
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHY SOLVING MULTI-AGENT PATH FINDING
WITH LARGE LANGUAGE MODELS
HAS NOT SUCCEEDED YET

Anonymous authors
Paper under double-blind review

ABSTRACT

With the explosive influence caused by the success of large language models
(LLM), there has been an extensive amount of recent work showing that foun-
dation models can be used to solve a large variety of tasks. However, there is very
limited work that shares insights on multi-agent planning. Multi-agent planning
is different from other domains by combining the difficulty of multi-agent coor-
dination and planning, and making it hard to leverage external tools to facilitate
the reasoning needed. In this paper, we focus on the problem of multi-agent path
finding (MAPF), which is also known as multi-robot route planning, and study the
performance of solving MAPF with LLMs. We first show the motivating success
of single-agent planning and multi-agent pathfinding in an empty room map with-
out obstacles, then the failure to plan on the harder room map and maze map of
the standard MAPF benchmark. We present our position on why directly solving
MAPF with LLMs has not been successful yet, and we use various experiments to
support our hypothesis. Based on our results, we discussed how researchers with
different backgrounds could help with this problem from different perspectives.

1 INTRODUCTION

In the past year since ChatGPT came out, large language models (LLMs) have been shown to go
beyond strictly language-related tasks like translation, and to be a powerful tool in all kinds of do-
mains. Training with very rich and diverse datasets, LLMs incorporate a large variety of knowledge
and do not require fine-tuning before generating good solutions in many real-world applications.
Over time, recent studies have shown that combining LLMs with different ways of prompting can
help solve problems that have some aspects of reasoning, including examples from logical problems
Yao et al. (2022); Liu et al. (2023) to controlling a robot dog without finetuning Wang et al. (2023a).

Motivated by the success of LLMs, people are studying how well pre-trained models are in all
different kinds of domains. Some recent works studied the performance of LLMs on multi-agent
problems and showed LLM can also help multi-agent coordination Chen et al. (2023b); Agashe
et al. (2023). However, they barely cover multi-agent route planning and did not look specifically
into the difficulties in the domain. In this paper, we consider the problem of multi-agent path finding
(MAPF), also known as multi-agent route planning. MAPF is the problem of moving a group
of agents from their respective start locations to their goal locations without collisions. MAPF
can be used directly to formulate real-world applications like warehouse management Sharon et al.
(2015); Han & Yu (2020), swarm control Li et al. (2020), among others. In a typical warehouse
scenario, around a thousand warehouse robots (agents) could be running simultaneously in one
warehouse room (scenario), and each agent needs to plan its path, which could be as long as a
hundred timesteps. Previous methods for MAPF can be mainly classified into 1) classic methods like
heuristic search and SAT Sharon et al. (2015); Han & Yu (2020), and 2) learning-based approaches
that mostly use reinforcement learning Sartoretti et al. (2019). MAPF is a unique problem in multi-
agent coordination in that coordination is required within the planning, so it is highly challenging
to facilitate the reasoning of coordination by using LLMs to generate useful high-level guidance
combined with a low-level path planner to ensure the solution is valid, an approach that will be
parallel to this taken in the setting of overcooked Agashe et al. (2023). On the other hand, path
planning is one of the easiest parts of planning, and constraints only concern obstacles and moving

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of our workflow.

continuity. Because of these unique challenges in the MAPF problem, it is unclear how good LLMs
will be at solving MAPF.

In this paper, we propose to use an LLM directly to solve MAPF without any additional heuristic
guidance from solvers or any additional training. We give the scenario information to the LLM,
and let the LLM recommend the actions for each agent every single timestep. We use a high-level
checker that checks collisions between agents and obstacles to ensure the solution is valid in each
step, provides error messages to the LLM when violations occur, and iterates with the LLM until
a valid solution is generated. We first show that single-agent pathfinding can be solvable and then
evaluate the performance of LLMs on the empty map, the room map, and the maze map, which
are classic maps from the standard MAPF benchmark Stern et al. (2019). We show that LLMs can
solve MAPF problems when the scenario is relatively easy, and LLMs fail to generate any valid
solution, no matter what the solution quality is, when the scenario becomes harder. While LLMs
are evolving extremely fast, and current failures may not apply to the next generation of LLMs,
we elaborate on the current failing scenarios and give our position on three aspects as a breakdown
of what kind of capability is currently missing in the LLM workflow, namely 1) the capability to
understand the scenario, 2) the context length limit, and 3) the reasoning capability. We incorporate
a list of experiments featuring various prominent prompt design alternatives, such as image-based
and text-only inputs, and with or without single-step observation information, among others. Finally,
we provide a discussion on the challenges of using LLMs for MAPF in the real world, and discuss
how different researchers could contribute to the problem from different directions. We hope our
work can serve as a building block for future research in foundation models for MAPF.

2 LLMS FOR MULTI-AGENT PATH FINDING

2.1 PRELIMINARY

The multi-agent path finding (MAPF) problem is the problem of finding a set of collision-free paths
for a set of agents in a known environment while minimizing their travel times. Specifically, in this
paper, we consider the problem in Stern et al. (2019); Li et al. (2022), which is a four-connected grid
map, where each agent is given a start cell and a goal cell. A scenario is defined as the combination
of the description of the map, indicating which cells have obstacles, and the start cells and goal cells
of each agent. At each timestep, an agent can move to an adjacent cell or stay in its current cell. A
collision happens if two agents end up in the same cell at the same timestep. Each agent remains
at its goal cell after it arrives until all agents arrive at their goals. The objective is to minimize the
makespan of the solution, i.e., minimize the time when the last agent arrives at its goal location.

With the number of parameters of LLMs being exponentially larger than the degree of freedom in
small reasoning problems, LLMs have the potential to solve some easy problems in reasoning with
certain prompts Wei et al. (2022), and break down harder problems into smaller ones to get subop-
timal solutions Yang et al. (2023). When applying to MAPF, we hope LLMs can be an alternative
model to the current MAPF reinforcement learning-based models without any additional training.

2.2 METHODS

In this paper, we focus on using LLMs to solve the MAPF problem directly. However, it is obvious
that current ML models cannot be perfect solvers in their first trial, and we introduce a high-level

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

collision checker to ensure the plan generated by the LLM is valid. We inform the LLM about the
mistake in the current solution, if any. Unlike some previous works Yao et al. (2022); Yang et al.
(2023), our checker is not another LLM both because it is extremely easy and efficient to detect
collisions by a rule-based detector in linear time, and also because the LLM fails to always correctly
identify the collisions. A detailed comparison is provided in the appendix. In this checker, we not
only check for agent-to-agent collisions but also check for any collision with the fixed obstacles.
We do not provide any additional guidance on how the LLM should resolve this. By default, all
the information, like coordinates, is provided in text, and we will later discuss the performance
difference caused by different input formats.

Following the common practice of LLMs Kambhampati et al.; Chen et al. (2023b), we build our
workflow shown in Fig. 1. As existing learning-based approaches Damani et al. (2021), we give
LLMs stepwise local information and let the LLM choose the actions of agents step-by-step. This
step-by-step (SBS) generation is different from the popular chain-of-thoughts idea Wei et al. (2022)
used in LLMs by not introducing more intermediate reasoning processes in the generation. Instead,
it breaks down the whole planning task into smaller single-step tasks, so the LLM does not need
to be fully correct before we can use some results from it. We start by giving the LLM the system
prompt to become a solver for the MAPF problem. This part is fixed within each map, and different
in the map description part in different maps. Then, we start the user prompt by providing the sce-
nario information, which includes where the obstacles are, as well as the start location and the goal
locations of each agent. We found that providing LLMs with specific local information about viable
actions for the immediate next step significantly helps them avoid collisions with static obstacles,
so we provide a single-step observation (SSO) in the prompt by default. Then we start to read the
output of the LLM, use the checker to determine whether the output of the LLM is valid, and either
output the errors to let the LLM correct on the current step, or tell the LLM to move on to the next
step with the information that is specifically for the next step. To address the total token limit, we
leverage the fact that MAPF is a Markov decision process where each state is independent of its
previous states, and we restart the prompt from scratch, i.e., treat the current agent locations as their
starting point, whenever we got a rate limit error. We provide all our prompts in the appendix.

2.3 EXPERIMENT RESULTS ON MAPF BENCHMARK

2.3.1 GENERAL EXPERIMENT SETTINGS

While we have introduced the high-level collision detector, we define a solution generation to be
successful if it does not fail because of any of the following:

1. Fails to generate a plan whose number of steps is at most 3 times as the optimal plan.

2. Fails 5 consecutive times in a single step after we provided the first round of feedback,
specifying whether the current solution is correct or not.

We do not consider any token limit error because we restart at each step to clean its travel history
if the token limit is too long, and 5 times in a single step guarantees that the message length in one
step is within the token limit. Each setting in the experiment is tested on 5 different scenarios in the
standard MAPF benchmark Stern et al. (2019), each different in terms of the start and goal location
combinations of the agents on a given map 1. By default, we are using the GPT-4-1106-preview
model, also known as the GPT-4-turbo model with temperature 0 and seed 42 2.

2.3.2 SINGLE-AGENT PATH FINDING RESULTS

As discussed in previous workValmeekam et al. (2024a), while LLM might not know how to gener-
ate an optimal plan, our results show that it could generate some plan regardless of the optimality.
As shown in Table. 1, we found that LLM could generate a plan after a few iterations in relatively
easy scenarios. We observe that with the growing groud-truth shortest path length, the success rate

1The map names are directly from the standard MAPF benchmark [27], for example, “Maze-32-32-2”
denotes the map is in the class of maze with size 32*32, and is the second map in the benchmark.

2We are testing using the API, where the behavior could be slightly different from the web version of GPT-4,
and the results from the LLMs could differ given the stochasticity of LLMs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Map Dist Success Rate (%)
OS SBS

[2, 8) 80 100
Room [8, 16) 40 100

[16, 32) 40 80
[32, 100) 20 40

Maze [2, 8) 20 80
[8, 16) 0 20

Table 1: The success rate of solving single-
agent path finding with GPT-4-turbo on
ROOM-32-32-4 and MAZE maps with varying
ground-truth shortest path distance (Dist).

Map n Success Rate (%)
OS SBS

2 20 100
Empty 4 0 100

8 0 100
16 0 60
2 20 100

Room 4 0 80
8 0 20

Maze 2 0 0

Table 2: The success rate of solving MAPF
with GPT-4-turbo on EMPTY-8-8, ROOM-32-
32-4 and MAZE-32-32-2 maps with varying
numbers of agents (n).

Figure 2: The ROOM-32-32-4 map (left)
and the MAZE-32-32-2 map (right). The
picture is vertically flipped to match the
common knowledge that higher vertical
positions indicate greater values.

(a) (b)

Figure 3: Two examples of symmetry breaking exam-
ples, where black denotes a fixed obstacle. In 3a, every
pair of shortest path will collide with each other. In 3b,
every pair of shortest paths will collide in cell (2, 1).

of LLM drops significantly, especially in the one-shot settings (OS). In the maze scenario, it is hard
to find one solution even in the smallest case, and we will discuss the reasons in the next section.

We also found that the cause of failing in pathfinding is different from the cause of failing in gen-
eral planning tasks where the generated plan is invalid, usually by breaking requisite constraints
Valmeekam et al. (2023). In path planning, the only constraint is that one agent needs to move to an
adjacent cell and cannot jump across the map. This is a very easy task for LLM to follow, and thus,
in our experiments, we never see the LLM failing due to that constraint, even if the only instruction
about this constraint is ”in a 4-connected grid”. Based on our results on single-agent path planning,
we believe there is a possibility of generating a plan, regardless of optimality, for MAPF.

2.3.3 MULTI-AGENT PATH FINDING RESULTS

While it is unclear how well LLMs can solve MAPF problems, we start by showing that LLMs can
be a promising solver in easy domains. We test the performance of LLMs on the EMPTY map from
the MAPF benchmark Stern et al. (2019), which has no obstacles at all and only requires the agents
to not collide with each other. The results are shown in Table. 2. We observe that for smaller-scale
problems that has fewer agents, GPT-4 can successfully generate valid solutions. However, GPT-4
fails to generate valid solutions when more agents are on the same map.

It has been shown that a step-by-step generation is better in many reasoning-related tasks Wei et al.
(2022). However, it is not well-studied whether a step-by-step generation is also helpful in the
planning since a complete plan will also require to be given in a step-by-step (SBS) way, and the
LLM models need to decide every single step anyway. Therefore, we study a variant that generates
the whole plan in one shot (OS) with the help of chain-of-thought prompts and show the comparison
in Table. 2. We observe that one-shot (OS) generation fails to generate solutions even in scenarios
with 4 agents. This is because the whole plan is quite long, and the total number of possible failures
is the product of possible failure at each step, making it inefficient to find a valid solution.

Motivated by the success on the EMPTY map, we tested the same workflow on the ROOM-32-32-1
map and the MAZE-32-32-2 map, which is shown in Fig. 2. The results are shown in Table. 2. In

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Step 1:
Agent 1:
Current: (0,2)
Goal: (3,1)
Move: Right to (1,2)

Agent 2:
Current: (1,3)
Goal: (2,0)
Move: Down to (1,2)

After the move, the coordinates of the agents are:
Agent 1: (1,2)
Agent 2: (1,2)

There is a collision between Agent 1 and 2. I will regenerate another solution immediately.

Step 1 (Regenerated):
Agent 1:
Current: (0,2)
Goal: (3,1)
Move: Down to (0,1)

Agent 2:
Current: (1,3)
Goal: (2,0)

Move: Left to (0,3)

After the move, the coordinates of the agents are:
Agent 1: (0,1)
Agent 2: (0,3)

There is no collision. Here is the validated solution:

Agent 1: (0,1)
Agent 2: (0,3)

Figure 4: The output from GPT-4-turbo for the symmetry breaking example in Fig. 3b.

this case, we found that LLMs fail to generate solutions when the number of agents is already quite
small, and that LLMs completely fail on the MAZE-32-32-map even with only 2 agents.

3 CAUSE OF FAILURES

Because LLMs are evolving rapidly, it is unclear how long LLMs will still fail. Although our meth-
ods do not combine any external tools like low-level planning Agashe et al. (2023), it is important
for us to break down the failures and identify the cause of the failures. We observe that LLMs fail
only once with 16 agents in the empty map because of consecutive failures in a single step, and all
other times, they fail because they use many more steps than they should. More specifically, 77% of
the failures occurred because the LLM agents began to oscillate in a specific area of the map, while
the remaining failures were due to excessively long detours.

Based on our observations, we break down the reasons into three deeper parts from the perspective of
natural language models: limitation from the model, understanding, and reasoning. For simplicity,
we first discuss the lack of reasoning capability, which is common in many tasks.

3.1 REASONING CAPABILITY

In this paper, we focus on optimizing the makespan of the MAPF solution, and making the agents
prefer to wait rather than detour in small scenarios that do not lead to endless waiting. We calculate
the average ratio of makespan to the maximum length among the single agent shortest paths (a
standard normalization practice in MAPF as this provides a valid lower bound on the optimal MAPF
solution), and in scenarios that are successfully solved, this average is 1.5. This means that LLMs
can mostly succeed in scenarios that do not need a lot of waiting, and in most steps, they only need
to go in the two directions aligned with the goal’s direction. LLM fails in other scenarios because
they need path finding in complex environments. A simple example of the failure of path finding is
shown in Fig. 3, and we provide the output of the first step in Fig. 4. While waiting for one step can
clearly lead to the optimal solution that has a makespan of 5, the LLM chose to move agent 2 to the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model n Success Rate (%) Avg. Iterations

GO GO+SSO GO GO+SSO

2 80 100 2.7 1.6
GPT-4-8K 4 20 60 3.0 2.3

8 0 0 N/A N/A

2 100 100 2.1 1.2
GPT-4-128K 4 60 80 2.7 1.4

8 0 20 N/A 2.4

Table 3: The success rates and average iterations per step
used until proceed to next step in success scenarios for GPT-
4 and GPT-4 Turbo, whose token limits are 8K and 128K re-
spectively, on the room-32-32-4 map with different number of
agents(n).

Checker Type Success Rate (%)

Rule-based 0
Human 40

Table 4: The success rate of o1-
preview (OpenAI) with different
checker type on 8 agent scenarios
(n = 8) with GO+SSO in room-
32-32-4 map.

left and resulting in a total makespan of 6. This example shows that LLM does not understand what
makespan is and how to optimize for makespan.

On the other hand, when we look at the average number of iterations for prompts with both global
obstacle observation in the first user prompt and single-step obstacle observations(GO+SSO) in
Table. 3, it is still not very close to 1 which means no iterations at all. This is because even if we
have explicitly let the LLM list all the coordinates of agents, it does not have the capability to check
the answers itself without the use of external tools. More specifically, LLMs are guaranteed to tell
whether a list of tuples of numbers has any duplicates. We also observe that the GPT-4-8k model
takes more iterations than the latest GPT-4-turbo model. This could either contribute to forgetting
earlier information or to the improved capacity of the new model.

This lack of reasoning capabilities is usually solved with tool use in other domains, but MAPF
itself is hard because MAPF requires the capability of path finding in a complex map and avoiding
collisions between all pairs of agents strategically and efficiently. The coordination between agents
is required in each step, and each step only. If we let the tool, in this case, a single-agent planner like
A*, include collision avoidance, the problem is already solved as CBS Sharon et al. (2015), where
LLM did no help. On the other hand, the tools must know how collisions are supposed to be avoided
and add those constraints into the heuristic search algorithm. This paradox makes it very difficult to
use LLM with tools used in MAPF.

We have also tested the latest o1-preview model from OpenAI, which has been shown to signifi-
cantly improve the reasoning and planning capability Valmeekam et al. (2024b). Compared to the
standard rule-based checker, which is the default for all other experiments, we introduce a human
checker that analyzes the explanation and chooses to retry when the current explanations could lead
to future failure. We observe that such an improved checker can also facilitate the generation a
lot, which further indicates the current reward model used in training and, potentially, the inference
is not correct for MAPF. Examples and more explanations on why o1-preview leads to a worse
performance compared to GPT-4-turbo in the default settings are provided in the appendix.

We have also tried tricks that could help improve the reasoning capabilities, including breaking the
big paragraph into bullet-point style instruction, removing some ’useless’ instruction, and adding a
whole example for in-context learning. These tricks did not show any help in any scenarios.

3.2 CONTEXT LENGTH LIMIT

Because the underlying architecture of popular LLMs is transformers, which further rely on self-
attention, a longer context in the input will significantly increase the computing complexity in the
process. Therefore, in their training process, they set a maximum limit of tokens on the input and
trained specifically on them. Current large language models released will also provide a context
length limit, which is as long as 200K tokens, and any request with a longer context length will be
rejected. This is a long enough length for many tasks and even able to read a textbook, and many
users are satisfied with the length. Recent studies have demonstrated that the performance of large
models, such as GPT-4 Turbo with 128K context length, is not consistent when processing inputs of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

n MM TOO TOM

2 100 100 100
4 20 60 80
8 0 0 20

Table 5: The suc-
cess rate (%) of differ-
ent ways of inputting
the map information to
LLM on ROOM-32-32-
4 map with different
number of agents (n).

Figure 5: An illustration of the difference between multimodal input
(MM), text that describes the whole map (TOM), and text that describes
the obstacles (TOO).

8K versus 128K tokens 3. What is even worse is that in the real-world applications of MAPF, the total
number of agents running in the environment could be up to a few thousand. Even in the ideal case
that our prompt will grow linearly to the number of agents, an environment with a thousand agents
will require a total context length of 250(tokens/agent step) ∗ 50(steps) ∗ 1000(agents) = 5M
tokens, which is much bigger than the current limit. Because the token limit is strict, we have
introduced the restart mechanism in our methods, and in our current experiment scale, we have to
restart the LLM around every 7-10 steps in large or complex scenarios. We also observed that the
number of tokens used grows non-linearly with regard to the number of agents due to the increasing
number of iterations, and we have put the numbers in the appendix.

In table. 3, we show our results on the ROOM map, and test with different GPT-4 models with
different context lengths, in the setting of global observation (GO) only and the version with single-
step observation (SSO). We will talk about these two settings in the next section. We found that
when the context length limit grows, the success rate also increases. This is especially helpful when
the single-step observation information that tells what valid actions each agent has is not provided.
The failures here are not direct failures by exceeding the context length limit, but from the forgetting
in restart caused by reaching the context length limits. Because of these restarts, our models often
completely forget that they have been to certain locations, and then go back and forth in certain areas
with dead ends like the center room in the ROOM map. We have also included the latest o1-preview
model from OpenAI in the experiment on the biggest scale 4. To our surprise, it is even worse than
the GPT-4-turbo version. In the appendix, we provide a case study with more detailed explanations.

3.3 UNDERSTANDING OBSTACLE LOCATIONS

MAPF scenarios can be broken down into a pair of start location and goal locations, together with
the map information. While understanding the coordinate version of start goal location pairs is
relatively easy, understanding the map information is hard. Trained with publicly available text,
LLM learns what a specific map means by finding similar contexts online, which mostly comes
from other related fields in planning, like solving a maze. However, one problem is that people
barely provide any such information online since people have the common knowledge of what to do
with a map with code and preprocess the map information in the code rather than explicitly provide
the set of where the obstacles are as the original input. Therefore, this leads to a lack of training
data with related context about the information in the pictures or in a symbol-based input. As we
mentioned earlier, 77% of the overall failure is caused by agents detouring back and forth in a certain
area blocked by obstacles. These failures directly indicate that the LLM fails to understand the map
information provided.

Because of this, our main prompt included guidance on what action could be taken in the current
step to increase the success rate a little bit. In Table. 3, we find that while global observation can
achieve a high win rate with the support of our high-level checkers, it also increases the average
number of iterations per step. Furthermore, it fails in scenarios where SSO would be effective, as it
exceeds the step limits defined in Sec. 2.3.1. In general, LLMs fail in medium complexity maps like
ROOM, and completely fail in much harder maps like MAZE, even with the help of SSO.

3https://github.com/gkamradt/LLMTest NeedleInAHaystack
4Due to accessibility, this is specifically tested on the webversion.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In all the experiments above, we use pure-text-based input because of the popularity and simplicity
of pure-text input. However, this was not the case before: In earlier work of reinforcement learning
for MAPF, people transformed the input into image-based input within the field of view and used
neural networks like convolutional neural network (CNN) to read the information. Therefore, as
shown in Fig. 5, we propose three different methods, which all share the same prompt of describing
the problem definition and use different versions of the prompt describing the scenario:

1. A multimodal-based method MM where we use an image to give the picture of the map,
and text to describe the problem and the scenario.

2. A text-only method TOO that describes the map by listing the coordinates of the obstacles.

3. A text-only method that describes the map by feeding the text version of the map with ’@’
denoting the obstacles and ’.’ denoting an empty space, named TOM.

We test the performance of these three variants, and show the results in Table. 5. We found that with
an image-based input, the results are even worse. For example, large models can only have a high-
level idea that there is a wall in the middle area, rather than knowing there is a wall exactly from
(3, 10) to (20, 10). The failure of TOO further indicates that LLMs do not know how to combine
high-level intuitions of where obstacles are with concrete reasoning during planning. Overall, in
complex environments such as mazes and real-world city maps, LLMs cannot offer any form of
guidance, not necessarily the specific action recommendations tested in this paper, until they can
accurately comprehend the relationship between obstacles and the paths of agents.

4 DISCUSSION

We would like to note that the methods in this paper are not designed to either outperform the state-
of-the-art classic solvers or surpass the performance of learning-based solvers. Instead, the goal is
to demonstrate that LLMs can solve small problems simply through prompting and discussing what
is stopping them from solving larger scenarios. Specifically, current heuristc-based algorithms like
conflict based search Sharon et al. (2015) can solve all the scenarios tested in the paper in less than
0.1 second. Moving on, we believe the three reasons for failures can each independently relate to
different research directions. Improving capability in a long context is already a popular direction in
NLP, and many papers are also looking into improving the general reasoning capability. We believe
that much ongoing research has the opportunity to improve the performance of LLMs on MAPF,
and we are pleased to have more researchers test this unique problem. Also, the recent development
of building foundation models that combine language and image generation could potentially help
with the reasoning in MAPF. Image generation models like stable diffusion Rombach et al. (2022)
have shown to be a strong tool in single agent path finding Janner et al. (2022). While these diffusion
models are not designed for multi-agent planning and are even hard to apply to MAPF, strategically
using them could partially help the lack of reasoning capability. Regarding potential finetuning, we
believe more annotated data are needed to help foundation models connect the abstract description to
concrete coordinate-level knowledge of where obstacles are, and how to coordinate between agents.
Future research could finetune using their data, or at least open their data to the general public, and
let the next version of released models from industry companies include such data by automatically
getting data online. Hopefully, such data could help foundation models know that position encodings
are more important in planning problems. Besides, our results on current rule-based checker v.s.
human checker also indicate that future research could work on building a good checker, i.e., a
reward model in large language models, to improve the performance of LLMs.

Besides, although the success rate is one of the most important factors in measuring the performance
of a solver, there are also other obstacles that need to be solved before using LLMs in real-world
scenarios. First of all, success does not indicate anything about the quality of the solution. In
our experiment, we found that the success scenarios usually come from easier scenarios that agents
mostly only need to follow their direct shortest path. When planning gets harder, the success rate gets
much worse. To improve the reasoning capability, future researchers and users could choose to make
a dataset of scenarios and their good solutions publicly available on the internet, so when training
with newer data, this specific problem could be directly included in the training set. Furthermore,
the current workflow does not include any heuristics or tool use during the generation but only as a
solution checker. While we are unclear on how such things should be included, this will be a very

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

challenging but meaningful direction. For potential researchers going in this direction, we want to
remind them to keep looking at the consistency of the deconflict of agents, which could be seen as
moving obstacles, and the deconflict of the fixed obstacles on the map. A successful method should
consider both difficulties in a similar manner.

On the other hand, latency is always a problem for LLMs when used in real-world production. If one
wants to use their own models, which is currently 500 tokens per second after using state-of-the-
art system-wise optimization like vLLM Kwon et al. (2023) for LLAMA-2 Touvron et al. (2023).
However, this speed is not enough as a typical round of output will have 1500 tokens, and it may
take a few rounds before the LLM generates a valid solution. If one wants to use models provided
through API like GPT-4 from OpenAI, the latency of the models will depend on a list of factors like
network connection and server availability. In our paper, we typically need to wait around 15-30
seconds for one step to get completed, where less than 0.1 seconds are used for local processing.

5 RELATED WORKS

LLM for Reasoning Since the release of GPT-3, researchers have studied the effect of how they
are performing on diverse sets of problems. Ideas like chain of thought Wei et al. (2022), in context
learning Ye et al. (2023) have been shown to significantly improve the performance of LLMs in
different tasks related to reasoningFu et al. (2022); Shum et al. (2023). A recent line of work has
been introduced to use natural language as feedback in the process to introduce iterations and give
LLMs more than one chance to generate correct solutions, which has been shown to significantly
help in code generation and reasoning Chen et al. (2023a); Yang et al. (2023); Shinn et al. (2023).
Specifically in LLMs for planning, there is a line of work that shows how bad LLMs are in general
planning domains Valmeekam et al. (2023; 2024a), and in this paper, we are specifically looking
into a specific problem in the planning domain.

LLM for Multi-agent Systems While there is extensive research on using LLMs for many differ-
ent problems, there is little work that addresses the problem of LLM for multi-agent systems in the
beginning. As time proceeds, there has been a list of works that promote research in social behav-
ior by creating multi-agent environment powered by a lot of LLM agents Tan et al. (2023), create
dialogue-based games with LLM Schlangen (2023). Recent work has shown that dialogue between
multiple agents can help remove factual errors Du et al. (2023); Wang et al. (2023b). When it comes
to solving problems related to multi-agent system, there are some works that are related to robotics
Zhang et al. (2023); Mandi et al. (2023) while limited to the scale of two to three agents. Chen et al.
(2023b) studied whether using a more decentralized controller can help to solve the context length
limit problem when the number of agents is higher, and concluded that in a centralized controller
environment, creating separate LLMs for different agents does not help improve the success rate.
While they succeed in their domains, in this paper, we specifically look at the problem of MAPF,
and we show the cause of failure in the MAPF problem because of its unique challenges.

Multi-agent Path Finding Multi-agent path finding (MAPF) is a problem that has won much at-
tention in recent years because of its close relationship to real-world applications. It has previously
been solved with more classic methods like heuristic search algorithms Sharon et al. (2015); Li
et al. (2021); Okumura (2023), rule-based algorithms Han & Yu (2020), and reduction-based algo-
rithms Surynek et al. (2016). While learning-based approaches have not yet outperformed classic
approaches, they have also begun to win a lot more focus for their fast inference time and generaliz-
ability. PRIMAL Sartoretti et al. (2019) proposed to learn a policy for MAPF using a combination
of reinforcement learning and imitation learning. Following that, a group of works proposed a di-
verse set of methods from building curriculum Damani et al. (2021) to follow guidance from classic
methods in each step Skrynnik et al. (2023). In this paper, we focus on using LLM, which is a
learning-based approach but is not specifically fine-tuned for MAPF problems.

6 CONCLUSION

In this paper, we investigate using LLMs to solve the MAPF problem. We first show that LLMs
could solve easy scenarios, while being unable to generate valid solutions when the problem gets
harder stably. To make our work applicable to the future, we elaborate on the failures and show

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

that they can be broken down into three different aspects. We used extensive experiments to sup-
port our breakdown and discussed how the difficulties could be addressed by people from different
backgrounds.

REFERENCES

Saaket Agashe, Yue Fan, and Xin Eric Wang. Evaluating multi-agent coordination abilities in large
language models. arXiv preprint arXiv:2310.03903, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023a.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? arXiv preprint
arXiv:2309.15943, 2023b.

Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. Primal$ 2$: Pathfinding
via reinforcement and imitation multi-agent learning - lifelong. IEEE Robotics Autom. Lett., 6(2):
2666–2673, 2021. doi: 10.1109/LRA.2021.3062803. URL https://doi.org/10.1109/
LRA.2021.3062803.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. CoRR, abs/2305.14325,
2023. doi: 10.48550/ARXIV.2305.14325. URL https://doi.org/10.48550/arXiv.
2305.14325.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Shuai D. Han and Jingjin Yu. DDM: fast near-optimal multi-robot path planning using diversified-
path and optimal sub-problem solution database heuristics. IEEE Robotics Autom. Lett., 2:1350–
1357, 2020.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning
in llm-modulo frameworks. In Forty-first International Conference on Machine Learning.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, T. K. Satish Kumar, and Sven Koenig. Moving
agents in formation in congested environments. In Daniel Harabor and Mauro Vallati (eds.),
Proceedings of the Thirteenth International Symposium on Combinatorial Search, SOCS 2020,
Online Conference [Vienna, Austria], 26-28 May 2020, pp. 131–132. AAAI Press, 2020. doi:
10.1609/SOCS.V11I1.18525. URL https://doi.org/10.1609/socs.v11i1.18525.

Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A bounded-suboptimal search for multi-
agent path finding. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 12353–12362, 2021.

Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. MAPF-LNS2: fast
repairing for multi-agent path finding via large neighborhood search. In Proceedings of the Thirty-
Sixth Conference on Artificial Intelligence (AAAI), pp. 10256–10265. AAAI Press, 2022.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023.

10

https://doi.org/10.1109/LRA.2021.3062803
https://doi.org/10.1109/LRA.2021.3062803
https://doi.org/10.48550/arXiv.2305.14325
https://doi.org/10.48550/arXiv.2305.14325
https://doi.org/10.1609/socs.v11i1.18525

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. arXiv preprint arXiv:2307.04738, 2023.

Keisuke Okumura. Lacam: Search-based algorithm for quick multi-agent pathfinding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11655–11662, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar, Sven Koenig,
and Howie Choset. PRIMAL: pathfinding via reinforcement and imitation multi-agent learning.
IEEE Robotics Autom. Lett., 4(3):2378–2385, 2019. doi: 10.1109/LRA.2019.2903261. URL
https://doi.org/10.1109/LRA.2019.2903261.

David Schlangen. Dialogue games for benchmarking language understanding: Motivation, taxon-
omy, strategy. arXiv preprint arXiv:2304.07007, 2023.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artif. Intell., pp. 40–66, 2015.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

KaShun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
chain-of-thought from labeled data. arXiv preprint arXiv:2302.12822, 2023.

Alexey Skrynnik, Anton Andreychuk, Maria Nesterova, Konstantin Yakovlev, and Aleksandr Panov.
Learn to follow: Decentralized lifelong multi-agent pathfinding via planning and learning. arXiv
preprint arXiv:2310.01207, 2023.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski. Multi-
agent pathfinding: Definitions, variants, and benchmarks. In Proceedings of the Twelfth Annual
Symposium on Combinatorial Search (SoCS), pp. 151–159. AAAI Press, 2019.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT approach to multi-agent
path finding under the sum of costs objective. In 22nd European Conference on Artificial Intelli-
gence (ECAI), volume 285 of Frontiers in Artificial Intelligence and Applications, pp. 810–818.
IOS Press, 2016.

Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Kraehenbuehl. Language
conditioned traffic generation. arXiv preprint arXiv:2307.07947, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On
the planning abilities of large language models–a critical investigation. arXiv preprint
arXiv:2305.15771, 2023.

11

https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.48550/arXiv.2307.09288

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024a.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024b.

Yen-Jen Wang, Bike Zhang, Jianyu Chen, and Koushil Sreenath. Prompt a robot to walk with large
language models. arXiv preprint arXiv:2309.09969, 2023a.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
cognitive synergy in large language models: A task-solving agent through multi-persona self-
collaboration. CoRR, abs/2307.05300, 2023b. doi: 10.48550/ARXIV.2307.05300. URL https:
//doi.org/10.48550/arXiv.2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.
html.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, and Minjoon Seo.
In-context instruction learning. arXiv preprint arXiv:2302.14691, 2023.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B Tenenbaum, Tian-
min Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. arXiv preprint arXiv:2307.02485, 2023.

A COMPLETE PROMPTS

In Fig. 6, we give our system prompt. Between different maps, the only thing that changed is the
text highlighted in blue, and all other parts are the same. We provide the user prompts in Fig. 7 and
Fig. 8.

B TOKEN LENGTH GROWS

In Fig. 9, we show the average prompt length per agent per step, which includes both the input and
the output. We found that with the growing number of agents, this average is also growing, which
means that the output length is growing faster than linear. This contributes to the fact that the more
agents, the more complex the environment, and thus, the longer explanation and more iterations
until a correct plan is needed. We also observe that in failing scenarios where the agents go back and
forth, the token length is generally shorter, given that they did not run into the iterative deconflict
process, which takes a lot of tokens to solve.

C COMPARISON BETWEEN RULE-BASED CHECKER AND LLM AS CHECKER

In many domains, people are using LLM as the checker and provide feedback to another LLM,
which serves as an actor. While we choose to use a rule-based checker because of its reliability
and speed, here we provide some results on how bad the performance of an LLM-based checker
could be. We randomly picked 50 different step information that needs the checker to verify from
our discussion history. And the success rate is 76%, and the average time spent for each check is 3
seconds. This success rate is why we choose to use the rule-based checker.

12

https://doi.org/10.48550/arXiv.2307.05300
https://doi.org/10.48550/arXiv.2307.05300
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

You are a decision-maker in a warehouse system that is running as a 4-connected grid-based multi-agent
path finding system of [[Map Description]]. You will be provided with the current scenario in which you
need to choose actions for each agent, i.e., the detailed information that provides where the obstacles are,
together with each agent’s current location and goal locations. The objective is to minimize the time of
the agent who arrives at its goal location at the latest while keeping no agents from colliding with each
other at any timestep. You only need to consider collision between two agents located in the same cell
after each move. On each timestep, you could choose one action from moving up, moving down, moving
left, moving right, and staying without moving. You should try to avoid collisions not only in the current
timestep but also look ahead to a few timesteps if it is important to avoid future collisions.
Remember that to avoid a collision, normally, only one agent needs to change their action from the
original action. Nevertheless, your job is not to generate a whole path but to do it step-by-step, and the
information on whether a specific action is valid or not is provided in each single step. Remember that
the given action is based on the obstacles, so the available action will not change if the agent chooses to
stay at the same location. You only need to give a single-step action for each agent to follow; do not give
more steps until I tell you to.
First, give your solution in the same format as follows, with some explanation if the agent is not moving
or moving in a direction that is not towards its goal. (This is not the actual scenario, but an example of
the desired output format. You will be provided with the actual scenario later):
Step 1:
Agent 1:
Current: (1,0)
Goal: (1,0)
Move: Stay, as it has already reached its goal.

Agent 2:
Current: (5,4)
Goal: (5,6)
Move: Up to (5,5)

Agent 3:
Current: (0,7)
Goal: (6,4)
Move: Right to (1,7)

Then, validate your solution by listing all the coordinates of the agents after the move and check if
there is any pair of agents that have the same coordinates. If there is a collision by mistake, regenerate
another solution immediately and validate again by listing the coordinates of all the agents until you get
a collision-free solution. Finally, end your output with your validated solution in a new paragraph with
the format of a sequence of : [[Agent id]]: [[Coordinate]].

Figure 6: An example of the system prompt to specify the MAPF system and the objective. The text
highlight in blue will be replaced by map description. For example, in room-32-32-4, the prompt
will be ’room-like map with size 32*32’.

D CASE STUDY ON GPT-O1-PREVIEW

In the main paper, we showed that the latest model of (GPT-)o1-preview has a worse performance
than the previous GPT-4-turbo. To study this anomaly, we provide a case study here.

As shown in Fig. 10, compared to the previous version, GPT-o1-preview now learns to explicitly
try to find an alternative route, and also, it now learns to use its previous history more strategically.
After the model has found out that moving right is probably not helpful to him, it will not try to go
right again. However, this is making the result worse, given the current capability of the model is
not strong enough. We observe that while at location (1, 17), agent 5 could have moved up, GPT-
o1-preview still chose to go back to the left. This fails to meet the motivation of trying to find an
alternative path when meeting an obstacle. It is noteworthy that after a retry, it chooses to move up
and end up in a successful final plan. Similar scenarios happens which leads to the improvement in
Table. 10, which shows that GPT-o1-preview has the capability of at least matching the performance
of the previous model, but the current result is coming from the randomness of LLMs. Also, this
opens up the potential for future research to study how to automatically integrate the regeneration
process when provided with a more advanced checker. This checker would need to go beyond merely

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Agent 1 is currently in (0,2), and wants to go to (3,1).
Agent 2 is currently in (1,3), and wants to go to (2,0).
The map is as follows, where ’@’ denotes a cell with an obstacle that an agent cannot pass, and ’.’ denotes
an empty cell that an agent can pass.
The bottom-left cell is (0,0) and the bottom-right cell is (31,0):
....
...@
....
.@..
In the next step:
Agent 1 can move [’stay at (0, 2)’, ’right to (1, 2)’, ’up to (0, 3)’, ’down to (0, 1)’].
Agent 2 can move [’stay at (1, 3)’, ’left to (0, 3)’, ’right to (2, 3)’, ’down to (1, 2)’].

Figure 7: An example of the user prompt for describing the scenario. Text in blue is a scenario-
specific prompt, while text in orange is a map-specific prompt. In the experiments on the empty
map, only the first blue paragraph will be provided, and all text starting from the black paragraph
is removed because there are no obstacles. The text in purple is the single-step observation (SSO)
information.

[[Success]]
Good job. Keep moving. In the next step:
Agent 1 can move [’stay at (0, 2)’, ’right to (1, 2)’, ’up to (0, 3)’, ’down to (0, 1)’].
Agent 2 can move [’stay at (1, 3)’, ’left to (0, 3)’, ’right to (2, 3)’, ’down to (1, 2)’].
[[Failure]]
You are wrong. Agents (1,2), and (4,5) are colliding with each other. Please correct the current step.
You are wrong. Agent 2,4 is colliding with obstacles. Please correct the current step.

Figure 8: An example of the user prompt starting from the second step. While here we demonstrate
a few options, only one of them, i.e., text in one color, will be provided to the LLM in one iteration.

assessing the final output, like the current checker, and instead evaluate the entire reasoning process.
The checker should be able to predict whether the current explanations are likely to lead to failure in
future steps, rather than simply determining if the current step is correct. This aligns with evaluating
the Qπ value in a Markov decision process, where π represents the generation policy of the large
language model (LLM). Unlike V ∗, which evaluates the current state based on an optimal policy,
Qπ would allow the model to assess whether the current action will result in long-term success or
failure in tasks such as MAPF. For instance, the checker should recognize that while the agent could
theoretically move back to (1, 17) later, if it chooses to move left to (0, 17) at step 6, the model’s
policy will not opt for this, indicating the need for regeneration at this step rather than later. It is
also noteworthy that even when large reasoning models (LRM) like GPT-o1-preview have success at
some point, it will also introduce a much longer inference time and make it even harder to deploy in
the real world. We also provide another example in Fig. 11, where GPT-o1-preview has also shown
its reasoning of trying one step, and going back. However, this example goes back directly because
it sees no option to go to the goal location after the detour. This is one of the examples that LLM
still fails even after we incorporate the human checker in the middle because it still does not have a
strong capability in path planning.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 9: Average token length per agent step on success scenarios.

<Assistant>
Step 5:
...
Agent 5:
Current: (0,17)
Goal: (0,23)
Move: Right to (1,17), aiming to find a path upwards since moving up is blocked.
...
<User>
Keep moving. In the next step, ...
<Assistant>
...
Charting new routes...
Agent 5 is mapping out new paths towards (0,23). Moving left or up from (1,17) could be viable, but
obstacles might alter their course. Interessen her own challenges and adjusting trajectory.
...
Step 6:
...
Agent 5:
Current: (1,17)
Goal: (0,23)
Move: Left to (0,17)
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 7:
...
Agent 5:
Current: (0,17)
Goal: (0,23)
Move: Stay at (0,17), as moving right doesn’t help and moving up is blocked.
...

Figure 10: An example of part of the output from GPT-o1-preview model. The main difference
compared to previous model in the reasoning is highlighted in red. Italics are the part shown as the
thought of GPT-o1-preview in the web version.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

<Assistant>
Step 8:
...
Agent 3:
Current: (17,5)
Goal: (17,1)
Move: Up to (17,6)
Explanation: Moving up to find a path that allows decreasing the y-coordinate towards the goal.
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 9:
...
Agent 3:
Current: (17,6)
Goal: (17,1)
Available moves: [’stay at (17,6)’, ’right to (18,6)’, ’up to (17,7)’, ’down to (17,5)’]
Move: Down to (17,5)
...
<User>
Keep moving. In the next step, ...
<Assistant>
Step 10:
...
Agent 3:
Current: (17,5)
Goal: (17,1)
Available moves: [’stay at (17,5)’, ’left to (16,5)’, ’right to (18,5)’, ’up to (17,6)’]
Move: Stay at (17,5)
Explanation: No available moves bring Agent 3 closer to its goal without moving away.
...

Figure 11: Another example of part of the output from GPT-o1-preview model.

16

	Introduction
	LLMs for Multi-agent Path Finding
	Preliminary
	Methods
	Experiment Results on MAPF Benchmark
	General Experiment Settings
	Single-agent Path Finding Results
	Multi-agent Path Finding Results

	Cause of Failures
	Reasoning Capability
	Context Length Limit
	Understanding Obstacle Locations

	Discussion
	Related Works
	Conclusion
	Complete Prompts
	Token Length Grows
	Comparison Between Rule-based Checker and LLM as Checker
	Case Study on GPT-o1-preview

