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ABSTRACT

Federated learning (FL) is an efficient learning framework that assists distributed
machine learning when data cannot be shared with a centralized server. Recent
advancements in FL use predefined architecture-based learning for all clients.
However, given that clients’ data are invisible to the server and data distribu-
tions are non-identical across clients, a predefined architecture discovered in a
centralized setting may not be an optimal solution for all the clients in FL. Mo-
tivated by this challenge, we introduce SPIDER, an algorithmic framework that
aims to Search PersonalIzed neural architecture for feDERated learning. SPI-
DER is designed based on two unique features: (1) alternately optimizing one
architecture-homogeneous global model (Supernet) in a generic FL manner and
one architecture-heterogeneous local model that is connected to the global model
by weight-sharing-based regularization (2) achieving architecture-heterogeneous
local model by an operation-level perturbation based neural architecture search
method. Experimental results demonstrate that SPIDER outperforms other state-
of-the-art personalization methods with much fewer times of hyperparameter tun-
ing.

1 INTRODUCTION

Federated Learning (FL) is a promising decentralized machine learning framework that facilitates
data privacy and low communication costs. It has been extensively explored in various machine
learning domains such as computer vision, natural language processing, and data mining. Despite
many benefits of FL, one major challenge involved in FL is data heterogeneity, meaning that the
data distributions across clients are not identically or independently (non-I.I.D) distributed. The
non-I.I.D distributions result in the varying performance of a globally learned model across dif-
ferent clients. In addition to data heterogeneity, data invisibility is another challenge in FL. Since
clients’ private data remain invisible to the server, from the server’s perspective, it is unclear how to
select a pre-defined architecture from a pool of all available candidates. In practice, it may require
extensive experiments and hyper-parameter tuning over different architectures, a procedure that can
be prohibitively expensive.

To address the data-heterogeneity challenge, variants of the standard FedAvg have been proposed
to train a global model, including the FedProx Li et al. (2018), FedOPT Reddi et al. (2020), and
FedNova Wang et al. (2020). In addition to training of a global model, frameworks that focus on
training personalized models have also gained a lot of popularity. The Ditto Li et al. (2021b),
PerFedAvg Fallah et al. (2020a), and pFedMe Dinh et al. (2020) are some of the recent works
that have shown promising results to obtain improved performance across clients. However, all
these works exploit pre-defined architectures and operate at the optimization layer. Consequently, in
addition to their inherent hyper-parameter tuning, these personalization frameworks often encounter
the data-invisibility challenge that one has to select a suitable model architecture involving a lot of
hyper-parameter tuning.

In this work, we adopt a different and complementary technique to address the data heterogeneity
challenge for FL. We introduce SPIDER, an algorithmic framework that aims to Search PersonalIzed
neural architecture for feDERated learning. Recall that in a centralized setting, the neural architec-
ture search (NAS) aims to search for optimal architecture to address system design challenges such
as lower latency Wu et al. (2019), lesser memory cost Li et al. (2021a), and smaller energy consump-

1



Under review as a conference paper at ICLR 2023

tion Yang et al. (2020). For architecture search, there are three well-known methods explored in
literature, gradient-based Liu et al. (2018), evolutionary search Liu et al. (2021), and reinforcement
learning Jaafra et al. (2019). Out of these, gradient-based methods are generally considered more
efficient because of their ability to yield higher performance in comparatively lesser time Santra
et al. (2021).

To achieve personalization at the architecture level in FL, we propose a unified framework, SPIDER.
This framework essentially deploys two models, local and global models, on each client. Initially,
both models use the DARTS search space-based Supernet Liu et al. (2018), an over-parameterized
architecture. In the proposed framework, the global model is shared with the server for the FL up-
dates and, therefore, stays the same in the architecture design. On the other hand, the local model
stays completely private and performs personalized architecture search, therefore, gets updated. To
search for the personalized child model, SPIDER deploys SPIDER-Searcher on each client’s lo-
cal model. The SPIDER-Searcher is built upon a well-known gradient-based NAS method, named
perturbation-based NAS Wang et al. (2021). The main objective of the SPIDER framework is to
allow each client to search and optimize their local models while benefiting from the global model.
To achieve this goal, we propose an alternating bi-level optimization-based SPIDER Trainer that
trains local and global models in an alternate fashion. However, the main challenge here is the op-
timization of an evolving local model architecture while benefiting from a fixed global architecture.
To address this challenge, SPIDER Trainer performs weight-sharing-based regularization that reg-
ularizes the common connections between the global model’s Supernet and the local model’s child
model. This aids clients in searching and training heterogeneous architectures tailored for their local
data distributions. In a nutshell, this approach not only yields architecture personalization in FL but
also facilitates model privacy (in the sense that the derived child local model is not shared with the
server at all).

To evaluate the performance of the proposed algorithm, we consider a cross-silo FL setting and use
Dirichlet distribution to create non-I.I.D data distribution across clients. For evaluation, we report
test accuracy at each client on the 20% of training data kept as test data for each client. We show that
the architecture personalization yields better results than state-of-the-art personalization algorithms
based solely on the optimization layer, such as Ditto Li et al. (2021b), perFedAvg Fallah et al.
(2020a), and local adaptation Cheng et al. (2021).

To summarize, the following are the key contributions of our work.

• We propose and formulate a personalized neural architecture search framework for FL named
SPIDER, from a perspective complementary to the state-of-the-art to address data heterogeneity
challenges in FL.

• SPIDER is designed based on two unique features: (1) maintaining two models at each client,
one to communicate with the server and the other to perform a local progressive search, and (2)
operating local search and training at each client by an alternating bilevel optimization and weight
sharing-based regularization along the FL updates.

• We run extensive experiments to demonstrate the benefit of SPIDER compared with state-of-the-
art personalized FL approaches such as Ditto Li et al. (2021b), perFedAvg Fallah et al. (2020a) and
Local Adaptation Cheng et al. (2021) on three datasets, CIFAR10, CIFAR100 and CINIC10. With
the ResNet18 model, on the CIFAR10 dataset with heterogeneous distribution, we demonstrate an
increase of the average local accuracy by 2.8%, 1.7%, and 5.5%, over Ditto, PerFedAvg, and Local
Adaption, respectively. Further, on CIFAR100, we demonstrate an accuracy gain of 10%, 6%, 4%
over Ditto, Local Adaptation, and perFedAvg, respectively. Likewise, on CINIC-10, we demonstrate
an accuracy gain of 20%, 23%, and 24% over Ditto, Local Adaptation, and perFedAvg, respectively.

2 RELATED WORKS

Heterogeneous Neural Architecture for FL Heterogeneous neural architecture is one way to
personalize the model in FL. For personalization, the primal-dual framework Smith et al. (2017a),
clustering Sattler et al. (2020), fine-tuning with transfer learning Yu et al. (2020b), meta-learning
Fallah et al. (2020a), regularization-based method Hanzely & Richtárik (2020); Li et al. (2021b)
are among the popular methods explored in the FL literature. Although these techniques achieve
improved personalized performance, all of them use a pre-defined architecture for each client. Het-
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eroFL Diao et al. (2020) is a recent work that accomplishes the aggregation of heterogeneous mod-
els by assigning sub-parts of the global model based on their computation budget and aggregating
the parameters common between different clients. Similarly, work Luo et al. performs a limited
channel-wise search to assign sub-models meeting clients’ efficiency budgets and performs the par-
tial aggregation of weights at the server. Another work Lin et al. (2020b) accomplishes this task by
forming clusters of clients of the same model and allowing for heterogeneous models across clus-
ters. Model aggregation is based on cluster-wise aggregation followed by a knowledge distillation
from the aggregated models into the global model. Given data invisibility in FL, deciding which ar-
chitecture would work for which client is a challenging task and requires exploration. Another work
Dudziak et al. (2022) personalizes architectures to compute-power-based clusters instead of individ-
ual clients. As such, our proposed method aims to achieve personalized architecture automatically
and focuses on the objective of tailoring architecture to individual clients’ data distribution.

Neural Architecture Search for FL Neural Architecture Search (NAS) has gained momentum
in recent literature to search for a global model in a federated setting. FedNAS He et al. (2020b)
explores the compatibility of MileNAS solver with Fed averaging algorithm to search for a global
model. Direct Federated NAS Hu et al. (2020) is another work in this direction that explores the
compatibility of a one-shot NAS method, DSNAS Hu et al. (2020), with Fed averaging algorithm
with the same application, in search of a global model. Zhu & Jin (2021) uses evolutionary NAS
to design a master (global) model. Singh et al. (2020) explores the concept of differential privacy
using DARTs solver Liu et al. (2018) to explore the trade-off between the accuracy and privacy of a
global model. Xu et al. (2020) starts with a pre-trained handcraft model and continues pruning the
model until it satisfies the efficiency budget. Another work Hoang & Kingsford (2021) divides the
model architecture into global and personal components, and searches the personal component for
personalization on identical and independent (IID) vision tasks. Where all these models search for
a unified global model or personalized components of a shared model, a key distinction of our work
with these works is that we aim to search for a complete personalized model for each client.

3 PRELIMINARIES, MOTIVATION, AND DESIGN GOALS

In this section, we introduce the state-of-the-art methods for personalized federated learning, discuss
the motivation for personalizing model architectures, and summarize our design goals.

Personalized Federated Learning A natural formulation of FL is to assume that among c distinct
clients, each client k has its own distribution Pi, draws data samples from Pi, and aims to solve
a supervised learning task (e.g., image classification) by optimizing a global model w with other
clients collaboratively. At a high-level abstraction, the optimization objective is then defined as:

min
w⇤

G (F1(w), ..., Fc(w)) , (1)

where Fk(w) measures the performance of the model global w on the private dataset at client k
(local objective), and G is the global model aggregation function that aggregates each client’s local
objectives. For example, for FedAvg, G(.) would be weighted aggregation of the local objectives,Pc

k=1 pkFk(w), where
Pc

k=1 pk = 1.

However, as distributions across individual clients are typically heterogeneous (i.e., non-I.I.D.),
there is a growing line of research that advocates reformulating FL as a personalization framework,
dubbed as personalized FL (PFL). In PFL, the objective is redirected to find a personalized model
vk for device k that performs well on the local data distribution:

min
v⇤
1 ,...,v

⇤
c

(F1(v1), ..., Fc(vc)) , (2)

To solve this challenging problem, various PFL methods are proposed, including FedAvg with local
adaptation (Local-FL) Cheng et al. (2021); Yu et al. (2020a); Wang et al. (2019), MAML-based
PFL (MAML-FL) Fallah et al. (2020b); Jiang et al. (2019), clustered FL (CFL) Ghosh et al. (2020);
Sattler et al. (2021), personalized layer-based FL (PL-FL) Liang et al. (2020); Hoang & Kingsford
(2021); Pillutla et al. (2022); Hoang & Kingsford (2021), federated multitask learning (FMTL)
Smith et al. (2017b) and knowledge distillation (KD) Lin et al. (2020a); He et al. (2020a).

3



Under review as a conference paper at ICLR 2023

weight sharing-based
Regularization

SPIDER Trainer: 
Architecture-Heterogeneous 

Bi-level Optimization Framework

SPIDER Searcher: 
each client search its own neural architecture 

on the fly progressively

SPIDER Weave (search) a Different Web �QHXUDO�DUFKLWHFWXUH��for Each Client

Phase 1:
Fixing architecture 

for warming up

Phase 2:
Progressive Searching 

Personalized Architecture

Phase 3:
Fixing 

Architecture

replace
on the fly

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

weight sharing-based
Regularization

1

2 3

1

2 3

1

2 3

1

2 3

weight sharing-based
Regularization

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

weight sharing-based
Regularization

1

2 3

1

2 3

1

2 3

1

2 3

… …

Time

replace
on the fly

Client 1

Client K

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

…
1

2 3

4

1

2 3

4

1

2 3

1

2 3

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

…
1

2 3

4

1

2 3

4

1

2 3

1

2 3
FL Server

Global model 
(Supernet)

Local model 
(Child)

Figure 1: Illustration of SPIDER framework. SPIDER is weaving (searching) a different web (neural architec-

ture) for each client.

Motivation for Neural Architecture Personalization Distinct from these existing works on PFL,
we propose a new approach to instead personalize model architecture for each client. We are moti-
vated by one critical potential benefit, that is, the searched architecture for each client is expected to
fit its own distinct distribution, which has the potential to provide a substantial improvement over the
existing PFL baselines that only personalize model weights. In addition, a personalized architecture
search allows the clients to even keep their local model architectures private in a sense the server and
other clients neither know the architecture nor the weights of that architecture. This further enhances
the privacy guarantees of FL and is helpful in business cases that each client hopes to also protect
its model architecture.

Design Goals Our goal is to enable personalized neural architecture search for all clients in FL. In
this context, the limitation of existing personalized FL methods is obvious: Local-FL and MAML-
FL need every client to have the same architecture to perform local adaptations; In CFL, the clus-
tering step requires all clients to share a homogeneous model architecture; PL-FL can only obtain
heterogeneous architectures for a small portion of personalized layers, but it does not provide an
architecture-agnostic method to determine the boundary of personalized layers in an automated
mechanism; FMTL is a regularization-based method which cannot perform regularization when
architectures are heterogeneous across clients; KD has an unrealistic assumption that the server has
enough public dataset as the auxiliary data for knowledge distillation.

To circumvent these limitations, our goal is to design an architecture-personalized FL framework
with the following requirements:

• R1: allowing heterogeneous architectures for all clients, which can capture fine-grained
data heterogeneity;

• R2: searching and personalizing the entire architecture space, to avoid the heuristic search
for the boundary of personalized layers;

• R3: requiring no auxiliary data at the client- or server-side (unlike knowledge distillation-

based PFL);

We now introduce SPIDER which meets the above requirements in a unified framework.

4 METHODOLOGY: SPIDER

4.1 OVERVIEW

The overall framework of SPIDER is illustrated in Figure 1. Essentially, each client maintains
two models in this framework: one architecture-homogeneous global model for collaborative train-
ing with other clients, and one architecture-heterogeneous local model that initially shares the
same super architecture space as the global model. At a high-level, SPIDER is formulated as an
architecture-personalized bi-level optimization problem (Section 4.2) and proposes the solver as
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the orchestration of SPIDER Trainer (Section 4.3) and SPIDER-Searcher (Section 4.4). SPIDER
Trainer is an architecture-personalized training framework that can collaboratively train heteroge-
neous neural architectures across clients. To allow federated training on the expected heterogeneous
local architectures, it enables regularization between an arbitrary personalized architecture and the
global model via weight sharing. With this support, SPIDER-Searcher is designed to dynamically

adjust the architecture of each client’s local model on the way. To search a personalized architecture
for the local data distribution of each client, SPIDER-Searcher is built on a novel neural architecture
search (NAS) method that searches optimal local Subnet progressively using operation-level pertur-
bation on the accuracy value as the criterion. Overall, each client’s local model goes through three
phases (also shown in Figure 1): pre-training to warm up the initial local model, progressive neural
architecture search, and final training of the searched architecture-personalized model.

SPIDER can meet the design goals R1-R3 introduced in Section 3 because 1) each client performs
independent architecture personalization with its own private data (R1), 2) the search space is not
restricted to a portion of the model (R2), and 3) no auxiliary data is used to assist the search and
train process (R3).

4.2 SPIDER FORMULATION: ARCHITECTURE-PERSONALIZED BI-LEVEL OPTIMIZATION

SPIDER aims to personalize (weave) a different neural architecture (web) for each client. To gener-
ate heterogeneous architectures across clients, we use two models, a local model (Ak) and a global
model (Supernet A) at each client, and formulate SPIDER as an architecture-personalized bi-level
optimization problem for each client k 2 {1, 2, ..., c}:

min
vk,Ak✓A

Fk(vk,Ak;w
⇤,A) (3)

s.t. w⇤ 2 argmin
w

G (F1(w,A), ..., FK(w,A)) , (4)

where Fk is the local objective of the client k; w, and vk are all learnable parameters; w denotes the
parameter of the global model architecture A, vk is the weight parameter of the local personalized
architecture Ak of the client k. Here, Ak is a child neural architecture of a Supernet A such that
Ak ✓ A. The Supernet A can be considered having a mask M , each entry representing a learnable
parameter ↵ij , i 2 {1, 2, .., e} and j 2 {1, 2, ..., o} where e is the total number of edges and o is the
total number of operations at each edge. Hence, the size of mask M is equal to e⇥o. For the Supernet
mask M , all ↵ij entries are 1. Likewise, we maintain a mask Mk for local models Ak. Our goal is to
optimize ↵ij parameters of the mask Mk such that we learn child architecture Ak = Mk �A. Note
that in Eq.(4), we aim to learn a global model A in a federated learning setting, which formulates our
outer optimization.However, in the inner optimization given in Eq.(3), the objective of each client is
to optimize its local model’s architecture Ak and its associated parameters vk while benefiting from
the global model w⇤. As a tractable, yet general case study, SPIDER reuses the DARTS architecture
space as Supernet A that contains a set of edges {1, ..., e}, and each edge has multiple operations
{1, ..., o}. Based on this definition, Ak maintains the operation-level granularity: Ak’s edge set
space is a subset of A’s edge set space, and the operation set in Ak’s each edge may also be a subset
space. We provide further details of the search space in Appendix A.3.

The difficulty of jointly optimizing the architecture Ak and related weight parameters vk The
key difference of our formulation from existing bi-level optimization for FL (e.g., Li et al. (2021b))
is that in our case, Ak is also learnable (Eq.(3)). We assume each client can have an evolving
architecture Ak, i.e., Eq.(3) has to optimize the architecture Ak and its related weight parameters
vk jointly, while using complete Supernet-based global model weights, w. SPIDER addresses this
challenge by the orchestration of SPIDER-Trainer and SPIDER-Searcher.

4.3 SPIDER TRAINER: FEDERATED TRAINING ON HETEROGENEOUS ARCHITECTURES

In this section, we describe SPIDER trainer, an architecture-personalized training framework that
can collaboratively train heterogeneous neural architectures across clients.

To clearly show how SPIDER handles the optimization difficulty of Eq.(3), we first downgrade the
objective to the case that all clients use predefined (fixed) heterogeneous architectures (derived from
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the Supernet A). More specially, we reduce the aforementioned optimization framework in Eq.(3)
and Eq.(4) to the following:

min
vk

hk(vk,Ak;w
⇤,A) = Fk(vk) +

�

2
||vk �w⇤

share||2 (5)

s.t. w⇤ 2 argmin
w

G (F1(w,A), ..., FK(w,A)) , (6)

where local model’s weights vk are regularized towards the global model w⇤
share, where w⇤

share
are the weight parameters of the operation set space of A overlapping (sharing) with Ak. Also, �
is the regularization hyper-parameter. Note that, now, only vk needs to be optimized in Eq.5, while
Ak is fixed during the optimization.

We then solve Eq.5 and Eq.6 alternately. We summarize this optimization procedure as SPIDER-
Trainer with a detailed pseudo code illustrated in Algorithm 1. In this algorithm, we can note that
the global model (line #12) and the local model (line #15) are updated alternately. The strength of
this algorithm lies in its elaborate design, which provides the following key benefits:

Algorithm 1 SPIDER Trainer
1: Initialization: initialize c clients with the k-th client has a global model wk using Supernet A, and a local

model vk using subnet Ak with mask Mk(set Ak = A at the begining); p is the number of local epochs;
r is the number of rounds; ts number of rounds to start search; ⌧ is the recovery periods in the units of
rounds.

2: Server executes:
3: for each round t = 0, 1, 2, ..., r � 1 do
4: for each client k in parallel do
5: wt+1

k  ClientLocalSearch(k,wt, t)

6: wt+1  
PK

k=1
Nk
N wt+1

k
7:
8: function ClientLocalSearch(k, wt, t): // Run on client k
9: for each epoch in p do

10: for minibatch in training and validation data do
11: At+1

k ,M t+1
k = ProgressiveNAS(At

k,M
t
k, ts, ⌧, t)

12: Update Global model: wt+1 = wt � ⌘wrwLtr
k (w

t)
13: for each ↵ij in M t+1

k do
14: wt+1

shareij = wt+1
ij � ↵ij // overlapping operation set space between A and Ak

15: Update Local Model: vt+1
k = vt

k � ⌘v
�
rvLtr

k (v
t
k) + �(vt

k �wt+1
share)

�

16: return w to server

(1) Enabling regularization between an arbitrary personalized architecture and the global
model Most importantly, SPIDER-Trainer connects each personalized model with the global
model by enabling the regularization between two different architectures: an arbitrary personal-
ized architecture for the local model Ak of client k and the global model with Supernet A. This is
done by weight sharing. w⇤

share is essentially used to regularize a subnet (Ak) model parameters vk

towards the global model shared/common parameters w⇤
share, as shown in Eq. 6.

(2) Avoiding heterogeneous aggregation SPIDER-Trainer avoids the aggregation of heteroge-
neous model architectures at the server side. As such, no sophisticated and unstable aggregation
methods are required (e.g. knowledge distillation Lin et al. (2020a), etc.), and it is flexible to use
other aggregation methods beyond FedAvg (e.g., Karimireddy et al. (2020); Reddi et al. (2021)) to
update the global model.

(3) Enabling architecture privacy In this algorithm, only the global model is transmitted between
the client and the server. This enables architecture privacy because each client’s architecture is
hidden from the server and other clients.

(4) Potential robustness to adversarial attacks The weight sharing-based regularization not only
yields the benefit of personalization in FL but also makes the FL framework more robust to ad-
versarial attacks. Its robustness advantage comes from its ability to keep the local model private
and regularize towards the global model based on its regularization parameter, as shown before by
architecture-homogeneous bi-level optimization Li et al. (2021b).
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4.4 SPIDER-SEARCHER: PERSONALIZING ARCHITECTURE

Although SPIDER trainer is able to collaboratively train heterogeneous architectures, manual design
of the architecture for each client is impractical or suboptimal. As such, we further add a neural
architecture search (NAS) component, SPIDER-Searcher, in Algorithm 1 (line #11) to adapt Ak

to its local data distribution in a progressive manner. We now present the details of the SPIDER-
Searcher.

Progressive Neural Architecture Search Essentially, SPIDER-Searcher dynamically changes the
architecture of Ak during the entire federated training process. This is feasible because the weight
sharing-based regularization can handle an arbitrary personalized architecture (introduced in Section
4.3). Due to this characteristic, SPIDER-Searcher can search Ak in a progressive manner (shown
in Figure 1): Phase 1: At the beginning, Ak is set equal to Supernet A. The intention of SPIDER-
Searcher in this phase is to warm up the training of the initial Ak so it does not change Ak for a few
rounds; Phase 2: After warming up, SPIDER-Searcher performs edge-by-edge search gradually.
In each edge search, only the operation with the highest impact on the accuracy is kept. It also
uses a few rounds of training as a recovery time before proceeding to the next round of search.
This process continues until all edges finish searching; Phase 3: After all edges finish searching,
SPIDER-Searcher does not change Ak. This serves as a final training of the searched architecture-
personalized model. This three-phase procedure is summarized as Algorithm 2. Now, we proceed
to elaborate on how we calculate the impact of an operation on the Supernet.

Algorithm 2 SPIDER-Searcher
1: Search Space: in the architecture At

k ✓ A, E is the super set of all edges {1, ..., e}, Es is the remaining
subset of edges that have not been searched, and each edge e has multiple operations {1, ..., o}.

2: function ProgressiveNAS(At
k, M t

k,ts, ⌧ , t)
3: if t � ts and t % ⌧ == 0 and LEN(Es) > 0 then
4: i = RANDOM (Es) // random selection
5: // searching without training
6: for all operation j on edge i do
7: evaluate validation accuracy of Ak when operation ↵ij is set to zero (removed)(ACC\↵ij

)

8: in the ith row of M t
k, keep only one operation ↵ij = 1 corresponding to the lowest value of

(ACC\↵ij
).

9: remove i from Es, update At+1
k = At

k �M t
k.

10: else
11: return At

k and M t
k directlly

12: return updated At+1
k and Mk after selection

Operation-level perturbation-based selection In phase 2, we specify selecting the operation
with the highest impact using operation-level perturbation. More specially, instead of optimiz-
ing the mixed operation architecture parameters ↵ using another bi-level optimization as DARTS
(a.k.a. gradient-based search) to pick optimal operation according to magnitude of ↵ parameters
(magnitude-based selection), we assign a constant value to ↵ and use the impact of an operation

on the local validation accuracy (perturbation) as a criterion to search on the edge. This simpli-
fied method is much more efficient given that it only requires evaluation-based search rather than
training-based search (optimizing ↵ij). In addition, it avoids inserting another bi-level optimiza-
tion for NAS inside a bi-level optimization for FL, making the framework stable and easy to tune.
Finally, this method avoids suboptimal architecture Wang et al. (2021) lead by magnitude-based
selection in differentiable NAS.

5 EXPERIMENTS

This section presents the experimental results of the proposed method, SPIDER. All our experiments
are based on non-IID data distribution among FL clients. We have used latent Dirichlet Distribution
(LDA), which is a common data distribution in FL to generate non-IID data across clients He et al.
(2020c), Yurochkin et al. (2019).
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5.1 EXPERIMENTAL SETUP

Task and Dataset We perform an image classification task on three well-known datasets, CI-
FAR10, CIFAR100 and CINIC10. CIFAR10 dataset consists of 60000 32x32 color images in
10 classes, with 6000 images per class, and CIFAR100 dataset consists of 60,000 images in 100
classes, with 600 images per class. CIFAR100 has more classes and comparatively fewer data per
class, therefore, it is considered more challenging than CIFAR10. In addition, CINIC10 consists of
270,000 32x32 color images in 10 classes, with 90,000 images per train, test, and validation sub-
set. CINIC10 dataset is a larger dataset and includes images from ImageNet as well. We generate
non-IID data across 8 clients by exploiting LDA distribution with parameter (↵ = 0.2) for the train-
ing data of CIFAR10, CIFAR100, and CINIC10 datasets. The LDA distribution of CIFAR10 and
CIFAR100 has been shown in Appendix A.1.

For personalized architecture experiments with SPIDER, we split the total training data samples
present at each client into training (50%), validation (30%), and testing sets (20%). For other per-
sonalization schemes used for comparison, we do not need validation data. Therefore, we split the
data samples of each client with training (80%) and test (20%) for a fair comparison. In addition,
we fix the non-IID data distribution in all experiments. We provide Hyperparameter search details
in Appendix A.2.

Table 1: Average local validation Accuracy Comparison of SPIDER with other personalization techniques on

CIFAR10, CIFAR100 and CINIC10 Datasets

CIFAR10 CIFAR100 CINIC10
Method Average Parameter Average Parameter Average Parameter

Accuracy Size Accuracy Size Accuracy Size
Local Adaptation - ResNet18 0.87±0.02 11M 0.61±0.03 11M 0.61± 0.05 11M
Ditto - ResNet18 0.90±0.03 11M 0.57±0.03 11M 0.64 ± 0.05 11M
perFedAvg - ResNet18 0.91±0.02 11M 0.64±0.03 11M 0.59 ± 0.03 11M
Local Adaptation - DARTS 0.85 ±0.03 4.7M 0.63 ±0.04 4.7M 0.73 ±0.04 4.7M
Ditto - DARTS 0.77±0.05 4.7M 0.45±0.04 4.7M 0.60±0.03 4.7M
SPIDER 0.93±0.02 2.8M 0.68±0.03 3.1M 0.84±0.07 3.3M

Implementation and Deployment We implement the proposed method for distributed comput-
ing with nine nodes, each equipped with GPUs. We set this as a cross-silo FL setting with one node
representing the server and eight nodes representing the clients. These client nodes can represent
real-world organizations such as hospitals and clinics that aim to collaboratively search for person-
alized architectures for local benefits such as higher accuracy in a privacy-preserving FL manner.
Since we are working on a cross-silo setting, neural architecture search cost may not be a concern
since devices in cross-silo are rich in resources.

5.2 RESULTS

Here, we report the comparison of our proposed method SPIDER with the other state-of-the-art
personalized methods; Ditto, perFedAvg, and local adaptation. Since these schemes use a pre-
defined architecture, we use the Reset18 model because of its comparable model size. Since we are
exploiting DARTS based search space in this work, we also use a DARTS model Liu et al. (2018)
searched in a centralized setting on CIFAR10 dataset as our base model for local adaptation and
Ditto personalization schemes.

5.2.1 AVERAGE TEST ACCURACY

As illustrated in Table 1, our method, SPIDER, achieves the objective R1 by outperforming the
state-of-the-art personalization methods; Ditto, local adaptation and perFedAvg on three image
classification datasets CIFAR10, CIFAR100 and CINIC10. For CIFAR100 and CINIC10 dataset,
Local adaptation with the DARTS based model performed the second best and outperformed Ditto,
perFedAvg and Local adaption on ResNet18. For CIFAR10, perFedAvg with Resnet18 performed
the second best. Overall, we obtain 2%, 4% and 11% higher accuracy as compared to the best
performing scheme from the representative state-of-the-art personalization algorithms; Ditto, local
adaptation, and perFedAvg, on the CIFAR10, CIFAR100 and CINIC-10 datasets, respectively. For
CINIC10 dataset, we observe substantial performance gain (11%) with respect to the sota personal-
ization techniques. We attribute this gain to the potential of SPIDER to adapt to invisible data better
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by tailoring architectures for each client according to their data distribution. In addition, Ditto with
DARTS model did not perform well for all three datasets and may need a bigger hyper-parameter
search set than the one we considered (given in Appendix A.2) to converge better.

For personalization, in addition to average accuracy, the standard deviation (std) is also considered
an important metric. Therefore, we also report the standard deviation for each method in Table 1.
We note that the standard deviation across clients is almost similar for CIFAR10 and CIFAR100
datasets. For CINIC10, the standard deviation of SPIDER is slightly higher but this is achieved at
11% higher accuracy. Overall, we achieve almost the same standard deviation as other baselines but
with the benefit of providing higher average test accuracy.

5.2.2 ARCHITECTURE HETEROGENEITY AND PERSONALIZATION GAIN

An important feature of SPIDER is that it helps each client search for its own architecture tailored for
its own specific data distribution. Due to data heterogeneity across clients, we observe architectures
to be heterogeneous across clients as shown in Appendix B.4, hence we achieve the objective R2, the
search and training of heterogeneous architectures across clients. The objective R3, no dependence
on auxiliary data, is obtained by the algorithmic framework of SPIDER as it does not rely on any
auxiliary data and exploits only the client’s dataset for searching and training. A byproduct of using
DARTS search space is that the average parameter size of the models obtained with SPIDER is quite
smaller. In order to further investigate whether the architecture searched by one client is best suited
for its own data distribution, we perform the following experiment.

For any given client i, we apply its final architecture with its learned weights to another client j’s
data and finetune i’s architecture on j’s data. We denote the accuracy we obtain on data j via
architecture i as APij . We calculate the architecture i personalization gain or drop (if negative) as
follows,

gi =

Pc�1
j=0,j 6=i(APii �APji)

c� 1
(7)

We calculate it across all silos. The quantity gi signifies the personalization gain of architecture i
across other silos architectures on its own dataset. Next, we calculate the personalization gain of SPI-
DER scheme as the mean of all gi, i.e.,

Pc�1
i=0 gi

c , where c is the total number of clients in the network.
We conduct this experiment on CIFAR10, CIFAR100, CINIC10 datasets, where we finetune the ar-
chitecture learned via SPIDER on other clients’ data for 20 epochs and report the best accuracy. We
obtain 1.96%, 3.11%, 3.71% personalization gain on CIFAR10, CIFAR100 and CINIC10 datasets,
respectively. We observe that for the majority of the clients, its searched architecture outperforms
the other architectures. This highlights the importance of architecture personalization which can be
more powerful than just weight personalization (as shown by our empirical results). We report the
APij and APi values for all i and j in Table 2 and Appendix section B.4.

Table 2: CINIC10: Personalization Gain Analysis

(a) Accuracy values of Architecture i on j’s data (where i and j represent client IDs.

(j, i) i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7
j = 0 90.59 88.98 88.65 88.75 89.56 89.17 89.17 88.27
j = 1 86.54 90.55 87.42 87.79 87.59 87.94 87.21 86.25
j = 2 72.79 73.27 78.23 73.49 75.21 74.62 74.73 73.81
j = 3 83.71 84.27 84.22 88.35 84.68 84.82 84.63 84.43
j = 4 69.46 71.40 70.34 71.69 75.29 70.58 71.52 67.92
j = 5 73.90 71.95 74.45 73.16 74.02 77.53 74.18 72.03
j = 6 83.21 83.69 84.29 82.40 83.78 82.92 88.48 81.76
j = 7 89.5 88.68 89.81 88.37 89.5 89.19 88.44 91.25

(b) Accuracy Gain/Drop Matrix (APjj �APij) and the resultant gj vector

(j, i) i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 gj
j = 0 0. 1.61 1.94 1.84 1.03 1.42 1.42 2.32 1.65
j = 1 4.01 0. 3.13 2.76 2.96 2.61 3.34 4.3 3.30
j = 2 5.44 4.96 0. 4.74 3.02 3.61 3.5 4.42 4.24
j = 3 4.64 4.08 4.13 0. 3.67 3.53 3.72 3.92 3.96
j = 4 5.83 3.89 4.95 3.6 0. 4.71 3.77 7.37 4.87
j = 5 3.63 5.58 3.08 4.37 3.51 0. 3.35 5.5 4.15
j = 6 5.27 4.79 4.19 6.08 4.7 5.56 0. 6.72 5.33
j = 7 1.75 2.57 1.44 2.88 1.75 2.06 2.81 0. 2.18

6 CONCLUSION

We proposed SPIDER, an algorithmic framework that can search personalized neural architecture
for FL. SPIDER specializes a weight-sharing-based global regularization to perform progressive
neural architecture search. Experimental results demonstrate that SPIDER outperforms other state-
of-the-art personalization methods by searching and training a personalized architecture for each
client.
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