Under review as a conference paper at ICLR 2026

MEMORIZE OR GENERALIZE? EVALUATING LLM
CODE GENERATION WITH CODE REWRITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated exceptional code gen-
eration capabilities. However, there is a growing debate whether LLMs are mostly
doing memorization (i.e., replicating or reusing large parts of their training data)
versus generalization (i.e., beyond training data). Existing evaluations largely
proxy memorization with surface/structural similarity, thereby conflating benign
reuse of repeated code with harmful recall and neglecting task correctness un-
der semantic variation. We define harmful memorization behaviorally as failure
at high similarity and introduce a semantic perturbation code rewriting, which
rewrites a semantically different answer at a similar difficulty level for a given
coding task, then reverse-engineers a novel coding task. We further propose Mem-
orization Risk Index (MRI), a normalized score that combines two signals: (i) how
similar the model’s answer for the rewritten task is to the original ground-truth
solution, and (ii) how much performance drops from the original task to its rewrit-
ten counterpart. MRI is high only when both conditions hold—when the model
outputs similar code but fails the perturbed task—thereby capturing harmful mem-
orization rather than benign reuse of repeated code. Empirical evaluations on code
generation benchmarks MBPP+ and BIGCODEBENCH reveal that (1) memoriza-
tion does not increase with larger models and in many cases alleviates as they
scale; (2) supervised fine-tuning (SFT) improves accuracy while introduces mem-
orization; (3) reinforcement learning with proximal policy optimization (PPO)
achieves a more balanced trade-off between memorization and generalization.

1 INTRODUCTION

Large language models (LLMs) have made incredible advances in automated code generation, and
are rapidly becoming essential tools in software development (Sourcegraph, 2024} Tabnine} [2024;
Team et al.} 2023 |Anthropicl 2025 (Chen et al., 2021). Modern code-focused LLMs can achieve
state-of-the-art performance on programming benchmarks (Roziere et al., 2024). For example, spe-
cialized models like Qwen-2.5 Coder (Hui et al.} 2024) and Code Llama (Roziere et al.,|2024) have
pushed the boundaries of translating natural language into code. These advancements raise an im-
portant question: when do LLMs truly generalize to new programming tasks, and when are they
merely reproducing memorized training examples?

Understanding memorization in code generation is critical. Existing evaluations largely measure
memorization via surface or structural overlap (e.g., regurgitation audits, contamination filters, and
entropy-based detectors) (Yang et al.| [2024; Riddell et al., 2024} Dong et al.| [2024), treating high
similarity as evidence of memorization. This conflates benign reuse of repeated code (i.e. idioms,
APIs) with harmful recall and, crucially, does not test whether the model solves the task under
semantic variation.

To systematically study harmful memorization, we build on the intuition that performance gaps
under semantic perturbations contribute to reveal whether a model is generalizing or harmful mem-
orizing. If a model simply recalls solutions, even small semantic changes could cause large accuracy
drops, often accompanied by high overlap with training-like code (Bayat et al., [2024)). Concretely,
we propose code-rewriting, which introduces semantic shifts to prompts while maintaining similar
syntax, to investigate whether the success of a model comes from genuine reasoning or harmful
memorization. To quantify these behaviors, we introduce Memorization Risk Index (MRI), a nor-

Under review as a conference paper at ICLR 2026

-
Pipeline Workflow Semantic Equivalent Semantic Different
- - (
(similar wording, J Xnut = £4(X): Wrlite a functIon to =g5(C)# C (One logic change):
different meaning fInd teh shraed Eelments from teh def func(sl,s2):
gVine wto sEt. return (sl&s2)
(O Mutation: add textual noise, same] L @ @
i s —
Searne Xppar = €5(X): Develop a function that [Ge”e’ate anew deSCflPtDﬂ}
. . base on
O Paraphrase: similar wording, same identifies the common elements
meaning kaefween two provided sets. @ =desc(C,.,): Write a function
P 7@/ to identify the common elements from
Prompt (X): Write a function to find theﬁ7 (" Solution (©): \ two provided sets by ensuring the
shared elements from the given two def func(sl,s2): result is sorted. @
sets. return (sl&s2
N N L eery J
+ - Does the new prompt accurately describe what the new code does? . ACCEPT @
>>> Recommendation:
- Is the rewritten task of similar difficulty to the original? REJECT D
4 N N N\
Execute and evaluate generated solution from candidate LLMs
- Solution on X: - Solution on X, ;¢ .‘é Solution on X, \!é
def func(sl,s2): a® def func(sl,s2): amo def func(sl,s2): ap def func(sl,s2): am
return (sl]s2) return (sl&s2) return (sl.union(s2)) return (s1&s2)
Similarity: High Performance Drop: High 5§ Answer: Wrong Answer: 25
Memorization = Similarity x Performance Drop: High Robustness, . = Low Robustnesspar =
\ /

Figure 1: Our proposed Code Rewriting vs. Popular semantic equivalent perturbations. X denotes text and C'
denotes code. that creates semantically different tasks, first rewrite a new code solution Chey
from the origin solution C, then generating a new description Xy based on Creyw. A judge agent will then
choose to accept or reject the task for quality assurance. Mutation and paraphrase that create
semantically equivalent tasks, are included for robustness evaluation as a comparison to memorization. All
perturbations are performed by GPT-5, shown as the ChatGPT logo. Generation prompts are in Appendix El

malized score that combines two signals: (i) how similar the model’s answer for the code rewriting
task is to the original ground-truth solution (combining both semantic and syntax level similarity),
and (ii) how much performance drops from the original task to its code rewriting counterpart. MRI
captures harmful memorization as failure under high similarity on code-rewriting tasks.

Terminology. In this paper, we use the term memorization to specifically denote harmful memo-
rization: which we define as cases that (1) exhibit high similarity to the original solution and (2)
lead to performance drops under semantically altered code rewriting. Unless otherwise stated, all
subsequent uses of “memorization” follow this definition.

To differentiate our method from existing work in evaluating robustness (Chen et al., 2024} 2023
Mastropaolo et al., 2023 Wang et al.,2022)), we also include two semantic-preserving perturbations,
mutation and paraphrase, as reference baselines. We report Relative Accuracy Drop (RAD) to mea-
sure LL.Ms performance consistency under semantic-preserving perturbations. Our primary analysis
still targets harmful memorization via the semantics-altering code-rewriting perturbation and MRI.

Our evaluation include coding benchmarks across different difficulty levels, from simpler problems
in MBPP+ (Liu et al.| [2023)) to more difficult tasks in BIGCODEBENCH (Zhuo et al.l 2024). Fur-
thermore, we investigate the effect of post-training strategies by comparing Supervised Fine-Tuning
(SFT) and Proximal Policy Optimization (PPO). Our results reveal the following trends: (1) harmful
memorization does not increase with larger models and in many cases improves as they scale; (2)
harmful memorization alleviates rapidly on simpler tasks but persists on more difficult ones; (3) SFT
improves raw accuracy but substantially amplifies harmful memorization; (4) PPO achieves a more
balanced trade-off, mitigating harmful memorization while maintaining competitive accuracy.

In summary, our work makes the following key contributions:

* We propose a novel automated pipeline for code rewriting, which rewrites a semantically differ-
ent answer at a similar difficulty level for a given coding question, then reverse-engineers a novel
coding question.

Under review as a conference paper at ICLR 2026

* We introduce MRI, a metric that captures harmful memorization as failure under high similarity
on code rewriting tasks, rather than treating similarity alone as memorization.

* We conduct a comprehensive empirical study across benchmarks and training strategies, providing
insights into when LLMs memorize in code generation.

2 RELATED WORK

2.1 CODE GENERATION WITH LLMSs

Large Language Models (LLMs) have shown remarkable ability in automated code generation.
Models such as ChatGPT (OpenAl et al.| [2024), Qwen-Coder (Hui et al. [2024), and DeepSeek-
Coder (Guo et al., 2024) have pushed the boundaries in the coding domain, notably with ChatGPT
achieving state-of-the-art performance on challenging benchmarks such as BIGCODEBENCH (Zhuo
et al.l [2024), LiveCodeBench (Jain et al., 2024} and EvalPlus leaderboard (Liu et al., 2023)). While
LLM-based code generation models have made significant strides in translating natural language to
executable code, most evaluations focus on static benchmark performance, overlooking memoriza-
tion behaviors to prompt variations.

2.2 MEMORIZATION IN CODE GENERATION

A model that memorizes may output correct-looking solutions simply because it has seen near-
identical problems during pre-training, rather than reasoning about program semantics (Pappu et al.,
2024;|Duan et al., 2024; [Kassem et al.,2024; |Carlini et al., 2019; Bayat et al.| 2024} Xie et al.| [2024)).
Such behavior can mislead evaluation benchmarks, inflate metrics, and compromise trustworthiness
when models are deployed in real-world development environments (Hartmann et al.,[2023;|Lu et al.,
2024; Staab et al., [2023} [Zanella-Béguelin et al., 2020).

In code generation, prior work operationalizes general memorization as regurgitation—via prefix to
suffix extraction, mass sampling with clone detection against the training corpus, and contamination-
aware splits of HumanEval/MBPP (Chen et al., [2021)—and under these measurements reports that
the measured general memorization rate increases with model size (Yang et al.| [2024; |Al-Kaswan
et al.l 2024; Wang et al., [2024). However, general memorization is not inherently harmful: if a
training-like solution still satisfies the a semantic different question, re-use does not constitute risk
(it is correct and passes tests) (Bayat et al.| 2024)). To distinguish harmful memorization from gen-
uine generalization, we introduce code-rewriting, which deliberately shifts task semantics while
preserving surface syntax, and we quantify it with a Memorization Risk Index (MRI) that multi-
plies similarity to the original solution by the relative accuracy drop under the semantic shift (high
only when the answer copied surface forms but fail on the task with new semantics). [Lai et al.
(2022) uses semantic perturbations—changing the reference solution’s semantics without increas-
ing difficulty—to probe general memorization; unlike their manually authored data-science tasks,
we perform automated code rewriting and introduce MRI.

3 METHODOLOGY

3.1 CODE REWRITING

Code rewriting is used to evaluate a model’s memorization via solving semantically different prob-
lems that are superficially similar to original tasks. The automated pipeline to generate code rewrit-
ing tasks is shown in[Figure 1] Specifically, we first modify one logic in ground truth solution while
preserving the original function signature—including the function name, input, and output format.
We then generate a new task description that reflects the altered code while similar to origin tasks in
syntax. Formally, let x € T be the original prompt in text space T and ¢ € C'its ground truth code
solution in code space C. We apply a rewriting function e that produces a new code ¢, = €3(c)
where ¢, # ¢ functionally but both ¢ and ¢;.¢,, share the same signature. The new prompt ¢, is
then generated from c;,,, resulting in a semantically different task:

Trew = desc(Crew) (D
where sig(Crew) = sigc), Crew # € 2)

Under review as a conference paper at ICLR 2026

where desc(-) denotes generating a description from code, and sig(-) extracts the function signature.
This process enables us to assess whether LLMs can recognize and solve tasks that share format but
differ in semantic content.

Data Validation. To ensure the reliability of code rewriting datasets, we conducted both LLM-
as-a-judge and manual quality assurance. For LLM-as-a-judge (shown in [Figure T), we forward
code rewriting tasks to GPT-5 (OpenAll [2025) to check (i) if the rewritten code match the rewritten
prompt and (ii) if the rewritten task align with the original task in difficulty. For manual validation,
two experienced python programmers randomly reviewed 10% of generated evolution problems for
all three evolution types to ensure their quality. We also provide 5 regressed tasks for each dataset
(PASSED in original but FAILED in code rewriting) in to show difficulty alignment.
Additionally, we validate each rewritten solution by making it pass its corresponding rewritten unit
test. Details about this process can be found in Appendix [B-3}

3.1.1 METRIC-MEMORIZATION RISK INDEX

MRI consists of two signals: (i) how similar the model’s answer for the rewritten task is to the
original ground-truth solution, and (ii) how much performance drops from the original task to its
rewritten counterpart.

(i) Similarity. For every rewritten task i € 7y, where T refers to a task set, we measure two
similarities between the model-generated solution for the rewritten version of task ¢ and the ground-
truth solution of its original version:

» Semantic level AST similarity: normalized tree-edit overlap between abstract-syntax trees
* Syntax level edit similarity: (1 — (Levenshtein distance /max-len), capturing token-level overlap.

Formally, let AST; € [0, 1] denote AST similarity, and let Edit; € [0, 1] denote edit similarity. We
combine these scores into a unified similarity score:

_AST; + Edit,

Si 3
5 3)
Because our analysis is corpus-level, we define the mean similarity over all rewritten tasks as:
1
Sim(Trew) =] > S, Sime[0,1]. 4)

1€ Trew

(ii) Relative Accuracy Drop for Rewriting. For a task set 7, Pass@1 is reported as Acc(7). To

capture the performance loss induced by semantic rewriting, we define

Ace(Tori) — Ace(Trew)
Acc(Tor)

RAD,w = 0 when rewriting does not hurt accuracy and increases when it does; the max(0,)
prevents negative values when the performance on rewritten tasks happen to be better.

RADyey, = max (07 > ; RADpew € [O, 1]' (5)

MRI. Finally, we introduce the MRI, defined as the product of solution-similarity and relative
accuracy drop:

MRI = Sim(Tew) X RADyy, MRI € [0,1]. (6)

This multiplicative design let MRI high only when both conditions for harmful memorization hold:
(i) the model copies the original solution’s surface form (high Sim(7y)) and (ii) that copied solution
now fails (high RADy.y,), therefore distinguishes harmful memorization from generalization.

Accounting for low baseline accuracy. While RAD,,, is defined as a relative drop in accu-
racy, it can become numerically large when the baseline Pass@1 on the original tasks is very
low. To avoid over-interpreting such cases, we only compute and compare RADy.,, and MRI for
model-benchmark pairs that satisfy a simple competence threshold Acc(7or) >= 10% and at
least 50 number of correctly solved original tasks. For settings below this threshold, we still report

Under review as a conference paper at ICLR 2026

Acc(Tori) and Acc(Trew), but mark RAD,.,, and MRI as “N/A” and exclude them from cross-model
MRI comparisons. The concrete statistical justification are provided in[Appendix D]

We additionally report an instance-level variant of MRI (iMRI), which aggregates similarity and
failure on a per-example basis. Detailed definition and results are in[Appendix E} iMRI yields very
similar trends and model rankings to our original MRI, showing that our findings are robust to both
low-baseline effects and the choice of aggregation scheme.

3.2 MUTATION AND PARAPHRASE

To differentiate code rewriting from semantic-preserving perturbation techniques in work evaluat-
ing robustness (Chen et al., 2024; 2023; Mastropaolo et al.l 2023 [Wang et al., 2022), we include
mutation and paraphrase, as reference baselines. These two perturbations reveal if LLM could gen-
erate consistent and correct responses under minor surface level changes (Li et al., [2022). Mutation
and paraphrase are adapted in spirit from ReCode’s robustness benchmark (Wang et al.| [2022).

Mutation. To assess whether LLMs are robust to superficial textual noise, mutation evolu-
tion applies small perturbations—such as word-scrambling, random-capitalization, and character-
noising—that preserve the underlying problem semantics. Formally, let z € T denote the original
problem prompt in the text space I'. Mutation evolution applies a perturbation functione; : T — T’
such that the mutated prompt x.,,,,+ = €1 () preserves the original semantics:

Tmut = €1 (x)y Ty Tmut € T (7)
where €; injects textual noise without altering the problem’s underlying meaning.

Paraphrase. Paraphrase evolution aims to evaluate whether LLMs can generalize to diverse sur-
face realizations of the same problem. In this setting, prompts are reworded textual expression but
preserve semantics. Formally, let z € T be the original prompt. We define a paraphrasing function
€s : T — T such that:

Tpar = 62($); Xy Tpar eT (8)

where . is a semantically equivalent but textually different paraphrase of x.

3.2.1 METRIC—ROBUSTNESS RELATIVE ACCURACY DROP

Once we perturb a prompt without changing its semantics, what fraction of previously-solved tasks
remain solved? To answer this question and differentiate robustness with memorization, for each
semantic-preserving transformation p € {mut, par} (mutation/paraphrase), we define the Robust-
ness Relative Accuracy Drop:

Acc(Tori) — Ace(Tp)
Ace(Tori)

RAD, = max (0, > ., RAD, € [0,1]. 9)

Here, Acc(-) denotes Pass@1 on the indicated task set RAD,, = 0 (high robustness)
when semantic-preserving changes do not hurt accuracy and increases toward 1 as performance
degrades (low robustness).

3.3 FINE-TUNING METHODS

To investigate the memorization phenomenon, we use the original tasks in MBPP+ and BIG-
CODEBENCH for ﬁne-tunin and only evaluated on their rewriting counterparts to decouple the
rewriting pipeline from post-training signals. More training details can be found at[Appendix J]

'For clarity, both SFT and PPO are initialized from the same base model and trained independently; PPO is
not performed on top of an SFT checkpoint.

Under review as a conference paper at ICLR 2026

3.3.1 SUPERVISED FINE-TUNING

Supervised Fine-tuning adapts a pre-trained model to a specific task by training it on a labeled
dataset, teaching it to predict the correct label for each input. In our setup, coding problems serve as
the inputs, while code solutions act as the corresponding labels. However, overfitting occurs when
the model fits the training data too closely, reducing its ability to generalize to unseen tasks. This
is typically indicated by a rise in validation loss where model begin to memorize training examples.
Therefore, we distinguish between early-stage and late-stage memorization by the checkpoint where
the loss on the validation set begins to increase. We select such checkpoint for evaluation to
distinguish memorization from overfitting.

3.3.2 REINFORCEMENT LEARNING

Reinforcement Learning enhances fine-tuning efficiency. A leading method is Proximal Policy Opti-
mization (PPO)(Schulman et al.| 2017}, which alternates between sampling data through interaction
with the environment, and optimizing a ”surrogate” objective function using stochastic gradient as-
cent. We utilize the same model architecture for the actor, critic, and reference models for simplicity,
and define the reward function based on the correctness of the generated code. Compared to other
reinforcement learning methods like DPO (Rafailov et al., [2024), we suggest that using accuracy
as the reward function offers a more direct and efficient optimization path. We evaluate using the
checkpoint that achieves the highest validation reward.

4 EXPERIMENT SETUP

4.1 DATASETS

We conduct our evaluation on two widely-adopted code generation benchmarks: MBPP+ (Liu et al.|
2023) and BIGCODEBENCH (Zhuo et al., [2024).

Dataset Statistics. MBPP+ contains 378 tasks, and BIGCODEBENCH comprises 1140 tasks. We
use 4:1 train/test split for fine-tuning. For models without fine-tuning, we use the complete set of
benchmark tasks for evaluation. For models that undergo SFT and PPO, we train on the training
split and evaluate on the test split. Due to the small size of MBPP+ test split (n = 78), estimation
on this split may be imprecise and directional, we use BIGCODEBENCH to explore the impact of
fine-tuning strategies on memorization.

Task Generation. For each original task, we generate one perturbed variant for each of code
rewriting, mutation and paraphrase. More about the generation process is given in

4.2 MODELS

In this paper, we conduct the scale-up experiments on Qwen-2.5 series (Hui et al.| [2024), Qwen-
2.5-Coder series (Qwen et al.,|2025)), Llama-3.1 series (Dubey et al.,[2024)) and Llama-4 series (AL
2024])). For fine-tuning, we choose Qwen-2.5-7B, and Qwen-2.5-Coder-7B. All training and infer-
ence were conducted on a server equipped with 4 NVIDIA A100 GPUs (80GB), with a total com-
putational budget of approximately 40 GPU hours, using PyTorch and HuggingFace Transformers.

5 RESULT ANALYSIS

5.1 MEMORIZATION ANALYSIS ON INSTRUCT MODELS

Harmful memorization does not increase with larger models and in many cases decreases as
they scale. Across Qwen2.5 Instruct and its Coder Instruct families, scaling is associated with
lower RADy,, and hence lower MRI (Table 1] and [Figure 2). On MBPP+, Qwen-Instruct’s MRI
falls from 0.0722 at @.5B to 0.0113 at 14B, reaching 0.0000 at 32B, driven by a decrease in RAD,y
from 0.2697 — 0.0414 — 0.0000. A similar pattern holds for Qwen-Coder (MRI 0.0615 —
0.0313 — 0.0354 as RADy,, goes from 0.2663 — 0.0896 — 0.0993). Notably, Sim(7rew) does
not uniformly decline with scale (e.g., Qwen-Instruct: 0.2678 at @.5B — 0.3369 at 32B), indicating

Under review as a conference paper at ICLR 2026

-—o-- Sim(Trey) RAD,y —— MRI(RAD x Sim)
(a) Instruct (MBPP+) (b) Coder (MBPP+) (c) Instruct (BigCodeBench) (d) Coder (BigCodeBench)
0.4 0.4
. /./””’ 0.6 0.6
0.3 / 0.3 "
e, — /.
2 \ / 14 0.4 04
g 02 0 02 i 1 A I S H
%]
— \.\./
o1 o1 02 02, o
¢ ¢ *——o. —
\’\ ‘\’\¢ —o . T~ * M
—t——
0.0 .00 0.0 0.0
Nl L Q Q g N4 B2) Q Q& Q2 B2) Q> Q Q Q g el Q> Q b Q
RO SN & & A P K AN L P F RN L P F

Model Size (Qwen-2.5 Series)

Figure 2: Scaling trends in MRI across Qwen-2.5 Instruct vs. Coder. (a)-(b) show results on MBPP+, while
(c)-(d) show results on BIGCODEBENCH. The Qwen-2.5 Instruct-0.5B point on BIGCODEBENCH is omitted
because its baseline Pass@1 falls below our competence threshold (see Appendix @

that larger models may continue to reuse surface patterns; however, because their failures under
semantic shifts largely vanish, such reuse is not harmful and thus produces much lower MRI.

Model MBPP+ BigCodeBench

Acc(Tor) (1) Sim(Teew) (1) RADwew 1) MRI()) Acc(Tori) (1) Sim(Teew)) RADrew (1) MRI(])
Qwen-2.5 0.5B-Instruct 0.4021 0.2678 0.2697 0.0722 0.0947 0.2648 N/A N/A
Qwen-2.5-1.5B-Instruct 0.5767 0.2845 0.2110 0.0600 0.2281 0.2487 0.5808 0.1444
Qwen-2.5-3B-Instruct 0.6243 0.1822 0.1017 0.0185 0.3132 0.2965 0.4734 0.1403
Qwen-2.5-7B-Instruct 0.6852 0.2828 0.0849 0.0240 0.3798 0.2686 0.4827 0.1296
Qwen-2.5-14B-Instruct 0.7037 0.2728 0.0414 0.0113 0.3895 0.2277 0.3694 0.0841
Qwen-2.5-32B-Instruct 0.7513 0.3369 0.0000 0.0000 0.4404 0.2959 0.3865 0.1143
Qwen-2.5-coder-0.5B-Instruct 0.4471 0.2310 0.2663 0.0615 0.1088 0.3242 0.5484 0.1778
Qwen-2.5-coder-1.5B-Instruct 0.5952 0.2810 0.1778 0.0500 0.2465 0.3137 0.5196 0.1630
Qwen-2.5-coder-3B-Instruct 0.6402 0.3056 0.1074 0.0328 0.3579 0.3393 0.4804 0.1630
Qwen-2.5-coder-7B-Instruct 0.7196 0.3271 0.1140 0.0373 0.4088 0.3247 0.4549 0.1477
Qwen-2.5-coder-14B-Instruct 0.7381 0.3490 0.0896 0.0313 0.4675 0.3216 0.3846 0.1237
Qwen-2.5-coder-32B-Instruct 0.7725 0.3565 0.0993 0.0354 0.4772 0.3189 0.3695 0.1178
Llama-3.1-8B-Instruct 0.5529 0.1486 0.0133 0.0020 0.3079 0.2132 0.4444 0.0947
Llama-3.1-70B-Instruct 0.6984 0.1518 0.0000 0.0000 0.4175 0.2404 0.3676 0.0884
Llama-4-Scout-17B-Instruct (16E) 0.6614 0.1446 0.0160 0.0023 0.4061 0.2343 0.3909 0.0916
Llama-4-Maverick-17B-Instruct (128E) 0.7751 0.2669 0.0307 0.0082 0.4860 0.2357 0.3953 0.0932

Table 1: Memorization risk for Qwen-2.5, Llama-3.1 and Llama-4 instruct series. MRI persists in
harder tasks (BIGCODEBENCH), as RAD,,, stays high even as Sim(7yy) is comparable.

On BIGCODEBENCH, the effect from scaling up is milder and sometimes non-monotonic. Qwen-
Instruct’s MRI drops from 0.1444 (1.5B) to 0.0841 (14B) but increases to 0.1143 at 32B, with
RADy,, trending from 0.5808 — 0.3694 — 0.3865. On the other hand, Qwen-Coder shows a
steadier decline (0.1778 — 0.1178 from @.5B—32B) with relatively flat Sim(7;cyw). Overall, scale
reduces memorization primarily by improving resistance to semantic shifts (RADxy), while surface-
form similarity can remain high. The gains are pronounced on simpler tasks (MBPP+) and partially
eroded on harder ones (BIGCODEBENCH); on BIGCODEBENCH, the non-zero MRI is explained
by persistently high RAD,.,, with roughly unchanged Sim(7;ew).

We also evaluate on Llama families (Table T). While Llama 3.1 exhibit similarly low MRI as
scale increases, Llama 4 E| shows comparable MRI on both dataset. On MBPP+, the MRI from
Llama-3.1 (8B/7@B) declined in small degree (0.0020 — 0.0000), and Llama-4 models are near zero
(0.0023 and 0.0082); on BIGCODEBENCH, Llama-3.1 shifts little (0.0947 — 0.0884), and Llama-4
remains comparably low but non-zero (0.0932 and 0.0916). These results reveal a task-dependency
on harmful memorization: on easier problems, larger Llama models effectively drive RAD,eyy — 0
(hence negligible MRI) even when Sim(7yey) is moderate, whereas on BIGCODEBENCH the non-
zero risk is dominated by persistent RAD,e,, = 0.4060 for Llama 3.1 series and 0.3931 for Llama 4
series at similar similarity levels.

The two Llama-4 variants we evaluate are MoE models with similar per-token activated compute; their
difference is mainly capacity (number of experts) rather than dense compute scaling.

Under review as a conference paper at ICLR 2026

Ablation Studies. We additionally verify in an extensive set of ablations that our
findings are stable under implementation choices. Varying the parser, AST/edit weightings, and sim-
ilarity function gives MRI values that are highly correlated with our default definition and preserves
the trends.

5.1.1 ADDITIONAL FINDINGS

Harmful memorization declines rapidly on simpler tasks but persists on more difficult ones.
On the introductory-level tasks in MBPP+, memorization risk (MRI) decreases notably as models
scale up. For instance, for Qwen-2.5-Instruct’s MRI falls from 0.0722 at @.5B parameters to ef-
fectively zero at 32B. Conversely, on the more challenging BIGCODEBENCH, MRI values remain
significant even at large scales (0.1178 for Qwen-2.5-32B-Instruct). This discrepancy shows that
while larger models better capture underlying semantics changes, they do not completely eliminate
memorization, especially in scenarios of challenging tasks that demand deeper reasoning.

Coder models encourages code reuse but does not substantially increase harmful memoriza-
tion. Coder models yield higher Sim(7yy) than their instruction-only counterparts. For instance,
on BIGCODEBENCH, Qwen-2.5-Coder series scores 0.3237 4 0.0086 vs. 0.2670 + 0.0268 for the
instruction-only variant (mean + SD over 6 seeds). However, RAD,,, remains comparable across
these variants, translating to only a slight increase in MRI (0.1367 £ 0.0224 vs. 0.1142 4 0.0247,
mean + SD over 6 seeds). This pattern suggests code-focused pre-training promotes superficial
reuse of training data without significantly increase harmful memorization.

Harmful memorization is driven by specific logic-edit types. To better understand which kinds
of semantic changes are responsible for failures, we annotated each rewritten pair with a fine-grained
logic change taxonomy, including Component Swap, Data Transformation, Constraint Change,
Logic Reversal, Constant/Operator Swap, Workflow Modification, and others (see
for definitions and examples). Both MBPP+ and BIGCODEBENCH show diverse coverage over
these types. On BIGCODEBENCH, Component Swap and Data Transformation account for roughly
one third of all changes each, followed by Constraint Change; on MBPP+, the mass is more evenly
spread across Constraint Change, Logic Reversal, Data Transformation, Component Swap, and Con-
stant/Operator Swap. For all subsequent analyses we discard logic types with fewer than 50 instances
per dataset to avoid unstable estimates.

MRI varies strongly by logic-change type and is largest when rewrites change constraints or
data flow. We report per-type MRI and RAD:.,, for representative Qwen-2.5 Instruct and Coder
variants in [Appendix G On MBPP+, Constraint Change and Data Transformation systematically
achieve the highest MRI across both families, whereas Component Swap shows much smaller MRI
and even approaches zero for larger models. This pattern is mirrored in RADy.y: going from 0.5B
to 14B reduces, but does not entirely remove, the accuracy drop under Constraint Change and Data
Transformation, while Logic Reversal becomes essentially harmless as scale increases. On the more
challenging BIGCODEBENCH, all major types exhibit non-trivial MRI, but Data Transformation,
Constraint Change, Logic Reversal, and Workflow Modification consistently sit above the overall
MRI for many model sizes, and maintain large per-type RAD,.,, even at 14B. Qualitatively, these
categories correspond to changes that alter global data flow (e.g., applying transforms before/after
key operations), tighten or relax constraints (e.g., loop bounds or regex/SQL conditions), or restruc-
ture the workflow rather than merely swapping local operators.

5.2 IMPACT OF FINE-TUNING STRATEGIES ON MEMORIZATION

shows notable differences in memorization across different fine-tuning strategies on Qwen-
2.5-7B and Qwen-2.5-Coder-7B on BIGCODEBENCH.

SFT improves accuracy but introduces high memorization risk. Models fine-tuned via SFT
consistently achieve accuracy gains on original tasks. For Qwen-2.5-7B-SFT, accuracy was boosted
from 0.3158 — 0.3772 on BIGCODEBENCH and increasing from 0.3684 — 0.4079 on the coder
counterpart. However, for both Qwen-2.5-7B-SFT and Qwen-2.5-Coder-7B-SFT, these improve-
ments come with significant increases in memorization, as indicated by much higher MRI scores

Under review as a conference paper at ICLR 2026

(e.g. 0.0799 — 0.1747 for Qwen-2.5-7B-SFT and 0.1392 — 0.1921 on for Qwen-2.5-Coder-
7B-SFT). These trends reveals that SFT enhances surface-level accuracy at the expense of genuine
generalization.

; SiM(Trew) —=— RADreu MRI
PPO balances accuracy improvements o Aoz) -
and memorization risk. Across both 045 \\
variants, PPO preserves baseline-level 0.40 ~— :

or higher accuracy while sharply re- 0.35
ducing memorization risk relative to g o030
SFT. On Qwen-2.5-7B, accuracy moves §0_25
from 0.3158 — 0.3509 (PPO) vs 0.20

\.7-

0.3772 (SFT), with MRI 0.0799 — 015 LI \
0.0795 (PPO) vs 0.1747 (SFT); Sim- \ —
ilar trend was revaled by Qwen-2.5- '
Coder-7B, where accuracy is 0.3684 — SFT Base PPO SFT Base PPO
0.3728 (PPO) vs 0.4079 (SFT), with MRI (2) Qwen 2.578 (b) Qwen 2.5 Coder 78

0.1392 — 0.1336 (PPO) vs 0.1921 Figure 3: Effect of fine-tuning on Qwen-2.5-7B (base and
(SFT). Overall, PPO yields a better Coder)onBIGCODEBENCH. SFT raises Acc(7o) but also in-
risk—accuracy trade-off by keeping MRI creases Sim(7rew) and RADrey, inflating MRT; PPO preserves

near or below base levels while offer- ©r modestly improves accuracy while keeping RADrey low,
ing milder accuracy gains, in contrast to yielding a better risk—accuracy trade-oft. Checkpoints selected

SFT’s larger accuracy improvements ac- 0F SET and PPO follows rules in Dataset
. . . statistics can be found in|subsection 4.
companied by substantially higher MRI.

0.10

+.

Implications for Fine-Tuning Decisions. The choice between SFT and reinforcement-based ap-
proaches such as PPO is ultimately determined by how one prioritizes the trade-off between accu-
racy and memorization risk. If maximizing accuracy is the priority and the risks associated with
memorization are acceptable, then SFT remains the optimal strategy. However, in settings where
generalization and minimizing memorization risk are critical, PPO provides a better balance by
offering modest accuracy improvements while considerably reducing memorization.

Beyond comparing training strategies, MRI

.) . ; Model Stage (loss) Acc(Tori) (1) MRI
also provides a practical diagnostic for Early (0.324) 15.960 01530
: : : arly (0. .96% .
checkpoint selection. As shown in [Table 2] Qwen-2.5-7B Best-Val (0.302) 37.72% 0.1733
continuing SFT beyond the best-validation- Late (0.326) 39.47% 0.1795
loss checkpoint yields only small accuracy
. . . . Early (0.325) 35.96% 0.1537
gains but can introduce a disproportionate - ;. -p Best-Val (0292) 10.79% 0.1864
increase in MRI (e.g., a 1.7% accuracy Late (0.318) 42.54% 02216

gain vs. a 19% MRI increase for Qwen-2.5-

Coder-7B). This indicates a shift from gen- Typle 2: Changes in original-task accuracy and MRI
uine generalization toward harmful memo- gyring SFT training on BIGCODEBENCH. Accuracy

rization. A simple and reproducible recipe jpcreases steadily from Early to Best-Val to Late, but
thus is: among saved checkpoints with com- p R grows more sharply

parable validation loss or accuracy, prefer

those lying on a better accuracy—MRI trade-off, and consider MRI to take precedence over marginal
accuracy improvements when those improvements come at considerable memorization cost. We
view this as a lightweight way for practitioners to incorporate MRI into training decisions without
modifying the training objective itself.

5.3 ROBUSTNESS TO SEMANTIC-PRESERVING PERTURBATIONS

We differentiate from memorization by using two semantic-preserving perturbations—rmutation and
paraphrase—as reference baselines, and we quantify consistency under these baselines with RAD;
our primary analysis remains memorization via semantics-altering rewriting and MRL

Mutation remains more challenging Across BIGCODEBENCH, mutation induces a moderate
RAD while paraphrase exhibits a milder influence on model accuracy: averaged over all models,
RADpu = 0.20 £ 0.12 and RAD, = 0.06 % 0.04, compared to a much larger semantics-altering
rewriting drop of RADy, = 0.46 & 0.09. On MBPP+, both mutation and rewriting are modest

Under review as a conference paper at ICLR 2026

(RADyy = 0.10£0.08, RADyey, = 0.1020.09), and paraphrase is essentially invariant (RADp,, =
0.01 £ 0.01). These results confirm that our primary memorization analysis (via rewriting and
MRI) targets a qualitatively different—and much stronger—source of variance than same-semantics
perturbations.

Scaling helps robustness to mutation; coder models show higher sensitivity to mutation on
harder tasks. Mutation accuracy drop decreases with model size on both benchmarks, while para-
phrase remains near-zero with small fluctuations at the high end. On BIGCODEBENCH, coder mod-
els are the most mutation-sensitive (e.g., Qwen-2.5-coder avg. RADp,,, = 0.25 4 0.12) versus their
instruction counterparts (0.20+0.13), with Llama families lower still (Llama-3.1 RAD,,, = 0.1050,
Llama-4 RADp, = 0.1206). On MBPP+, absolute drops are smaller for all families; Llama-4
shows the lowest RAD under mutation (RADy,,, = 0.0578). Paraphrase occasionally yields zero
or even negative drops (i.e., accuracy improves), consistent with minor wording changes sometimes
helping the model parse constraints.

Model MBPP+ BigCodeBench

Ace(Toi) (1) RADmu () RADpr () RADrwew (1) Ace(Ton) (1) RADmu({) RADpur () RADrew (1)
Qwen-2.5 0.5B-Instruct 0.4021 0.2763 0.0000 0.2697 0.0947 N/A N/A N/A
Qwen-2.5-1.5B-Instruct 0.5767 0.2248 0.0000 0.2110 0.2281 0.2115 0.0000 0.5808
Qwen-2.5-3B-Instruct 0.6243 0.1144 0.0000 0.1017 0.3132 0.1989 0.0448 0.4734
Qwen-2.5-7B-Instruct 0.6852 0.0463 0.0000 0.0849 0.3798 0.1409 0.0878 0.4827
Qwen-2.5-14B-Instruct 0.7037 0.0338 0.0000 0.0414 0.3895 0.0631 0.0608 0.3694
Qwen-2.5-32B-Instruct 0.7513 0.0106 0.0000 0.0000 0.4404 0.1474 0.0757 0.3865
Qwen-2.5-Instruct (mean + SD) 0.62+0.12 0.12+0.11 0.00+£0.00 0.12+£0.10 031+0.13 020+0.13 0.04+£0.04 049=£0.11
Qwen-2.5-coder-0.5B-Instruct 0.4471 0.2367 0.0000 0.2663 0.1088 0.4677 0.0000 0.5484
Qwen-2.5-coder-1.5B-Instruct 0.5952 0.1378 0.0000 0.1778 0.2465 0.2954 0.0391 0.5196
Qwen-2.5-coder-3B-Instruct 0.6402 0.0909 0.0000 0.1074 0.3579 0.2304 0.0686 0.4804
Qwen-2.5-coder-7B-Instruct 0.7196 0.0662 0.0294 0.1140 0.4088 0.1803 0.1073 0.4549
Qwen-2.5-coder-14B-Instruct 0.7381 0.0394 0.0143 0.0896 0.4675 0.1463 0.0938 0.3846
Qwen-2.5-coder-32B-Instruct 0.7725 0.0171 0.0000 0.0993 0.4772 0.1857 0.1085 0.3695

Qwen-2.5-Coder-Instruct (mean = SD) ~ 0.65+£0.12 0.10£0.08 0.01 £0.01 0.14+£0.07 034+0.14 0254+0.12 0.07+0.04 0.46=+0.07

Llama-3.1-8B-Instruct 0.5529 0.1340 0.0000 0.0133 0.3079 0.1595 0.0513 0.4444
Llama-3.1-70B-Instruct 0.6984 0.0795 0.0189 0.0000 0.4175 0.0504 0.0399 0.3676
Llama-3.1-Instruct (mean) 0.6257 0.1068 0.0095 0.0067 0.3627 0.1050 0.0456 0.4060
Llama-4-Scout-17B-Instruct (16E) 0.6614 0.0200 0.0040 0.0160 0.4061 0.1058 0.0670 0.3909
Llama-4-Maverick-17B-Instruct (128E) 0.7751 0.0956 0.0375 0.0307 0.4860 0.1354 0.1119 0.3953
Llama-4-Instruct (mean) 0.7183 0.0578 0.0208 0.0234 0.4461 0.1206 0.0894 0.3931
All models (mean + SD) 0.65+0.11 0.10£0.08 0.01 £0.01 0.10£0.09 035+£0.12 020£0.12 0.06+0.04 0.46 £ 0.09

Table 3: Robustness under semantic-preserving mutation and paraphrase versus semantics-different
rewriting. Mutation induces moderate drops; paraphrase is nearly invariant; rewrites are most dis-
ruptive—especially on BIGCODEBENCH—suggesting harmful memorization beyond surface-level
robustness. The final row reports column-wise unweighted mean =+ sample SD across 16 modelsE]

6 CONCLUSION AND FUTURE WORKS

In this paper, we reframed memorization in code generation as (1) exhibit high similarity to the
golden solution of original tasks and (2) lead to performance drops under semantically modified vari-
ants. We measured such memorization with code rewriting—which preserves surface form while
changing task semantics—and the Memorization Risk Index (MRI) that multiplies solution simi-
larity with the relative accuracy drop (RAD) under rewriting. This design isolates harmful memo-
rization from benign reuse. Our experiments on MBPP+ and BIGCODEBENCH show: (i) harmful
memorization generally decreases with model scale on simpler tasks, (ii) persists more on harder
tasks, and (iii) SFT raises accuracy but inflates MRI, while PPO delivers a better risk—accuracy
trade-off. Taken together, these findings clarify when errors stem from harmful memorization rather
than generalization and motivate the following next steps: (a) mitigation approach: further research
is needed for reducing the impact of memorization. (b) evaluation transferability: while our current
evaluation metrics are tailored for code generation, exploring their applicability to other domains,
such as mathematical reasoning, could provide valuable insights.

3Mean is the unweighted arithmetic average computed per column across models; SD is the sample standard
deviation (unbiased, n—1 denominator). Values are rounded to two decimals.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our code rewriting, mutation and paraphrase pipeline is guided by ethical principles to ensure
responsible outcomes.

(1) Data: Our dataset is constructed from MBPP+ and BIGCODEBENCH dataset, which guarantees
ethical fairness. We actively work to eliminate any harmful or offensive content from the code
rewriting, mutation and paraphrase variant datasets to mitigate potential risks.

(2) Responsible Usage and License: The use of the code rewriting, mutation and paraphrase variant
datasets is intended solely for evaluating memorization in LLM code generation tasks. We encour-
age the responsible use of those datasets for educational and scientific purposes, while strongly
discouraging any harmful or malicious activities.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have illustrated the experiment details in the appendix,
such as task generation prompts in[Appendix B] training details in[Appendix J|and evolved-task gen-
eration configurations in For the dataset and code repository, all evolved tasks and the
prompts used during generation will be released publicly upon publication, ensuring reproducibility
and facilitating future research.

REFERENCES

Meta Al Introducing llama 4: Advancing multimodal intelligence, 2024. URL https://ai.meta.
com/blog/llama-4-multimodal-intelligence/.

Ali Al-Kaswan, Maliheh Izadi, and Arie van Deursen. Traces of memorisation in large language
models for code. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE 24, pp. 1-12. ACM, April 2024. doi: 10.1145/3597503.3639133. URL
http://dx.doi.org/10.1145/3597503.3639133,

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet| 2025. Accessed: 2025-09-18.

Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, and Pascal Vincent. The
pitfalls of memorization: When memorization hurts generalization, 2024. URL https://arxiv.
org/abs/2412.07684.

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Eval-
uating and testing unintended memorization in neural networks, 2019. URL https://arxiv.
org/abs/1802.08232.

Junkai Chen, Zhenhao Li, Xing Hu, and Xin Xia. Nlperturbator: Studying the robustness of code
llms to natural language variations, 2024. URL https://arxiv.org/abs/2406.19783,

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Nuo Chen, Qiushi Sun, Jianing Wang, Ming Gao, Xiaoli Li, and Xiang Li. Evaluating and en-
hancing the robustness of code pre-trained models through structure-aware adversarial samples
generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association

11

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
http://dx.doi.org/10.1145/3597503.3639133
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/2412.07684
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2406.19783
https://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2026

for Computational Linguistics: EMNLP 2023, pp. 14857-14873, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023 findings-emnlp.991. URL
https://aclanthology.org/2023.findings-emnlp.991/.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models, 2024.
URL https://arxiv.org/abs/2402.15938.

Sunny Duan, Mikail Khona, Abhiram Iyer, Rylan Schaeffer, and Ila R Fiete. Uncovering latent
memories: Assessing data leakage and memorization patterns in large language models. arXiv
preprint arXiv:2406.14549, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and Robert
West. Sok: Memorization in general-purpose large language models, 2023. URL https://
arxiv.org/abs/2310.18362.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.
org/abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Aly M Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin
Choi, Sherif Saad, and Santu Rana. Alpaca against vicuna: Using llms to uncover memorization
of llms. arXiv preprint arXiv:2403.04801, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022. URL |https://arxiv.org/abs/2211.11501.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092—-1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abql158. URL |http://dx.doi.org/10.1126/science.abql158.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Xingyu Lu, Xiaonan Li, Qinyuan Cheng, Kai Ding, Xuanjing Huang, and Xipeng Qiu. Scaling laws
for fact memorization of large language models, 2024. URL https://arxiv.org/abs/2406.
15720,

Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino,
Rocco Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An em-
pirical study on github copilot, 2023. URL https://arxiv.org/abs/2302.00438.

12

https://aclanthology.org/2023.findings-emnlp.991/
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2310.18362
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2211.11501
http://dx.doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2406.15720
https://arxiv.org/abs/2302.00438

Under review as a conference paper at ICLR 2026

OpenAl. Gpt-5. https://openai.com, 2025. Large Language Model.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6n Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Aneesh Pappu, Billy Porter, Ilia Shumailov, and Jamie Hayes. Measuring memorization in rlhf for
code completion, 2024. URL https://arxiv.org/abs/2406.11715.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

13

https://openai.com
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.11715

Under review as a conference paper at ICLR 2026

Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
eration capabilities of language models, 2024. URL https://arxiv.org/abs/2403.04811.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Sourcegraph. Sourcegraph cody. https://sourcegraph.com/cody, 2024. Accessed: 2024-05-06.

Robin Staab, Mark Vero, Mislav Balunovié, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv preprint arXiv:2310.07298, 2023.

Tabnine. Tabnine. https://www. tabnine.com, 2024. Accessed: 2024-05-06.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shiqi Wang, Li Zheng, Haifeng Qian, Chenghao Yang, Zijian Wang, Varun Kumar, Mingyue Shang,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. 2022.
doi: 10.48550/arXiv.2212.10264. URL https://arxiv.org/abs/2212.10264.

Zhepeng Wang, Runxue Bao, Yawen Wu, Jackson Taylor, Cao Xiao, Feng Zheng, Weiwen Jiang,
Shanggian Gao, and Yanfu Zhang. Unlocking memorization in large language models with dy-
namic soft prompting, 2024. URL |https://arxiv.org/abs/2409.13853.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2024.
URL https://arxiv.org/abs/2410.23123.

Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun Han, and David Lo.
Unveiling memorization in code models. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE 24, pp. 1-13. ACM, April 2024. doi: 10.1145/
3597503.3639074. URL http://dx.doi.org/10.1145/3597503.3639074.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Riihle, Andrew Paverd, Olga
Ohrimenko, Boris Kopf, and Marc Brockschmidt. Analyzing information leakage of updates to
natural language models. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pp. 363375, 2020.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

14

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2403.04811
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1707.06347
https://sourcegraph.com/cody
https://www.tabnine.com
https://arxiv.org/abs/2212.10264
https://arxiv.org/abs/2409.13853
https://arxiv.org/abs/2410.23123
http://dx.doi.org/10.1145/3597503.3639074

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of a large language model (OpenAI’s GPT-5) during the preparation of this
work. Specifically:

* Task Generation: GPT-5 was employed to assist in generating tasks for code rewriting,
mutation, and paraphrase. The role of the LLM in this context was restricted to providing
task generation; all methodological design, filtering, and integration into our pipeline were
carried out by the authors.

* Writing Assistance: GPT-5 was additionally used as a language aid for correcting gram-
mar and improving clarity in the writing of the manuscript. The substantive content, re-
search ideas, technical contributions, and overall narrative were conceived and written by
the authors without reliance on the LLM.

Beyond these two use cases, no part of the research design, analysis, or interpretation depended on
LLM assistance.

B PROMPTS FOR TASK GENERATION

We provide the full instruction prompts used to generate each evolution variant (mutation, para-
phrasing, and code-rewriting) with GPT-5. For each evolution type, the system and user messages
are shown as passed to the API.

B.1 CODE-REWRITING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

\ J

Code-Rewriting Evolution User Prompt

User:

Given a coding task description (#The Given Prompt#) and its canonical solution (#Code#),
perform the following steps:

1. Modify the canonical solution to create #New Code# by altering only x*xONE*xx*x core
logic or structure. Do not add additional 'if statements' to the code. Avoid
superficial changes like variable renaming. Ensure the modified code has different

semantics in a way that *xxexpected difficulty equivalent to the original problem*xx.
Write a #New Entry Point# to the updated code. This function name must be very
similar or the same as the old entry point, and reflect the modified code's logic
changes if using #01ld Entry Point# could mislead the programmer on the
#Rewritten Prompt#.
2. Update #The Given Prompt# to create #Rewritten Prompt#. The new prompt must:”
- Match the original's ***input signaturex** exactly, but the output
format could be different a little bit.
- Reflect the modified code's logic changes explicitly.
Retain the original phrasing structure and ***avoid unnecessary rephrasingx**
in a way that the #Rewritten Prompt# syntactically very similar
to the #The Given Prompt#.

3. If any mismatch arises between new code and new prompt, revise either one
(without adding more changes) so all constraints in Steps 1-2 are simultaneously
satisfied.

Format your response exactly as:

,
\

Under review as a conference paper at ICLR 2026

New Code:
[code]

Explanation:
[logic changes]

Rewritten Prompt:
[updated description]

0ld Entry Point:
[original function name]

New Entry Point:
[updated function name]

B.2 CODE-REWRITING EVOLUTION LLM JUDGE

System Prompt

System: You are an expert code reviewer. Your task is to evaluate whether an evolved coding task maintains
appropriate quality standards in terms of prompt-code alignment and difficulty equivalence.

Code-Rewriting Evolution LLM Judging Prompt

User: Please evaluate the quality of this evolved coding task by analyzing two key aspects:

0riginal Task:

Prompt: {original_prompt}
Code: {original_code}
*xEvolved Task:=**

Prompt: {rewritten_prompt?}
Code: {rewritten_code}

xEvaluation Criteria:x=
1. **Prompt-Code Alignment*x: Does the new prompt accurately describe what the new code
does?
- Are the input/output specifications consistent?
- Does the prompt clearly communicate the expected behavior?
- Are there any ambiguities or mismatches?

2. *xDifficulty Equivalence*x: Is the evolved task of similar difficulty to the original?
- Does it require similar algorithmic thinking?
- Is the complexity level maintained (not significantly easier or harder)?
- Does it test similar programming concepts and skills?

**Response Format:xx
Provide your evaluation in the following format:

Alignment Score: [1-5, where 5 = perfect alignment, 1 = major misalignment]
Alignment Reasoning: [Brief explanation of why the prompt and code align or don't align]

Difficulty Score: [1-5, where 5 = equivalent difficulty, 3 = acceptable variation, 1 =
significantly different]
Difficulty Reasoning: [Brief explanation of difficulty comparison]

Overall Recommendation: [ACCEPT/REJECT]
Overall Reasoning: [Brief summary of your decision]
Please be thorough but concise in your evaluation.

\ J

16

Under review as a conference paper at ICLR 2026

B.3 MUTATION EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

J

Mutation Evolution User Prompt

User: Given a coding task description ”The Given Prompt” and its canonical solution ”Code”, perform the
following steps:

¢ X word-scrambling operations
* Y random-capitalization operations
¢ Z character-noising operations

Definitions (one “operation” = one change):

e **Word scrambling**: choose a single word (alphabetic token) and randomly shuffle its internal
letters.

¢ **Random capitalization**: flip the case of one letter (upper to lower or lower to upper) anywhere
in the text.

 Character noising: insert, delete, **or** substitute one character (letter, digit, or punctua-
tion).
Please gives your answers to "Mutation Prompt” without any additional text or explanation.

Response: Format your response as:

Mutation Prompt:
[Updated task description]

NOTE: The values X, Y, and Z — representing the number of word-scrambling, random-capitalization, and
character-noising operations respectively — are automatically computed based on the length of the original
prompt. Specifically, we apply a total of ~ 4 noise operations per 5 words. We first ensure at least one
operation of each type is included (i.e., X, Y, Z > 1), then randomly distribute the remaining operations
among the three types. This strategy ensures a consistent noise budget proportional to the prompt’s length
while maintaining diversity in corruption types.

\

B.4 PARAPHRASING EVOLUTION

System Prompt

System: You are an experienced python programmer. Your goal is to transforms a given ’coding task
prompt’ into a new version. Follow the instructions carefully to transform the prompt.

Paraphrasing Evolution User Prompt

User: Given a coding-task description "The Given Prompt”, produce a paraphrased version called ”Para-
phrased Prompt”.

Guidelines:

1. Keep the task’s meaning, requirements, and input/output specifications identical.

2. Refresh the wording: use synonyms, change sentence order, or rephrase clauses to add light lin-
guistic “noise,” but do **not** drop or add information.

3. Preserve any code-related tokens (e.g., variable names, file names, I/O examples) exactly as they
appear unless the original prompt explicitly marks them as placeholders.

4. Retain the original structural cues—for example, if the prompt begins with *Write a Python func-

tion. .. , your rewrite should also begin with that instruction, albeit rephrased

Please gives your answers to “Paraphrased Prompt” without any additional text or explanation.
Response: Format your response as:

\ J

17

Under review as a conference paper at ICLR 2026

Paraphrased Prompt:
[Updated task description]

B.5 CODE REWRITING SOLUTION VALIDATION

Additionally, we ensured the validity of test cases for all rewritten tasks across both datasets, and
validate each rewritten solution by making it pass its corresponding rewritten unit test. For MBPP+,
we reuse the official test case inputs and generate the expected outputs using the rewritten ground-
truth solutions, ensuring direct comparability. For BigCodeBench, we adopt the procedure outlined
in[Zhuo et al.| (2024), constructing test cases for each rewritten task based on their guidelines to guar-
antee consistency and correctness. We installed all packages required by both dataset for assessing
function correctness.

C EXAMPLES OF CLEARER PARAPHRASED PROMPTS

Mbpp/604

Original Prompt: Write a function to reverse words separated by spaces in a given string.
Paraphrased Prompt: Create a function that takes a string as input and returns the string
with all words, which are divided by spaces, reversed in order.

Mbpp/752

Original Prompt: Write a function to find the nth jacobsthal number.
https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ 0, 1, 1, 3, 5,
11,21, 43,85, 171, 341, 683, 1365, 2731, ...

Paraphrased Prompt: Create a function that computes the nth Jacobsthal number. Refer
to https://www.geeksforgeeks.org/jacobsthal-and-jacobsthal-lucas-numbers/ for more infor-
mation. The sequence begins as follows: 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365,
2731, ...

Mbpp/753

Original Prompt: Write a function to find minimum k records from tuple list.
https://www.geeksforgeeks.org/python-find-minimum-k-records-from-tuple-list/ - in this
case a verbatim copy of test cases.

Paraphrased Prompt: Create a function that retrieves the smallest k elements from a list
of tuples. Refer to https://www.geeksforgeeks.org/python-find-minimum-k-records-from-
tuple-list/ and use the provided test cases exactly as they are.

D STABILITY OF RAD AND MRI UNDER LOW BASELINE ACCURACY

The Relative Accuracy Drop (RAD) measures the fractional decrease in Pass@1 between the orig-
inal and rewritten task sets. Although this captures the intended notion of rewriting-sensitivity, it
becomes unstable when the baseline accuracy Acc(7oi) is extremely low: even a small absolute
change can inflate the relative ratio and consequently MRI (defined as the product of similarity and
RAD).

To ensure that RAD and MRI reflect meaningful performance changes rather than numerical insta-
bility, we compute these metrics only when two conditions hold.

(1) Sufficient number of correctly solved original tasks. For a benchmark with N tasks and
baseline accuracy p = Acc(7Tori), the model solves k = Np tasks. We require

k> M = 50,

18

Under review as a conference paper at ICLR 2026

which keeps the variance of the empirical Pass@1 sufficiently small under a binomial model. For
instance, MBPP+ (N = 378) requires p >= 13.2%, resulting in a 95% confidence interval of
roughly +3-4 percentage points; BigCodeBench (N = 1,140) requires p >= 4.4% with an even
tighter interval. These uncertainties are far smaller than the 5-20 point drops typically observed in
our memorization analyses.

(2) A minimum competence threshold on baseline accuracy. We additionally require
Acc(Tor) > 10%,

which prevents the denominator in RAD from becoming so small that modest absolute changes (e.g.,
a 5-point drop) produce disproportionally large relative decreases (e.g., > 50%).

Application of the threshold. When either condition is violated, we still report Acc(75,;) and
Acc(Trew) for transparency, but we mark RAD and MRI as “N/A (below competence threshold)”
and exclude them from cross-model comparisons. All analyses and figures in the main paper adhere
to this stability rule.

These criteria ensure that large RAD values reflect genuine difficulty introduced by semantic rewrit-
ing rather than artifacts of low baseline accuracy, and that MRI remains a reliable indicator of harm-
ful memorization behaviour.

E INSTANCE-LEVEL MRI (IMRI)

Definition. Our corpus-level MRI is defined as the product of the mean similarity between original
and rewritten solutions and the overall accuracy drop under rewriting. This aggregate view is conve-
nient for comparison across models and datasets, but it is natural to ask whether similar conclusions
hold when similarity and failures are combined at the level of individual instances. To this end, we
define an instance-level variant, iMRI, as

1

iMRI =
| 7;)assed ‘

(Simk -Dropk), (10)
k€ Tpassed

where Tpassed 1S the set of tasks that the model solves correctly on the original benchmark, Simy, is the
similarity between the original and rewritten solution for example &, and Drop,, € {0, 1} indicates
whether the model fails on the rewritten task (Drop, = 1 if the rewrite fails, and 0 otherwise).
Conditioning on 7passeq reflects our focus on harmful memorization as regression: a failure on the
rewrite is only meaningful when the original task was solved correctly in the first place.

Alignment between MRI and iMRI. Table [reports Pearson correlations between corpus-level
MRI and instance-level iMRI across model sizes for Qwen-2.5 Instruct and Coder series on MBPP+
and BIGCODEBENCH. All correlations are very high (> 0.92), indicating that the two metrics
induce essentially the same ordering over models:

* For the Qwen-2.5 Instruct series, the MRI-iIMRI correlation is 0.9816 on MBPP+ and 0.9459 on
BIGCODEBENCH.

e For the Qwen-2.5 Coder series, the correlation is 0.9211 on MBPP+ and 0.9731 on BIG-
CODEBENCH.

Series MBPP+ BIGCODEBENCH
Qwen-2.5 Instruct ~ 0.9816 0.9459
Qwen-2.5 Coder 0.9211 0.9731

Table 4: Pearson correlation between corpus-level MRI and instance-level iMRI across model sizes
for Qwen-2.5 Instruct and Coder series.

Scaling trends under iMRI. Tables [5] and [6] list MRI and iMRI side by side for all Qwen-2.5
Instruct and Coder models on MBPP+ and BIGCODEBENCH. Several observations reflect the main-
text trends:

19

Under review as a conference paper at ICLR 2026

e On MBPP+ (Table E[), both MRI and iMRI decrease with scale in the Instruct and Coder series.
iMRI values are numerically larger than MRI (as expected, since they average similarity over
solved tasks only), but the relative ranking of models is preserved and the overall trend of reduced
harmful memorization for larger models remains.

* On BIGCODEBENCH (Table [)), iMRI again tracks MRI closely: both metrics decline from small
to medium scales and then plateau or mildly increase for the largest models, reflecting the same
behavior discussed in the main text.

Taken together with the correlations in Table] these results indicate that corpus-level MRI is a
stable summary of harmful memorization: instance-level aggregation yields qualitatively identical
conclusions about scaling trends of Instruct vs. Coder models.

Model iMRI MRI
Qwen-2.5-0.5B-Instruct 0.1494 0.0722
Qwen-2.5-1.5B-Instruct 0.1078 0.0600
Qwen-2.5-3B-Instruct 0.0490 0.0185
Qwen-2.5-7B-Instruct 0.0650 0.0240
Qwen-2.5-14B-Instruct 0.0500 0.0113
Qwen-2.5-32B-Instruct 0.0325 0.0000

Qwen-2.5-coder-0.5B-Instruct 0.1107 0.0615
Qwen-2.5-coder-1.5B-Instruct 0.0870 0.0500
Qwen-2.5-coder-3B-Instruct 0.0828 0.0328
Qwen-2.5-coder-7B-Instruct 0.0771 0.0373
Qwen-2.5-coder-14B-Instruct ~ 0.0722 0.0313
Qwen-2.5-coder-32B-Instruct ~ 0.0730 0.0354

Table 5: Instance-level iMRI vs. corpus-level MRI for Qwen-2.5 Instruct and Coder series on
MBPP+.

Model iMRI MRI
Qwen-2.5-0.5B-Instruct N/A N/A
Qwen-2.5-1.5B-Instruct 0.1870 0.1444
Qwen-2.5-3B-Instruct 0.1836 0.1403
Qwen-2.5-7B-Instruct 0.1727 0.1296
Qwen-2.5-14B-Instruct 0.1275 0.0841
Qwen-2.5-32B-Instruct 0.1538 0.1143

Qwen-2.5-coder-0.5B-Instruct 0.2609 0.1778
Qwen-2.5-coder-1.5B-Instruct 0.2379 0.1630
Qwen-2.5-coder-3B-Instruct 0.2108 0.1630
Qwen-2.5-coder-7B-Instruct 0.1959 0.1477
Qwen-2.5-coder-14B-Instruct ~ 0.1619 0.1237
Qwen-2.5-coder-32B-Instruct ~ 0.1510 0.1178

Table 6: Instance-level iMRI vs. corpus-level MRI for Qwen-2.5 Instruct and Coder series on BIG-
CODEBENCH.

F ABLATION STUDIES FOR SIMILARITY

F.1 SETUP AND EVALUATION PROTOCOL

In this section we study how sensitive the Memorization Risk Index (MRI) is to implementation
choices in its similarity component .S;. Unless otherwise stated, we use the same models and datasets
as in the main experiments: all Qwen-2.5 Instruct and Coder variants evaluated on MBPP+ and
BIGCODEBENCH.

For each model and benchmark, we compute MRI under our default definition (section 3.1.1) and
under alternative variants that modify:

¢ the parser and grammar used to obtain AST trees,

20

Under review as a conference paper at ICLR 2026

¢ the weighting between AST-based and edit-based similarity,
¢ and the similarity function itself (token-overlap and embedding-based metrics).

F.2 PARSER AND GRAMMAR
We performed a comprehensive robustness check over three definitions of similarity:

* All-nodes AST We replaced our standard “significant node” parsing with an All-nodes
AST grammar. This treats every syntactic element (including non-functional nodes) as
significant, testing robustness to parser strictness.

e Raw Edit Similarity: We removed the ast.unparse normalization step and computed edit
similarity on raw code strings. This tests robustness to formatting and minor textual arti-
facts.

* Combined: We applied both All-nodes AST and Raw Edit similarity simultaneously.

As shown in[Table 7]and [Table 8] while stricter parsing (All-nodes) naturally yields higher raw sim-
ilarity scores and shifts the absolute MRI values, the relative ranking of models and trends remain
statistically invariant. We calculated the Pearson correlation () between the original MRI and the
”Combined” variant (the most divergent definition). The correlation is consistently » > 0.92 on
BigCodeBench for both Instruct and Coder model families, while on MBPP+ correlation is consis-
tently » > 0.99 This confirms that MRI is not an artifact of the parser choice. The metric is robust
to parsers/grammers.

MRI .. MRI. . . MRI .M.RI

Model (original) (original edit sim (onglngl AST (edit sim raw

& AST all nodes) & edit simraw) & AST all nodes)
Qwen-2.5 0.5B-Instruct 0.0722 0.0948 0.0561 0.0787
Qwen-2.5-1.5B-Instruct 0.0600 0.0783 0.0455 0.0639
Qwen-2.5-3B-Instruct 0.0185 0.0289 0.0153 0.0256
Qwen-2.5-7B-Instruct 0.0240 0.0321 0.0173 0.0254
Qwen-2.5-14B-Instruct 0.0113 0.0151 0.0082 0.0120
Qwen-2.5-32B-Instruct 0.0000 0.0000 0.0000 0.0000
Qwen-2.5-coder-0.5B-Instruct 0.0615 0.0864 0.0453 0.0702
Qwen-2.5-coder-1.5B-Instruct 0.0500 0.0660 0.0377 0.0537
Qwen-2.5-coder-3B-Instruct 0.0328 0.0426 0.0232 0.0330
Qwen-2.5-coder-7B-Instruct 0.0373 0.0478 0.0257 0.0362
Qwen-2.5-coder-14B-Instruct 0.0313 0.0394 0.0223 0.0304
Qwen-2.5-coder-32B-Instruct 0.0354 0.0444 0.0249 0.0338

Table 7: MRI robustness to parser/grammar variants on MBPP+.

F.3 WEIGHTING BETWEEN AST-BASED AND EDIT-BASED SIMILARITY

We use the edit/AST weights from “AST only” to “edit only” on both MBPP+ and BigCodeBench
for Qwen 2.5 Instruct and its coder models (Table 10[and [Table 11]). Across all these settings, the
MRI computed under our original 50/50 weighting has extremely high Pearson correlation with MRI
computed under alternative weightings (Table 9). This indicates that reweighting would essentially
rescale MRI rather than alter model rankings or our main findings.

F.4 SIMILARITY FUNCTIONS (TOKEN-OVERLAP AND EMBEDDING-BASED METRICS

We added ablation evaluations across alternative similarity families, including 1-3-gram overlap,
Jaccard, MinHash, and cosine code-embedding similarity on both BigCodeBench and
MBPP+ (Table T3). We found that MRI is stable across similarity families. Jaccard, MinHash, and
1-3-grams produce MRI values that closely track our original MRI, and even cosine-embedding
similarity (deviates most in scale) preserves the relative trend of models (Table 12).

21

Under review as a conference paper at ICLR 2026

MRI .. MRI . . MRI .M.RI

Model (original) (original edit sim (orlgmz.ll AST (edit sim raw

& AST all nodes) & edit simraw) & AST all nodes)
Qwen-2.5 0.5B-Instruct 0.1740 0.2828 0.1652 0.2739
Qwen-2.5-1.5B-Instruct 0.1444 0.2407 0.1570 0.2532
Qwen-2.5-3B-Instruct 0.1403 0.2219 0.1292 0.2108
Qwen-2.5-7B-Instruct 0.1296 0.2181 0.1480 0.2364
Qwen-2.5-14B-Instruct 0.0841 0.1519 0.0968 0.1646
Qwen-2.5-32B-Instruct 0.1143 0.1790 0.1047 0.1694
Qwen-2.5-coder-0.5B-Instruct 0.1778 0.2499 0.1410 0.2131
Qwen-2.5-coder-1.5B-Instruct 0.1630 0.2388 0.1254 0.2013
Qwen-2.5-coder-3B-Instruct 0.1630 0.2352 0.1323 0.2045
Qwen-2.5-coder-7B-Instruct 0.1477 0.2156 0.1187 0.1866
Qwen-2.5-coder-14B-Instruct 0.1237 0.1833 0.0894 0.1490
Qwen-2.5-coder-32B-Instruct 0.1178 0.1802 0.0992 0.1616

Table 8: MRI robustness to parser/grammar variants on BigCodeBench.

Avg. Pearson Corr. Avg. Pearson Corr.

Model Series on MBPP+ on BigCodeBench
Qwen-2.5 series 0.9997 4+ 0.0004 0.9921 4+ 0.0144
Coder series 0.9974 4+ 0.0042 0.9780 + 0.0367

Table 9: Average Pearson correlation for AST/edit weightings.
F.5 CONCLUSIONS

These results demonstrate that our main findings are not only suitable for the particular 5:5 AST+edit
design. MRI behaves consistently across semantic metrics (AST) and surface-form metrics (edit, n-
gram, Jaccard, MinHash and cosine code-embedding).

Model MRI MRI MRI) MRI] MRI . MRI .MRI
(orig 5:5) (editonly) (ASTonly) (edit:ast=2:8) (edit:ast=4:6) (edit:ast=6:4) (edit:ast=8:2)
Qwen-2.5 0.5B-Instruct 0.0722 0.1025 0.0420 0.0541 0.0662 0.0783 0.0904
Qwen-2.5-1.5B-Instruct 0.0600 0.0832 0.0368 0.0461 0.0554 0.0647 0.0739
Qwen-2.5-3B-Instruct 0.0185 0.0249 0.0122 0.0147 0.0172 0.0198 0.0223
Qwen-2.5-7B-Instruct 0.0240 0.0342 0.0139 0.0179 0.0220 0.0260 0.0301
Qwen-2.5-14B-Instruct 0.0113 0.0161 0.0065 0.0084 0.0103 0.0122 0.0142
Qwen-2.5-32B-Instruct 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen-2.5-coder-0.5B-Instruct 0.0615 0.0905 0.0325 0.0441 0.0557 0.0673 0.0789
Qwen-2.5-coder-1.5B-Instruct 0.0500 0.0713 0.0286 0.0372 0.0457 0.0542 0.0627
Qwen-2.5-coder-3B-Instruct 0.0328 0.0472 0.0184 0.0242 0.0300 0.0357 0.0415
Qwen-2.5-coder-7B-Instruct 0.0373 0.0526 0.0219 0.0281 0.0342 0.0403 0.0465
Qwen-2.5-coder-14B-Instruct 0.0313 0.0433 0.0193 0.0241 0.0289 0.0337 0.0385
Qwen-2.5-coder-32B-Instruct 0.0354 0.0490 0.0218 0.0272 0.0327 0.0381 0.0436

Table 10: Ablation study for different AST/edit weightings on MBPP+.

22

Under review as a conference paper at ICLR 2026

Model MRI MRI MRI MRI MRI MRI MRI
ode (orig 5:5) (editsim) (ASTsim) (edit:ast=2:8) (edit:ast=4:6) (edit:ast=6:4) (edit:ast=8:2)
Qwen-2.5 0.5B-Instruct 0.1740 0.2745 0.0736 0.1138 0.1540 0.1941 0.2343
Qwen-2.5-1.5B-Instruct 0.1444 0.2166 0.0722 0.1011 0.1300 0.1589 0.1878
Qwen-2.5-3B-Instruct 0.1403 0.2158 0.0649 0.0951 0.1252 0.1554 0.1856
Qwen-2.5-7B-Instruct 0.1296 0.1958 0.0635 0.0899 0.1164 0.1429 0.1693
Qwen-2.5-14B-Instruct 0.0841 0.1227 0.0455 0.0609 0.0764 0.0918 0.1073
Qwen-2.5-32B-Instruct 0.1143 0.1711 0.0576 0.0803 0.1030 0.1257 0.1484
Qwen-2.5-coder-0.5B-Instruct 0.1778 0.2802 0.0753 0.1163 0.1573 0.1982 0.2392
Qwen-2.5-coder-1.5B-Instruct 0.1630 0.2487 0.0772 0.1115 0.1458 0.1801 0.2144
Qwen-2.5-coder-3B-Instruct 0.1630 0.2463 0.0796 0.1130 0.1463 0.1797 0.2130
Qwen-2.5-coder-7B-Instruct 0.1477 0.2192 0.0762 0.1048 0.1334 0.1620 0.1906
Qwen-2.5-coder-14B-Instruct 0.1237 0.1881 0.0593 0.0850 0.1108 0.1366 0.1623
Qwen-2.5-coder-32B-Instruct 0.1178 0.1804 0.0552 0.0803 0.1053 0.1303 0.1554
Table 11: Ablation study for different AST/edit weightings on BigCodeBench.
. Avg. Pearson Corr. Avg. Pearson Corr.
Model Series on MBPP+ on BigCodeBench
Qwen-2.5 series 0.9966 4+ 0.0029 0.9671 + 0.0163
Coder series 0.9752 4+ 0.0420 0.9921 +0.0144
Table 12: Average Pearson correlation across similarity families.
Model MRI MRI MRI MRI MRI MRI
1-gram 2-gram 3-gram Jaccard sim Minhash sim Cosine embed sim
Qwen-2.5 0.5B-Instruct 0.0873 0.0404 0.0206 0.0712 0.0694 0.2126
Qwen-2.5-1.5B-Instruct 0.0704 0.0337 0.0177 0.0568 0.0552 0.1682
Qwen-2.5-3B-Instruct 0.0265 0.0123 0.0064 0.0224 0.0221 0.0800
Qwen-2.5-7B-Instruct 0.0282 0.0132 0.0068 0.0224 0.0219 0.0678
Qwen-2.5-14B-Instruct 0.0135 0.0065 0.0033 0.0107 0.0106 0.0330
Qwen-2.5-32B-Instruct 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen-2.5-coder-0.5B-Instruct ~ 0.0764 0.0339 0.0167 0.0640 0.0612 0.2110
Qwen-2.5-coder-1.5B-Instruct ~ 0.0594 0.0285 0.0151 0.0488 0.0469 0.1424
Qwen-2.5-coder-3B-Instruct 0.0372 0.0181 0.0095 0.0296 0.0286 0.0865
Qwen-2.5-coder-7B-Instruct 0.0408 0.0212 0.0123 0.0321 0.0314 0.0922
Qwen-2.5-coder-14B-Instruct 0.0349 0.0192 0.0117 0.0274 0.0268 0.0730
Qwen-2.5-coder-32B-Instruct 0.0387 0.0219 0.0137 0.0301 0.0297 0.0808
Table 13: Ablation study across similarity families on MBPP+.
Model MRI MRI MRI MRI MRI MRI
1-gram 2-gram 3-gram Jaccard sim Minhash sim Cosine embed sim
Qwen-2.5 0.5B-Instruct 0.3245 0.2302 0.1823 0.2548 0.2586 0.5986
Qwen-2.5-1.5B-Instruct 0.2705 0.1933 0.1521 0.2138 0.2187 0.5245
Qwen-2.5-3B-Instruct 0.2483 0.1827 0.1453 0.1955 0.1987 0.4353
Qwen-2.5-7B-Instruct 0.2401 0.1761 0.1395 0.1902 0.1932 0.4397
Qwen-2.5-14B-Instruct 0.1690 0.1229 0.0970 0.1345 0.1387 0.3316
Qwen-2.5-32B-Instruct 0.2053 0.1533 0.1226 0.1628 0.1650 0.3547
Qwen-2.5-coder-0.5B-Instruct ~ 0.2825 0.2018 0.1597 0.2209 0.2222 0.5056
Qwen-2.5-coder-1.5B-Instruct 0.2813 0.2094 0.1693 0.2234 0.2257 0.4778
Qwen-2.5-coder-3B-Instruct 0.2641 0.1977 0.1583 0.2102 0.2109 0.4444
Qwen-2.5-coder-7B-Instruct 0.2451 0.1838 0.1476 0.1959 0.1979 0.4193
Qwen-2.5-coder-14B-Instruct 0.2099 0.1578 0.1264 0.1668 0.1685 0.3554
Qwen-2.5-coder-32B-Instruct 0.1994 0.1491 0.1188 0.1579 0.1590 0.3410

Table 14: Ablation study across similarity families on BigCodeBench.

23

Under review as a conference paper at ICLR 2026

G ANALYSIS BY LoGIC CHANGE TYPE

Logic change types. To better understand which semantic edits drive memorization, we categorize
each semantics-altering rewrite into one of the following nine logic change types:

* Component Swap: Swapping a function, class, or method while keeping the surrounding struc-
ture fixed (e.g., sum — max, np.std — np.var).

* Data Transformation: Transforming the data before applying the main logic (e.g.,
np.log(data), data.T, data.pct_change(), tokenization or normalization steps).

* Constraint Change: Modifying rules, parameters, or logical conditions (e.g., loop stride in
range(..., 2),bounds in inequalities, regex patterns, or SQL UNIQUE constraints).

* Logic Reversal: Inverting the decision or ranking logic (e.g., max — min,
sorted(...) — sorted(..., reverse=True), swapping the roles of x and y in compar-
isons).

* Operator Change: Swapping a single arithmetic or logical operator (e.g., © — +,== — I=).

* Operation Order Swap: Reordering two or more operations with the same components (e.g.,
applying blur then gray vs. gray then blur).

* Constant Swap: Changing hard-coded constants or literal values (e.g., switching between
lowercase and UPPERCASE, or adjusting thresholds).

» Workflow Modification: Structural changes to the overall pipeline, such as inserting or removing
processing stages (e.g., adding an extra z1ib compression step or altering nested outputs).

* Other: Any semantics-altering edit that does not clearly fall into the above categories.

Coverage across benchmarks. [Table T3|reports the distribution of logic change types across BI1G-
CODEBENCH and MBPP+. On BIGCODEBENCH, the changes are dominated by Component
Swap (34.5%) and Data Transformation (33.8%), followed by Constraint Change (16.2%), with
the remaining types each accounting for less than 5% of all instances. On MBPP+, the distribution
is more balanced: Constraint Change (22.8%), Logic Reversal (18.0%), Data Transformation
(15.3%), Component Swap (13.8%), and Constant/Operator Swap (9-10%) all contribute sub-
stantially. To avoid unstable estimates, all per-type statistics in this appendix exclude logic-change
categories with fewer than 50 samples in a given dataset.

Per-type RAD on MBPP+. ([Table 16|shows accuracy on original tasks Acc(7q), rewritten tasks
Acc(Trew), and the resulting accuracy drop RAD (all for semantics-altering rewrites, i.e., RADyey)
for four Qwen-2.5 variants on MBPP+. Several patterns emerge:

* For both Instruct and Coder families, Constraint Change exhibits the largest RAD at both 0.5B
and 14B, indicating that models are particularly brittle when loop bounds, thresholds, or other
constraints are modified.

» Data Transformation also induces substantial drops (25-35% at 0.5B; 7-14% at 14B), showing
the difficulty of tracking changes to data pre-processing or representation.

* Component Swap has comparatively small RAD and becomes almost benign at 14B, while Logic
Reversal transitions from a sizeable drop at 0.5B to nearly no drop (or even slight improvements)
at 14B.

These results show that, on the simpler MBPP+ benchmark, harmful memorization is not uniform
across edit types: scaling primarily reduces vulnerability to Constraint Change and Data Transfor-
mation, while simple component/logic swaps become much easier for larger models to handle.

Per-type RAD on BigCodeBench. reports the same statistics for BIGCODEBENCH.
Compared to MBPP+, all major logic-change types now induce much larger drops:

* At 0.5B, Constraint Change, Data Transformation, Logic Reversal, and Workflow Modifi-
cation all yield extremely high RAD (often above 70% for Qwen-2.5-0.5B-Instruct), confirming
that models struggle when rewrites modify global data flow or constraints on this more challenging
benchmark.

24

Under review as a conference paper at ICLR 2026

* Scaling to 14B substantially improves Acc(7osi), but RAD remains high for Data Transformation,
Constraint Change, and Workflow Modification, with per-type drops still in the 30-45% range.

Thus, even at larger scales, BIGCODEBENCH exposes persistent brittleness when the rewrite
changes how data are transformed, rather than merely swapping local components.

MRI per logic-change type. and[Table 19]aggregate these drops into MRI values strat-
ified by logic-change type. On MBPP+ (Table 18)), Constraint Change and Data Transforma-
tion consistently exhibit the highest per-type MRI across both Instruct and Coder series, whereas
Component Swap has much smaller MRI and often approaches zero for larger models. On BIG-
CoDEBENCH (Table 19), all five major types (Component Swap, Constraint Change, Data
Transformation, Logic Reversal, Workflow Modification) show substantial and relatively flat
MRI across scales, with Data Transformation, Constraint Change, and Workflow Modification
frequently attaining the highest per-type MRI.

Logic Change Type bigcodebench Count bigcodebench % mbppplus Count mbppplus %
Total 1140 100.00% 378 100.00%
Component Swap 393 34.47% 52 13.76%
Data Transformation 385 33.77% 58 15.34%
Constraint Change 185 16.23% 86 22.75%
Logic Reversal 50 4.39% 68 17.99%
Workflow Modification 50 4.39% 10 2.65%
Constant Swap 37 3.25% 36 9.52%
Operation Order Swap 20 1.75% 12 3.17%
Operator Change 18 1.58% 36 9.52%
Other 2 0.18% 20 5.29%

Table 15: Code Rewriting logic change type statistics for bigcodebench and mbppplus.

qwen-2.5-coder-0.5b-instruct gwen-2.5-coder-14b-instruct
Logic Change Type Total Acc(Tori) (1) Acc(Trew) (D RAD(]) Total Acc(Toi) (1) Acc(Teew) (1) RAD ({)
Component Swap 52 48.1% 44.2% 8.0% 52 75.0% 71.2% 5.1%
Constraint Change 86 46.5% 30.2% 35.0% 86 73.3% 54.7% 25.4%
Data Transformation 58 55.2% 41.4% 25.0% 58 72.4% 62.1% 14.3%
Logic Reversal 68 42.6% 35.3% 17.2% 68 72.1% 76.5% 0.0%
MRI (all nine types) - - - 0.0615 - - - 0.0313
qwen-2.5-0.5b-instruct qwen-2.5-14b-instruct
Component Swap 52 44.2% 40.4% 8.7% 52 75.0% 71.2% 5.1%
Constraint Change 86 39.5% 24.4% 38.2% 86 64.0% 48.8% 23.6%
Data Transformation 58 50.0% 32.8% 34.5% 58 70.7% 65.5% 7.3%
Logic Reversal 68 39.7% 26.5% 33.3% 68 72.1% 80.9% 0.0%
MRI (all nine types) - - - 0.0722 - - - 0.0113

Table 16: Comparison of logic change type performance between four Qwen-2.5 variants on MBPP+.
We omit logic change types with fewer than 50 samples to avoid statistical bias. RAD highlighted
in red denotes the highest drop.

25

Under review as a conference paper at ICLR 2026

qwen-2.5-coder-0.5b-instruct gwen-2.5-coder-14b-instruct
Logic Change Type Total Acc(Tori) (1) Acc(Trew) (1) RAD (]) Total Acc(7oi) (1) Acc(Trew) (1) RAD ({)
Component Swap 393 13.5% 6.4% 52.8% 393 46.8% 29.3% 37.5%
Constraint Change 185 8.6% 49% 43.8% 185 50.8% 33.5% 34.0%
Data Transformation 385 10.6% 34% 683% 385 46.8% 26.8% 42.8%
Logic Reversal 50 8.0% 6.0% 25.0% 50 46.0% 34.0% 26.1%
Workflow Modification 50 10.0% 6.0% 40.0% 50 42.0% 24.0% 42.9%
MRI (all nine types) - - - 0.1778 - - - 0.1237
qwen-2.5-0.5b-instruct qwen-2.5-14b-instruct
Logic Change Type Total Acc(Tor) (1) Acc(Trew) (1) RAD ({) Total Acc(7oi) (1) Acc(Trew) (1) RAD ()
Component Swap 393 12.0% 4.8% 59.6% 393 38.2% 26.7% 30.0%
Constraint Change 185 11.9% 279% 77.3% 185 40.5% 27.0% 33.3%
Data Transformation 385 8.3% 21% 75.0% 385 39.7% 21.8% 45.1%
Logic Reversal 50 8.0% 20% 75.0% 50 44.0% 28.0% 36.4%
Workflow Modification 50 8.0% 2.0% 75.0% 50 30.0% 18.0% 40.0%
MRI (all nine types) - - - 0.1740 - - - 0.0841

Table 17: Comparison of logic change type performance between four Qwen-2.5 variants on
BigCodeBench. We omit logic change types with fewer than 50 samples to avoid statistical bias.
RAD highlighted in red denotes the highest drop.

MRI (per logic change type) MRI (all nine types)
Model Component Swap Constraint Change Data Transformation ~ Logic Reversal All
Qwen-2.5-0.5B-Instruct 0.0212 0.0929 0.0877 0.1119 0.0722
Qwen-2.5-1.5B-Instruct 0.0644 0.0584 0.0592 0.0553 0.0600
Qwen-2.5-3B-Instruct 0.0149 0.0380 0.0224 0.0000 0.0185
Qwen-2.5-7B-Instruct 0.0154 0.0543 0.0284 0.0072 0.0240
Qwen-2.5-14B-Instruct 0.0139 0.0573 0.0172 0.0000 0.0113
Qwen-2.5-32B-Instruct 0.0000 0.0000 0.0000 0.0073 0.0000
Mean + Std 0.02 £ 0.02 0.05 +0.03 0.04 £0.03 0.03 £ 0.05 —
Qwen-2.5-coder-0.5B-Instruct 0.0195 0.0738 0.0480 0.0483 0.0615
Qwen-2.5-coder-1.5B-Instruct 0.0451 0.0465 0.0752 0.0284 0.0500
Qwen-2.5-coder-3B-Instruct 0.0000 0.0380 0.0406 0.0079 0.0328
Qwen-2.5-coder-7B-Instruct 0.0000 0.0382 0.0622 0.0189 0.0373
Qwen-2.5-coder-14B-Instruct 0.0189 0.0828 0.0372 0.0000 0.0313
Qwen-2.5-coder-32B-Instruct 0.0000 0.0786 0.0433 0.0356 0.0354
Mean + Std 0.01 £0.02 0.06 + 0.02 0.05 +£0.01 0.02 £ 0.02 —

Table 18: MRI across logic change types for Qwen-2.5 Instruct and Coder variants on MBPP+. MRI
highlighted in red denotes the highest MRI.

MRI (per logic change type) MRI (all types)
Model Component Swap Constraint Change Data Transformation =~ Logic Reversal =~ Workflow Modification All
Qwen-2.5-0.5B-Instruct 0.1635 0.1968 0.1951 0.2144 0.1900 0.1740
Qwen-2.5-1.5B-Instruct 0.1316 0.1551 0.1539 0.1698 0.0749 0.1444
Qwen-2.5-3B-Instruct 0.1334 0.1442 0.1399 0.1698 0.1558 0.1403
Qwen-2.5-7B-Instruct 0.1178 0.1355 0.1368 0.2118 0.1035 0.1296
Qwen-2.5-14B-Instruct 0.0685 0.0775 0.0998 0.0932 0.0850 0.0841
Qwen-2.5-32B-Instruct 0.0960 0.1130 0.1217 0.1268 0.1335 0.1143
Mean + Std 0.12 +0.03 0.14 + 0.04 0.14 + 0.03 0.16 + 0.05 0.12 + 0.04 —
Qwen-2.5-coder-0.5B-Instruct 0.1628 0.1302 0.2060 0.0787 0.1203 0.1778
Qwen-2.5-coder-1.5B-Instruct 0.1302 0.2207 0.1650 0.2135 0.1742 0.1630
Qwen-2.5-coder-3B-Instruct 0.1385 0.1813 0.1848 0.2111 0.0841 0.1630
Qwen-2.5-coder-7B-Instruct 0.1321 0.1440 0.1581 0.1947 0.1590 0.1477
Qwen-2.5-coder-14B-Instruct 0.1192 0.1110 0.1336 0.0956 0.1353 0.1237
Qwen-2.5-coder-32B-Instruct 0.1029 0.1242 0.1276 0.1191 0.1279 0.1178
Mean + Std 0.13 +0.02 0.15 + 0.04 0.16 + 0.03 0.15 + 0.06 0.13 +0.03 —

Table 19: MRI across logic change types for Qwen-2.5 Instruct and coder variants on Big-
CodeBench. MRI highlighted in red denotes the highest MRI.

26

Under review as a conference paper at ICLR 2026

H EXAMPLES OF REGRESSED TASKS

We randomly selected 5 tasks from each of MBPP+ and BigCodeBench that PASSED in original
but FAILED in code_rewriting from the evaluation results in Qwen2.5-Coder-32B-Instruct. For each

task, we provide

* Original task prompt and its canonical solution

* Code_rewriting task prompt and the rewritten canonical solution

* Alignment and Difficulty analysis from GPT-5 to investigate (1) if the rewritten prompt
aligns with its rewritten solution; (2) whether the difficulty of rewritten task align with its

original version.

The following case studies confirms that such performance regression is not caused by the higher

difficulty on rewritten tasks.
LN

MBPP+, original, TASK 99

Write a function to convert the given
decimal number to its binary equivalent,
represented as a string with no leading
zeros.

assert decimal_to_binary(8) == '1000'

wnn

def decimal_to_binary(n):
return bin(n).replace("0b","")

MBPP+, code_rewriting, TASK 99

Write a function to convert the given
decimal number to its binary equivalent,
represented as a string in reverse bit
order (least significant bit first).
assert decimal_to_binary_rev(8) == '0001'

wun

def decimal_to_binary_rev(n):
return bin(n)[2:]1[::-1]

Alignment & Difficulty Analysis from GPT-5

nment: The prompt matches th 0 1avio
1 doe ly t n /output typ
. Minor

Figure 4: Example of Task-99 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code_rewriting.

27

Under review as a conference paper at ICLR 2026

MBPP+, orig , TASK 224 MBPP+, code_rewriting, TASK 224

wnn T

Write a python function to count the numt Write a python function to count the number
of set bits (binary digits with value 1) in of unset bits (binary digits with value 0)
a given number.

assert count_Set Bits(2) == 1

wnn

in a given number's binary representation
(without leading zeros).
assert count_Unset Bits(2)

def count_Set_Bits(n):

return bin(n)[2:].count('1") def count_Unset Bits(n):

return bin(n)[2:].count('0")
(N]
Alignment & Difficulty Analysis from GPT-5
code counts s in bin(n)[2:], E ‘uns its i t leadi for
> 1). The mple] n ali 5 ome cont f “unset bits” relative to a f

pit), but the prompt correctly narrows this ay without leading zeros.

stead of ones requ
5 identical concepts v no

Figure 5: Example of Task-224 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code_rewriting.

MBPP+, origi , TASK 284 MBPP+, code_rewriti TASK 284

Write a function that takes in a list and Write a function that takes in a list and

element and checks whether all items in the element and checks whether all items in the

Llist are equal to the given element. Llist are equal to the given element when

assert check_element(["green", "orange", compared case-insensitively (after

"black", "white"],'blue')==False converting both to lowercase strings)

e assert check_element_ci(["green", "orange",
"black", "white"],'blue')==False

def check_element(listl, element): e

return all(v == element for v in listl)

def check_element_ci(listl, element):
target = str(element). lower()
return all(str(v).lower() == get for v
in 1istl)

Alignment & Difficulty Analysis from GPT-5

Alignment: The prompt tly E L it L rcase ¢
code converts both tt i

behavior. No amb

Diff 1t Algorithmic ucture u U all nsion). The ton adds a minor
prepro g step Wl oo))o ()), d ! ing ge co ity or uire

Figure 6: Example of Task-284 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code_rewriting.

28

Under review as a conference paper at ICLR 2026

MBPP+, original, TASK 767

Write a python function to count the number
of pairs whose sum is equal to ‘sum’. The
funtion gets as input a list of numbers and
the sum,

assert get_pairs_count([1,1,1,1],2)

def get_pairs_count(arr, sum_):
cnt = 0
for n in arr:
cnt += arr.count(sum_ - n)

MBPP+, code_rewriting, TASK 767

Write a python function to count the number
of ordered pairs (i, j) with i !'= j whose
sum is equal to ‘sum’. The funtion gets as
input a list of numbers and the sum,

assert get_pairs_count_ordered([1,1,1,1],2)
== 12

wun

dered(arr, sum_):

def get_pairs_count
cnt = 0
for n in arr:
cnt += arr.count(sum_ - n)

if sum_ - n == n: if sum_ - n n:
cnt -=1 cnt -=1
return cnt / 2 return cnt

Alignment & Difficulty Analysis from GPT-5

en
both counted.

get_pairs_count_or d(f1,1,1, behavior.

Difficulty: Both tasks use the same 0(n®) counting approach and req the same conceptual insight (complement counting and
ved task n s and compl

Figure 7: Example of Task-767 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code_rewriting.

MBPP+, original, TASK 279 MBPP+, code_rewriting, TASK 279

wun wun

Write a function to find the nth decagonal Write a function to find the nth
number. dodecagonal number.

assert is_num_decagonal(3) == 27 assert is_num_dodecagonal(3) == 33

def is_num_dodecagonal(n):
return 5 * n *x n - 4 *x n

def is_num_decagonal(n):
return 4 x n x n - 3 *

Alignment & Difficulty Analysis from GPT-5
Alignment: The prompt (“find the nth dodecagonal number”) matches the code’s formula 5n”2 - 4n and the test
is_num_do onal(3)

decagonal numbers uses the same polygonal-number template P_k(n)=\frac{(k-2)n"2-(k-4)n}
me level of formula application and implementation effort the or 1.

Figure 8: Example of Task-279 from MBPP+ generated from Qwen2.5-Coder-32B-Instruct that PASSED in
original but FAILED in code_rewriting.

29

Under review as a conference paper at ICLR 2026

BigCodeBench, original, TASK BigCodeBench/1134 0 writing, TASK BigCodeBench/1134

Computes the MD5 hash of each file's content source_dir", file's content in the specif
prepends the h iith a prefix to the tent, and writ e g to the original

itput with
ths to the newly 3 dir', each h d in the “target_dir’, each

import
import 3
t hashlib
ef task_func(

t os
import glob
ort hashlib u
task_func(source_dir, target_di i def task_ source_dir, target_dir, ash: '):
f not os.path.exists(source_dir): f no exists(source_dir
ise FileNotFoundError(f"Sou t r t i i y '{source_dir}'

t os.path.exists(target_dir):
os.makedirs(target_dir)
new_file: [1
r file_path in glob.glob(os.path.join(sou @ for file_pat glob.glob(os.path. join(source_dir, '*')):
with open(file_path, infil with open(file_path, 'r') as infile:
content = infile.read() content = infile.read()
h _object hashlib.md5(content.encod hash_object hashlib.md5(content.encode())
new_file_path = path. basename(file_path)) new_file_path = os.path.join(target_dir, os.path.basename(file_path))
h open(new_file_path, 'w') a
outfile.write(f"{p _o ntent}") outfile.write(f"{content}\n{pref _object.hexdigest()}")
new_files.append(new new_files.append(new_file_path)
return new_file! return new_files

Alignment & Difficulty Analysis from GPT-5
Alignment e olv prompt say pend the prefix MD5 ha t i d ov e i arget_dir; the
at (ou C \ fixH b . It L N n W ir n ur al
both ma €
ontradict the

read,
emain the

Figure 9: Example of Task-1134 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

inal, TASK BigCodeBench/16 BigCodeBench, code_rewriting, TASK BigCodeBench/16
fied directory to ¢ gz file 2 Backup all '.log' f in a specified directory and
d al

dir

The
str: The path to the backl
found to back are found, otherwi

You should wri elf-contained ith

im
import glob
t subpro

impor u os
import gl glob
t subprocess
: _func(directory, bal
not os.path.exists(directory) i os.path.exists(directory)
r e FileNotFoundError(f"Dir not fi d. FileNotFoundError(f"D tory '{directory}
_files = glob.gloh(h.join(glob.glob(os.path.join(directory, '*
not log_files: if not log_files:
o logs found to backup > logs found to backuy
t os.path.exists(backup_dir): if not os.path.exists(backup_dir):
0s.makedirs(backup_dir) os.makedirs (backup_dir)
backup_file = os.path.join(backup_dir, 'logs_back backup_file = os.path.join(backup_dir, ' kup. tar.g
subprocess.call(['t ‘-czvf', backup_file] + log_files) subprocess. call([' tar vf', backup_file] + log_files)
for file in log 7 for file in log_files:
os. remove(file) os.remove(file)
return backup_file return backup_file

' not

*. log

Alignment & Difficulty Analysis from GPT-5

i
ackup location/name, and deletion of originals.
Diffi from flat to r hing (' ' with r

(path handling, glob subpro e, file deletion). Algorithmic compl

Figure 10: Example of Task-16 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

30

Under review as a conference paper at ICLR 2026

BigCodeBench, original, TASK BigCodeBench/330
Find the k
using heapq.
The function should output with:

tup A tuple containing t lists:

list[int]: The randomly generated list of integers
with the specified length.

list[int The k largest numbers found using heap
You shou self-contained code starting with:

rgest numbers in a random-generated list

import heapq
import random
def task_func(list_length:5, k:int)

import heapq
import random
def task_func(list_length:5, k:int):
numbers = [random.randint(0, 100) for _ in
range(list_length)]
heapq.heapify(numbers)
largest_numbers = heapq.nlargest(k, numbers)

BigCodeBe

code_rewriti TASK BigCodeBench/330
Find the k smallest numbers in a random-generated list
using hea
The function shou output with:

tuple: A tuple containing two lists:

list[int]: The randomly generated list of
with the specified length.

List[int]: The k smallest numbers found using
heapq.
You should write self-contained code starting with:

import heapq
import rand
def task_func(list_length:5, k:int):

import heapq
import random
f task_func(list_length:5, k:int):
numbers = [random.randint(0, 100) for
range(list_length)]
heapq.heapify(numbers)
largest_numbers = heapq.nsmallest(k, numbers)

return numbers, largest_numbers return numbers, largest_numbers

) @
Alignment & Difficulty Analysis from GPT-5

uses hea smallest numbers and returns a tuple of two 1 as s L . It starts

t k1 m and requi
k)). The Librar

Figure 11: Example of Task-330 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

(X J
, TASK BigCodeBench/59 BigCodeBench, code_rewriting, TASK BigCodeBench/59
of a Wikip text of a Wik
None if there is n b ect o plotted
. 5 t
iith:

ort wikipedia
cloud i

p age_title).content wikipedia.sunmary(page_title)

occured: {e}")

plt.gca()
n

Alignment & Difficulty Analysis from GPT-5

and retu a matplotl r plotting the

uired con 0 ple
rithmic thinking.

Figure 12: Example of Task-59 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

31

Under review as a conference paper at ICLR 2026

rn

yclic sequence

t The p
and alternat of colors
ylor

the random number

lements
ameter and ranc g

enerator

from the
can

zero an
or_pattern

representing the

from
from
def t

rng_s

itertools

andom import choice

from
from

itertools
random impc

func(n_colo
ne):

g d is not
seed(rng_seed)
color_cycl

None:
(colors)
in range(n_colors

color = next(color_cycle) if
r_pattern.append(color)
n

Alignment

& Difficulty Analysis from GPT-5

matches the code’

odd

Alignment: The prompt p
(ind

en indic

the
order

behz

of 'r 1
ned in the

the
the result could
You

from

from

Purple'], from

def task_func(n_colors,

color_cyc

CodeBench, code_rewriting, TASK BigCodeBench/86:

The
from

the p er 'col
Optionally,
domne:

tern c
ame list anc
e rting

a seed for

iterto

<_func(n
=None)

‘Blue

itertools
random

mport cycle
oice, seed
color ‘Blue
g_seed is not
seed(rng_seed)
cycle(colors)
i [
or i in range(n_colors):
color = choice(colors)
_pattern.append(color)

Non

(color_cycle)

th
colo

random color
ample

modulo

i a cy

ith andom

the random number generator

, then
with
mir

Figure 13: Example of Task-868 from BigCodeBench generated from Qwen2.5-Coder-32B-Instruct that
PASSED in original but FAILED in code_rewriting.

32

Under review as a conference paper at ICLR 2026

I HARMLESS INTERNAL LOGIC MODIFICATIONS

We listed two representative cases from Llama3.1-8B-Instruct where a model has preserved all func-
tion and variable names yet altered only the internal implementation (e.g., swapping loops for com-
prehensions or changing search strategies), illustrating “harmless” syntactic similarity.

I.1 TAsk MBPP/18: L1IST COMPREHENSION j-; EXPLICIT LOOP

Model Answer in Original Set (list comprehension)

def remove_dirty_chars(string, second_string):
second_string_set = set(second_string)
filtered = [c for c in string if c not in second_string_set]
return ''.join(filtered)

Model Answer in Rewritten Set (explicit loop)
def remove_dirty_chars(string, second_string):
second_string_set = set(second_string)

result = []
for ¢ in reversed(string):
if ¢ not in second_string_set:
result.append(c)

return ''.join(reversed(result))

Here, the function name ‘remove_dirty_chars‘, parameters, lookup-set variable, and character vari-
able ‘c* all remain identical; only the comprehension is replaced by a two-step loop.

1.2 TASK MBPP/793: REVERSE-INDEX LOOKUP BINARY SEARCH

Model Answer in Original Set (slice + index)
def last(arr, x):
try:
return len(arr) - 1 - arr[::-1].index(x)
except ValueError:
return -1

Model Answer in Rewritten Set (binary search)
def last(arr, x):
low, high = @, len(arr) - 1
result = -1
while low <= high:
mid = (low + high) // 2
if arr[mid] == x:
result = mid
low = mid + 1
elif arr[mid] < x:
low = mid + 1
else:
high = mid - 1
return result

Again, ‘last’, ‘arr‘, and ‘x‘ are preserved; the lookup logic is simply swapped from a reverse-slice
search to an iterative binary-search routine.

J TRAINING DETAILS REGARDING SFT/RL

J.1 FINE-TUNING DETAILS

Framework and Compute. We adapted the Verl framework for supervised fine-tuning (SFT) and
Proximal Policy Optimization (PPO), using its PyTorch Fully Sharded Data Parallel (FSDP) backend
Experiments ran on a single machine (nnodes=1) with 4 GPUs (n_gpus_per_node=2). PPO rollouts
used the VLLM backend; optimization used AdamW.

33

Under review as a conference paper at ICLR 2026

Table 20: Compute and framework configuration

Item Setting

Framework Verl (PyTorch FSDP backend)
Nodes / GPUs nnodes=1, n_gpus_per_node=2
PPO rollout backend VLLM

Optimizer Adamw

Dataset and Prompting. Data followed Verl’s standard format and was exported as a . parquet
file with a 4:1 train/test split. Each problem description served as the prompt; the corresponding
code solution was the target response.

Table 21: Dataset summary

Aspect Details
Format .parquet (Verl standard)
Split 4:1 train:test

Input (prompt) Problem description
Target (response) Code solution
Prompt template ~ See quoted block above

The completed template we fed into the LLM was:

instruction_prefix = "Please provide a self-contained Python script that solves the
following problem in a markdown code block:"

response_prefix = "Below is a Python script with a self-contained function that solves
the problem and passes corresponding tests:"”

prompt_chat = [
{"role": "user", "content”: f"""\
{instruction_prefix}

{problem.strip()}

nnny
{"role": "assistant”, "content": f"""\

{response_prefix}

T Tpython

nnny

]

The problem is the description originally from the dataset, and we called the
tokenizer.apply_chat_template to the prompt_chat to get the model response.

J.1.1 SUPERVISED FINE-TUNING (SFT)

Default learning rate was 1 x 10~ for 20 epochs, with manual adjustments between 5 x 10~ and
1 x 1075 depending on model performance. We set max_prompt_length to 1024, batch size
to 64, and micro_batch_size_per_gpu to 8. The selected checkpoint (named model_name-SFT)
was the one immediately prior to observed overfitting, hence we can distinguish memorization from
overfitting.

Moreover, we choose the checkpoint at epoch 20 (named model_name-SFT-overfit) as the fully
overfitting epoch to measure the impact of overfitting to memorization.

J.1.2 PROXIMAL PoLICY OPTIMIZATION (PPO)

Actor, critic, and reference models used identical architectures over 20 epochs. The reward was
binary: 1 if the generated response passed all test cases, else 0. We set max_prompt_length to 1024
and max_response_length to 512. Learning rates were 1 x 10~ for the critic and 1 x 1076 for the

34

Under review as a conference paper at ICLR 2026

Table 22: SFT hyperparameters

Parameter Value

Epochs 20

Learning rate Default 1 x 10~%; tuned 5 x 1076-1 x 10~°
max_prompt_length 1024

Batch size 64

micro_batch_size_per_gpu 8

save_freq
Checkpoint selection

after_each_epoch
Epoch immediately prior to overfitting

actor. We used batch size 64 with micro_batch_size_per_gpu 8, selecting the checkpoint with
the highest test reward (named model_name-PPO) to get the best performance.

Table 23: PPO setup and hyperparameters

Parameter Value

Architectures Actor/Critic/Reference identical
Epochs 20

Reward Binary (1 if all tests pass; else 0)
max_prompt_length 1024

max_response_length 512

Learning rate (critic) 1x107°

Learning rate (actor) 1x 1076

Batch size 64

micro_batch_size_per_gpu 8

save_freq 5

Checkpoint selection

Highest reward on validset

K EVOLVED-TASK GENERATION (GPT-5)

¢ API version: gpt-5-2025-08-07.
* Prompt template: shown in[Appendix B]

* Parameters: temperature: default; top-p: default; max-tokens 1080.

* Post-processing: regex clean-up.

* Budget: the estimated cost for generating one round of each evolution type (code rewriting,
mutation and paraphrase) for both MBPP+ and BigCodeBench is approximately 450 USD.

35

	Introduction
	Related Work
	Code Generation with LLMs
	Memorization in Code Generation

	Methodology
	Code Rewriting
	Metric-Memorization Risk Index

	Mutation and Paraphrase
	Metric—Robustness Relative Accuracy Drop

	Fine-Tuning Methods
	Supervised Fine-tuning
	Reinforcement Learning

	Experiment Setup
	Datasets
	Models

	Result Analysis
	Memorization Analysis on Instruct Models
	Additional Findings

	Impact of Fine-Tuning Strategies on Memorization
	Robustness to Semantic-Preserving Perturbations

	Conclusion and Future Works
	Use of Large Language Models (LLMs)
	Prompts for Task Generation
	Code-Rewriting Evolution
	Code-Rewriting Evolution LLM Judge
	Mutation Evolution
	Paraphrasing Evolution
	Code Rewriting Solution Validation

	Examples of Clearer Paraphrased Prompts
	Stability of RAD and MRI under low baseline accuracy
	Instance-level MRI (iMRI)
	Ablation studies for similarity
	Setup and evaluation protocol
	parser and grammar
	weighting between AST-based and edit-based similarity
	similarity functions (token-overlap and embedding-based metrics
	conclusions

	Analysis by Logic Change Type
	Examples of Regressed Tasks
	harmless internal logic modifications
	Task Mbpp/18: List Comprehension <-> Explicit Loop
	Task Mbpp/793: Reverse‑Index Lookup Binary Search

	Training details regarding SFT/RL
	Fine-Tuning Details
	Supervised Fine-Tuning (SFT)
	Proximal Policy Optimization (PPO)

	Evolved-Task Generation (GPT-5)

