267 rewriting pipeline from post-training signals. More training details can be found at Appendix J.

268
 269 ¹For clarity, both SFT and PPO are initialized from the same base model and trained independently; PPO is
 not performed on top of an SFT checkpoint.

270 3.3.1 SUPERVISED FINE-TUNING
271

272 Supervised Fine-tuning adapts a pre-trained model to a specific task by training it on a labeled
273 dataset, teaching it to predict the correct label for each input. In our setup, coding problems serve as
274 the inputs, while code solutions act as the corresponding labels. However, overfitting occurs when
275 the model fits the training data too closely, reducing its ability to generalize to unseen tasks. This
276 is typically indicated by a rise in validation loss where model begin to memorize training examples.
277 Therefore, we distinguish between early-stage and late-stage memorization by the checkpoint where
278 the loss on the validation set begins to increase. **We select such checkpoint for evaluation to**
279 **distinguish memorization from overfitting.**

280 3.3.2 REINFORCEMENT LEARNING
281

282 Reinforcement Learning enhances fine-tuning efficiency. A leading method is Proximal Policy Opti-
283 mization (PPO)(Schulman et al., 2017), which alternates between sampling data through interaction
284 with the environment, and optimizing a "surrogate" objective function using stochastic gradient as-
285 cent. We utilize the same model architecture for the actor, critic, and reference models for simplicity,
286 and define the reward function based on the correctness of the generated code. Compared to other
287 reinforcement learning methods like DPO (Rafailov et al., 2024), we suggest that using accuracy
288 as the reward function offers a more direct and efficient optimization path. **We evaluate using the**
289 **checkpoint that achieves the highest validation reward.**

290 4 EXPERIMENT SETUP
291292 4.1 DATASETS
293

294 We conduct our evaluation on two widely-adopted code generation benchmarks: MBPP+ (Liu et al.,
295 2023) and BIGCODEBENCH (Zhuo et al., 2024).
296

297 **Dataset Statistics.** MBPP+ contains 378 tasks, and BIGCODEBENCH comprises 1140 tasks. We
298 use 4:1 train/test split for fine-tuning. For models without fine-tuning, we use the **complete set** of
299 benchmark tasks for evaluation. For models that undergo SFT and PPO, we train on the **training**
300 **split** and evaluate on the **test split**. Due to the small size of MBPP+ test split ($n = 78$), estimation
301 on this split may be imprecise and directional, we use BIGCODEBENCH to explore the impact of
302 fine-tuning strategies on memorization.

303 **Task Generation.** For each original task, we generate one perturbed variant for each of *code*
304 *rewriting*, *mutation* and *paraphrase*. More about the generation process is given in Appendix K.
305

306 4.2 MODELS
307

308 In this paper, we conduct the scale-up experiments on Qwen-2.5 series (Hui et al., 2024), Qwen-
309 2.5-Coder series (Qwen et al., 2025), Llama-3.1 series (Dubey et al., 2024) and Llama-4 series (AI,
310 2024). For fine-tuning, we choose Qwen-2.5-7B, and Qwen-2.5-Coder-7B. All training and infer-
311 ence were conducted on a server equipped with 4 NVIDIA A100 GPUs (80GB), with a total com-
312 putational budget of approximately 40 GPU hours, using PyTorch and HuggingFace Transformers.
313

314 5 RESULT ANALYSIS
315316 5.1 MEMORIZATION ANALYSIS ON INSTRUCT MODELS
317

318 **Harmful memorization does not increase with larger models and in many cases decreases as**
319 **they scale.** Across Qwen2.5 Instruct and its Coder Instruct families, scaling is *associated with*
320 lower RAD_{rew} and hence lower MRI (Table 1 and Figure 2). On MBPP+, Qwen-Instruct's MRI
321 falls from 0.0722 at 0.5B to 0.0113 at 14B, reaching 0.0000 at 32B, driven by a decrease in RAD_{rew}
322 from 0.2697 → 0.0414 → 0.0000. A similar pattern holds for Qwen-Coder (MRI 0.0615 →
323 0.0313 → 0.0354 as RAD_{rew} goes from 0.2663 → 0.0896 → 0.0993). Notably, Sim(\mathcal{T}_{rew}) does
not uniformly decline with scale (e.g., Qwen-Instruct: 0.2678 at 0.5B → 0.3369 at 32B), indicating

Figure 2: Scaling trends in MRI across Qwen-2.5 Instruct vs. Coder. **(a)-(b)** show results on MBPP+, while **(c)-(d)** show results on BIGCODEBENCH. The Qwen-2.5 Instruct-0.5B point on BIGCODEBENCH is omitted because its baseline Pass@1 falls below our competence threshold (see Appendix D).

that larger models may continue to reuse surface patterns; however, because their failures under semantic shifts largely vanish, such reuse is not harmful and thus produces much lower MRI.

Model	MBPP+				BigCodeBench			
	Acc(\mathcal{T}_{ori}) (\uparrow)	Sim(\mathcal{T}_{rew}) (\downarrow)	RAD _{rew} (\downarrow)	MRI (\downarrow)	Acc(\mathcal{T}_{ori}) (\uparrow)	Sim(\mathcal{T}_{rew}) (\downarrow)	RAD _{rew} (\downarrow)	MRI (\downarrow)
Qwen-2.5 0.5B-Instruct	0.4021	0.2678	0.2697	0.0722	0.0947	0.2648	N/A	N/A
Qwen-2.5-1.5B-Instruct	0.5767	0.2845	0.2110	0.0600	0.2281	0.2487	0.5808	0.1444
Qwen-2.5-3B-Instruct	0.6243	0.1822	0.1017	0.0185	0.3132	0.2965	0.4734	0.1403
Qwen-2.5-7B-Instruct	0.6852	0.2828	0.0849	0.0240	0.3798	0.2686	0.4827	0.1296
Qwen-2.5-14B-Instruct	0.7037	0.2728	0.0414	0.0113	0.3895	0.2277	0.3694	0.0841
Qwen-2.5-32B-Instruct	0.7513	0.3369	0.0000	0.0000	0.4404	0.2959	0.3865	0.1143
Qwen-2.5-coder-0.5B-Instruct	0.4471	0.2310	0.2663	0.0615	0.1088	0.3242	0.5484	0.1778
Qwen-2.5-coder-1.5B-Instruct	0.5952	0.2810	0.1778	0.0500	0.2465	0.3137	0.5196	0.1630
Qwen-2.5-coder-3B-Instruct	0.6402	0.3056	0.1074	0.0328	0.3579	0.3393	0.4804	0.1630
Qwen-2.5-coder-7B-Instruct	0.7196	0.3271	0.1140	0.0373	0.4088	0.3247	0.4549	0.1477
Qwen-2.5-coder-14B-Instruct	0.7381	0.3490	0.0896	0.0313	0.4675	0.3216	0.3846	0.1237
Qwen-2.5-coder-32B-Instruct	0.7725	0.3565	0.0993	0.0354	0.4772	0.3189	0.3695	0.1178
Llama-3.1-8B-Instruct	0.5529	0.1486	0.0133	0.0020	0.3079	0.2132	0.4444	0.0947
Llama-3.1-70B-Instruct	0.6984	0.1518	0.0000	0.0000	0.4175	0.2404	0.3676	0.0884
Llama-4-Scout-17B-Instruct (16E)	0.6614	0.1446	0.0160	0.0023	0.4061	0.2343	0.3909	0.0916
Llama-4-Maverick-17B-Instruct (128E)	0.7751	0.2669	0.0307	0.0082	0.4860	0.2357	0.3953	0.0932

Table 1: Memorization risk for Qwen-2.5, Llama-3.1 and Llama-4 instruct series. MRI persists in harder tasks (BIGCODEBENCH), as RAD_{rew} stays high even as Sim(\mathcal{T}_{rew}) is comparable.

On BIGCODEBENCH, the effect from scaling up is milder and sometimes non-monotonic. Qwen-Instruct’s MRI drops from 0.1444 (1.5B) to 0.0841 (14B) but increases to 0.1143 at 32B, with RAD_{rew} trending from 0.5808 \rightarrow 0.3694 \rightarrow 0.3865. On the other hand, Qwen-Coder shows a steadier decline (0.1778 \rightarrow 0.1178 from 0.5B \rightarrow 32B) with relatively flat Sim(\mathcal{T}_{rew}). Overall, scale reduces memorization primarily by improving resistance to semantic shifts (RAD_{rew}), while surface-form similarity can remain high. The gains are pronounced on simpler tasks (MBPP+) and partially eroded on harder ones (BIGCODEBENCH); on BIGCODEBENCH, the non-zero MRI is explained by persistently high RAD_{rew} with roughly unchanged Sim(\mathcal{T}_{rew}).

We also evaluate on Llama families (Table 1). While Llama 3.1 exhibit similarly low MRI as scale increases, Llama 4² shows comparable MRI on both dataset. On MBPP+, the MRI from Llama-3.1 (8B/70B) declined in small degree (0.0020 \rightarrow 0.0000), and Llama-4 models are near zero (0.0023 and 0.0082); on BIGCODEBENCH, Llama-3.1 shifts little (0.0947 \rightarrow 0.0884), and Llama-4 remains comparably low but non-zero (0.0932 and 0.0916). These results reveal a task-dependency on harmful memorization: on easier problems, larger Llama models effectively drive RAD_{rew} \rightarrow 0 (hence negligible MRI) even when Sim(\mathcal{T}_{rew}) is moderate, whereas on BIGCODEBENCH the non-zero risk is dominated by persistent RAD_{rew} = 0.4060 for Llama 3.1 series and 0.3931 for Llama 4 series at similar similarity levels.

²The two Llama-4 variants we evaluate are MoE models with similar per-token activated compute; their difference is mainly *capacity* (number of experts) rather than dense compute scaling.

378 **Ablation Studies.** We additionally verify in an extensive set of ablations (Appendix F) that our
 379 findings are stable under implementation choices. Varying the parser, AST/edit weightings, and sim-
 380 ilarity function gives MRI values that are highly correlated with our default definition and preserves
 381 the trends.

382 **5.1.1 ADDITIONAL FINDINGS**

383 **Harmful memorization declines rapidly on simpler tasks but persists on more difficult ones.**
 384 On the introductory-level tasks in MBPP+, memorization risk (MRI) decreases notably as models
 385 scale up. For instance, for Qwen-2.5-Instruct’s MRI falls from 0.0722 at 0.5B parameters to ef-
 386 fectively zero at 32B. Conversely, on the more challenging BIGCODEBENCH, MRI values remain
 387 significant even at large scales (0.1178 for Qwen-2.5-32B-Instruct). This discrepancy shows that
 388 while larger models better capture underlying semantics changes, they do not completely eliminate
 389 memorization, especially in scenarios of challenging tasks that demand deeper reasoning.

390 **Coder models encourages code reuse but does not substantially increase harmful memoriza-
 391 tion.** Coder models yield higher $\text{Sim}(\mathcal{T}_{\text{rew}})$ than their instruction-only counterparts. For instance,
 392 on BIGCODEBENCH, Qwen-2.5-Coder series scores **0.3237** \pm 0.0086 vs. **0.2670** \pm 0.0268 for the
 393 instruction-only variant (mean \pm SD over 6 seeds). However, RAD_{rew} remains comparable across
 394 these variants, translating to only a slight increase in MRI (**0.1367** \pm 0.0224 vs. **0.1142** \pm 0.0247,
 395 mean \pm SD over 6 seeds). This pattern suggests code-focused pre-training promotes superficial
 396 reuse of training data without significantly increase harmful memorization.

397 **Harmful memorization is driven by specific logic-edit types.** To better understand which kinds
 398 of semantic changes are responsible for failures, we annotated each rewritten pair with a fine-grained
 399 logic change taxonomy, including Component Swap, Data Transformation, Constraint Change,
 400 Logic Reversal, Constant/Operator Swap, Workflow Modification, and others (see Appendix G
 401 for definitions and examples). Both MBPP+ and BIGCODEBENCH show diverse coverage over
 402 these types. On BIGCODEBENCH, Component Swap and Data Transformation account for roughly
 403 one third of all changes each, followed by Constraint Change; on MBPP+, the mass is more evenly
 404 spread across Constraint Change, Logic Reversal, Data Transformation, Component Swap, and Con-
 405 stant/Operator Swap. For all subsequent analyses we discard logic types with fewer than 50 instances
 406 per dataset to avoid unstable estimates.

407 **MRI varies strongly by logic-change type and is largest when rewrites change constraints or
 408 data flow.** We report per-type MRI and RAD_{rew} for representative Qwen-2.5 Instruct and Coder
 409 variants in Appendix G. On MBPP+, Constraint Change and Data Transformation systematically
 410 achieve the highest MRI across both families, whereas Component Swap shows much smaller MRI
 411 and even approaches zero for larger models. This pattern is mirrored in RAD_{rew} : going from 0.5B
 412 to 14B reduces, but does not entirely remove, the accuracy drop under Constraint Change and Data
 413 Transformation, while Logic Reversal becomes essentially harmless as scale increases. On the more
 414 challenging BIGCODEBENCH, all major types exhibit non-trivial MRI, but Data Transformation,
 415 Constraint Change, Logic Reversal, and Workflow Modification consistently sit above the overall
 416 MRI for many model sizes, and maintain large per-type RAD_{rew} even at 14B. Qualitatively, these
 417 categories correspond to changes that alter global data flow (e.g., applying transforms before/after
 418 key operations), tighten or relax constraints (e.g., loop bounds or regex/SQL conditions), or restruc-
 419 ture the workflow rather than merely swapping local operators.

420 **5.2 IMPACT OF FINE-TUNING STRATEGIES ON MEMORIZATION**

421 Figure 3 shows notable differences in memorization across different fine-tuning strategies on Qwen-
 422 2.5-7B and Qwen-2.5-Coder-7B on BIGCODEBENCH.

423 **SFT improves accuracy but introduces high memorization risk.** Models fine-tuned via SFT
 424 consistently achieve accuracy gains on original tasks. For Qwen-2.5-7B-SFT, accuracy was boosted
 425 from 0.3158 \rightarrow 0.3772 on BIGCODEBENCH and increasing from 0.3684 \rightarrow 0.4079 on the coder
 426 counterpart. However, for both Qwen-2.5-7B-SFT and Qwen-2.5-Coder-7B-SFT, these improve-
 427 ments come with significant increases in memorization, as indicated by much higher MRI scores

(e.g. 0.0799 → 0.1747 for Qwen-2.5-7B-SFT and 0.1392 → 0.1921 on for Qwen-2.5-Coder-7B-SFT). These trends reveals that SFT enhances surface-level accuracy at the expense of genuine generalization.

PPO balances accuracy improvements and memorization risk. Across both variants, PPO preserves baseline-level or higher accuracy while sharply reducing memorization risk relative to SFT. On Qwen-2.5-7B, accuracy moves from 0.3158 → 0.3509 (PPO) vs 0.3772 (SFT), with MRI 0.0799 → 0.0795 (PPO) vs 0.1747 (SFT); Similar trend was revaled by Qwen-2.5-Coder-7B, where accuracy is 0.3684 → 0.3728 (PPO) vs 0.4079 (SFT), with MRI 0.1392 → 0.1336 (PPO) vs 0.1921 (SFT). Overall, PPO yields a better risk-accuracy trade-off by keeping MRI near or below base levels while offering milder accuracy gains, in contrast to SFT’s larger accuracy improvements accompanied by substantially higher MRI.

Implications for Fine-Tuning Decisions. The choice between SFT and reinforcement-based approaches such as PPO is ultimately determined by how one prioritizes the trade-off between accuracy and memorization risk. If maximizing accuracy is the priority and the risks associated with memorization are acceptable, then SFT remains the optimal strategy. However, in settings where generalization and minimizing memorization risk are critical, PPO provides a better balance by offering modest accuracy improvements while considerably reducing memorization.

Beyond comparing training strategies, MRI also provides a practical diagnostic for *checkpoint selection*. As shown in Table 2, continuing SFT beyond the best-validation-loss checkpoint yields only small accuracy gains but can introduce a disproportionate increase in MRI (e.g., a 1.7% accuracy gain vs. a 19% MRI increase for Qwen-2.5-Coder-7B). This indicates a shift from genuine generalization toward harmful memorization. A simple and reproducible recipe thus is: among saved checkpoints with comparable validation loss or accuracy, prefer those lying on a better accuracy–MRI trade-off, and consider MRI to take precedence over marginal accuracy improvements when those improvements come at considerable memorization cost. We view this as a lightweight way for practitioners to incorporate MRI into training decisions without modifying the training objective itself.

5.3 ROBUSTNESS TO SEMANTIC-PRESERVING PERTURBATIONS

We differentiate from memorization by using two semantic-preserving perturbations—*mutation* and *paraphrase*—as reference baselines, and we quantify consistency under these baselines with RAD; our primary analysis remains memorization via semantics-altering rewriting and MRI.

Mutation remains more challenging Across BIGCODEBENCH, *mutation* induces a moderate RAD while *paraphrase* exhibits a milder influence on model accuracy: averaged over all models, $\text{RAD}_{\text{mut}} = 0.20 \pm 0.12$ and $\text{RAD}_{\text{par}} = 0.06 \pm 0.04$, compared to a much larger semantics-altering rewriting drop of $\text{RAD}_{\text{rew}} = 0.46 \pm 0.09$. On MBPP+, both mutation and rewriting are modest

Figure 3: Effect of fine-tuning on Qwen-2.5-7B (base and Coder) on BIGCODEBENCH. SFT raises $\text{Acc}(\mathcal{T}_{\text{ori}})$ but also increases $\text{Sim}(\mathcal{T}_{\text{rew}})$ and RAD_{rew} , inflating MRI; PPO preserves or modestly improves accuracy while keeping RAD_{rew} low, yielding a better risk–accuracy trade-off. Checkpoints selected for SFT and PPO follows rules in subsection 3.3. Dataset statistics can be found in subsection 4.1

Model	Stage (loss)	$\text{Acc}(\mathcal{T}_{\text{ori}}) (\uparrow)$	MRI
Qwen-2.5-7B	Early (0.324)	35.96%	0.1540
	Best-Val (0.302)	37.72%	0.1733
	Late (0.326)	39.47%	0.1795
Coder-7B	Early (0.325)	35.96%	0.1537
	Best-Val (0.292)	40.79%	0.1864
	Late (0.318)	42.54%	0.2216

Table 2: Changes in original-task accuracy and MRI during SFT training on BIGCODEBENCH. Accuracy increases steadily from Early to Best-Val to Late, but MRI grows more sharply

($\text{RAD}_{\text{mut}} = 0.10 \pm 0.08$, $\text{RAD}_{\text{rew}} = 0.10 \pm 0.09$), and paraphrase is essentially invariant ($\text{RAD}_{\text{par}} = 0.01 \pm 0.01$). These results confirm that our primary memorization analysis (via rewriting and MRI) targets a qualitatively different—and much stronger—source of variance than same-semantics perturbations.

Scaling helps robustness to mutation; coder models show higher sensitivity to mutation on harder tasks. Mutation accuracy drop decreases with model size on both benchmarks, while paraphrase remains near-zero with small fluctuations at the high end. On BIGCODEBENCH, coder models are the most mutation-sensitive (e.g., Qwen-2.5-coder avg. $\text{RAD}_{\text{mut}} = 0.25 \pm 0.12$) versus their instruction counterparts (0.20 ± 0.13), with Llama families lower still (Llama-3.1 $\text{RAD}_{\text{mut}} = 0.1050$, Llama-4 $\text{RAD}_{\text{mut}} = 0.1206$). On MBPP+, absolute drops are smaller for all families; Llama-4 shows the lowest RAD under mutation ($\text{RAD}_{\text{mut}} = 0.0578$). Paraphrase occasionally yields zero or even negative drops (i.e., accuracy improves), consistent with minor wording changes sometimes helping the model parse constraints.

Model	MBPP+				BigCodeBench			
	Acc(\mathcal{T}_{ori}) (\uparrow)	RAD_{mut} (\downarrow)	RAD_{par} (\downarrow)	RAD_{rew} (\downarrow)	Acc(\mathcal{T}_{ori}) (\uparrow)	RAD_{mut} (\downarrow)	RAD_{par} (\downarrow)	RAD_{rew} (\downarrow)
Qwen-2.5 0.5B-Instruct	0.4021	0.2763	0.0000	0.2697	0.0947	N/A	N/A	N/A
Qwen-2.5-1.5B-Instruct	0.5767	0.2248	0.0000	0.2110	0.2281	0.2115	0.0000	0.5808
Qwen-2.5-3B-Instruct	0.6243	0.1144	0.0000	0.1017	0.3132	0.1989	0.0448	0.4734
Qwen-2.5-7B-Instruct	0.6852	0.0463	0.0000	0.0849	0.3798	0.1409	0.0878	0.4827
Qwen-2.5-14B-Instruct	0.7037	0.0338	0.0000	0.0414	0.3895	0.0631	0.0608	0.3694
Qwen-2.5-32B-Instruct	0.7513	0.0106	0.0000	0.0000	0.4404	0.1474	0.0757	0.3865
<i>Qwen-2.5-Instruct (mean \pm SD)</i>	0.62 ± 0.12	0.12 ± 0.11	0.00 ± 0.00	0.12 ± 0.10	0.31 ± 0.13	0.20 ± 0.13	0.04 ± 0.04	0.49 ± 0.11
Qwen-2.5-coder-0.5B-Instruct	0.4471	0.2367	0.0000	0.2663	0.1088	0.4677	0.0000	0.5484
Qwen-2.5-coder-1.5B-Instruct	0.5952	0.1378	0.0000	0.1778	0.2465	0.2954	0.0391	0.5196
Qwen-2.5-coder-3B-Instruct	0.6402	0.0909	0.0000	0.1074	0.3579	0.2304	0.0686	0.4804
Qwen-2.5-coder-7B-Instruct	0.7196	0.0662	0.0294	0.1140	0.4088	0.1803	0.1073	0.4549
Qwen-2.5-coder-14B-Instruct	0.7381	0.0394	0.0143	0.0896	0.4675	0.1463	0.0938	0.3846
Qwen-2.5-coder-32B-Instruct	0.7725	0.0171	0.0000	0.0993	0.4772	0.1857	0.1085	0.3695
<i>Qwen-2.5-Coder-Instruct (mean \pm SD)</i>	0.65 ± 0.12	0.10 ± 0.08	0.01 ± 0.01	0.14 ± 0.07	0.34 ± 0.14	0.25 ± 0.12	0.07 ± 0.04	0.46 ± 0.07
Llama-3.1-8B-Instruct	0.5529	0.1340	0.0000	0.0133	0.3079	0.1595	0.0513	0.4444
Llama-3.1-70B-Instruct	0.6984	0.0795	0.0189	0.0000	0.4175	0.0504	0.0399	0.3676
<i>Llama-3.1-Instruct (mean)</i>	0.6257	0.1068	0.0095	0.0067	0.3627	0.1050	0.0456	0.4060
Llama-4-Scout-17B-Instruct (16E)	0.6614	0.0200	0.0040	0.0160	0.4061	0.1058	0.0670	0.3909
Llama-4-Maverick-17B-Instruct (128E)	0.7751	0.0956	0.0375	0.0307	0.4860	0.1354	0.1119	0.3953
<i>Llama-4-Instruct (mean)</i>	0.7183	0.0578	0.0208	0.0234	0.4461	0.1206	0.0894	0.3931
All models (mean \pm SD)	0.65 ± 0.11	0.10 ± 0.08	0.01 ± 0.01	0.10 ± 0.09	0.35 ± 0.12	0.20 ± 0.12	0.06 ± 0.04	0.46 ± 0.09

Table 3: Robustness under semantic-preserving *mutation* and *paraphrase* versus semantics-different rewriting. Mutation induces moderate drops; paraphrase is nearly invariant; rewrites are most disruptive—especially on BIGCODEBENCH—suggesting harmful memorization beyond surface-level robustness. The final row reports column-wise unweighted mean \pm sample SD across 16 models.³

6 CONCLUSION AND FUTURE WORKS

In this paper, we reframed memorization in code generation as (1) exhibit high similarity to the golden solution of original tasks and (2) lead to performance drops under semantically modified variants. We measured such memorization with *code rewriting*—which preserves surface form while changing task semantics—and the Memorization Risk Index (MRI) that multiplies solution similarity with the relative accuracy drop (RAD) under rewriting. This design isolates harmful memorization from benign reuse. Our experiments on MBPP+ and BIGCODEBENCH show: (i) harmful memorization generally decreases with model scale on simpler tasks, (ii) persists more on harder tasks, and (iii) SFT raises accuracy but inflates MRI, while PPO delivers a better risk–accuracy trade-off. Taken together, these findings clarify when errors stem from harmful memorization rather than generalization and motivate the following next steps: (a) mitigation approach: further research is needed for reducing the impact of memorization. (b) evaluation transferability: while our current evaluation metrics are tailored for code generation, exploring their applicability to other domains, such as mathematical reasoning, could provide valuable insights.

³Mean is the unweighted arithmetic average computed *per column* across models; SD is the sample standard deviation (unbiased, $n-1$ denominator). Values are rounded to two decimals.

540
541 ETHICS STATEMENT542
543 Our *code rewriting*, *mutation* and *paraphrase* pipeline is guided by ethical principles to ensure
544 responsible outcomes.545 (1) Data: Our dataset is constructed from MBPP+ and BIGCODEBENCH dataset, which guarantees
546 ethical fairness. We actively work to eliminate any harmful or offensive content from the *code*
547 *rewriting*, *mutation* and *paraphrase* variant datasets to mitigate potential risks.548 (2) Responsible Usage and License: The use of the *code rewriting*, *mutation* and *paraphrase* variant
549 datasets is intended solely for evaluating memorization in LLM code generation tasks. We encourage
550 the responsible use of those datasets for educational and scientific purposes, while strongly
551 discouraging any harmful or malicious activities.552
553 REPRODUCIBILITY STATEMENT554
555 To ensure the reproducibility of our work, we have illustrated the experiment details in the appendix,
556 such as task generation prompts in Appendix B, training details in Appendix J and evolved-task gen-
557 eration configurations in Appendix K. For the dataset and code repository, all evolved tasks and the
558 prompts used during generation will be released publicly upon publication, ensuring reproducibility
559 and facilitating future research.560
561 REFERENCES562
563 Meta AI. Introducing llama 4: Advancing multimodal intelligence, 2024. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.564
565 Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. Traces of memorisation in large language
566 models for code. In *Proceedings of the IEEE/ACM 46th International Conference on Software*
567 *Engineering*, ICSE '24, pp. 1–12. ACM, April 2024. doi: 10.1145/3597503.3639133. URL
568 <http://dx.doi.org/10.1145/3597503.3639133>.569
570 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, 2025. Accessed: 2025-09-18.571
572 Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
573 pitfalls of memorization: When memorization hurts generalization, 2024. URL <https://arxiv.org/abs/2412.07684>.574
575 Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Evalu-
576 uating and testing unintended memorization in neural networks, 2019. URL <https://arxiv.org/abs/1802.08232>.577
578 Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. Nlperturbator: Studying the robustness of code
579 llms to natural language variations, 2024. URL <https://arxiv.org/abs/2406.19783>.580
581 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
582 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
583 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
584 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
585 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
586 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
587 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
588 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
589 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
590 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
591 language models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.592
593 Nuo Chen, Qiushi Sun, Jianing Wang, Ming Gao, Xiaoli Li, and Xiang Li. Evaluating and en-
hancing the robustness of code pre-trained models through structure-aware adversarial samples
generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association*

594 *for Computational Linguistics: EMNLP 2023*, pp. 14857–14873, Singapore, December 2023.
 595 Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.991. URL
 596 <https://aclanthology.org/2023.findings-emnlp.991/>.

597 Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
 598 memorization: Data contamination and trustworthy evaluation for large language models, 2024.
 599 URL <https://arxiv.org/abs/2402.15938>.

600 Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ila R Fiete. Uncovering latent
 601 memories: Assessing data leakage and memorization patterns in large language models. *arXiv*
 602 preprint [arXiv:2406.14549](https://arxiv.org/abs/2406.14549), 2024.

603 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 604 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 605 *arXiv e-prints*, pp. arXiv–2407, 2024.

606 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 607 Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
 608 large language model meets programming – the rise of code intelligence, 2024. URL <https://arxiv.org/abs/2401.14196>.

609 Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and Robert
 610 West. Sok: Memorization in general-purpose large language models, 2023. URL <https://arxiv.org/abs/2310.18362>.

611 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 612 Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
 613 Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
 614 Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL <https://arxiv.org/abs/2409.12186>.

615 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 616 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 617 evaluation of large language models for code, 2024. URL <https://arxiv.org/abs/2403.07974>.

618 Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
 619 Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using llms to uncover memorization
 620 of llms. *arXiv preprint arXiv:2403.04801*, 2024.

621 Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
 622 tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
 623 data science code generation, 2022. URL <https://arxiv.org/abs/2211.11501>.

624 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 625 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
 626 de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
 627 Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
 628 meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
 629 generation with alphacode. *Science*, 378(6624):1092–1097, December 2022. ISSN 1095-9203.
 630 doi: 10.1126/science.abq1158. URL <http://dx.doi.org/10.1126/science.abq1158>.

631 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 632 chatGPT really correct? rigorous evaluation of large language models for code generation. In
 633 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=1qvx610Cu7>.

634 Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuanjing Huang, and Xipeng Qiu. Scaling laws
 635 for fact memorization of large language models, 2024. URL <https://arxiv.org/abs/2406.15720>.

636 Antonio Mastropaoletti, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
 637 Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
 638 pirical study on github copilot, 2023. URL <https://arxiv.org/abs/2302.00438>.

648
649OpenAI. Gpt-5. <https://openai.com>, 2025. Large Language Model.650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiro, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

695
696
697

Aneesh Pappu, Billy Porter, Ilia Shumailov, and Jamie Hayes. Measuring memorization in rlhf for code completion, 2024. URL <https://arxiv.org/abs/2406.11715>.

698
699
700
701

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

702 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 703 URL <https://arxiv.org/abs/2412.15115>.

704

705 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 706 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
 707 2024. URL <https://arxiv.org/abs/2305.18290>.

708

709 Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
 710 eration capabilities of language models, 2024. URL <https://arxiv.org/abs/2403.04811>.

711

712 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 713 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, Ivan Ev-
 714 timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
 715 Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
 716 Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
 717 URL <https://arxiv.org/abs/2308.12950>.

718

719 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 720 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

721

722 Sourcegraph. Sourcegraph cody. <https://sourcegraph.com/cody>, 2024. Accessed: 2024-05-06.

723

724 Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
 725 privacy via inference with large language models. *arXiv preprint arXiv:2310.07298*, 2023.

726

727 Tabnine. Tabnine. <https://www.tabnine.com>, 2024. Accessed: 2024-05-06.

728

729 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
 730 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
 731 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

732

733 Shiqi Wang, Li Zheng, Haifeng Qian, Chenghao Yang, Zijian Wang, Varun Kumar, Mingyue Shang,
 734 Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
 735 Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. 2022.
 doi: 10.48550/arXiv.2212.10264. URL <https://arxiv.org/abs/2212.10264>.

736

737 Zhepeng Wang, Runxue Bao, Yawen Wu, Jackson Taylor, Cao Xiao, Feng Zheng, Weiwen Jiang,
 738 Shangqian Gao, and Yanfu Zhang. Unlocking memorization in large language models with dy-
 739 namic soft prompting, 2024. URL <https://arxiv.org/abs/2409.13853>.

740

741 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 742 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2024.
 743 URL <https://arxiv.org/abs/2410.23123>.

744

745 Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and David Lo.
 746 Unveiling memorization in code models. In *Proceedings of the IEEE/ACM 46th International
 747 Conference on Software Engineering*, ICSE '24, pp. 1–13. ACM, April 2024. doi: 10.1145/
 748 3597503.3639074. URL <http://dx.doi.org/10.1145/3597503.3639074>.

749

750 Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Röhle, Andrew Paverd, Olga
 751 Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to
 752 natural language models. In *Proceedings of the 2020 ACM SIGSAC conference on computer and
 753 communications security*, pp. 363–375, 2020.

754

755 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
 756 Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
 757 marking code generation with diverse function calls and complex instructions. *arXiv preprint
 758 arXiv:2406.15877*, 2024.

756 APPENDIX
757758 A USE OF LARGE LANGUAGE MODELS (LLMs)
759760 We made limited use of a large language model (OpenAI's GPT-5) during the preparation of this
761 work. Specifically:
762

- 763 • **Task Generation:** GPT-5 was employed to assist in generating tasks for *code rewriting*,
764 *mutation*, and *paraphrase*. The role of the LLM in this context was restricted to providing
765 task generation; all methodological design, filtering, and integration into our pipeline were
766 carried out by the authors.
- 767 • **Writing Assistance:** GPT-5 was additionally used as a language aid for correcting gram-
768 mar and improving clarity in the writing of the manuscript. The substantive content, re-
769 search ideas, technical contributions, and overall narrative were conceived and written by
770 the authors without reliance on the LLM.

771 Beyond these two use cases, no part of the research design, analysis, or interpretation depended on
772 LLM assistance.
773774 B PROMPTS FOR TASK GENERATION
775776 We provide the full instruction prompts used to generate each evolution variant (mutation, para-
777 phrasing, and code-rewriting) with GPT-5. For each evolution type, the system and user messages
778 are shown as passed to the API.
779780 B.1 CODE-REWRITING EVOLUTION
781782 System Prompt
783784 **System:** You are an experienced python programmer. Your goal is to transforms a given 'coding task
785 prompt' into a new version. Follow the instructions carefully to transform the prompt.786 Code-Rewriting Evolution User Prompt
787788 User:
789790 Given a coding task description (#The Given Prompt#) and its canonical solution (#Code#),
791 perform the following steps:

- 792 1. Modify the canonical solution to create #New Code# by altering only ***ONE*** core
793 logic or structure. Do not add additional 'if statements' to the code. Avoid
794 superficial changes like variable renaming. Ensure the modified code has different
795 semantics in a way that ***expected difficulty equivalent to the original problem***.
796 Write a #New Entry Point# to the updated code. This function name must be very
797 similar or the same as the old entry point, and reflect the modified code's logic
798 changes if using #Old Entry Point# could mislead the programmer on the
799 #Rewritten Prompt#.
- 800 2. Update #The Given Prompt# to create #Rewritten Prompt#. The new prompt must:
 - 801 - Match the original's ***input signature*** exactly, but the output
802 format could be different a little bit.
 - 803 - Reflect the modified code's logic changes explicitly.
804 Retain the original phrasing structure and ***avoid unnecessary rephrasing***
805 in a way that the #Rewritten Prompt# syntactically very similar
806 to the #The Given Prompt#.
- 807 3. If any mismatch arises between new code and new prompt, revise either one
808 (without adding more changes) so all constraints in Steps 1-2 are simultaneously
809 satisfied.

810 Format your response exactly as:
811

```

810
811     New Code:
812     [code]
813
814     Explanation:
815     [logic changes]
816
817     Rewritten Prompt:
818     [updated description]
819
820     Old Entry Point:
821     [original function name]
822
823     New Entry Point:
824     [updated function name]
825
826
827
```

B.2 CODE-REWRITING EVOLUTION LLM JUDGE

```

828
829     System Prompt
830
831
```

System: You are an expert code reviewer. Your task is to evaluate whether an evolved coding task maintains appropriate quality standards in terms of prompt-code alignment and difficulty equivalence.

```

834     Code-Rewriting Evolution LLM Judging Prompt
835
836
```

User: Please evaluate the quality of this evolved coding task by analyzing two key aspects:

```

837
838     **Original Task:**
839     Prompt: {original_prompt}
840     Code: {original_code}
841     **Evolved Task:**
842     Prompt: {rewritten_prompt}
843     Code: {rewritten_code}
844
845     **Evaluation Criteria:**
846     1. **Prompt-Code Alignment**: Does the new prompt accurately describe what the new code
847        does?
848        - Are the input/output specifications consistent?
849        - Does the prompt clearly communicate the expected behavior?
850        - Are there any ambiguities or mismatches?
851
852     2. **Difficulty Equivalence**: Is the evolved task of similar difficulty to the original?
853        - Does it require similar algorithmic thinking?
854        - Is the complexity level maintained (not significantly easier or harder)?
855        - Does it test similar programming concepts and skills?
```

```

856     **Response Format:**
857     Provide your evaluation in the following format:
858
859     Alignment Score: [1-5, where 5 = perfect alignment, 1 = major misalignment]
860     Alignment Reasoning: [Brief explanation of why the prompt and code align or don't align]
861
862     Difficulty Score: [1-5, where 5 = equivalent difficulty, 3 = acceptable variation, 1 =
863        significantly different]
864     Difficulty Reasoning: [Brief explanation of difficulty comparison]
865
866     Overall Recommendation: [ACCEPT/REJECT]
867     Overall Reasoning: [Brief summary of your decision]
868
869     Please be thorough but concise in your evaluation.
```

864 B.3 MUTATION EVOLUTION

865

866 System Prompt

867

868 **System:** You are an experienced python programmer. Your goal is to transforms a given 'coding task
869 prompt' into a new version. Follow the instructions carefully to transform the prompt.

870

871 Mutation Evolution User Prompt

872

873 **User:** Given a coding task description "The Given Prompt" and its canonical solution "Code", perform the
874 following steps:

875

- X word-scrambling operations
- Y random-capitalization operations
- Z character-noising operations

878

879 Definitions (one "operation" = one change):

880

- **Word scrambling**: choose a single word (alphabetic token) and randomly shuffle its internal letters.
- **Random capitalization**: flip the case of one letter (upper to lower or lower to upper) anywhere in the text.
- **Character noising**: insert, delete, **or** substitute one character (letter, digit, or punctuation).

885

886 Please gives your answers to "Mutation Prompt" without any additional text or explanation.

887

888 **Response:** Format your response as:

889

890 Mutation Prompt:

891 [Updated task description]

892

893 NOTE: The values X, Y, and Z — representing the number of word-scrambling, random-capitalization, and
894 character-noising operations respectively — are automatically computed based on the length of the original
895 prompt. Specifically, we apply a total of ≈ 4 noise operations per 5 words. We first ensure at least one
896 operation of each type is included (i.e., $X, Y, Z \geq 1$), then randomly distribute the remaining operations
897 among the three types. This strategy ensures a consistent noise budget proportional to the prompt's length
898 while maintaining diversity in corruption types.

899

900

901 B.4 PARAPHRASING EVOLUTION

902

903 System Prompt

904

905 **System:** You are an experienced python programmer. Your goal is to transforms a given 'coding task
906 prompt' into a new version. Follow the instructions carefully to transform the prompt.

907

908 Paraphrasing Evolution User Prompt

909

910 **User:** Given a coding-task description "The Given Prompt", produce a paraphrased version called "Para-
911 phrased Prompt".

912

913 Guidelines:

914

1. Keep the task's meaning, requirements, and input/output specifications identical.
2. Refresh the wording: use synonyms, change sentence order, or rephrase clauses to add light linguistic "noise," but do **not** drop or add information.
3. Preserve any code-related tokens (e.g., variable names, file names, I/O examples) exactly as they appear unless the original prompt explicitly marks them as placeholders.
4. Retain the original structural cues—for example, if the prompt begins with 'Write a Python function...', your rewrite should also begin with that instruction, albeit rephrased

915

916 Please gives your answers to "Paraphrased Prompt" without any additional text or explanation.

917

918 **Response:** Format your response as:

918
 919 Paraphrased Prompt:
 920 [Updated task description]
 921
 922

923 B.5 CODE REWRITING SOLUTION VALIDATION

924 Additionally, we ensured the validity of test cases for all rewritten tasks across both datasets, and
 925 validate each rewritten solution by making it pass its corresponding rewritten unit test. For MBPP+,
 926 we reuse the official test case inputs and generate the expected outputs using the rewritten ground-
 927 truth solutions, ensuring direct comparability. For BigCodeBench, we adopt the procedure outlined
 928 in Zhuo et al. (2024), constructing test cases for each rewritten task based on their guidelines to guar-
 929 antee consistency and correctness. We installed all packages required by both dataset for assessing
 930 function correctness.

931 C EXAMPLES OF CLEARER PARAPHRASED PROMPTS

932 Mbpp/604
 933

934 **Original Prompt:** Write a function to reverse words separated by spaces in a given string.
 935 **Paraphrased Prompt:** Create a function that takes a string as input and returns the string
 936 with all words, which are divided by spaces, reversed in order.
 937

938 Mbpp/752
 939

940 **Original Prompt:** Write a function to find the nth jacobsthal number.
 941 <https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/> 0, 1, 1, 3, 5,
 942 11, 21, 43, 85, 171, 341, 683, 1365, 2731, ...
 943 **Paraphrased Prompt:** Create a function that computes the nth Jacobsthal number. Refer
 944 to <https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/> for more infor-
 945 mation. The sequence begins as follows: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365,
 946 2731, ...
 947

948 Mbpp/753
 949

950 **Original Prompt:** Write a function to find minimum k records from tuple list.
 951 <https://www.geeksforgeeks.org/python-find-minimum-k-records-from-tuple-list/> - in this
 952 case a verbatim copy of test cases.
 953 **Paraphrased Prompt:** Create a function that retrieves the smallest k elements from a list
 954 of tuples. Refer to <https://www.geeksforgeeks.org/python-find-minimum-k-records-from->
 955 tuple-list/ and use the provided test cases exactly as they are.
 956

957 D STABILITY OF RAD AND MRI UNDER LOW BASELINE ACCURACY

958 The Relative Accuracy Drop (RAD) measures the *fractional* decrease in Pass@1 between the orig-
 959 inal and rewritten task sets. Although this captures the intended notion of rewriting-sensitivity, it
 960 becomes unstable when the baseline accuracy $\text{Acc}(\mathcal{T}_{\text{ori}})$ is extremely low: even a small absolute
 961 change can inflate the relative ratio and consequently MRI (defined as the product of similarity and
 962 RAD).
 963

964 To ensure that RAD and MRI reflect meaningful performance changes rather than numerical insta-
 965 bility, we compute these metrics only when two conditions hold.
 966

967 **(1) Sufficient number of correctly solved original tasks.** For a benchmark with N tasks and
 968 baseline accuracy $p = \text{Acc}(\mathcal{T}_{\text{ori}})$, the model solves $k = Np$ tasks. We require
 969

$$970 k \geq M = 50,$$

which keeps the variance of the empirical Pass@1 sufficiently small under a binomial model. For instance, MBPP+ ($N = 378$) requires $p \geq 13.2\%$, resulting in a 95% confidence interval of roughly $\pm 3\text{--}4$ percentage points; BigCodeBench ($N = 1,140$) requires $p \geq 4.4\%$ with an even tighter interval. These uncertainties are far smaller than the 5–20 point drops typically observed in our memorization analyses.

(2) A minimum competence threshold on baseline accuracy. We additionally require

$$\text{Acc}(\mathcal{T}_{\text{ori}}) \geq 10\%,$$

which prevents the denominator in RAD from becoming so small that modest absolute changes (e.g., a 5-point drop) produce disproportionately large relative decreases (e.g., $> 50\%$).

Application of the threshold. When either condition is violated, we still report $\text{Acc}(\mathcal{T}_{\text{ori}})$ and $\text{Acc}(\mathcal{T}_{\text{rew}})$ for transparency, but we mark RAD and MRI as “*N/A (below competence threshold)*” and exclude them from cross-model comparisons. All analyses and figures in the main paper adhere to this stability rule.

These criteria ensure that large RAD values reflect genuine difficulty introduced by semantic rewriting rather than artifacts of low baseline accuracy, and that MRI remains a reliable indicator of harmful memorization behaviour.

E INSTANCE-LEVEL MRI (iMRI)

Definition. Our corpus-level MRI is defined as the product of the mean similarity between original and rewritten solutions and the overall accuracy drop under rewriting. This aggregate view is convenient for comparison across models and datasets, but it is natural to ask whether similar conclusions hold when similarity and failures are combined at the level of individual instances. To this end, we define an instance-level variant, iMRI, as

$$\text{iMRI} = \frac{1}{|\mathcal{T}_{\text{passed}}|} \sum_{k \in \mathcal{T}_{\text{passed}}} (\text{Sim}_k \cdot \text{Drop}_k), \quad (10)$$

where $\mathcal{T}_{\text{passed}}$ is the set of tasks that the model solves correctly on the original benchmark, Sim_k is the similarity between the original and rewritten solution for example k , and $\text{Drop}_k \in \{0, 1\}$ indicates whether the model fails on the rewritten task ($\text{Drop}_k = 1$ if the rewrite fails, and 0 otherwise). Conditioning on $\mathcal{T}_{\text{passed}}$ reflects our focus on *harmful memorization as regression*: a failure on the rewrite is only meaningful when the original task was solved correctly in the first place.

Alignment between MRI and iMRI. Table 4 reports Pearson correlations between corpus-level MRI and instance-level iMRI across model sizes for Qwen-2.5 Instruct and Coder series on MBPP+ and BIGCODEBENCH. All correlations are very high (≥ 0.92), indicating that the two metrics induce essentially the same ordering over models:

- For the Qwen-2.5 Instruct series, the MRI–iMRI correlation is 0.9816 on MBPP+ and 0.9459 on BIGCODEBENCH.
- For the Qwen-2.5 Coder series, the correlation is 0.9211 on MBPP+ and 0.9731 on BIGCODEBENCH.

Series	MBPP+	BIGCODEBENCH
Qwen-2.5 Instruct	0.9816	0.9459
Qwen-2.5 Coder	0.9211	0.9731

Table 4: Pearson correlation between corpus-level MRI and instance-level iMRI across model sizes for Qwen-2.5 Instruct and Coder series.

Scaling trends under iMRI. Tables 5 and 6 list MRI and iMRI side by side for all Qwen-2.5 Instruct and Coder models on MBPP+ and BIGCODEBENCH. Several observations reflect the main-text trends:

- On MBPP+ (Table 5), both MRI and iMRI *decrease* with scale in the Instruct and Coder series. iMRI values are numerically larger than MRI (as expected, since they average similarity over solved tasks only), but the relative ranking of models is preserved and the overall trend of reduced harmful memorization for larger models remains.
- On BIGCODEBENCH (Table 6), iMRI again tracks MRI closely: both metrics decline from small to medium scales and then plateau or mildly increase for the largest models, reflecting the same behavior discussed in the main text.

Taken together with the correlations in Table 4, these results indicate that corpus-level MRI is a stable summary of harmful memorization: instance-level aggregation yields qualitatively identical conclusions about scaling trends of Instruct vs. Coder models.

Model	iMRI	MRI
Qwen-2.5-0.5B-Instruct	0.1494	0.0722
Qwen-2.5-1.5B-Instruct	0.1078	0.0600
Qwen-2.5-3B-Instruct	0.0490	0.0185
Qwen-2.5-7B-Instruct	0.0650	0.0240
Qwen-2.5-14B-Instruct	0.0500	0.0113
Qwen-2.5-32B-Instruct	0.0325	0.0000
Qwen-2.5-coder-0.5B-Instruct	0.1107	0.0615
Qwen-2.5-coder-1.5B-Instruct	0.0870	0.0500
Qwen-2.5-coder-3B-Instruct	0.0828	0.0328
Qwen-2.5-coder-7B-Instruct	0.0771	0.0373
Qwen-2.5-coder-14B-Instruct	0.0722	0.0313
Qwen-2.5-coder-32B-Instruct	0.0730	0.0354

Table 5: Instance-level iMRI vs. corpus-level MRI for Qwen-2.5 Instruct and Coder series on MBPP+.

Model	iMRI	MRI
Qwen-2.5-0.5B-Instruct	N/A	N/A
Qwen-2.5-1.5B-Instruct	0.1870	0.1444
Qwen-2.5-3B-Instruct	0.1836	0.1403
Qwen-2.5-7B-Instruct	0.1727	0.1296
Qwen-2.5-14B-Instruct	0.1275	0.0841
Qwen-2.5-32B-Instruct	0.1538	0.1143
Qwen-2.5-coder-0.5B-Instruct	0.2609	0.1778
Qwen-2.5-coder-1.5B-Instruct	0.2379	0.1630
Qwen-2.5-coder-3B-Instruct	0.2108	0.1630
Qwen-2.5-coder-7B-Instruct	0.1959	0.1477
Qwen-2.5-coder-14B-Instruct	0.1619	0.1237
Qwen-2.5-coder-32B-Instruct	0.1510	0.1178

Table 6: Instance-level iMRI vs. corpus-level MRI for Qwen-2.5 Instruct and Coder series on BIGCODEBENCH.

F ABLATION STUDIES FOR SIMILARITY

F.1 SETUP AND EVALUATION PROTOCOL

In this section we study how sensitive the Memorization Risk Index (MRI) is to implementation choices in its similarity component S_i . Unless otherwise stated, we use the same models and datasets as in the main experiments: all Qwen-2.5 Instruct and Coder variants evaluated on MBPP+ and BIGCODEBENCH.

For each model and benchmark, we compute MRI under our default definition (section 3.1.1) and under alternative variants that modify:

- the **parser and grammar** used to obtain AST trees,

1080 • the **weighting** between AST-based and edit-based similarity,
 1081 • and the **similarity function** itself (token-overlap and embedding-based metrics).

1083 **F.2 PARSER AND GRAMMAR**

1085 We performed a comprehensive robustness check over three definitions of similarity:

1087 • **All-nodes AST** We replaced our standard "significant node" parsing with an All-nodes
 1088 AST grammar. This treats every syntactic element (including non-functional nodes) as
 1089 significant, testing robustness to parser strictness.

1090 • **Raw Edit Similarity**: We removed the `ast.unparse` normalization step and computed edit
 1091 similarity on raw code strings. This tests robustness to formatting and minor textual arti-
 1092 facts.

1093 • **Combined**: We applied both All-nodes AST and Raw Edit similarity simultaneously.

1095 As shown in Table 7 and Table 8, while stricter parsing (All-nodes) naturally yields higher raw sim-
 1096 ilarity scores and shifts the absolute MRI values, the relative ranking of models and trends remain
 1097 statistically invariant. We calculated the Pearson correlation (r) between the original MRI and the
 1098 "Combined" variant (the most divergent definition). The correlation is consistently $r > 0.92$ on
 1099 BigCodeBench for both Instruct and Coder model families, while on MBPP+ correlation is consis-
 1100 tently $r > 0.99$. This confirms that MRI is not an artifact of the parser choice. The metric is robust
 1101 to parsers/grammars.

Model	MRI (original)	MRI (original edit sim & AST all nodes)	MRI (original AST & edit sim raw)	MRI (edit sim raw & AST all nodes)
Qwen-2.5 0.5B-Instruct	0.0722	0.0948	0.0561	0.0787
Qwen-2.5-1.5B-Instruct	0.0600	0.0783	0.0455	0.0639
Qwen-2.5-3B-Instruct	0.0185	0.0289	0.0153	0.0256
Qwen-2.5-7B-Instruct	0.0240	0.0321	0.0173	0.0254
Qwen-2.5-14B-Instruct	0.0113	0.0151	0.0082	0.0120
Qwen-2.5-32B-Instruct	0.0000	0.0000	0.0000	0.0000
Qwen-2.5-coder-0.5B-Instruct	0.0615	0.0864	0.0453	0.0702
Qwen-2.5-coder-1.5B-Instruct	0.0500	0.0660	0.0377	0.0537
Qwen-2.5-coder-3B-Instruct	0.0328	0.0426	0.0232	0.0330
Qwen-2.5-coder-7B-Instruct	0.0373	0.0478	0.0257	0.0362
Qwen-2.5-coder-14B-Instruct	0.0313	0.0394	0.0223	0.0304
Qwen-2.5-coder-32B-Instruct	0.0354	0.0444	0.0249	0.0338

1118 Table 7: MRI robustness to parser/grammar variants on MBPP+.

1120 **F.3 WEIGHTING BETWEEN AST-BASED AND EDIT-BASED SIMILARITY**

1123 We use the edit/AST weights from "AST only" to "edit only" on both MBPP+ and BigCodeBench
 1124 for Qwen 2.5 Instruct and its coder models (Table 10 and Table 11). Across all these settings, the
 1125 MRI computed under our original 50/50 weighting has extremely high Pearson correlation with MRI
 1126 computed under alternative weightings (Table 9). This indicates that reweighting would essentially
 1127 rescale MRI rather than alter model rankings or our main findings.

1128 **F.4 SIMILARITY FUNCTIONS (TOKEN-OVERLAP AND EMBEDDING-BASED METRICS**

1130 We added ablation evaluations across alternative similarity families, including 1–3-gram overlap,
 1131 Jaccard, MinHash, and cosine code-embedding similarity on both BigCodeBench (Table 14) and
 1132 MBPP+ (Table 13). We found that MRI is stable across similarity families. Jaccard, MinHash, and
 1133 1–3-grams produce MRI values that closely track our original MRI, and even cosine-embedding
 1134 similarity (deviates most in scale) preserves the relative trend of models (Table 12).

Model	MRI (original)	MRI (original edit sim & AST all nodes)	MRI (original AST & edit sim raw)	MRI (edit sim raw & AST all nodes)
Qwen-2.5 0.5B-Instruct	0.1740	0.2828	0.1652	0.2739
Qwen-2.5-1.5B-Instruct	0.1444	0.2407	0.1570	0.2532
Qwen-2.5-3B-Instruct	0.1403	0.2219	0.1292	0.2108
Qwen-2.5-7B-Instruct	0.1296	0.2181	0.1480	0.2364
Qwen-2.5-14B-Instruct	0.0841	0.1519	0.0968	0.1646
Qwen-2.5-32B-Instruct	0.1143	0.1790	0.1047	0.1694
Qwen-2.5-coder-0.5B-Instruct	0.1778	0.2499	0.1410	0.2131
Qwen-2.5-coder-1.5B-Instruct	0.1630	0.2388	0.1254	0.2013
Qwen-2.5-coder-3B-Instruct	0.1630	0.2352	0.1323	0.2045
Qwen-2.5-coder-7B-Instruct	0.1477	0.2156	0.1187	0.1866
Qwen-2.5-coder-14B-Instruct	0.1237	0.1833	0.0894	0.1490
Qwen-2.5-coder-32B-Instruct	0.1178	0.1802	0.0992	0.1616

Table 8: MRI robustness to parser/grammar variants on BigCodeBench.

Model Series	Avg. Pearson Corr. on MBPP+	Avg. Pearson Corr. on BigCodeBench
Qwen-2.5 series	0.9997 \pm 0.0004	0.9921 \pm 0.0144
Coder series	0.9974 \pm 0.0042	0.9780 \pm 0.0367

Table 9: Average Pearson correlation for AST/edit weightings.

F.5 CONCLUSIONS

These results demonstrate that our main findings are not only suitable for the particular 5:5 AST+edit design. MRI behaves consistently across semantic metrics (AST) and surface-form metrics (edit, n-gram, Jaccard, MinHash and cosine code-embedding).

Model	MRI (orig 5:5)	MRI (edit only)	MRI (AST only)	MRI (edit:ast=2:8)	MRI (edit:ast=4:6)	MRI (edit:ast=6:4)	MRI (edit:ast=8:2)
Qwen-2.5 0.5B-Instruct	0.0722	0.1025	0.0420	0.0541	0.0662	0.0783	0.0904
Qwen-2.5-1.5B-Instruct	0.0600	0.0832	0.0368	0.0461	0.0554	0.0647	0.0739
Qwen-2.5-3B-Instruct	0.0185	0.0249	0.0122	0.0147	0.0172	0.0198	0.0223
Qwen-2.5-7B-Instruct	0.0240	0.0342	0.0139	0.0179	0.0220	0.0260	0.0301
Qwen-2.5-14B-Instruct	0.0113	0.0161	0.0065	0.0084	0.0103	0.0122	0.0142
Qwen-2.5-32B-Instruct	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Qwen-2.5-coder-0.5B-Instruct	0.0615	0.0905	0.0325	0.0441	0.0557	0.0673	0.0789
Qwen-2.5-coder-1.5B-Instruct	0.0500	0.0713	0.0286	0.0372	0.0457	0.0542	0.0627
Qwen-2.5-coder-3B-Instruct	0.0328	0.0472	0.0184	0.0242	0.0300	0.0357	0.0415
Qwen-2.5-coder-7B-Instruct	0.0373	0.0526	0.0219	0.0281	0.0342	0.0403	0.0465
Qwen-2.5-coder-14B-Instruct	0.0313	0.0433	0.0193	0.0241	0.0289	0.0337	0.0385
Qwen-2.5-coder-32B-Instruct	0.0354	0.0490	0.0218	0.0272	0.0327	0.0381	0.0436

Table 10: Ablation study for different AST/edit weightings on MBPP+.

Model	MRI (orig 5:5)	MRI (edit sim)	MRI (AST sim)	MRI (edit:ast=2:8)	MRI (edit:ast=4:6)	MRI (edit:ast=6:4)	MRI (edit:ast=8:2)
Qwen-2.5 0.5B-Instruct	0.1740	0.2745	0.0736	0.1138	0.1540	0.1941	0.2343
Qwen-2.5-1.5B-Instruct	0.1444	0.2166	0.0722	0.1011	0.1300	0.1589	0.1878
Qwen-2.5-3B-Instruct	0.1403	0.2158	0.0649	0.0951	0.1252	0.1554	0.1856
Qwen-2.5-7B-Instruct	0.1296	0.1958	0.0635	0.0899	0.1164	0.1429	0.1693
Qwen-2.5-14B-Instruct	0.0841	0.1227	0.0455	0.0609	0.0764	0.0918	0.1073
Qwen-2.5-32B-Instruct	0.1143	0.1711	0.0576	0.0803	0.1030	0.1257	0.1484
Qwen-2.5-coder-0.5B-Instruct	0.1778	0.2802	0.0753	0.1163	0.1573	0.1982	0.2392
Qwen-2.5-coder-1.5B-Instruct	0.1630	0.2487	0.0772	0.1115	0.1458	0.1801	0.2144
Qwen-2.5-coder-3B-Instruct	0.1630	0.2463	0.0796	0.1130	0.1463	0.1797	0.2130
Qwen-2.5-coder-7B-Instruct	0.1477	0.2192	0.0762	0.1048	0.1334	0.1620	0.1906
Qwen-2.5-coder-14B-Instruct	0.1237	0.1881	0.0593	0.0850	0.1108	0.1366	0.1623
Qwen-2.5-coder-32B-Instruct	0.1178	0.1804	0.0552	0.0803	0.1053	0.1303	0.1554

Table 11: Ablation study for different AST/edit weightings on BigCodeBench.

Model Series	Avg. Pearson Corr. on MBPP+	Avg. Pearson Corr. on BigCodeBench
Qwen-2.5 series	0.9966 \pm 0.0029	0.9671 \pm 0.0163
Coder series	0.9752 \pm 0.0420	0.9921 \pm 0.0144

Table 12: Average Pearson correlation across similarity families.

Model	MRI 1-gram	MRI 2-gram	MRI 3-gram	MRI Jaccard sim	MRI Minhash sim	MRI Cosine embed sim
Qwen-2.5 0.5B-Instruct	0.0873	0.0404	0.0206	0.0712	0.0694	0.2126
Qwen-2.5-1.5B-Instruct	0.0704	0.0337	0.0177	0.0568	0.0552	0.1682
Qwen-2.5-3B-Instruct	0.0265	0.0123	0.0064	0.0224	0.0221	0.0800
Qwen-2.5-7B-Instruct	0.0282	0.0132	0.0068	0.0224	0.0219	0.0678
Qwen-2.5-14B-Instruct	0.0135	0.0065	0.0033	0.0107	0.0106	0.0330
Qwen-2.5-32B-Instruct	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Qwen-2.5-coder-0.5B-Instruct	0.0764	0.0339	0.0167	0.0640	0.0612	0.2110
Qwen-2.5-coder-1.5B-Instruct	0.0594	0.0285	0.0151	0.0488	0.0469	0.1424
Qwen-2.5-coder-3B-Instruct	0.0372	0.0181	0.0095	0.0296	0.0286	0.0865
Qwen-2.5-coder-7B-Instruct	0.0408	0.0212	0.0123	0.0321	0.0314	0.0922
Qwen-2.5-coder-14B-Instruct	0.0349	0.0192	0.0117	0.0274	0.0268	0.0730
Qwen-2.5-coder-32B-Instruct	0.0387	0.0219	0.0137	0.0301	0.0297	0.0808

Table 13: Ablation study across similarity families on MBPP+.

Model	MRI 1-gram	MRI 2-gram	MRI 3-gram	MRI Jaccard sim	MRI Minhash sim	MRI Cosine embed sim
Qwen-2.5 0.5B-Instruct	0.3245	0.2302	0.1823	0.2548	0.2586	0.5986
Qwen-2.5-1.5B-Instruct	0.2705	0.1933	0.1521	0.2138	0.2187	0.5245
Qwen-2.5-3B-Instruct	0.2483	0.1827	0.1453	0.1955	0.1987	0.4353
Qwen-2.5-7B-Instruct	0.2401	0.1761	0.1395	0.1902	0.1932	0.4397
Qwen-2.5-14B-Instruct	0.1690	0.1229	0.0970	0.1345	0.1387	0.3316
Qwen-2.5-32B-Instruct	0.2053	0.1533	0.1226	0.1628	0.1650	0.3547
Qwen-2.5-coder-0.5B-Instruct	0.2825	0.2018	0.1597	0.2209	0.2222	0.5056
Qwen-2.5-coder-1.5B-Instruct	0.2813	0.2094	0.1693	0.2234	0.2257	0.4778
Qwen-2.5-coder-3B-Instruct	0.2641	0.1977	0.1583	0.2102	0.2109	0.4444
Qwen-2.5-coder-7B-Instruct	0.2451	0.1838	0.1476	0.1959	0.1979	0.4193
Qwen-2.5-coder-14B-Instruct	0.2099	0.1578	0.1264	0.1668	0.1685	0.3554
Qwen-2.5-coder-32B-Instruct	0.1994	0.1491	0.1188	0.1579	0.1590	0.3410

Table 14: Ablation study across similarity families on BigCodeBench.

1242 G ANALYSIS BY LOGIC CHANGE TYPE

1244 **Logic change types.** To better understand *which* semantic edits drive memorization, we categorize
 1245 each semantics-altering rewrite into one of the following nine logic change types:

- 1247 • **Component Swap:** Swapping a function, class, or method while keeping the surrounding structure fixed (e.g., `sum` → `max`, `np.std` → `np.var`).
- 1249 • **Data Transformation:** Transforming the data *before* applying the main logic (e.g., `np.log(data)`, `data.T`, `data.pct_change()`, tokenization or normalization steps).
- 1251 • **Constraint Change:** Modifying rules, parameters, or logical conditions (e.g., loop stride in
 1252 `range(..., 2)`, bounds in inequalities, regex patterns, or SQL UNIQUE constraints).
- 1253 • **Logic Reversal:** Inverting the decision or ranking logic (e.g., `max` → `min`,
 1254 `sorted(...)` → `sorted(..., reverse=True)`, swapping the roles of `x` and `y` in comparisons).
- 1256 • **Operator Change:** Swapping a single arithmetic or logical operator (e.g., `^` → `+`, `==` → `!=`).
- 1257 • **Operation Order Swap:** Reordering two or more operations with the same components (e.g.,
 1258 applying `blur` then `gray` vs. `gray` then `blur`).
- 1260 • **Constant Swap:** Changing hard-coded constants or literal values (e.g., switching between
 1261 lowercase and UPPERCASE, or adjusting thresholds).
- 1262 • **Workflow Modification:** Structural changes to the overall pipeline, such as inserting or removing
 1263 processing stages (e.g., adding an extra `zlib` compression step or altering nested outputs).
- 1264 • **Other:** Any semantics-altering edit that does not clearly fall into the above categories.

1266 **Coverage across benchmarks.** Table 15 reports the distribution of logic change types across BIG-
 1267 CODEBENCH and MBPP+. On BIGCODEBENCH, the changes are dominated by **Component**
 1268 **Swap** (34.5%) and **Data Transformation** (33.8%), followed by **Constraint Change** (16.2%), with
 1269 the remaining types each accounting for less than 5% of all instances. On MBPP+, the distribution
 1270 is more balanced: **Constraint Change** (22.8%), **Logic Reversal** (18.0%), **Data Transformation**
 1271 (15.3%), **Component Swap** (13.8%), and **Constant/Operator Swap** (9–10%) all contribute sub-
 1272 stantially. To avoid unstable estimates, all per-type statistics in this appendix exclude logic-change
 1273 categories with fewer than 50 samples in a given dataset.

1274 **Per-type RAD on MBPP+.** Table 16 shows accuracy on original tasks $\text{Acc}(\mathcal{T}_{\text{ori}})$, rewritten tasks
 1275 $\text{Acc}(\mathcal{T}_{\text{rew}})$, and the resulting accuracy drop RAD (all for semantics-altering rewrites, i.e., RAD_{rew})
 1276 for four Qwen-2.5 variants on MBPP+. Several patterns emerge:

- 1278 • For both Instruct and Coder families, **Constraint Change** exhibits the largest RAD at both 0.5B
 1279 and 14B, indicating that models are particularly brittle when loop bounds, thresholds, or other
 1280 constraints are modified.
- 1281 • **Data Transformation** also induces substantial drops (25–35% at 0.5B; 7–14% at 14B), showing
 1282 the difficulty of tracking changes to data pre-processing or representation.
- 1283 • **Component Swap** has comparatively *small* RAD and becomes almost benign at 14B, while **Logic**
 1284 **Reversal** transitions from a sizeable drop at 0.5B to nearly no drop (or even slight improvements)
 1285 at 14B.

1286 These results show that, on the simpler MBPP+ benchmark, harmful memorization is not uniform
 1287 across edit types: scaling primarily reduces vulnerability to Constraint Change and Data Transfor-
 1288 mation, while simple component/logic swaps become much easier for larger models to handle.

1290 **Per-type RAD on BigCodeBench.** Table 17 reports the same statistics for BIGCODEBENCH.
 1291 Compared to MBPP+, all major logic-change types now induce much larger drops:

- 1293 • At 0.5B, **Constraint Change**, **Data Transformation**, **Logic Reversal**, and **Workflow Modifi-
 1294 cation** all yield extremely high RAD (often above 70% for Qwen-2.5-0.5B-Instruct), confirming
 1295 that models struggle when rewrites modify global data flow or constraints on this more challenging
 benchmark.

1296 • Scaling to 14B substantially improves $\text{Acc}(\mathcal{T}_{\text{ori}})$, but RAD *remains high* for Data Transformation,
 1297 Constraint Change, and Workflow Modification, with per-type drops still in the 30–45% range.
 1298

1299 Thus, even at larger scales, **BIGCODEBENCH** exposes persistent brittleness when the rewrite
 1300 changes how data are transformed, rather than merely swapping local components.

1301 **MRI per logic-change type.** Table 18 and Table 19 aggregate these drops into MRI values stratified by logic-change type. On MBPP+ (Table 18), **Constraint Change** and **Data Transformation** consistently exhibit the highest per-type MRI across both Instruct and Coder series, whereas **Component Swap** has much smaller MRI and often approaches zero for larger models. On **BIGCODEBENCH** (Table 19), all five major types (**Component Swap**, **Constraint Change**, **Data Transformation**, **Logic Reversal**, **Workflow Modification**) show substantial and relatively flat MRI across scales, with **Data Transformation**, **Constraint Change**, and **Workflow Modification** frequently attaining the highest per-type MRI.

Logic Change Type	bigcodebench Count	bigcodebench %	mbppplus Count	mbppplus %
Total	1140	100.00%	378	100.00%
Component Swap	393	34.47%	52	13.76%
Data Transformation	385	33.77%	58	15.34%
Constraint Change	185	16.23%	86	22.75%
Logic Reversal	50	4.39%	68	17.99%
Workflow Modification	50	4.39%	10	2.65%
Constant Swap	37	3.25%	36	9.52%
Operation Order Swap	20	1.75%	12	3.17%
Operator Change	18	1.58%	36	9.52%
Other	2	0.18%	20	5.29%

1320 Table 15: Code Rewriting logic change type statistics for **bigcodebench** and **mbppplus**.

Logic Change Type	qwen-2.5-coder-0.5b-instruct				qwen-2.5-coder-14b-instruct			
	Total	$\text{Acc}(\mathcal{T}_{\text{ori}}) (\uparrow)$	$\text{Acc}(\mathcal{T}_{\text{rew}}) (\uparrow)$	RAD (\downarrow)	Total	$\text{Acc}(\mathcal{T}_{\text{ori}}) (\uparrow)$	$\text{Acc}(\mathcal{T}_{\text{rew}}) (\uparrow)$	RAD (\downarrow)
Component Swap	52	48.1%	44.2%	8.0%	52	75.0%	71.2%	5.1%
Constraint Change	86	46.5%	30.2%	35.0%	86	73.3%	54.7%	25.4%
Data Transformation	58	55.2%	41.4%	25.0%	58	72.4%	62.1%	14.3%
Logic Reversal	68	42.6%	35.3%	17.2%	68	72.1%	76.5%	0.0%
MRI (all nine types)	–	–	–	0.0615	–	–	–	0.0313
qwen-2.5-0.5b-instruct								
Logic Change Type	qwen-2.5-0.5b-instruct				qwen-2.5-14b-instruct			
	52	44.2%	40.4%	8.7%	52	75.0%	71.2%	5.1%
	86	39.5%	24.4%	38.2%	86	64.0%	48.8%	23.6%
	58	50.0%	32.8%	34.5%	58	70.7%	65.5%	7.3%
MRI (all nine types)	68	39.7%	26.5%	33.3%	68	72.1%	80.9%	0.0%
	–	–	–	0.0722	–	–	–	0.0113

1321 Table 16: Comparison of logic change type performance between four Qwen-2.5 variants on MBPP+. We omit logic change types with fewer than 50 samples to avoid statistical bias. RAD highlighted in red denotes the highest drop.

Logic Change Type	qwen-2.5-coder-0.5b-instruct				qwen-2.5-coder-14b-instruct			
	Total	Acc(\mathcal{T}_{ori}) (\uparrow)	Acc(\mathcal{T}_{rew}) (\uparrow)	RAD (\downarrow)	Total	Acc(\mathcal{T}_{ori}) (\uparrow)	Acc(\mathcal{T}_{rew}) (\uparrow)	RAD (\downarrow)
Component Swap	393	13.5%	6.4%	52.8%	393	46.8%	29.3%	37.5%
Constraint Change	185	8.6%	4.9%	43.8%	185	50.8%	33.5%	34.0%
Data Transformation	385	10.6%	3.4%	68.3%	385	46.8%	26.8%	42.8%
Logic Reversal	50	8.0%	6.0%	25.0%	50	46.0%	34.0%	26.1%
Workflow Modification	50	10.0%	6.0%	40.0%	50	42.0%	24.0%	42.9%
MRI (all nine types)	—	—	—	0.1778	—	—	—	0.1237
qwen-2.5-0.5b-instruct								
Logic Change Type	Total	Acc(\mathcal{T}_{ori}) (\uparrow)	Acc(\mathcal{T}_{rew}) (\uparrow)	RAD (\downarrow)	Total	Acc(\mathcal{T}_{ori}) (\uparrow)	Acc(\mathcal{T}_{rew}) (\uparrow)	RAD (\downarrow)
	393	12.0%	4.8%	59.6%	393	38.2%	26.7%	30.0%
Component Swap	185	11.9%	2.7%	77.3%	185	40.5%	27.0%	33.3%
Constraint Change	385	8.3%	2.1%	75.0%	385	39.7%	21.8%	45.1%
Data Transformation	50	8.0%	2.0%	75.0%	50	44.0%	28.0%	36.4%
Logic Reversal	50	8.0%	2.0%	75.0%	50	30.0%	18.0%	40.0%
MRI (all nine types)	—	—	—	0.1740	—	—	—	0.0841

Table 17: Comparison of logic change type performance between four Qwen-2.5 variants on BigCodeBench. We omit logic change types with fewer than 50 samples to avoid statistical bias. RAD highlighted in red denotes the highest drop.

Model	MRI (per logic change type)				MRI (all nine types)
	Component Swap	Constraint Change	Data Transformation	Logic Reversal	All
Qwen-2.5-0.5B-Instruct	0.0212	0.0929	0.0877	0.1119	0.0722
Qwen-2.5-1.5B-Instruct	0.0644	0.0584	0.0592	0.0553	0.0600
Qwen-2.5-3B-Instruct	0.0149	0.0380	0.0224	0.0000	0.0185
Qwen-2.5-7B-Instruct	0.0154	0.0543	0.0284	0.0072	0.0240
Qwen-2.5-14B-Instruct	0.0139	0.0573	0.0172	0.0000	0.0113
Qwen-2.5-32B-Instruct	0.0000	0.0000	0.0000	0.0073	0.0000
<i>Mean \pm Std</i>	<i>0.02 \pm 0.02</i>	<i>0.05 \pm 0.03</i>	<i>0.04 \pm 0.03</i>	<i>0.03 \pm 0.05</i>	—
Qwen-2.5-coder-0.5B-Instruct	0.0195	0.0738	0.0480	0.0483	0.0615
Qwen-2.5-coder-1.5B-Instruct	0.0451	0.0465	0.0752	0.0284	0.0500
Qwen-2.5-coder-3B-Instruct	0.0000	0.0380	0.0406	0.0079	0.0328
Qwen-2.5-coder-7B-Instruct	0.0000	0.0382	0.0622	0.0189	0.0373
Qwen-2.5-coder-14B-Instruct	0.0189	0.0828	0.0372	0.0000	0.0313
Qwen-2.5-coder-32B-Instruct	0.0000	0.0786	0.0433	0.0356	0.0354
<i>Mean \pm Std</i>	<i>0.01 \pm 0.02</i>	<i>0.06 \pm 0.02</i>	<i>0.05 \pm 0.01</i>	<i>0.02 \pm 0.02</i>	—

Table 18: MRI across logic change types for Qwen-2.5 Instruct and Coder variants on MBPP+. MRI highlighted in red denotes the highest MRI.

Model	MRI (per logic change type)					MRI (all types)
	Component Swap	Constraint Change	Data Transformation	Logic Reversal	Workflow Modification	All
Qwen-2.5-0.5B-Instruct	0.1635	0.1968	0.1951	0.2144	0.1900	0.1740
Qwen-2.5-1.5B-Instruct	0.1316	0.1551	0.1539	0.1698	0.0749	0.1444
Qwen-2.5-3B-Instruct	0.1334	0.1442	0.1399	0.1698	0.1558	0.1403
Qwen-2.5-7B-Instruct	0.1178	0.1355	0.1368	0.2118	0.1035	0.1296
Qwen-2.5-14B-Instruct	0.0685	0.0775	0.0998	0.0932	0.0850	0.0841
Qwen-2.5-32B-Instruct	0.0960	0.1130	0.1217	0.1268	0.1335	0.1143
<i>Mean \pm Std</i>	<i>0.12 \pm 0.03</i>	<i>0.14 \pm 0.04</i>	<i>0.14 \pm 0.03</i>	<i>0.16 \pm 0.05</i>	<i>0.12 \pm 0.04</i>	—
Qwen-2.5-coder-0.5B-Instruct	0.1628	0.1302	0.2060	0.0787	0.1203	0.1778
Qwen-2.5-coder-1.5B-Instruct	0.1302	0.2207	0.1650	0.2135	0.1742	0.1630
Qwen-2.5-coder-3B-Instruct	0.1385	0.1813	0.1848	0.2111	0.0841	0.1630
Qwen-2.5-coder-7B-Instruct	0.1321	0.1440	0.1581	0.1947	0.1590	0.1477
Qwen-2.5-coder-14B-Instruct	0.1192	0.1110	0.1336	0.0956	0.1353	0.1237
Qwen-2.5-coder-32B-Instruct	0.1029	0.1242	0.1276	0.1191	0.1279	0.1178
<i>Mean \pm Std</i>	<i>0.13 \pm 0.02</i>	<i>0.15 \pm 0.04</i>	<i>0.16 \pm 0.03</i>	<i>0.15 \pm 0.06</i>	<i>0.13 \pm 0.03</i>	—

Table 19: MRI across logic change types for Qwen-2.5 Instruct and coder variants on BigCodeBench. MRI highlighted in red denotes the highest MRI.

1404 **H EXAMPLES OF REGRESSED TASKS**

1405

1406 We randomly selected 5 tasks from each of MBPP+ and BigCodeBench that PASSED in original
 1407 but FAILED in code_rewriting from the evaluation results in Qwen2.5-Coder-32B-Instruct. For each
 1408 task, we provide

1409

- Original task prompt and its canonical solution
- Code_rewriting task prompt and the rewritten canonical solution
- Alignment and Difficulty analysis from GPT-5 to investigate (1) if the rewritten prompt
 1410 aligns with its rewritten solution; (2) whether the difficulty of rewritten task align with its
 1411 original version.

1412

1413 The following case studies confirms that such performance regression is not caused by the higher
 1414 difficulty on rewritten tasks.

1415

1416

```
MBPP+, original, TASK 99
"""
Write a function to convert the given
decimal number to its binary equivalent,
represented as a string with no leading
zeros.
assert decimal_to_binary(8) == '1000'
"""

def decimal_to_binary(n):
    return bin(n).replace("0b", "")
```

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1420

```
MBPP+, code_rewriting, TASK 99
"""
Write a function to convert the given
decimal number to its binary equivalent,
represented as a string in reverse bit
order (least significant bit first).
assert decimal_to_binary_rev(8) == '0001'
"""

def decimal_to_binary_rev(n):
    return bin(n)[2:][::-1]
```

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure 4: Example of Task-99 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
 original but FAILED in code_rewriting.

```

1458
1459
1460
1461
1462
1463 MBPP+, original, TASK 224
1464 """
1465 Write a python function to count the number
1466 of set bits (binary digits with value 1) in
1467 a given number.
1468 assert count_Set_Bits(2) == 1
1469 """
1470
1471 def count_Set_Bits(n):
1472     return bin(n)[2:].count('1')
1473
1474 Alignment & Difficulty Analysis from GPT-5
1475 """
1476 Alignment: The code counts '0's in bin(n)[2:], which matches "unset bits .. without leading zeros" for non-negative integers (e.g., 2 -> '10' -> 1). The sample assertion aligns. Also, some contexts define "unset bits" relative to a fixed width (e.g., 32-bit), but the prompt correctly narrows this by saying "without leading zeros".
1477 Difficulty: Counting zeros instead of ones requires the same approach, complexity  $O(k)$  over bit-length), and Python
1478 knowledge (bin, count). It tests identical concepts with no added complexity.
1479 """

```

Figure 5: Example of Task-224 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1482
1483
1484
1485
1486
1487
1488
1489 MBPP+, original, TASK 284
1490 """
1491 Write a function that takes in a list and
1492 element and checks whether all items in the
1493 list are equal to the given element.
1494 assert check_element(["green", "orange",
1495 "black", "white"], 'blue') == False
1496 """
1497
1498 def check_element(list1, element):
1499     return all(v == element for v in list1)
1500
1501
1502 Alignment & Difficulty Analysis from GPT-5
1503 """
1504 Alignment: The prompt explicitly states to compare "case-insensitively (after converting both to lowercase strings)." The
1505 code converts both the target and each list item via str(...).lower() and uses all(...)-exactly matching the described
1506 behavior. No ambiguity remains about non-string inputs because the prompt specifies conversion to strings.
1507
1508 Difficulty: Algorithmic structure is unchanged (a simple all check over a comprehension). The evolved version adds a minor
1509 preprocessing step (str(...).lower()), which doesn't meaningfully change complexity or required concepts.
1510 """

```

Figure 6: Example of Task-284 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1512
1513
1514
1515
1516
1517 MBPP+, original, TASK 767
1518 """
1519 Write a python function to count the number
1520 of pairs whose sum is equal to 'sum'. The
1521 function gets as input a list of numbers and
1522 the sum,
1523 assert get_pairs_count([1,1,1,1],2) == 6
1524 """
1525
1526 def get_pairs_count(arr, sum_):
1527     cnt = 0
1528     for n in arr:
1529         cnt += arr.count(sum_ - n)
1530         if sum_ - n == n:
1531             cnt -= 1
1532     return cnt / 2
1533
1534
1535 Alignment & Difficulty Analysis from GPT-5
1536 """
1537 Alignment: The evolved prompt explicitly asks for ordered pairs  $(i, j)$  with  $i \neq j$  summing to the target. The code counts, for each element, the occurrences of its complement and subtracts one when the element equals its complement—precisely excluding  $(i, i)$ . It does not divide by 2, so each  $(i, j)$  and  $(j, i)$  are both counted. The example assert
1538 get_pairs_count_ordered([1,1,1,1],2) == 12 matches this behavior.
1539
1540 Difficulty: Both tasks use the same  $O(n^2)$  counting approach and require the same conceptual insight (complement counting and
1541 handling self-pairs). The evolved task tests essentially the same skills and complexity.
1542 """

```

Figure 7: Example of Task-767 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1543
1544
1545
1546 MBPP+, original, TASK 279
1547 """
1548 Write a function to find the nth decagonal
1549 number.
1550 assert is_num_decagonal(3) == 27
1551 """
1552
1553 def is_num_decagonal(n):
1554     return 4 * n * n - 3 * n
1555
1556
1557 Alignment & Difficulty Analysis from GPT-5
1558 """
1559 Alignment: The prompt ("find the nth dodecagonal number") matches the code's formula  $5n^2 - 4n$  and the test
1560 is_num_dodecagonal(3) == 33.
1561
1562 Difficulty: Computing dodecagonal vs. decagonal numbers uses the same polygonal-number template  $P_k(n) = \frac{(k-2)n^2 - (k-4)n}{2}$ . The evolved task requires the same level of formula application and implementation effort as the original.
1563 """
1564
1565

```

Figure 8: Example of Task-279 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```



```

BigCodeBench, original, TASK BigCodeBench/1134
"""
Computes the MD5 hash of each file's content in the specified 'source_dir', prepends the hash along with a prefix to the original content, and writes the modified content to new files in the 'target_dir'. Existing files with the same name in 'target_dir' are overwritten.
The function should raise the exception for: FileNotFoundError if the source directory does not exist.
The function should output with:
list: A list of paths to the newly created files in the 'target_dir', each with the hash prepended.
You should write self-contained code starting with:
import os
import glob
import hashlib
def task_func(source_dir, target_dir, prefix="#Hash: '"):
"""

import os
import glob
import hashlib
def task_func(source_dir, target_dir, prefix="#Hash: '"):
    if not os.path.exists(source_dir):
        raise FileNotFoundError(f"Source directory '{source_dir}' does not exist.")
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    new_files = []
    for file_path in glob.glob(os.path.join(source_dir, '*')):
        with open(file_path, 'r') as infile:
            content = infile.read()
            hash_object = hashlib.md5(content.encode())
            new_file_path = os.path.join(target_dir, os.path.basename(file_path))
            with open(new_file_path, 'w') as outfile:
                outfile.write(f"{prefix}{hash_object.hexdigest()}{content}")
            new_files.append(new_file_path)
    return new_files

Alignment & Difficulty Analysis from GPT-5
"""
Alignment: The evolved prompt says to append the prefixed MD5 hash to each file's content and overwrite in target_dir; the code does exactly that (outfile.write(f"{content}\n{prefix}{hash}")). It raises FileNotFoundError when source_dir is missing and returns a list of created paths -both matching the prompt. Minor unstated behaviors (newline before hash, text-only reading/encoding, non-recursive glob, and not skipping subdirectories explicitly) mirror the original and don't contradict the prompt.

Difficulty: The change from "prepend" to "append" is a one-line modification with identical algorithmic steps (iterate files, read, hash, write, overwrite, return list). Complexity and concepts tested (filesystem ops, hashing, string formatting, error handling) remain the same.
"""

```

Figure 9: Example of Task-1134 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```



```

BigCodeBench, original, TASK BigCodeBench/16
"""
Backup all '.log' files in a specified directory to a tar.gz file and delete the original files after backup. The backup file is named 'logs_backup.tar.gz' and placed in the specified backup directory.
The function should raise the exception for: FileNotFoundError: If the specified directory does not exist.
The function should output with:
str: The path to the backup file if logs are found, otherwise returns a message 'No logs found to backup'.
You should write self-contained code starting with:
import os
import glob
import subprocess
def task_func(directory, backup_dir='/path/to/backup'):
"""

import os
import glob
import subprocess
def task_func(directory, backup_dir='/path/to/backup'):
    if not os.path.exists(directory):
        raise FileNotFoundError(f"Directory '{directory}' not found.")
    log_files = glob.glob(os.path.join(directory, '*.log'))
    if not log_files:
        return "No logs found to backup"
    if not os.path.exists(backup_dir):
        os.makedirs(backup_dir)
    backup_file = os.path.join(backup_dir, 'logs_backup.tar.gz')
    subprocess.call(['tar', '-cvzf', backup_file] + log_files)
    for file in log_files:
        os.remove(file)
    return backup_file

Alignment & Difficulty Analysis from GPT-5
"""
Alignment: The evolved prompt correctly specifies recursive backup of ".log" files and matches the code's use of glob(..., recursive=True), same I/O contract, same exception, same backup location/name, and deletion of originals.

Difficulty: The change from flat to recursive matching ('**/*.log' with recursive=True) is a minimal extension requiring the same concepts (path handling, globbing, subprocess usage, file deletion). Algorithmic complexity and required skills are effectively unchanged.
"""

```

Figure 10: Example of Task-16 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1620
1621
1622 ●●●
1623 BigCodeBench, original, TASK BigCodeBench/330
1624 """
1625 Find the k largest numbers in a random-generated list
1626 using heapq.
1627 The function should output with:
1628     tuple: A tuple containing two lists:
1629         list[int]: The randomly generated list of integers
1630         with the specified length.
1631         list[int]: The k largest numbers found using heapq.
1632 You should write self-contained code starting with:
1633 """
1634
1635 import heapq
1636 import random
1637 def task_func(list_length:5, k:int):
1638 """
1639
1640 import heapq
1641 import random
1642 def task_func(list_length:5, k:int):
1643     numbers = [random.randint(0, 100) for _ in
1644     range(list_length)]
1645     heapq.heapify(numbers)
1646     largest_numbers = heapq.nlargest(k, numbers)
1647     return numbers, largest_numbers
1648
1649
1650
1651
1652
1653 Alignment & Difficulty Analysis from GPT-5
1654 """
1655 Alignment: The code correctly uses heapq.nsmallest to return the k smallest numbers and returns a tuple of two lists as specified. It starts
1656 with the required boilerplate.
1657
1658 Difficulty: Finding k smallest vs. k largest with heapq is symmetric and requires the same concepts and complexity (both effectively O(n log
1659 k)). The algorithmic thinking and library usage are equivalent.
1660 """
1661
1662
1663
1664
1665
1666
1667 Alignment & Difficulty Analysis from GPT-5
1668 """
1669 Alignment: The code correctly uses heapq.nsmallest to return the k smallest numbers and returns a tuple of two lists as specified. It starts
1670 with the required boilerplate.
1671
1672
1673

```

Figure 11: Example of Task-330 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

```

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

```

Figure 12: Example of Task-59 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688

● ● ●

```
BigCodeBench, original, TASK BigCodeBench/868
"""
Generates a list representing a color pattern. The pattern consists of 'n_colors' elements and alternates between a cyclic sequence of colors as defined in the parameter 'colors', and random colors from the same list. Optionally, a seed for the random number generator can be provided for repeatable randomness. If n_colors is smaller than or equal to zero, an empty list is returned. >>> colors = ['Brown', 'Green', 'Black'] >>> color_pattern = task_func(12, colors=colors, rng_seed=42)
>>> print(color_pattern)
['Brown', 'Black', 'Green', 'Brown', 'Black', 'Brown', 'Brown', 'Black', 'Green', 'Black', 'Brown']
The function should output with:
list: A list representing the color pattern. Each element of the list is a string indicating
the color. For example, with n_colors=4 and a specific seed, the result could
be consistent
across calls with the same seed.
You should write self-contained code starting with:
...
from itertools import cycle
from random import choice, seed
def task_func(n_colors, colors=['Red', 'Green', 'Blue', 'Yellow', 'Purple'],
rng_seed=None):
"""
from itertools import cycle
from random import choice, seed
def task_func(n_colors, colors=['Red', 'Green', 'Blue', 'Yellow', 'Purple'],
rng_seed=None):
    # Set the seed for the random number generator
    if rng_seed is not None:
        seed(rng_seed)
    color_cycle = cycle(colors)
    color_pattern = []
    for _ in range(n_colors):
        color = next(color_cycle) if _ % 2 == 0 else choice(colors)
        color_pattern.append(color)
    return color_pattern
```

● ● ●

● ● ●

```
BigCodeBench, code_rewriting, TASK BigCodeBench/868
"""
Generates a list representing a color pattern. The pattern consists of 'n_colors' elements and alternates between random colors from the same list and a cyclic sequence of colors as defined in the parameter 'colors' (starting with a random color at the first position). Optionally, a seed for the random number generator can be provided for repeatable randomness. If n_colors is smaller than or equal to zero an empty list is returned. >>> colors = ['Brown', 'Green', 'Black'] >>>
color_pattern = task_func(12, colors=colors, rng_seed=42) >>> print(color_pattern)
['Black', 'Brown', 'Brown', 'Green', 'Brown', 'Black', 'Black', 'Black', 'Brown', 'Green', 'Brown', 'Black']
The function should output with:
list: A list representing the color pattern. Each element of the list is a string indicating
the color. For example, with n_colors=4 and a specific seed, the result could
be consistent
across calls with the same seed.
You should write self-contained code starting with:
...
from itertools import cycle
from random import choice, seed
def task_func(n_colors, colors=['Red', 'Green', 'Blue', 'Yellow', 'Purple'],
rng_seed=None):
"""
from itertools import cycle
from random import choice, seed
def task_func(n_colors, colors=['Red', 'Green', 'Blue', 'Yellow', 'Purple'],
rng_seed=None):
    if rng_seed is not None:
        seed(rng_seed)
    color_cycle = cycle(colors)
    color_pattern = []
    for i in range(n_colors):
        color = choice(colors) if i % 2 == 0 else next(color_cycle)
        color_pattern.append(color)
    return color_pattern
```

● ● ●

1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Alignment & Difficulty Analysis from GPT-5
 """
 Alignment: The prompt precisely matches the code's behavior: it seeds the RNG when rng_seed is provided, starts with a random color, then alternates (even indices random via choice, odd indices deterministic via cycle(colors) starting from the first color). The example with seed 42 reproduces exactly. Return type and edge case (n_colors <= 0 -> []) are consistent. Minor implicit assumption (non-empty colors) mirrors the original and doesn't contradict the prompt.
 """
 Difficulty: The evolved task preserves the same concepts-use of random.choice, itertools.cycle, modulo-based alternation, and optional seeding. Reversing the alternation order (random first vs. cycle first) does not change the complexity or required skills.
 """

 Figure 13: Example of Task-868 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that PASSED in original but FAILED in code_rewriting.

1728 I HARMLESS INTERNAL LOGIC MODIFICATIONS
17291730 We listed two representative cases from Llama3.1-8B-Instruct where a model has preserved all function
1731 and variable names yet altered only the internal implementation (e.g., swapping loops for comprehensions or changing search strategies), illustrating “harmless” syntactic similarity.
17321733
1734 I.1 TASK MBPP/18: LIST COMPREHENSION ↳ EXPLICIT LOOP
17351736 **Model Answer in Original Set (list comprehension)**
17371738

```
def remove_dirty_chars(string, second_string):  
    second_string_set = set(second_string)  
    filtered = [c for c in string if c not in second_string_set]  
    return ''.join(filtered)
```

1739
1740 **Model Answer in Rewritten Set (explicit loop)**
17411742

```
def remove_dirty_chars(string, second_string):  
    second_string_set = set(second_string)  
    result = []  
    for c in reversed(string):  
        if c not in second_string_set:  
            result.append(c)  
    return ''.join(reversed(result))
```

1743
1744 Here, the function name ‘remove_dirty_chars’, parameters, lookup-set variable, and character variable ‘c’ all remain identical; only the comprehension is replaced by a two-step loop.
17451746 I.2 TASK MBPP/793: REVERSE-INDEX LOOKUP BINARY SEARCH
17471748 **Model Answer in Original Set (slice + index)**
17491750

```
def last(arr, x):  
    try:  
        return len(arr) - 1 - arr[::-1].index(x)  
    except ValueError:  
        return -1
```

1751
1752 **Model Answer in Rewritten Set (binary search)**
17531754

```
def last(arr, x):  
    low, high = 0, len(arr) - 1  
    result = -1  
    while low <= high:  
        mid = (low + high) // 2  
        if arr[mid] == x:  
            result = mid  
            low = mid + 1  
        elif arr[mid] < x:  
            low = mid + 1  
        else:  
            high = mid - 1  
    return result
```

1755
1756 Again, ‘last’, ‘arr’, and ‘x’ are preserved; the lookup logic is simply swapped from a reverse-slice
1757 search to an iterative binary-search routine.
17581759 J TRAINING DETAILS REGARDING SFT/RL
17601761 J.1 FINE-TUNING DETAILS
17621763 **Framework and Compute.** We adapted the Ver1 framework for supervised fine-tuning (SFT) and
1764 Proximal Policy Optimization (PPO), using its PyTorch Fully Sharded Data Parallel (FSDP) backend.
1765 Experiments ran on a single machine (nnodes=1) with 4 GPUs (n_gpus_per_node=2). PPO rollouts
1766 used the VLLM backend; optimization used AdamW.
1767

1782 Table 20: Compute and framework configuration
1783

1784 Item	1785 Setting
1786 Framework	1787 Ver1 (PyTorch FSDP backend)
1788 Nodes / GPUs	1789 nnodes=1, n_gpus_per_node=2
1790 PPO rollout backend	VLLM
1791 Optimizer	1792 AdamW

1793 **Dataset and Prompting.** Data followed Ver1’s standard format and was exported as a .parquet
1794 file with a 4:1 train/test split. Each problem description served as the prompt; the corresponding
1795 code solution was the target response.

1796 Table 21: Dataset summary

1797 Aspect	1798 Details
1799 Format	1800 .parquet (Ver1 standard)
1801 Split	1802 4:1 train:test
1803 Input (prompt)	1804 Problem description
1805 Target (response)	1806 Code solution
1807 Prompt template	1808 See quoted block above

1809 The completed template we fed into the LLM was:

```
1810 instruction_prefix = "Please provide a self-contained Python script that solves the  
1811     following problem in a markdown code block:"  
1812  
1813 response_prefix = "Below is a Python script with a self-contained function that solves  
1814     the problem and passes corresponding tests:"  
1815  
1816 prompt_chat = [  
1817     {"role": "user", "content": f"""\\  
1818 {instruction_prefix}  
1819     ``  
1820 {problem.strip()}  
1821     """},  
1822     {"role": "assistant", "content": f"""\\  
1823 {response_prefix}  
1824     ``python  
1825     """}  
1826 ]
```

1827 The **problem** is the description originally from the dataset, and we called the
1828 `tokenizer.apply_chat_template` to the **prompt_chat** to get the model response.

1829 J.1.1 SUPERVISED FINE-TUNING (SFT)

1830 Default learning rate was 1×10^{-5} for 20 epochs, with manual adjustments between 5×10^{-6} and
1831 1×10^{-5} depending on model performance. We set `max_prompt_length` to 1024, batch size
1832 to 64, and `micro_batch_size_per_gpu` to 8. The selected checkpoint (named **model.name-SFT**)
1833 was the one immediately prior to observed overfitting, hence we can distinguish memorization from
overfitting.

1834 Moreover, we choose the checkpoint at epoch 20 (named **model.name-SFT-overfit**) as the fully
1835 overfitting epoch to measure the impact of overfitting to memorization.

1836 J.1.2 PROXIMAL POLICY OPTIMIZATION (PPO)

1837 Actor, critic, and reference models used identical architectures over 20 epochs. The reward was
1838 binary: 1 if the generated response passed all test cases, else 0. We set `max_prompt_length` to 1024
1839 and `max_response_length` to 512. Learning rates were 1×10^{-5} for the critic and 1×10^{-6} for the

1836 Table 22: SFT hyperparameters
1837

1838 Parameter	1839 Value
1840 Epochs	20
1841 Learning rate	Default 1×10^{-5} ; tuned 5×10^{-6} – 1×10^{-5}
1842 max_prompt_length	1024
1843 Batch size	64
1844 micro_batch_size_per_gpu	8
1845 save_freq	after_each_epoch
1846 Checkpoint selection	Epoch immediately prior to overfitting

1847 actor. We used batch size 64 with micro_batch_size_per_gpu 8, selecting the checkpoint with
1848 the highest test reward (named **model_name-PPO**) to get the best performance.

1849 Table 23: PPO setup and hyperparameters
1850

1851 Parameter	1852 Value
1853 Architectures	Actor/Critic/Reference identical
1854 Epochs	20
1855 Reward	Binary (1 if all tests pass; else 0)
1856 max_prompt_length	1024
1857 max_response_length	512
1858 Learning rate (critic)	1×10^{-5}
1859 Learning rate (actor)	1×10^{-6}
1860 Batch size	64
1861 micro_batch_size_per_gpu	8
1862 save_freq	5
1863 Checkpoint selection	Highest reward on validset

1864

K EVOLVED-TASK GENERATION (GPT-5)

1865

- 1866 • **API version:** gpt-5-2025-08-07.
- 1867 • **Prompt template:** shown in Appendix B.
- 1868 • **Parameters:** temperature: default; top-p: default; max-tokens 1080.
- 1869 • **Post-processing:** regex clean-up.
- 1870 • **Budget:** the estimated cost for generating one round of each evolution type (code rewriting,
1871 mutation and paraphrase) for both MBPP+ and BigCodeBench is approximately 450 USD.