
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMORIZE OR GENERALIZE? EVALUATING LLM
CODE GENERATION WITH CODE REWRITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated exceptional code gen-
eration capabilities. However, there is a growing debate whether LLMs are mostly
doing memorization (i.e., replicating or reusing large parts of their training data)
versus generalization (i.e., beyond training data). Existing evaluations largely
proxy memorization with surface/structural similarity, thereby conflating benign
reuse of repeated code with harmful recall and neglecting task correctness un-
der semantic variation. We define harmful memorization behaviorally as failure
at high similarity and introduce a semantic perturbation code rewriting, which
rewrites a semantically different answer at a similar difficulty level for a given
coding task, then reverse-engineers a novel coding task. We further propose Mem-
orization Risk Index (MRI), a normalized score that combines two signals: (i) how
similar the model’s answer for the rewritten task is to the original ground-truth
solution, and (ii) how much performance drops from the original task to its rewrit-
ten counterpart. MRI is high only when both conditions hold—when the model
outputs similar code but fails the perturbed task—thereby capturing harmful mem-
orization rather than benign reuse of repeated code. Empirical evaluations on code
generation benchmarks MBPP+ and BIGCODEBENCH reveal that (1) memoriza-
tion does not increase with larger models and in many cases alleviates as they
scale; (2) supervised fine-tuning (SFT) improves accuracy while introduces mem-
orization; (3) reinforcement learning with proximal policy optimization (PPO)
achieves a more balanced trade-off between memorization and generalization.

1 INTRODUCTION

Large language models (LLMs) have made incredible advances in automated code generation, and
are rapidly becoming essential tools in software development (Sourcegraph, 2024; Tabnine, 2024;
Team et al., 2023; Anthropic, 2025; Chen et al., 2021). Modern code-focused LLMs can achieve
state-of-the-art performance on programming benchmarks (Rozière et al., 2024). For example, spe-
cialized models like Qwen-2.5 Coder (Hui et al., 2024) and Code Llama (Rozière et al., 2024) have
pushed the boundaries of translating natural language into code. These advancements raise an im-
portant question: when do LLMs truly generalize to new programming tasks, and when are they
merely reproducing memorized training examples?

Understanding memorization in code generation is critical. Existing evaluations largely measure
memorization via surface or structural overlap (e.g., regurgitation audits, contamination filters, and
entropy-based detectors) (Yang et al., 2024; Riddell et al., 2024; Dong et al., 2024), treating high
similarity as evidence of memorization. This conflates benign reuse of repeated code (i.e. idioms,
APIs) with harmful recall and, crucially, does not test whether the model solves the task under
semantic variation.

To systematically study harmful memorization, we build on the intuition that performance gaps
under semantic perturbations contribute to reveal whether a model is generalizing or harmful mem-
orizing. If a model simply recalls solutions, even small semantic changes could cause large accuracy
drops, often accompanied by high overlap with training-like code (Bayat et al., 2024). Concretely,
we propose code-rewriting, which introduces semantic shifts to prompts while maintaining similar
syntax, to investigate whether the success of a model comes from genuine reasoning or harmful
memorization. To quantify these behaviors, we introduce Memorization Risk Index (MRI), a nor-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Semantic Equivalent

Prompt (X): Write a function to find the
shared elements from the given two
sets.

Semantic DifferentPipeline Workflow

Generate a new description
base on Xrew

- Does the new prompt accurately describe what the new code does?

- Is the rewritten task of similar difficulty to the original?
Recommendation:

Code rewriting: similar wording,

different meaning

Mutation: add textual noise, same

meaning

Paraphrase: similar wording, same

meaning

Crew = ε3(C) ≠ C (One logic change):

 def func(s1,s2):

Xrew = desc(Crew): Write a function

to identify the common elements from
two provided sets by ensuring the
result is sorted.

Xmut = ε1(X): Wr!ite a functIon to

fInd teh shraed Eelments from teh
gVine wto sEt.

Xpar = ε2(X): Develop a function that

identifies the common elements
between two provided sets.

Solution (C):
 def func(s1,s2):

return (s1&s2)

ACCEPT

REJECT

return sorted(s1&s2)

Execute and evaluate generated solution from candidate LLMs

Solution on Xrew
 def func(s1,s2):

return sorted(s1|s2)

Similarity: High Performance Drop: High
Memorization = Similarity x Performance Drop: High

Solution on X:
 def func(s1,s2):

return (s1&s2)

Solution on Xmut Solution on Xpar

Answer: Wrong
Robustnessmut = Low

Answer: Correct
Robustnesspar = High

 def func(s1,s2):

return (s1.union(s2))

 def func(s1,s2):

return (s1&s2)

Figure 1: Our proposed Code Rewriting vs. Popular semantic equivalent perturbations. X denotes text and C
denotes code. Code rewriting that creates semantically different tasks, first rewrite a new code solution Crew
from the origin solution C, then generating a new description Xrew based on Crew. A judge agent will then
choose to accept or reject the code rewriting task for quality assurance. Mutation and paraphrase that create
semantically equivalent tasks, are included for robustness evaluation as a comparison to memorization. All
perturbations are performed by GPT-5, shown as the ChatGPT logo. Generation prompts are in Appendix B.

malized score that combines two signals: (i) how similar the model’s answer for the code rewriting
task is to the original ground-truth solution (combining both semantic and syntax level similarity),
and (ii) how much performance drops from the original task to its code rewriting counterpart. MRI
captures harmful memorization as failure under high similarity on code-rewriting tasks.

Terminology. In this paper, we use the term memorization to specifically denote harmful memo-
rization: which we define as cases that (1) exhibit high similarity to the original solution and (2)
lead to performance drops under semantically altered code rewriting. Unless otherwise stated, all
subsequent uses of “memorization” follow this definition.

To differentiate our method from existing work in evaluating robustness (Chen et al., 2024; 2023;
Mastropaolo et al., 2023; Wang et al., 2022), we also include two semantic-preserving perturbations,
mutation and paraphrase, as reference baselines. We report Relative Accuracy Drop (RAD) to mea-
sure LLMs performance consistency under semantic-preserving perturbations. Our primary analysis
still targets harmful memorization via the semantics-altering code-rewriting perturbation and MRI.

Our evaluation include coding benchmarks across different difficulty levels, from introductory prob-
lems in MBPP+ (Liu et al., 2023) to more difficult tasks in BIGCODEBENCH (Zhuo et al., 2024).
Furthermore, we investigate the effect of post-training strategies by comparing Supervised Fine-
Tuning (SFT) and Proximal Policy Optimization (PPO). Our results reveal the following trends: (1)
memorization does not increase with larger models and in many cases improves as they scale; (2)
memorization alleviates rapidly on simpler tasks but persists on more difficult ones; (3) SFT im-
proves raw accuracy but substantially amplifies memorization; (4) PPO achieves a more balanced
trade-off, mitigating memorization while maintaining competitive accuracy.

In summary, our work makes the following key contributions:

• We propose a novel automated pipeline for code rewriting, which rewrites a semantically differ-
ent answer at a similar difficulty level for a given coding question, then reverse-engineers a novel
coding question.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We introduce MRI, a metric that captures harmful memorization as failure under high similarity
on code rewriting tasks, rather than treating similarity alone as memorization.

• We conduct a comprehensive empirical study across benchmarks and training strategies, providing
insights into when LLMs memorize in code generation.

2 RELATED WORK

2.1 CODE GENERATION WITH LLMS

Large Language Models (LLMs) have shown remarkable ability in automated code generation.
Models such as ChatGPT (OpenAI et al., 2024), Qwen-Coder (Hui et al., 2024), and DeepSeek-
Coder (Guo et al., 2024) have pushed the boundaries in the coding domain, notably with ChatGPT
achieving state-of-the-art performance on challenging benchmarks such as BIGCODEBENCH (Zhuo
et al., 2024), LiveCodeBench (Jain et al., 2024) and EvalPlus leaderboard (Liu et al., 2023). While
LLM-based code generation models have made significant strides in translating natural language to
executable code, most evaluations focus on static benchmark performance, overlooking memoriza-
tion behaviors to prompt variations.

2.2 MEMORIZATION IN CODE GENERATION

A model that memorizes may output correct-looking solutions simply because it has seen near-
identical problems during pre-training, rather than reasoning about program semantics (Pappu et al.,
2024; Duan et al., 2024; Kassem et al., 2024; Carlini et al., 2019; Bayat et al., 2024; Xie et al., 2024).
Such behavior can mislead evaluation benchmarks, inflate metrics, and compromise trustworthiness
when models are deployed in real-world development environments (Hartmann et al., 2023; Lu et al.,
2024; Staab et al., 2023; Zanella-Béguelin et al., 2020).

In code generation, prior work operationalizes general memorization as regurgitation—via prefix to
suffix extraction, mass sampling with clone detection against the training corpus, and contamination-
aware splits of HumanEval/MBPP (Chen et al., 2021)—and under these measurements reports that
the measured general memorization rate increases with model size (Yang et al., 2024; Al-Kaswan
et al., 2024; Wang et al., 2024). However, general memorization is not inherently harmful: if a
training-like solution still satisfies the a semantic different question, re-use does not constitute risk
(it is correct and passes tests) (Bayat et al., 2024). To distinguish harmful memorization from gen-
uine generalization, we introduce code-rewriting, which deliberately shifts task semantics while
preserving surface syntax, and we quantify it with a Memorization Risk Index (MRI) that multi-
plies similarity to the original solution by the relative accuracy drop under the semantic shift (high
only when the answer copied surface forms but fail on the task with new semantics). Lai et al.
(2022) uses semantic perturbations—changing the reference solution’s semantics without increas-
ing difficulty—to probe general memorization; unlike their manually authored data-science tasks,
we perform automated code rewriting and introduce MRI.

3 METHODOLOGY

3.1 CODE REWRITING

Code rewriting is used to evaluate a model’s memorization via solving semantically different prob-
lems that are superficially similar to original tasks. The automated pipeline to generate code rewrit-
ing tasks is shown in Figure 1. Specifically, we first modify one logic in ground truth solution while
preserving the original function signature—including the function name, input, and output format.
We then generate a new task description that reflects the altered code while similar to origin tasks in
syntax. Formally, let x ∈ T be the original prompt in text space T and c ∈ C its ground truth code
solution in code space C. We apply a rewriting function ϵ3 that produces a new code crew = ϵ3(c)
where crew ̸= c functionally but both c and crew share the same signature. The new prompt xrew is
then generated from crew, resulting in a semantically different task:

xrew = desc(crew) (1)
where sig(crew) = sig(c), crew ̸= c (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where desc(·) denotes generating a description from code, and sig(·) extracts the function signature.
This process enables us to assess whether LLMs can recognize and solve tasks that share format but
differ in semantic content.

Data Validation. To ensure the reliability of code rewriting datasets, we conducted both LLM-
as-a-judge and manual quality assurance. For LLM-as-a-judge (shown in Figure 1), we forward
code rewriting tasks to GPT-5 (OpenAI, 2025) to check (i) if the rewritten code match the rewritten
prompt and (ii) if the rewritten task align with the original task in difficulty. For manual validation,
two experienced python programmers randomly reviewed 10% of generated evolution problems for
all three evolution types to ensure their quality. We also provide 5 regressed tasks for each dataset
(PASSED in original but FAILED in code rewriting) in Appendix D to show difficulty alignment.

3.1.1 METRIC-MEMORIZATION RISK INDEX

MRI consists of two signals: (i) how similar the model’s answer for the rewritten task is to the
original ground-truth solution, and (ii) how much performance drops from the original task to its
rewritten counterpart.

(i) Similarity. For every rewritten task i ∈ Trew, where T refers to a task set, we measure two
similarities between the model-generated solution for the rewritten version of task i and the ground-
truth solution of its original version:

• Semantic level AST similarity: normalized tree-edit overlap between abstract-syntax trees
• Syntax level edit similarity: (1− (Levenshtein distance/max-len), capturing token-level overlap.

Formally, let ASTi ∈ [0, 1] denote AST similarity, and let Editi ∈ [0, 1] denote edit similarity. We
combine these scores into a unified similarity score:

Si =
ASTi + Editi

2
(3)

Because our analysis is corpus-level, we define the mean similarity over all rewritten tasks as:

Sim(Trew) =
1

|Trew|
∑
i∈Trew

Si, Sim ∈ [0, 1]. (4)

(ii) Relative Accuracy Drop for Rewriting. For a task set T , Pass@1 is reported as Acc(T). To
capture the performance loss induced by semantic rewriting, we define

RADrew = max

(
0,

Acc(Tori)−Acc(Trew)
Acc(Tori)

)
, RADrew ∈ [0, 1]. (5)

RADrew = 0 when rewriting does not hurt accuracy and increases when it does; the max(0, ·)
prevents negative values when the performance on rewritten tasks happen to be better.

MRI. Finally, we introduce the MRI, defined as the product of solution-similarity and relative
accuracy drop:

MRI = Sim(Trew) × RADrew, MRI ∈ [0, 1]. (6)

MRI is high only when both conditions for harmful memorization hold: (i) the model copies the orig-
inal solution’s surface form (high Sim(Trew)) and (ii) that copied solution now fails (high RADrew).
This multiplicative design sharply distinguishes memorization from generalization.

3.2 MUTATION AND PARAPHRASE

To differentiate code rewriting from semantic-preserving perturbation techniques in work evaluat-
ing robustness (Chen et al., 2024; 2023; Mastropaolo et al., 2023; Wang et al., 2022), we include
mutation and paraphrase, as reference baselines. These two perturbations reveal if LLM could gen-
erate consistent and correct responses under minor surface level changes (Li et al., 2022). Mutation
and paraphrase are adapted in spirit from ReCode’s robustness benchmark (Wang et al., 2022).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Mutation. To assess whether LLMs are robust to superficial textual noise, mutation evolu-
tion applies small perturbations—such as word-scrambling, random-capitalization, and character-
noising—that preserve the underlying problem semantics. Formally, let x ∈ T denote the original
problem prompt in the text space T . Mutation evolution applies a perturbation function ϵ1 : T → T
such that the mutated prompt xmut = ϵ1(x) preserves the original semantics:

xmut = ϵ1(x), x, xmut ∈ T (7)

where ϵ1 injects textual noise without altering the problem’s underlying meaning.

Paraphrase. Paraphrase evolution aims to evaluate whether LLMs can generalize to diverse sur-
face realizations of the same problem. In this setting, prompts are reworded textual expression but
preserve semantics. Formally, let x ∈ T be the original prompt. We define a paraphrasing function
ϵ2 : T → T such that:

xpar = ϵ2(x), x, xpar ∈ T (8)

where xpar is a semantically equivalent but textually different paraphrase of x.

3.2.1 METRIC—ROBUSTNESS RELATIVE ACCURACY DROP

Once we perturb a prompt without changing its semantics, what fraction of previously-solved tasks
remain solved? To answer this question and differentiate robustness with memorization, for each
semantic-preserving transformation p ∈ {mut, par} (mutation/paraphrase), we define the Robust-
ness Relative Accuracy Drop:

RADp = max

(
0,

Acc(Tori)−Acc(Tp)
Acc(Tori)

)
, RADp ∈ [0, 1]. (9)

Here, Acc(·) denotes Pass@1 on the indicated task set section 3.1.1. RADp = 0 (high robustness)
when semantic-preserving changes do not hurt accuracy and increases toward 1 as performance
degrades (low robustness).

3.3 FINE-TUNING METHODS

To investigate the memorization phenomenon, we use the original tasks in MBPP+ and BIG-
CODEBENCH for fine-tuning1. More training details regarding SFT/RL can be found at Appendix F.

3.3.1 SUPERVISED FINE-TUNING

Supervised Fine-tuning adapts a pre-trained model to a specific task by training it on a labeled
dataset, teaching it to predict the correct label for each input. In our setup, coding problems serve as
the inputs, while code solutions act as the corresponding labels. However, overfitting occurs when
the model fits the training data too closely, reducing its ability to generalize to unseen tasks. This
is typically indicated by a rise in validation loss where model begin to memorize training examples.
Therefore, we distinguish between early-stage and late-stage memorization by the checkpoint where
the loss on the validation set begins to increase. We select such checkpoint for evaluation to
distinguish memorization from overfitting.

3.3.2 REINFORCEMENT LEARNING

Reinforcement Learning enhances fine-tuning efficiency. A leading method is Proximal Policy Opti-
mization (PPO)(Schulman et al., 2017), which alternates between sampling data through interaction
with the environment, and optimizing a ”surrogate” objective function using stochastic gradient as-
cent. We utilize the same model architecture for the actor, critic, and reference models for simplicity,
and define the reward function based on the correctness of the generated code. Compared to other
reinforcement learning methods like DPO (Rafailov et al., 2024), we suggest that using accuracy
as the reward function offers a more direct and efficient optimization path. We evaluate using the
checkpoint that achieves the highest validation reward.

1For clarity, both SFT and PPO are initialized from the same base model and trained independently; PPO is
not performed on top of an SFT checkpoint.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENT SETUP

4.1 DATASETS

We conduct our evaluation on two widely-adopted code generation benchmarks: MBPP+ (Liu et al.,
2023) and BIGCODEBENCH (Zhuo et al., 2024).

Dataset Statistics. MBPP+ contains 378 tasks, and BIGCODEBENCH comprises 1140 tasks. We
use 4:1 train/test split for fine-tuning. For models without fine-tuning, we use the complete set of
benchmark tasks for evaluation. For models that undergo SFT and PPO, we train on the training
split and evaluate on the test split. Due to the small size of MBPP+ test split (n = 78), estimation
on this split may be imprecise and directional, we use BIGCODEBENCH to explore the impact of
fine-tuning strategies on memorization.

Task Generation. For each original task, we generate one perturbed variant for each of code
rewriting, mutation and paraphrase. More about the generation process is given in Appendix G.

4.2 MODELS

In this paper, we conduct the scale-up experiments on Qwen-2.5 series (Hui et al., 2024), Qwen-
2.5-Coder series (Qwen et al., 2025), Llama-3.1 series (Dubey et al., 2024) and Llama-4 series (AI,
2024). For fine-tuning, we choose Qwen-2.5-7B, and Qwen-2.5-Coder-7B. All training and infer-
ence were conducted on a server equipped with 4 NVIDIA A100 GPUs (80GB), with a total com-
putational budget of approximately 40 GPU hours, using PyTorch and HuggingFace Transformers.

5 RESULT ANALYSIS

5.1 MEMORIZATION ANALYSIS ON INSTRUCT MODELS

Memorization does not increase with larger models and in many cases decreases as they scale.
Across Qwen2.5 Instruct and its Coder Instruct families, scaling is associated with lower RADrew
and hence lower MRI. On MBPP+ (see Figure 2a and Figure 2b), Qwen-Instruct’s MRI falls from
0.0722 at 0.5B to 0.0113 at 14B, reaching 0.0000 at 32B, driven by a decrease in RADrew from
0.2697 → 0.0414 → 0.0000. A similar pattern holds for Qwen-Coder (MRI 0.0615 → 0.0313 →
0.0354 as RADrew goes from 0.2663 → 0.0896 → 0.0993). Notably, Sim(Trew) does not uniformly
decline with scale (e.g., Qwen-Instruct: 0.2678 at 0.5B → 0.3369 at 32B), indicating that larger
models may continue to reuse surface patterns; however, because their failures under semantic shifts
largely vanish, such reuse is not harmful and thus produces much lower MRI.

Model
MBPP+ BigCodeBench

Sim(Trew) (↓) RADrew (↓) MRI (↓) Sim(Trew) (↓) RADrew (↓) MRI (↓)

Llama-3.1-8B-Instruct 0.1486 0.0133 0.0020 0.2132 0.4444 0.0947
Llama-3.1-70B-Instruct 0.1518 0.0000 0.0000 0.2404 0.3676 0.0884

Llama-3.1-Instruct Series (mean) 0.1502 0.0067 0.0010 0.2268 0.4060 0.0916

Llama-4-Scout-17B-Instruct (16E) 0.1446 0.0160 0.0023 0.2343 0.3909 0.0916
Llama-4-Maverick-17B-Instruct (128E) 0.2669 0.0307 0.0082 0.2357 0.3953 0.0932

Llama-4-Instruct Series (mean) 0.2057 0.0234 0.0053 0.2350 0.3931 0.0924

Table 1: Memorization risk for Llama-3.1 and Llama-4 instruct models. MRI persists in harder tasks
(BIGCODEBENCH), as RADrew stays high even as Sim(Trew) is comparable.

On BIGCODEBENCH (see Figure 2c and Figure 2d), the effect from scaling up is milder and some-
times non-monotonic. Qwen-Instruct’s MRI drops from 0.1740 (0.5B) to 0.0841 (14B) but in-
creases to 0.1143 at 32B, with RADrew trending from 0.6574 → 0.3694 → 0.3865. On the other
hand, Qwen-Coder shows a steadier decline (0.1778 → 0.1178 from 0.5B→32B) with relatively
flat Sim(Trew). Overall, scale reduces memorization primarily by improving resistance to semantic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.5B 1.5B 3B 7B 14B 32B
Model Size (Qwen-2.5 Instruct series)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
co

re
 o

n
M

B
P

P
+

Sim(rew)
RADrew
MRI (RADrew × Sim(rew)

(a) Qwen2.5 Instruct on MBPP+

0.5B 1.5B 3B 7B 14B 32B
Model Size (Qwen-2.5 Coder Instruct series)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
co

re
 o

n
M

B
P

P
+

Sim(rew)
RADrew
MRI (RADrew × Sim(rew)

(b) Qwen2.5 Coder Instruct on MBPP+

0.5B 1.5B 3B 7B 14B 32B
Model Size (Qwen-2.5 Instruct series)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
co

re
 o

n
B

ig
C

od
eB

en
ch

Sim(rew)
RADrew
MRI (RADrew × Sim(rew)

(c) Qwen2.5 Instruct on BIGCODEBENCH

0.5B 1.5B 3B 7B 14B 32B
Model Size (Qwen-2.5 Coder Instruct series)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
co

re
 o

n
B

ig
C

od
eB

en
ch

Sim(rew)
RADrew
MRI (RADrew × Sim(rew)

(d) Qwen2.5 Coder Instruct on BIGCODEBENCH

Figure 2: Scaling trends in MRI across Qwen-2.5 Instruct vs. Coder on MBPP+ and BIGCODEBENCH.

shifts (RADrew), while surface-form similarity can remain high. The gains are pronounced on sim-
pler tasks (MBPP+) and partially eroded on harder ones (BIGCODEBENCH); on BIGCODEBENCH,
the non-zero MRI is explained by persistently high RADrew with roughly unchanged Sim(Trew).
We also evaluate on Llama families (see Table 1). While Llama 3.1 exhibit similarly low MRI as
scale increases, Llama 4 2 shows comparable MRI on both dataset. On MBPP+, the MRI from
Llama-3.1 (8B/70B) declined in small degree (0.0020 → 0.0000), and Llama-4 models are near zero
(0.0023 and 0.0082); on BIGCODEBENCH, Llama-3.1 shifts little (0.0947 → 0.0884), and Llama-4
remains comparably low but non-zero (0.0932 and 0.0916). These results reveal a task-dependency
on harmful memorization: on easier problems, larger Llama models effectively drive RADrew → 0
(hence negligible MRI) even when Sim(Trew) is moderate, whereas on BIGCODEBENCH the non-
zero risk is dominated by persistent RADrew = 0.4060 for Llama 3.1 series and 0.3931 for Llama 4
series at similar similarity levels.

5.1.1 ADDITIONAL FINDINGS

Memorization declines rapidly on simpler tasks but persists on more difficult ones. On the
introductory-level tasks in MBPP+ (see Figure 2a and Figure 2b), memorization risk (MRI) de-
creases notably as models scale up. For instance, for Qwen-2.5-Instruct’s MRI falls from 0.0722 at
0.5B parameters to effectively zero at 32B. Conversely, on the more challenging BIGCODEBENCH
(see Figure 2c and Figure 2d), MRI values remain significant even at large scales (0.1178 for Qwen-
2.5-32B-Instruct). This discrepancy shows that while larger models better capture underlying se-
mantics changes, they do not completely eliminate memorization, especially in scenarios of chal-
lenging tasks that demand deeper reasoning.

2The two Llama-4 variants we evaluate are MoE models with similar per-token activated compute; their
difference is mainly capacity (number of experts) rather than dense compute scaling.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Coder models encourages code reuse but does not substantially increase memorization.
Coder models yield higher Sim(Trew) than their instruction-only counterparts. For instance, on BIG-
CODEBENCH, Qwen-2.5-Coder series (Figure 2d) scores 0.3237 ± 0.0086 vs. 0.2670 ± 0.0268
for the instruction-only variant (Figure 2c) (mean ± SD over 6 seeds). However, RADrew remains
comparable across these variants, translating to only a slight increase in MRI (0.1367 ± 0.0224
vs. 0.1142 ± 0.0247, mean ± SD over 6 seeds). This pattern suggests code-focused pre-training
promotes superficial reuse of training data without significantly increase harmful memorization.

5.2 IMPACT OF FINE-TUNING STRATEGIES ON MEMORIZATION

Figure 3 shows notable differences in memorization across different fine-tuning strategies on Qwen-
2.5-7B and Qwen-2.5-Coder-7B on BIGCODEBENCH.

SFT Base PPO

(a) Qwen 2.5 7B

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
co

re

SFT Base PPO

(b) Qwen 2.5 Coder 7B

Acc(ori) Sim(rew) RADrew MRI

Figure 3: Effect of fine-tuning on Qwen-2.5-7B (base and
Coder) on BIGCODEBENCH. SFT raises Acc(Tori) but also in-
creases Sim(Trew) and RADrew, inflating MRI; PPO preserves
or modestly improves accuracy while keeping RADrew low,
yielding a better risk–accuracy trade-off. Checkpoints selected
for SFT and PPO follows rules in subsection 3.3. Dataset
statistics can be found in subsection 4.1

SFT improves accuracy but introduces
high memorization risk. Models fine-
tuned via SFT consistently achieve accu-
racy gains on original tasks. For Qwen-
2.5-7B-SFT, accuracy was boosted from
0.3158 → 0.3772 on BIGCODEBENCH
and increasing from 0.3684 → 0.4079 on
the coder counterpart. However, for both
Qwen-2.5-7B-SFT and Qwen-2.5-Coder-
7B-SFT, these improvements come with
significant increases in memorization, as
indicated by much higher MRI scores
(e.g. 0.0799 → 0.1747 for Qwen-2.5-
7B-SFT and 0.1392 → 0.1921 on for
Qwen-2.5-Coder-7B-SFT). These trends
reveals that SFT enhances surface-level
accuracy at the expense of genuine gen-
eralization.

PPO balances accuracy improvements and memorization risk. Across both variants, PPO pre-
serves baseline-level or higher accuracy while sharply reducing memorization risk relative to SFT.
On Qwen-2.5-7B, accuracy moves from 0.3158 → 0.3509 (PPO) vs 0.3772 (SFT), with MRI
0.0799 → 0.0795 (PPO) vs 0.1747 (SFT); Similar trend was revaled by Qwen-2.5-Coder-7B, where
accuracy is 0.3684 → 0.3728 (PPO) vs 0.4079 (SFT), with MRI 0.1392 → 0.1336 (PPO) vs 0.1921
(SFT). Overall, PPO yields a better risk–accuracy trade-off by keeping MRI near or below base
levels while offering milder accuracy gains, in contrast to SFT’s larger accuracy improvements ac-
companied by substantially higher MRI.

Implications for Fine-Tuning Decisions. The choice between SFT and reinforcement-based ap-
proaches such as PPO is ultimately determined by how one prioritizes the trade-off between accu-
racy and memorization risk. If maximizing accuracy is the priority and the risks associated with
memorization are acceptable, then SFT remains the optimal strategy. However, in settings where
generalization and minimizing memorization risk are critical, PPO provides a better balance by
offering modest accuracy improvements while considerably reducing memorization.

5.3 ROBUSTNESS TO SEMANTIC-PRESERVING PERTURBATIONS

We differentiate from memorization by using two semantic-preserving perturbations—mutation and
paraphrase—as reference baselines, and we quantify consistency under these baselines with RAD;
our primary analysis remains memorization via semantics-altering rewriting and MRI.

Mutation remains more challenging Across BIGCODEBENCH, mutation induces a moderate
RAD while paraphrase exhibits a milder influence on model accuracy: averaged over all models,
RADmut = 0.20± 0.12 and RADpar = 0.06± 0.04, compared to a much larger semantics-altering
rewriting drop of RADrew = 0.46 ± 0.09. On MBPP+, both mutation and rewriting are modest

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(RADmut = 0.10±0.08, RADrew = 0.10±0.09), and paraphrase is essentially invariant (RADpar =
0.01 ± 0.01). These results confirm that our primary memorization analysis (via rewriting and
MRI) targets a qualitatively different—and much stronger—source of variance than same-semantics
perturbations.

Scaling helps robustness to mutation; coder models show higher sensitivity to mutation on
harder tasks. Mutation accuracy drop decreases with model size on both benchmarks, while para-
phrase remains near-zero with small fluctuations at the high end. On BIGCODEBENCH, coder mod-
els are the most mutation-sensitive (e.g., Qwen-2.5-coder avg. RADmut = 0.25± 0.12) versus their
instruction counterparts (0.20±0.13), with Llama families lower still (Llama-3.1 RADmut = 0.1050,
Llama-4 RADmut = 0.1206). On MBPP+, absolute drops are smaller for all families; Llama-4
shows the lowest RAD under mutation (RADmut = 0.0578). Paraphrase occasionally yields zero
or even negative drops (i.e., accuracy improves), consistent with minor wording changes sometimes
helping the model parse constraints.

Model
MBPP+ BigCodeBench

Acc(Tori) (↑) RADmut (↓) RADpar (↓) RADrew (↓) Acc(Tori) (↑) RADmut (↓) RADpar (↓) RADrew (↓)

Qwen-2.5 0.5B-Instruct 0.4021 0.2763 0.0000 0.2697 0.0947 0.4352 0.0000 0.6574
Qwen-2.5-1.5B-Instruct 0.5767 0.2248 0.0000 0.2110 0.2281 0.2115 0.0000 0.5808
Qwen-2.5-3B-Instruct 0.6243 0.1144 0.0000 0.1017 0.3132 0.1989 0.0448 0.4734
Qwen-2.5-7B-Instruct 0.6852 0.0463 0.0000 0.0849 0.3798 0.1409 0.0878 0.4827
Qwen-2.5-14B-Instruct 0.7037 0.0338 0.0000 0.0414 0.3895 0.0631 0.0608 0.3694
Qwen-2.5-32B-Instruct 0.7513 0.0106 0.0000 0.0000 0.4404 0.1474 0.0757 0.3865

Qwen-2.5-Instruct (mean ± SD) 0.62 ± 0.12 0.12 ± 0.11 0.00 ± 0.00 0.12 ± 0.10 0.31 ± 0.13 0.20 ± 0.13 0.04 ± 0.04 0.49 ± 0.11

Qwen-2.5-coder-0.5B-Instruct 0.4471 0.2367 0.0000 0.2663 0.1088 0.4677 0.0000 0.5484
Qwen-2.5-coder-1.5B-Instruct 0.5952 0.1378 0.0000 0.1778 0.2465 0.2954 0.0391 0.5196
Qwen-2.5-coder-3B-Instruct 0.6402 0.0909 0.0000 0.1074 0.3579 0.2304 0.0686 0.4804
Qwen-2.5-coder-7B-Instruct 0.7196 0.0662 0.0294 0.1140 0.4088 0.1803 0.1073 0.4549
Qwen-2.5-coder-14B-Instruct 0.7381 0.0394 0.0143 0.0896 0.4675 0.1463 0.0938 0.3846
Qwen-2.5-coder-32B-Instruct 0.7725 0.0171 0.0000 0.0993 0.4772 0.1857 0.1085 0.3695

Qwen-2.5-Coder-Instruct (mean ± SD) 0.65 ± 0.12 0.10 ± 0.08 0.01 ± 0.01 0.14 ± 0.07 0.34 ± 0.14 0.25 ± 0.12 0.07 ± 0.04 0.46 ± 0.07

Llama-3.1-8B-Instruct 0.5529 0.1340 0.0000 0.0133 0.3079 0.1595 0.0513 0.4444
Llama-3.1-70B-Instruct 0.6984 0.0795 0.0189 0.0000 0.4175 0.0504 0.0399 0.3676

Llama-3.1-Instruct (mean) 0.6257 0.1068 0.0095 0.0067 0.3627 0.1050 0.0456 0.4060

Llama-4-Scout-17B-Instruct (16E) 0.6614 0.0200 0.0040 0.0160 0.4061 0.1058 0.0670 0.3909
Llama-4-Maverick-17B-Instruct (128E) 0.7751 0.0956 0.0375 0.0307 0.4860 0.1354 0.1119 0.3953

Llama-4-Instruct (mean) 0.7183 0.0578 0.0208 0.0234 0.4461 0.1206 0.0894 0.3931

All models (mean ± SD) 0.65 ± 0.11 0.10 ± 0.08 0.01 ± 0.01 0.10 ± 0.09 0.35 ± 0.12 0.20 ± 0.12 0.06 ± 0.04 0.46 ± 0.09

Table 2: Robustness under semantic-preserving mutation and paraphrase versus semantics-different
rewriting. Mutation induces moderate drops; paraphrase is nearly invariant; rewrites are most dis-
ruptive—especially on BIGCODEBENCH—suggesting harmful memorization beyond surface-level
robustness. The final row reports column-wise unweighted mean ± sample SD across 16 models.3

6 CONCLUSION AND FUTURE WORKS

In this paper, we reframed memorization in code generation as (1) exhibit high similarity to the
golden solution of original tasks and (2) lead to performance drops under semantically modified vari-
ants. We measured such memorization with code rewriting—which preserves surface form while
changing task semantics—and the Memorization Risk Index (MRI) that multiplies solution simi-
larity with the relative accuracy drop (RAD) under rewriting. This design isolates harmful memo-
rization from benign reuse. Our experiments on MBPP+ and BIGCODEBENCH show: (i) harmful
memorization generally decreases with model scale on simpler tasks, (ii) persists more on harder
tasks, and (iii) SFT raises accuracy but inflates MRI, while PPO delivers a better risk–accuracy
trade-off. Taken together, these findings clarify when errors stem from harmful memorization rather
than generalization and motivate the following next steps: (a) mitigation approach: further research
is needed for reducing the impact of memorization. (b) evaluation transferability: while our current
evaluation metrics are tailored for code generation, exploring their applicability to other domains,
such as mathematical reasoning, could provide valuable insights.

3Mean is the unweighted arithmetic average computed per column across models; SD is the sample standard
deviation (unbiased, n−1 denominator). Values are rounded to two decimals.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our code rewriting, mutation and paraphrase pipeline is guided by ethical principles to ensure
responsible outcomes.

(1) Data: Our dataset is constructed from MBPP+ and BIGCODEBENCH dataset, which guarantees
ethical fairness. We actively work to eliminate any harmful or offensive content from the code
rewriting, mutation and paraphrase variant datasets to mitigate potential risks.

(2) Responsible Usage and License: The use of the code rewriting, mutation and paraphrase variant
datasets is intended solely for evaluating memorization in LLM code generation tasks. We encour-
age the responsible use of those datasets for educational and scientific purposes, while strongly
discouraging any harmful or malicious activities.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have illustrated the experiment details in the appendix,
such as task generation prompts in Appendix B, training details in Appendix F and evolved-task gen-
eration configurations in Appendix G. For the dataset and code repository, all evolved tasks and the
prompts used during generation will be released publicly upon publication, ensuring reproducibility
and facilitating future research.

REFERENCES

Meta AI. Introducing llama 4: Advancing multimodal intelligence, 2024. URL https://ai.meta.
com/blog/llama-4-multimodal-intelligence/.

Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. Traces of memorisation in large language
models for code. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, pp. 1–12. ACM, April 2024. doi: 10.1145/3597503.3639133. URL
http://dx.doi.org/10.1145/3597503.3639133.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-09-18.

Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
pitfalls of memorization: When memorization hurts generalization, 2024. URL https://arxiv.
org/abs/2412.07684.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Eval-
uating and testing unintended memorization in neural networks, 2019. URL https://arxiv.
org/abs/1802.08232.

Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. Nlperturbator: Studying the robustness of code
llms to natural language variations, 2024. URL https://arxiv.org/abs/2406.19783.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Nuo Chen, Qiushi Sun, Jianing Wang, Ming Gao, Xiaoli Li, and Xiang Li. Evaluating and en-
hancing the robustness of code pre-trained models through structure-aware adversarial samples
generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association

10

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
http://dx.doi.org/10.1145/3597503.3639133
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2406.19783
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

for Computational Linguistics: EMNLP 2023, pp. 14857–14873, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.991. URL
https://aclanthology.org/2023.findings-emnlp.991/.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models, 2024.
URL https://arxiv.org/abs/2402.15938.

Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ila R Fiete. Uncovering latent
memories: Assessing data leakage and memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and Robert
West. Sok: Memorization in general-purpose large language models, 2023. URL https://
arxiv.org/abs/2310.18362.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.
org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using llms to uncover memorization
of llms. arXiv preprint arXiv:2403.04801, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022. URL https://arxiv.org/abs/2211.11501.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuanjing Huang, and Xipeng Qiu. Scaling laws
for fact memorization of large language models, 2024. URL https://arxiv.org/abs/2406.
15720.

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
pirical study on github copilot, 2023. URL https://arxiv.org/abs/2302.00438.

11

https://aclanthology.org/2023.findings-emnlp.991/
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2211.11501
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2302.00438

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-5. https://openai.com, 2025. Large Language Model.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Aneesh Pappu, Billy Porter, Ilia Shumailov, and Jamie Hayes. Measuring memorization in rlhf for
code completion, 2024. URL https://arxiv.org/abs/2406.11715.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

12

https://openai.com
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.11715

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
eration capabilities of language models, 2024. URL https://arxiv.org/abs/2403.04811.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Sourcegraph. Sourcegraph cody. https://sourcegraph.com/cody, 2024. Accessed: 2024-05-06.

Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv preprint arXiv:2310.07298, 2023.

Tabnine. Tabnine. https://www.tabnine.com, 2024. Accessed: 2024-05-06.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shiqi Wang, Li Zheng, Haifeng Qian, Chenghao Yang, Zijian Wang, Varun Kumar, Mingyue Shang,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. 2022.
doi: 10.48550/arXiv.2212.10264. URL https://arxiv.org/abs/2212.10264.

Zhepeng Wang, Runxue Bao, Yawen Wu, Jackson Taylor, Cao Xiao, Feng Zheng, Weiwen Jiang,
Shangqian Gao, and Yanfu Zhang. Unlocking memorization in large language models with dy-
namic soft prompting, 2024. URL https://arxiv.org/abs/2409.13853.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2024.
URL https://arxiv.org/abs/2410.23123.

Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and David Lo.
Unveiling memorization in code models. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, pp. 1–13. ACM, April 2024. doi: 10.1145/
3597503.3639074. URL http://dx.doi.org/10.1145/3597503.3639074.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga
Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to
natural language models. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pp. 363–375, 2020.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://sourcegraph.com/cody
https://www.tabnine.com
https://arxiv.org/abs/2212.10264
https://arxiv.org/abs/2409.13853
https://arxiv.org/abs/2410.23123
http://dx.doi.org/10.1145/3597503.3639074

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of a large language model (OpenAI’s GPT-5) during the preparation of this
work. Specifically:

• Task Generation: GPT-5 was employed to assist in generating tasks for code rewriting,
mutation, and paraphrase. The role of the LLM in this context was restricted to providing
task generation; all methodological design, filtering, and integration into our pipeline were
carried out by the authors.

• Writing Assistance: GPT-5 was additionally used as a language aid for correcting gram-
mar and improving clarity in the writing of the manuscript. The substantive content, re-
search ideas, technical contributions, and overall narrative were conceived and written by
the authors without reliance on the LLM.

Beyond these two use cases, no part of the research design, analysis, or interpretation depended on
LLM assistance.

B PROMPTS FOR TASK GENERATION

We provide the full instruction prompts used to generate each evolution variant (mutation, para-
phrasing, and code-rewriting) with GPT-5. For each evolution type, the system and user messages
are shown as passed to the API.

B.1 CODE-REWRITING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

Code-Rewriting Evolution User Prompt

User:

Given a coding task description (#The Given Prompt#) and its canonical solution (#Code#),
perform the following steps:

1. Modify the canonical solution to create #New Code# by altering only ***ONE*** core
logic or structure. Do not add additional 'if statements' to the code. Avoid
superficial changes like variable renaming. Ensure the modified code has different
semantics in a way that ***expected difficulty equivalent to the original problem***.
Write a #New Entry Point# to the updated code. This function name must be very
similar or the same as the old entry point, and reflect the modified code's logic
changes if using #Old Entry Point# could mislead the programmer on the
#Rewritten Prompt#.

2. Update #The Given Prompt# to create #Rewritten Prompt#. The new prompt must:"
- Match the original's ***input signature*** exactly, but the output

format could be different a little bit.
- Reflect the modified code's logic changes explicitly.

Retain the original phrasing structure and ***avoid unnecessary rephrasing***
in a way that the #Rewritten Prompt# syntactically very similar
to the #The Given Prompt#.

3. If any mismatch arises between new code and new prompt, revise either one
(without adding more changes) so all constraints in Steps 1-2 are simultaneously
satisfied.

Format your response exactly as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

New Code:
[code]

Explanation:
[logic changes]

Rewritten Prompt:
[updated description]

Old Entry Point:
[original function name]

New Entry Point:
[updated function name]

B.2 CODE-REWRITING EVOLUTION LLM JUDGE

System Prompt

System: You are an expert code reviewer. Your task is to evaluate whether an evolved coding task maintains
appropriate quality standards in terms of prompt-code alignment and difficulty equivalence.

Code-Rewriting Evolution LLM Judging Prompt

User: Please evaluate the quality of this evolved coding task by analyzing two key aspects:

Original Task:
Prompt: {original_prompt}
Code: {original_code}
Evolved Task:
Prompt: {rewritten_prompt}
Code: {rewritten_code}

Evaluation Criteria:
1. **Prompt-Code Alignment**: Does the new prompt accurately describe what the new code

does?
- Are the input/output specifications consistent?
- Does the prompt clearly communicate the expected behavior?
- Are there any ambiguities or mismatches?

2. **Difficulty Equivalence**: Is the evolved task of similar difficulty to the original?
- Does it require similar algorithmic thinking?
- Is the complexity level maintained (not significantly easier or harder)?
- Does it test similar programming concepts and skills?

Response Format:
Provide your evaluation in the following format:

Alignment Score: [1-5, where 5 = perfect alignment, 1 = major misalignment]
Alignment Reasoning: [Brief explanation of why the prompt and code align or don't align]

Difficulty Score: [1-5, where 5 = equivalent difficulty, 3 = acceptable variation, 1 =
significantly different]

Difficulty Reasoning: [Brief explanation of difficulty comparison]

Overall Recommendation: [ACCEPT/REJECT]
Overall Reasoning: [Brief summary of your decision]
Please be thorough but concise in your evaluation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3 MUTATION EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

Mutation Evolution User Prompt

User: Given a coding task description ”The Given Prompt” and its canonical solution ”Code”, perform the
following steps:

• X word-scrambling operations
• Y random-capitalization operations
• Z character-noising operations

Definitions (one “operation” = one change):

• **Word scrambling**: choose a single word (alphabetic token) and randomly shuffle its internal
letters.

• **Random capitalization**: flip the case of one letter (upper to lower or lower to upper) anywhere
in the text.

• **Character noising**: insert, delete, **or** substitute one character (letter, digit, or punctua-
tion).
Please gives your answers to ”Mutation Prompt” without any additional text or explanation.

Response: Format your response as:

Mutation Prompt:
[Updated task description]

NOTE: The values X, Y, and Z — representing the number of word-scrambling, random-capitalization, and
character-noising operations respectively — are automatically computed based on the length of the original
prompt. Specifically, we apply a total of ≈ 4 noise operations per 5 words. We first ensure at least one
operation of each type is included (i.e., X, Y, Z ≥ 1), then randomly distribute the remaining operations
among the three types. This strategy ensures a consistent noise budget proportional to the prompt’s length
while maintaining diversity in corruption types.

B.4 PARAPHRASING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

Paraphrasing Evolution User Prompt

User: Given a coding-task description ”The Given Prompt”, produce a paraphrased version called ”Para-
phrased Prompt”.

Guidelines:

1. Keep the task’s meaning, requirements, and input/output specifications identical.
2. Refresh the wording: use synonyms, change sentence order, or rephrase clauses to add light lin-

guistic “noise,” but do **not** drop or add information.
3. Preserve any code-related tokens (e.g., variable names, file names, I/O examples) exactly as they

appear unless the original prompt explicitly marks them as placeholders.
4. Retain the original structural cues—for example, if the prompt begins with ’Write a Python func-

tion. . . ’, your rewrite should also begin with that instruction, albeit rephrased

Please gives your answers to ”Paraphrased Prompt” without any additional text or explanation.
Response: Format your response as:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Paraphrased Prompt:
[Updated task description]

Additionally, we ensured the validity of test cases for all rewritten tasks across both datasets, and
validate each rewritten solution by making it pass its corresponding rewritten unit test. For MBPP+,
we reuse the official test case inputs and generate the expected outputs using the rewritten ground-
truth solutions, ensuring direct comparability. For BigCodeBench, we adopt the procedure outlined
in Zhuo et al. (2024), constructing test cases for each rewritten task based on their guidelines to guar-
antee consistency and correctness. We installed all packages required by both dataset for assessing
function correctness.

C EXAMPLES OF CLEARER PARAPHRASED PROMPTS

Mbpp/604

Original Prompt: Write a function to reverse words separated by spaces in a given string.
Paraphrased Prompt: Create a function that takes a string as input and returns the string
with all words, which are divided by spaces, reversed in order.

Mbpp/752

Original Prompt: Write a function to find the nth jacobsthal number.
https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ 0, 1, 1, 3, 5,
11, 21, 43, 85, 171, 341, 683, 1365, 2731, ...
Paraphrased Prompt: Create a function that computes the nth Jacobsthal number. Refer
to https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ for more infor-
mation. The sequence begins as follows: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365,
2731, ...

Mbpp/753

Original Prompt: Write a function to find minimum k records from tuple list.
https://www.geeksforgeeks.org/python-find-minimum-k-records-from-tuple-list/ - in this
case a verbatim copy of test cases.
Paraphrased Prompt: Create a function that retrieves the smallest k elements from a list
of tuples. Refer to https://www.geeksforgeeks.org/python-find-minimum-k-records-from-
tuple-list/ and use the provided test cases exactly as they are.

D EXAMPLES OF REGRESSED TASKS

We randomly selected 5 tasks from each of MBPP+ and BigCodeBench that PASSED in original
but FAILED in code rewriting from the evaluation results in Qwen2.5-Coder-32B-Instruct. For each
task, we provide

• Original task prompt and its canonical solution
• Code rewriting task prompt and the rewritten canonical solution
• Alignment and Difficulty analysis from GPT-5 to investigate (1) if the rewritten prompt

aligns with its rewritten solution; (2) whether the difficulty of rewritten task align with its
original version.

The following case studies confirms that such performance regression is not caused by the higher
difficulty on rewritten tasks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: Example of Task-99 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code rewriting.

Figure 5: Example of Task-224 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code rewriting.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: Example of Task-284 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code rewriting.

Figure 7: Example of Task-767 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code rewriting.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Example of Task-279 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code rewriting.

Figure 9: Example of Task-1134 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code rewriting.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: Example of Task-16 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code rewriting.

Figure 11: Example of Task-330 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code rewriting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Example of Task-59 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code rewriting.

Figure 13: Example of Task-868 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code rewriting.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E HARMLESS INTERNAL LOGIC MODIFICATIONS

We listed two representative cases from Llama3.1-8B-Instruct where a model has preserved all func-
tion and variable names yet altered only the internal implementation (e.g., swapping loops for com-
prehensions or changing search strategies), illustrating “harmless” syntactic similarity.

E.1 TASK MBPP/18: LIST COMPREHENSION ¡-¿ EXPLICIT LOOP

Model Answer in Original Set (list comprehension)
def remove_dirty_chars(string, second_string):

second_string_set = set(second_string)
filtered = [c for c in string if c not in second_string_set]
return ''.join(filtered)

Model Answer in Rewritten Set (explicit loop)
def remove_dirty_chars(string, second_string):

second_string_set = set(second_string)
result = []
for c in reversed(string):

if c not in second_string_set:
result.append(c)

return ''.join(reversed(result))

Here, the function name ‘remove dirty chars‘, parameters, lookup-set variable, and character vari-
able ‘c‘ all remain identical; only the comprehension is replaced by a two-step loop.

E.2 TASK MBPP/793: REVERSE-INDEX LOOKUP BINARY SEARCH

Model Answer in Original Set (slice + index)
def last(arr, x):

try:
return len(arr) - 1 - arr[::-1].index(x)

except ValueError:
return -1

Model Answer in Rewritten Set (binary search)
def last(arr, x):

low, high = 0, len(arr) - 1
result = -1
while low <= high:

mid = (low + high) // 2
if arr[mid] == x:

result = mid
low = mid + 1

elif arr[mid] < x:
low = mid + 1

else:
high = mid - 1

return result

Again, ‘last‘, ‘arr‘, and ‘x‘ are preserved; the lookup logic is simply swapped from a reverse-slice
search to an iterative binary-search routine.

F TRAINING DETAILS REGARDING SFT/RL

F.1 FINE-TUNING DETAILS

Framework and Compute. We adapted the Verl framework for supervised fine-tuning (SFT) and
Proximal Policy Optimization (PPO), using its PyTorch Fully Sharded Data Parallel (FSDP) backend
Experiments ran on a single machine (nnodes=1) with 2 GPUs (n gpus per node=2). PPO rollouts
used the VLLM backend; optimization used AdamW.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Compute and framework configuration

Item Setting

Framework Verl (PyTorch FSDP backend)
Nodes / GPUs nnodes=1, n gpus per node=2
PPO rollout backend VLLM
Optimizer AdamW

Dataset and Prompting. Data followed Verl’s standard format and was exported as a .parquet
file with a 4:1 train/test split. Each problem description served as the prompt; the corresponding
code solution was the target response.

Table 4: Dataset summary

Aspect Details

Format .parquet (Verl standard)
Split 4:1 train:test
Input (prompt) Problem description
Target (response) Code solution
Prompt template See quoted block above

The completed template we fed into the LLM was:

instruction_prefix = "Please provide a self-contained Python script that solves the
following problem in a markdown code block:"

response_prefix = "Below is a Python script with a self-contained function that solves
the problem and passes corresponding tests:"

prompt_chat = [
{"role": "user", "content": f"""\

{instruction_prefix}
```
{problem.strip()}
```
"""},

{"role": "assistant", "content": f"""\
{response_prefix}
```python
"""}
]

The problem is the description originally from the dataset, and we called the
tokenizer.apply chat template to the prompt chat to get the model response.

F.1.1 SUPERVISED FINE-TUNING (SFT)

Default learning rate was 1× 10−5 for 20 epochs, with manual adjustments between 5× 10−6 and
1 × 10−5 depending on model performance. We set max prompt length to 1024, batch size
to 64, and micro batch size per gpu to 8. The selected checkpoint (named model name-SFT)
was the one immediately prior to observed overfitting, hence we can distinguish memorization from
overfitting.

Moreover, we choose the checkpoint at epoch 20 (named model name-SFT-overfit) as the fully
overfitting epoch to measure the impact of overfitting to memorization.

F.1.2 PROXIMAL POLICY OPTIMIZATION (PPO)

Actor, critic, and reference models used identical architectures over 20 epochs. The reward was
binary: 1 if the generated response passed all test cases, else 0. We set max prompt length to 1024
and max response length to 512. Learning rates were 1× 10−5 for the critic and 1× 10−6 for the

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: SFT hyperparameters

Parameter Value

Epochs 20
Learning rate Default 1× 10−5; tuned 5× 10−6–1× 10−5

max prompt length 1024
Batch size 64
micro batch size per gpu 8
save freq after each epoch
Checkpoint selection Epoch immediately prior to overfitting

actor. We used batch size 64 with micro batch size per gpu 8, selecting the checkpoint with
the highest test reward (named model name-PPO) to get the best performance.

Table 6: PPO setup and hyperparameters

Parameter Value

Architectures Actor/Critic/Reference identical
Epochs 20
Reward Binary (1 if all tests pass; else 0)
max prompt length 1024
max response length 512
Learning rate (critic) 1× 10−5

Learning rate (actor) 1× 10−6

Batch size 64
micro batch size per gpu 8
save freq 5
Checkpoint selection Highest reward on validset

G EVOLVED-TASK GENERATION (GPT-5)

• API version: gpt-5-2025-08-07.
• Prompt template: shown in Appendix B.
• Parameters: temperature: default; top-p: default; max-tokens 1080.
• Post-processing: regex clean-up.
• Budge: the estimated cost for generating one round of each evolution type (code rewriting, mu-

tation and paraphrase) for both MBPP+ and BigCodeBench is approximately 450 USD.

25


	Introduction
	Related Work
	Code Generation with LLMs
	Memorization in Code Generation

	Methodology
	Code Rewriting
	Metric-Memorization Risk Index

	Mutation and Paraphrase
	Metric—Robustness Relative Accuracy Drop

	Fine-Tuning Methods
	Supervised Fine-tuning
	Reinforcement Learning


	Experiment Setup
	Datasets
	Models

	Result Analysis
	Memorization Analysis on Instruct Models
	Additional Findings

	Impact of Fine-Tuning Strategies on Memorization
	Robustness to Semantic-Preserving Perturbations

	Conclusion and Future Works
	Use of Large Language Models (LLMs)
	Prompts for Task Generation
	Code-Rewriting Evolution
	Code-Rewriting Evolution LLM Judge
	Mutation Evolution
	Paraphrasing Evolution

	Examples of Clearer Paraphrased Prompts
	Examples of Regressed Tasks
	harmless internal logic modifications
	Task Mbpp/18: List Comprehension <-> Explicit Loop
	Task Mbpp/793: Reverse‑Index Lookup Binary Search

	Training details regarding SFT/RL
	Fine-Tuning Details
	Supervised Fine-Tuning (SFT)
	Proximal Policy Optimization (PPO)


	Evolved-Task Generation (GPT-5)

