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Abstract

Despite significant advances in learning imper-
fect information extensive-form games (IIEFGs),
most existing theoretical guarantees are limited to
IIEFGs in the tabular case. To permit efficient learn-
ing of large-scale IIEFGs, we take the first step in
studying two-player zero-sum IIEFGs with linear
function approximation. In particular, we consider
linear IIEFGs in the formulation of partially ob-
servable Markov games (POMGs) with linearly pa-
rameterized rewards. To address the challenge that
the underlying function approximation structure
is difficult to directly apply due to the imperfect
information of states, we construct the composite
“feature vectors” for information set-action pairs.
Based on this, we further propose a “least-squares
loss estimator”, which we call the fictitious least-
squares loss estimator. Through integrating this
estimator with the follow-the-regularized-leader
(FTRL) framework, we propose the fictitious least-
squares follow-the-regularized-leader (F2TRL) al-
gorithm, which achieves a provable Õ(λ

√
dH2T )

regret guarantee in the large T regime, where d is
the ambient dimension of the feature mapping, H
is the horizon length, λ is a “balance coefficient”
and T is the number of episodes. At the core of
the analysis of F2TRL is the leverage of our pro-
posed new “balanced transition” over information
set-action space. Additionally, we complement our
results with an Ω(

√
dmin(d,H)T ) regret lower

bound for this problem and conduct empirical eval-
uations across various environments, which corrob-
orate the effectiveness of our algorithm.

*The majority of this work was done during Canzhe Zhao’s
internship at Tencent AI Lab.
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1 INTRODUCTION

In imperfect information games (IIGs), players only have
partial observations of the true state of the game. Particularly,
the notion of imperfect-information extensive-form games
(IIEFGs) [Kuhn, 1953] simultaneously enables imperfect
information and the sequencing of players’ moves, which
thus characterizes a large amount of real-world imperfect
information games including Poker [Heinrich et al., 2015,
Moravčík et al., 2017, Brown and Sandholm, 2018], Bridge
[Tian et al., 2020], Scotland Yard [Schmid et al., 2021] and
Mahjong [Li et al., 2020, Kurita and Hoki, 2021, Fu et al.,
2022]. There has been a voluminous amount of works on
regret minimization or finding the Nash equilibrium (NE)
[Nash Jr, 1950] in IIEFGs. When the full knowledge of the
game is known, existing works solve IIEFGs by linear pro-
gramming [Koller and Megiddo, 1992, Von Stengel, 1996,
Koller et al., 1996], first-order optimization methods [Hoda
et al., 2010, Kroer et al., 2015, 2018, Munos et al., 2020,
Lee et al., 2021, Liu et al., 2022], and counterfactual regret
minimization (CFR) [Zinkevich et al., 2007, Lanctot et al.,
2009, Johanson et al., 2012, Tammelin, 2014, Schmid et al.,
2019, Burch et al., 2019, Liu et al., 2022].

When the full knowledge of the game is not known a priori,
the problem will be much more challenging and is typi-
cally tackled through learning from the random samples
accrued during repeated playthroughs of the game. In this
line of works, learning two-player zero-sum IIEFGs have
been addressed using Monte-Carlo CFR methods [Lanctot
et al., 2009, Farina et al., 2020, Farina and Sandholm, 2021]
or equipping online mirror descent (OMD) and follow-the-
regularized-leader (FTRL) frameworks with loss estima-
tors [Farina et al., 2021, Kozuno et al., 2021, Bai et al.,
2022, Fiegel et al., 2023]. Amongst these works, Bai et al.
[2022] leverage OMD with “balanced exploration policies”
to achieve the Õ(

√
H3XAT ) regret bound, where H is

the horizon length, X is the cardinality of the information
set space, A is the cardinality of the action space and T is
the number of episodes. Notably, this regret upper bound



Table 1: Comparisons of regret bounds with most related works studying IIEFGs with bandit feedback.

Algorithm Setting Regret

IXOMD [Kozuno et al., 2021]

Tabular IIEFGs

Õ(HX
√
AT )

BalancedOMD/CFR [Bai et al., 2022] Õ(
√
H3XAT )

BalancedFTRL [Fiegel et al., 2023] Õ(
√
XAT )

F2TRL (this paper)
Linear IIEFGs

Õ(λH
√
dT ) 1

Lower bound (this paper) Ω(
√
dmin(d,H)T )

1 An exponential term that approaches 1 for large enough T is omitted for simplicity. Please see Theorem 1 for details.
The “balance coefficient” λ is formally defined in Section 4.

matches the information-theoretic lower bound on all pa-
rameters but H up to logarithmic factors. Subsequently,
Fiegel et al. [2023] further improve the upper bound to
Õ(

√
XAT ), which has optimal dependence on all parame-

ters up to logarithmic factors, using FTRL with “balanced
transitions”.

Though significant advances have emerged in learning two-
player zero-sum IIEFGs, the existing regret bounds of all
works have polynomial dependence onX andA. In practice,
however, X or A might be prohibitively large, which makes
these regret bounds and sample complexities vacuous. To
cope with this issue, a common approach is function approx-
imation, which approximates the observations on experi-
enced information sets and actions with sharing parameters
and generalizes experienced observations onto unseen in-
formation sets and actions. Indeed, for practitioners in the
area of IIEFGs (e.g., Moravčík et al. [2017], Brown et al.
[2019]), function approximation using, for example, deep
neural networks, has made significant progress in solving
large-scale IIEFGs. Yet, the theoretical guarantees of learn-
ing IIEFGs with function approximation still remain open
and we are still far from understanding them well. This
naturally motivates us to ask the following question:

Does there exist a provably efficient algorithm for learning
IIEFGs in the function approximation setting?

In this paper, we give an affirmative answer to the above
question for IIEFGs with linear function approximation over
rewards and known sequence-form transition probabilities.
Specifically, we consider IIEFGs in the formulation of par-
tially observable Markov games (POMGs) with linearly pa-
rameterized rewards in the bandit feedback setting, in which
only the information sets instead of the underlying states
of the game are observable. This problem is challenging in
the sense that the feature corresponding to the current state
is unknown since the current state itself is unknown and
only imperfect information of the current state is revealed
to the learner, which poses substantial difficulties in exploit-
ing the linear structure of the reward functions. To address

this problem so as to establish provably efficient algorithms
for learning IIEFGs with linear function approximation, we
make the following contributions:

• To learn the unknown parameter that linearly parameter-
izes the reward functions, we instead propose to construct
a kind of composite feature vectors, weighted by the tran-
sition probabilities and the opponent’s policy. Intuitively,
composite features can be seen as features of correspond-
ing information set-action pairs. Equipped with such com-
posite features, we further propose a “least-squares loss
estimator” for this problem, which we call fictitious least-
squares loss estimator since it is not a true least-squares
loss estimator, due to that the “feature covariance matrix”
of the fictitious least-squares loss estimator is weighted
by the sequence-form policies instead of any probabil-
ity distributions. Though the fictitious least-squares loss
estimator is not a true least-squares loss estimator, we
prove that it indeed serves as an unbiased estimator of the
unknown reward parameter (see Section 3.1 for details).

• Via integrating our proposed fictitious least-squares loss
estimator into the FTRL framework, we propose Fictitious
least-squares Follow-The-Regularized-Leader (F2TRL)
algorithm. We prove that the regret upper bound of F2TRL
is of order Õ(λ

√
dH2T ) in large T regime, where d is

the ambient dimension of the feature mapping, H is the
horizon length, λ is a “balance coefficient” and T is the
number of episodes. In particular, λ is moderately large
when the environment state transition is nearly a uniform
distribution (specifically, λ ≤ 1 when the environment
state transition is uniformly at random and the game tree
is a k-ary tree). Moreover, we show that λ can only be
as large as X in the worst case, guaranteed by the de-
sign of our new “balanced transition” over information
set-action space, and this worst-case hardly happens in
practice (see Section 3 for further details). At the core of
both the design and analysis of our F2TRL algorithm is
the newly proposed “balanced transition”, which might
be of independent interest.



• To complement the results of our regret upper bound,
we also establish the first regret lower bound of order
Ω(
√
dmin(d,H)T ) for learning IIEFGs with linearly pa-

rameterized rewards. Moreover, empirical evaluations are
conducted on various environments, which corroborate
the advantages of our methods against previous ones (see
Section 5 for details).

1.1 ADDITIONAL RELATED WORKS

In addition to tabular IIEFGs/POMGs, the other line of re-
search most related to our work is learning fully observable
MGs with function approximation [Xie et al., 2020, Chen
et al., 2022, Xiong et al., 2022, Jin et al., 2022, Wang et al.,
2023, Cui et al., 2023, Ni et al., 2023, Zhang et al., 2023].
These works generally fall into two categories. The first
category aims to relax the assumption of linear function
approximation by studying MGs with general function ap-
proximation [Xiong et al., 2022, Jin et al., 2022, Ni et al.,
2023], and the other category of works focuses on learning
general-sum MGs [Wang et al., 2023, Cui et al., 2023, Ni
et al., 2023, Zhang et al., 2023]. However, we note that all
these works study fully observable MGs with function ap-
proximation, which assume the underlying states are observ-
able to the players and thus are not applicable for solving
POMGs. To our knowledge, there are no existing works
studying POMGs with function approximation, which is the
main focus of this work.

2 PRELIMINARIES

For ease of discussion, we study IIEFGs in the formulation
of POMGs [Kozuno et al., 2021, Bai et al., 2022]. In this
section, we introduce the preliminaries of POMGs.

Partially Observable Markov Games An episodic,
finite-horizon, two-player zero-sum POMG is denoted by
POMG(H,S,X ,Y,A,B,P, r), in which

• H is the length of the horizon;

• S =
⋃
h∈[H] Sh, where Sh

⋂
Sh′ = ∅ for all h ̸= h′, is

a finite state space with cardinality S =
∑H
h=1 Sh and

|Sh| = Sh, ∀h ∈ [H];

• X =
⋃
h∈[H] Xh is the finite space of information sets

(short for infosets in what follows) for the max-player,
where Xh = {x(s) : s ∈ Sh} with x : S → X as
the emission function and Xh

⋂
Xh′ = ∅ for all h ̸= h′.

The cardinality X of X satisfies X =
∑H
h=1Xh with

|Xh| = Xh. The finite space of infosets Y =
⋃
h∈[H] Yh

for the min-player and associated quantities are defined
analogously;

• A with |A| = A and B with |B| = B are the finite action
spaces for the max-player and min-player, respectively;

• P = {p0(·) ∈ ∆S1}
⋃
{ph (·|sh, ah, bh) ∈

∆Sh+1
}(sh,ah,bh)∈Sh×A×B,h∈[H−1] are the state

transition probabilities, with p0(·) as the probability
distribution over initial states and ph(sh+1|sh, ah, bh)
as the probability of transitioning to the next state sh+1

conditioned on (sh, ah, bh) at step h;

• r = {rh (sh, ah, bh) ∈ [−1, 1]}(sh,ah,bh)∈Sh×A×B,h∈[H]

are the random reward functions with r̄h (sh, ah, bh) as
means.

Learning Protocol Let µ = {µh}h∈[H] be the max-
player’s (stochastic) policy, where µh : Xh → ∆A. We
denote by Πmax = {µ : X → ∆A} the set of the policies of
the max-player. Similarly, the min-player’s (stochastic) pol-
icy is defined as ν = {νh}h∈[H] and the set of the policies of
the min-player is denoted by Πmin. The game proceeds in T
episodes. At the beginning of episode t, the max-player and
the min-player choose policies µt ∈ Πmax and νt ∈ Πmin,
respectively. Then, an initial state st1 will be sampled from
p0(·). At each step h, the max-player and min-player will
only observe their infosets xth := x (sth) and yth := y (sth) re-
spectively, but without observing sth. Conditioned on xth, the
max-player will take an action ath ∼ µth (·|xth) and simulta-
neously the min-player will take an action bth ∼ νth (·|yth).
Subsequently, the game will transition to the next state
sth+1 ∼ ph (·|sth, ath, bth). Meanwhile, the max-player and
min-player will receive rewards rth := rh (s

t
h, a

t
h, b

t
h) and

−rth respectively. The t-th episode will terminate after the
max-player and the min-player take actions atH and btH and
receive rewards rtH and −rtH , respectively.

Perfect Recall and Tree Structure As in previous works
[Kozuno et al., 2021, Bai et al., 2022, Fiegel et al., 2023], we
suppose that the POMGs satisfy the tree structure and the
perfect recall condition [Kuhn, 1953]. Specifically, the tree
structure means that for any h=2, . . . ,H and sh∈Sh, there
exists a unique trajectory (s1, a1, b1, . . . , sh−1, ah−1, bh−1)
leading to sh. Perfect recall condition holds for each player
if for any h = 2, . . . ,H and any infoset xh ∈ Xh, there
exists a unique history (x1, a1, . . . , xh−1, ah−1) leading to
xh and similarly for the min-player. In addition, we de-
note by Ch′(xh, ah) ⊂ Xh′ the descendants of (xh, ah)
at step h′ ≥ h. With a slight abuse of notation, we
also let Ch′(xh) := ∪ah∈ACh′(xh, ah) and C(xh, ah) :=
Ch+1(xh, ah).

Sequence-form Representations For any pair of product
policy (µ, ν), the tree structure and perfect recall condition
enable the sequence-form representations of the reaching
probability of state-action (sh, ah, bh):

Pµ,ν(sh, ah, bh)
=p1:h(sh)µ1:h(x(sh), ah)ν1:h(y(sh), bh) , (1)

where p1:h (sh) = p0 (s1)
∏h−1
h′=1 ph′ (sh′+1|sh′ , ah′ , bh′)

is the sequence-form transition probability,



µ1:h (xh, ah) :=
∏h
h′=1 µh′ (ah′ |xh′) and ν1:h (yh, bh) :=∏h

h′=1 νh′ (bh′ |yh′) are the sequence-form poli-
cies. Under sequence-form representations, we
slightly abuse the meanings of µ and ν by viewing
µ = {µ1:h}h∈[H] and ν = {ν1:h}h∈[H]. Also, it is
clear that Πmax is a convex compact subspace of
RXA satisfying constraints µ1:h (xh, ah) ≥ 0 and∑
ah∈A µ1:h (xh, ah) = µ1:h−1 (xh−1, ah−1) with

(xh−1, ah−1) being such that xh ∈ C(xh−1, ah−1)
(understanding µ1:0(x0, a0) = p(∅) = 1).

In this work, we assume that the player has access to the
knowledge of the sequence-form transition probabilities, as
explained in the following assumption.

Assumption 1. The sequence-form transition probability
p1:h(sh) of any sh is known.

Remark 1. Note that this is slightly weaker than assum-
ing knowing P as Assumption 1 only assumes p1:h (sh) =
p0 (s1)

∏h−1
h′=1 ph′ (sh′+1|sh′ , ah′ , bh′) is known. Though

this assumption is not required as in previous works study-
ing tabular POMGs [Kozuno et al., 2021, Bai et al., 2022],
we remark that a similar assumption of knowing P is also
required by Neu and Olkhovskaya [2021], which initiates
the first step for learning adversarial linear MDPs. We leave
the question of whether this assumption can be eliminated
in our problem as our future work.

POMGs with Linear Function Approximation We now
introduce the definition of linear realizability over the re-
ward functions of POMGs, detailed as follows.

Definition 1 (Linear Rewards in POMGs). The reward func-
tion r in POMG(S,X ,Y,A,B, H,P, r) is linearly realiz-
able with a known feature mapping ϕ : S ×A× B → Rd
if for each h ∈ [H], there exists an unknown parameter vec-
tor θh ∈ Rd such that r̄h(sh, ah, bh) = ⟨ϕ(sh, ah, bh),θh⟩
for any (sh, ah, bh) ∈ Sh × A × B. Further, we assume
that sup(sh,ah,bh)∈Sh×A×B ∥ϕ(sh, ah, bh)∥2 ≤ L and
{ϕ(sh, ah, bh)}(sh,ah,bh)∈Sh×A×B spans Rd, ∀h ∈ [H].

Similar definitions of linear reward functions can also be
seen in fully observable linear MGs [Xie et al., 2020]. How-
ever, as we shall see in Section 3.1, the imperfect informa-
tion in POMGs brings significant difficulties in utilizing the
linear structure over the reward functions compared with
fully observable MGs. Note that the regularity assumption
that the range of r̄h(·, ·, ·) and the norm of ϕ(·, ·, ·) are
bounded is only for the purpose of normalization, and the
assumption that Rd is spanned by the feature vectors is for
convenience only [Lattimore and Szepesvári, 2020].

Learning Objective For any product policy (µ, ν), denote
by V µ,ν =Eµ,ν

[∑H
h=1 rh(sh, ah, bh)

]
the value function

of (µ, ν), where the expectation is taken over the random-
ness of the policies (µ, ν) and the environment. In this paper,

we focus on the learning objective of regret minimization.
W.l.o.g., we consider the case where the max-player is the
learning agent, and the min-player is the (potentially adver-
sarial) opponent, who might choose her policy νt arbitrarily,
probably based on all the history information (including the
knowledge of {µk}t−1

k=1) up to episode t− 1. Formally, the
max-player aims to design policies {µt}Tt=1 to minimize
the pseudo-regret (regret for short) compared with the best
fixed policy µ† in hindsight:

RT
max = max

µ†∈Πmax

E

[
T∑
t=1

(
V µ

†,νt

− V µ
t,νt
)]

, (2)

where the expectation is taken over the (potential) random-
ness of both the max-player and min-player.

Additional Notations We slightly abuse the nota-
tion to view xh as the set {s ∈ Sh : x(s) = xh},
when writing s ∈ xh. With sequence-form repre-
sentations, for any µ ∈ Πmax and a sequence of
functions f = (fh)h∈[H] with fh : Xh × A → R, let
⟨µ, f⟩ :=

∑
h∈[H],(xh,ah)∈Xh×A µ1:h (xh, ah) fh (xh, ah).

We denote by F t the σ-algebra generated by
{(skh, akh, bkh, rkh)}h∈[H],k∈[t]. For simplicity, we ab-
breviate E [· | F t] as Et[·]. The notation Õ(·) in this paper
suppresses all the logarithmic factors.

3 FICTITIOUS LEAST-SQUARES
FOLLOW-THE-REGULARIZED-
LEADER

In Section 3.1, we present the proposed fictitious least-
squares loss estimator for learning the unknown reward
parameter. Subsequently, in Section 3.2, we provide the al-
gorithmic details of the F2TRL algorithm, along with its
pseudocode shown in Algorithm 1.

3.1 FICTITIOUS LEAST-SQUARES LOSS
ESTIMATOR

For a fixed νt, Eq. (1) indicates that the value function
V µ

t,νt

is linear in µt [Kozuno et al., 2021]:

V µ
t,νt

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µt1:h (xh, ah)

×
∑

sh∈xh,bh∈B

p1:h (sh) ν
t
1:h (y (sh) , bh) r̄h (sh, ah, bh) .

Hence, the regret in Eq. (2) can be rewritten as RT
max =

maxµ†∈Πmax
E
[∑T

t=1

〈
µt − µ†, ℓt

〉]
, where ℓth is loss



function in round t such that

ℓth (xh, ah) :=

−
∑

sh∈xh,bh∈B

p1:h (sh) ν
t
1:h (y (sh) , bh) r̄h (sh, ah, bh) .

This implies that one can translate the regret minimization
in Eq. (2) into a linear regret minimization problem.

To learn the unknown parameter θh with the leverage of
the linear structure over the reward function, one may con-
struct some linear loss estimator θ̂h of θh. However, this
is more challenging in our case than that of linear bandits
[Abbasi-Yadkori et al., 2011], linear MDPs [Jin et al., 2020],
and fully observable linear MGs [Xie et al., 2020], as the
learning agent only observes the infoset x(sh) and does not
even know the underlying state sh and its associated fea-
ture vector ϕ(sh, ah, bh), making it impossible to regress
rh(sh, ah, bh) against ϕ(sh, ah, bh). To cope with this is-
sue and build a “least-squares loss estimator”, we instead
consider constructing the following feature vector for each
(xh, ah), which is a composite feature vector weighted by
the opponent’s policy νt and transition P:

ϕν
t

(xh, ah)

:=−
∑

(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)ϕ(sh, ah, bh) .

Intuitively, the constructed composite feature vector
ϕν

t

(xh, ah) can be regarded as the “feature vector” of cor-
responding infoset-action (xh, ah). 1 Further, one can see
that ℓth (xh, ah) is indeed linear with θh and ϕν

t

(xh, ah):〈
−ϕν

t

(xh, ah),θh

〉
=

〈 ∑
(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)ϕ(sh, ah, bh),θh

〉
=− ℓth(xh, ah) .

Based on ϕν
t

(xh, ah), we define the “feature covariance
matrix” Qt

µ,h for any policy µ at step h in episode t as

Qt
µ,h

=
∑

(xh,ah)∈Xh×A

µ1:h (xh, ah)ϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤ .

(3)
We are now ready to introduce the proposed “least-squares
loss estimator” θ̂th:

θ̂th = −(Qt
µt,h)

−1ϕν
t

(xth, a
t
h)r

t
h(s

t
h, a

t
h, b

t
h) , (4)

1Note that our construction of ϕνt

(xh, ah) depends on the
knowledge of the min-player’s policy νt. While this is not nec-
essary in some works on tabular POMGs [Kozuno et al., 2021,
Bai et al., 2022], the requirement for knowledge of opponents’
policies—and even the more restrictive assumption that all players
are controlled by a central controller—can be seen in various stud-
ies on (fully-observable) MGs with linear function approximation
(e.g., [Chen et al., 2022, Xie et al., 2020, Cui et al., 2023]).

which we call the fictitious least-squares loss estimator. Im-
portantly, we show that θ̂th is an unbiased estimator of the
unknown θh, guaranteed in the following lemma. Its proof
is deferred to Appendix A.1.

Lemma 1. For any t ∈ [T ] and h ∈ [H], it holds that
Et−1[θ̂th] = θh.

Remark 2. Intuitively, this “least-squares loss estimator”
shares a similar spirit as its counterpart in adversarial
linear bandit literature [Lattimore and Szepesvári, 2020].
However, note that there are two crucial distinctions be-
tween θ̂th defined above and the common least-squares loss
estimator in adversarial linear bandits: (a) µt1:h(·, ·) in the
definition of the “feature covariance matrix” Qt

µ,h is not
necessarily a probability distribution over Xh × A (thus
Qt
µ,h itself is not a true feature covariance matrix); and

(b) the “feature vector” ϕν
t

(xth, a
t
h) is de facto not nec-

essarily linear with the regressand rth(s
t
h, a

t
h, b

t
h) (recall

r̄h (sh, ah, bh) = ⟨ϕ (sh, ah, bh) ,θh⟩, which only means
r̄h is linear in ϕ(·, ·, ·) instead of ϕν

t

(·, ·)). Due to the above
two reasons, θ̂th is not a real least-squares loss estimator
and this is why we term θ̂th as the fictitious least-squares
loss estimator. On the other hand, as shown in Lemma 1, via
constructing θ̂th, we indeed address the challenge that we
can not regress rh(sh, ah, bh) against ϕ(sh, ah, bh) due to
the partial observability in POMGs.

Remark 3. When constructing the composite feature
vector ϕν

t

(xh, ah), our algorithm uses the product of
the sequence-form transition probability p1:h(sh) and the
sequence-form policy νt1:h (y (sh) , bh) to weight the feature
vectors over state-action triplets. Some works studying ad-
versarial linear Markov decision processes (MDPs) (e.g.,
Kong et al. [2024] and Liu et al. [2024]) use the occupancy
measure (OM) µπ,p(s, a), which is the probability of visit-
ing state-action pair (s, a) under policy π and transition
probability p, to weight the feature vectors over state-action
pairs. We would like to note that there remain several key
differences between our idea and theirs. First, from an al-
gorithmic design perspective, for each infoset-action pair
(xh, ah), our weighting operation is performed only on a
subset of state-actions {sh ∈ Sh : x(sh) = xh} × B and
the weight p1:h (·) νt1:h (·, ·) actually is not a probability
measure over {sh ∈ Sh : x(sh) = xh} × B. In contrast,
such a weighting operation in works of Kong et al. [2024]
and Liu et al. [2024] is performed on all the state-action
pairs Sh ×A (Sh is the set of all the states on step h of a
layered MDP) and µπ,p(·, ·) is a probability measure over
Sh × A. More importantly, the purpose of our weighting
operation is mainly to construct a kind of composite feature
vector ϕν

t

(xh, ah) for infoset-action pairs (xh, ah) so as
to construct an unbiased least-squares loss estimator. After
such a weighting operation, for each step h, we obtain a
set of feature vectors {ϕνt

(xh, ah)}(xh,ah)∈Xh×A. On the
contrary, the weighting operation in works of Kong et al.



[2024] and Liu et al. [2024] is to construct a kind of feature
vector ϕπ for each policy π so as to reduce learning adver-
sarial linear MDPs into the problem of learning adversarial
linear bandits with (ϕπ)π∈Π as the underlying action set.

Algorithm 1 F2TRL (max-player version)

1: Input: Tree-like structure of X × A, learning rates η
and “balanced transition” p⋆.

2: Initialization: Set µ1 as the uniform policy.
3: for t = 1 to T do
4: for h = 1 to H do
5: Observe infoset xth, execute action ath ∼ µth(·|xth)

and receive reward rth(s
t
h, a

t
h, b

t
h).

6: end for
7: Construct composite features

{ϕνt

(x, a)}(x,a)∈X×A .
8: for h = 1 to H do
9: Compute Qt

µt,h as defined in Eq. (3).
10: Compute θ̂th as defined in Eq. (4).
11: end for
12: Construct loss estimate for all (xh, ah) and h ∈ [H]:

ℓ̂th(xh, ah) = ⟨ϕν
t

(xh, ah), θ̂
t
h⟩.

13: Compute cumulative loss estimate at episode t: L̂t =
L̂t−1 + ℓ̂t.

14: Solve Eq. (5) to update policy µt+1 via Algorithm 2.
15: end for

3.2 ALGORITHMIC DETAILS

With the constructed fictitious loss estimator in Eq. (4), we
are now ready to introduce the algorithmic design of our
F2TRL algorithm.

In each episode t, after interacting with the min-player us-
ing policy µt (Line 4 - Line 6), F2TRL will construct the
composite feature vectors and fictitious least-squares loss
estimator θ̂th defined in Eq. (4) (Line 7 - Line 11). Then
F2TRL will compute the loss estimate ℓ̂th (xh, ah) with the
leverage of θ̂th as well as the composite feature vectors for
all (xh, ah) ∈ Xh ×A and h ∈ [H] and update the cumu-
lative loss estimate L̂t (Line 12 - Line 13). At the end of
episode t, to update the policy µt+1 used in episode t+1, it
solves the following linear optimization problem regularized
by potential function {Ψh}h∈[H] (Line 14):

µt+1 = argmin
µ∈Πmax

〈
µ, L̂t

〉
+

1

η

H∑
h=1

Ψh (p
⋆
1:h · µ1:h) , (5)

where L̂t =
∑t
k=1 ℓ̂

k is the cumulative loss estimate,
Ψh(wh) =

∑
(xh,ah)∈Xh×A wh(xh, ah) log(wh(xh, ah))

is the negentropy potential function, p⋆1:h(xh) =

p⋆0(x1)
∏h−1
h′=1 p

⋆
h′(xh′+1|xh′ , ah′) with p⋆h(·|xh, ah) ∈

∆C(xh,ah) being a kind of transition probability over Xh ×
A×Xh+1, and p⋆1:h·µ1:h is defined as [p⋆1:h·µ1:h](xh, ah) =

p⋆1:h(xh)µ1:h(xh, ah). We note that p⋆ is well-defined due
to the perfect recall condition, and p⋆1:h ·µ1:h is a probability
distribution over the infoset-action space Xh ×A at step h.

When bounding the regret of the FTRL, it is essential to
make the stability term well-controlled in the analysis. To
this end, we construct the following “balanced transition” as
our transition probability p⋆1:h(·) over infoset-action space:

p⋆ = argmax
p̃∈P⋆

min
h∈[H],xh∈Xh

p̃1:h(xh) , (6)

where P⋆ denotes the set of all the valid transition probabili-
ties over infoset-action space. We also remark that similar
approaches that utilize FTRL or OMD with “balanced tran-
sition” over Xh × A × Xh+1 have also been exploited in
previous works (see, e.g., Bai et al. [2022], Fiegel et al.
[2023]). However, the design of our “balanced transition”
p⋆1:h(·) differs from the previous ones in the following two
aspects:

• p⋆(xh+1|xh, ah) in this work is proportional to all the
reachable infosets CH(xh+1, ah+1) in XH by taking
some fixed action ah+1 ∈ A at infoset xh+1. In contrast,
the “balanced transitions” of Bai et al. [2022], Fiegel et al.
[2023] are devised by only considering the reachable in-
fosets in Xh′ for some h′ ≥ h + 1 or all the reachable
infosets in the whole sub-tree.

• Our p⋆(xh+1|xh, ah) is contributed by some fixed action
ah+1 ∈ A that maximizes the number of the reachable
infosets |CH(xh+1, ah+1)| in XH , while previous “bal-
anced transitions” of Bai et al. [2022], Fiegel et al. [2023]
are contributed by the sum of all the reachable infosets by
taking all actions ah+1 ∈ A at infoset xh+1.

As we shall see in Section 4, the property of our p⋆ plays
a crucial role when bounding the stability term of F2TRL
algorithm in the regret analysis.

Computation We prove that the computation of Eq. (5)
has a closed-form update and can be solved by backward
dynamic programming, as illustrated in Algorithm 2 in Ap-
pendix C.1. Besides, the computation of our “balanced tran-
sition” p⋆ in Eq. (6) can be also efficiently solved by Algo-
rithm 3 and we defer the details to Appendix C.2.

4 ANALYSIS

In this section, we first derive the regret upper bound for
our F2TRL algorithm. Then, in Section 4.2, we provide
the regret lower bound for learning IIEFGs with linearly
parameterized rewards.

4.1 REGRET UPPER BOUND

Let pν1:h (xh) :=
∑
sh∈xh

p1:h (sh) ν1:h−1(y (sh−1) ,
bh−1), which can be seen as the probability of reaching xh



contributed by environment transition P = {ph}H−1
h=0 and

opponent’s policy ν. Denote by β⋆h := minxh∈Xh
p⋆1:h(xh)

and βνh := maxt∈[T ],xh∈Xh
pν

t

1:h(xh). Then we define the
“balance coefficient” λ as λ := maxh∈[H] β

ν
h/β

⋆
h. Besides,

let ρ = mint∈[T ],h∈[H] ρmin(Q
t
µt,h) be the minimum of all

the minimal eigenvalues of the feature covariance matrices.2

We are now ready to present the regret upper bound of
F2TRL, the proof of which is postponed to Appendix B.

Theorem 1. For IIEFGs with linearly realizable re-
wards and known sequence-form transition probabili-

ties, by setting learning rate η =
√

2 log(XA)
Td , the

regret of F2TRL is upper bounded by RT
max ≤

O(exp(L
2
√

log(XA)/(β⋆
Hρ

√
Td))λH

√
dT log(XA)).

Remark 4. Intuitively, λ measures the balance effect of
the “balanced transition” p⋆1:h compared with the transi-
tion over infoset-action space contributed by the environ-
ment state transition P and the opponent’s policy νt. In-
deed, due to the design of our “balanced transition” p⋆,
λ is moderately large when the environment state transi-
tion P is nearly uniform (in particular, λ ≤ 1 when the
environment state transition P is a uniform distribution
and the game tree is a k-ary tree; see Lemma 9 in Ap-
pendix B.3). On the other hand, the design of our “balanced
transition” p⋆ also guarantees that β⋆H ≥ 1/X and thus
λ ≤ X in the worst-case scenario (see Lemma 10 in Ap-
pendix B.3). Nevertheless, we should note that this worst
case is very unlikely to happen in practice unless it simulta-
neously happens that (a) the environment state transitions
along the trajectory {(sh, ah, bh)}h∈[H−1] leading to sH
s.t. p⋆1:H(x(sH)) = β⋆H satisfy ph(sh+1|sh, ah, bh) = 1
for all (sh, ah, bh) along the trajectory; and (b) the op-
ponent knows the underlying environment transitions and
the mapping y : S → Y so that the opponent can inten-
tionally ensure νt1:H−1 (y (sH−1) , bH−1) = 1 by setting
νt(bh|y(sh)) = 1 for all (sh, bh) along the trajectory. No-
tice that condition (b) hardly happens in the self-play setting
where the policies of the min-player are also generated by
an algorithm. Also, if the opponent is a pure adversary
aiming to maximize the regret of the max-player and only
condition (a) holds, the best that the opponent can do is
to uniformly pick an action by ∈ B at each infoset y ∈ Y
and set her policy νt such that νt(by|y) = 1. This can only
guarantee that νt1:H−1 (y (sH−1) , bH−1) = 1 (and thus
λ = X) happens with an exponentially small probability
of B−(H−1). Additionally, we remark that λ has nothing to
do with the commonly discussed “concentrability coefficient”
in offline RL literature [Kumar et al., 2019], which might
be arbitrarily large in practice [Liu et al., 2020, Xie et al.,
2021].

2Note that it is guaranteed that ρ > 0 due to that µ1 is set as
the uniform policy in Line 2 of Algorithm 1 and the closed-form
update of µt as shown in Algorithm 2.

Remark 5. For the adversarial linear bandit problem, a
more tractable special case of IIEFGs with linearly param-
eterized rewards, one can eliminate the dependence of the
regret bound on 1/ρ by mixing µt with an optimal design
distribution. However, for general linear IIEFG problems,
it is highly unclear how to achieve this, as for all µ ∈ Πmax,
µ1:h(·, ·) is not even a valid probability distribution over
Xh ×A. On the other hand, it is worth noting that the de-
pendence on 1/ρ only appears in the exponential term of
our regret upper bound, which is inversely related to the
number of episodes T and approaches 1 as T grows large
(i.e., T ≥ Ω(L

4 log(XA)/((β⋆
Hρ)

2d))). Besides, we remark that
the
√
log(XA) dependence has also appeared in previous

works studying the more tractable (fully observable) adver-
sarial linear (mixture) MDPs [Neu and Olkhovskaya, 2021,
Zhao et al., 2023, Li et al., 2024a,b].

4.1.1 Technique Overview

In the following, we briefly explain the technical challenges
involved in deriving the regret upper bound in Theorem 1
and the approaches we use to address them.

Loss Estimates with Large Negative Magnitudes We
bound the regret of F2TRL by considering the common
analysis scheme of FTRL to decompose the regret into the
penalty term and the stability term. However, when bound-
ing the stability term, simply following the previous analy-
sis for tabular IIEFGs and other online learning problems
with linear function approximation (say, adversarial linear
bandits) does not address our problem. In detail, we note
that the analysis of Fiegel et al. [2023] to the bound the
stability term can only work with non-negative loss esti-
mates, which naturally hold in the tabular case but not in
the linear case. A plausible remedy from the analysis of
adversarial linear bandits (see, e.g., Chap. 27 of Lattimore
and Szepesvári [2020]) is to explicitly bound the Bregman
divergence between ∇Ψ(µt) and ∇Ψ(µt)−ηℓ̂t and use the
inequality exp(x) ≤ 1 + x + x2 for x ≤ 1, which in turn
requires ηℓ̂th(xh, ah)/p

⋆
1:h(xh, ah) ≥ −1 in our case. Un-

fortunately, ηℓ̂th(xh, ah)/p
⋆
1:h(xh, ah) ≥ −1 does not hold

in our case and thus thwarts this remedy. To tackle this issue,
we instead first evaluate the Bregman divergence between
∇Ψ(µt) and ∇Ψ(µt) − ηℓ̂t using a local norm regarding
some zt = αµt + (1− α)µ̃t+1 for some α ∈ [0, 1], where
µ̃t+1 := ∇Ψ⋆(∇Ψ(µt)− ηℓ̂t) and Ψ⋆ is the convex conju-
gate of Ψ. Then, with the observation that zt1:h(xh, ah) ≤
max{µt1:h(xh, ah), µ̃

t+1
1:h (xh, ah)} and µ̃t+1

1:h (xh, ah) is pro-
portional to µt1:h(xh, ah), we bound this local norm by up-
per bounding zt1:h(xh, ah) using µt1:h(xh, ah) (see Lemma
6 for details).

Non-zero Loss Estimates and Balanced Effects of p⋆
Moreover, in IIEFGs, bounding the stability term critically
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Figure 1: Experimental results of baseline methods and our F2TRL algorithm on two linear IIEFG environments. The
curves depict the value of Eq. (2) as a function of the number of episodes, averaged over 10 different seeds, with shaded
areas representing the 1 standard error.

relies on the closed-form update of the policies (e.g., Eq.
(5) in our case). Nevertheless, previous works on tabular
IIEFGs [Kozuno et al., 2021, Bai et al., 2022, Fiegel et al.,
2023] solve the updates similar to Eq. (5) by heavily relying
on the sparsity of the importance-weighted loss estimator.
Specifically, only the infoset-action pairs along the expe-
rienced trajectory {(xth, ath)}h∈[H] have non-zero loss es-
timates, while all other infoset-action pairs have zero loss
estimates in the tabular case. However, in our linear case, all
infoset-action pairs can have non-zero loss estimates, mak-
ing the methods in previous works inapplicable. We address
this challenge by recursively considering all descendants
of a given infoset-action pair (xh, ah), rather than just one
descendant (xth+1, a

t
h+1) from the experienced trajectory in

episode t, when updating the policy µt+1
h (ah|xh) (see Ap-

pendix C.1 for details). Finally, deriving the overall bound
for the stability term in our case requires particular care
to bound the ratio βνh/(minxh

p̃1:h(xh)) for any “balanced
transition” p̃ adopted by the algorithm. To make this ratio
well-controlled, we seek to maximize minxh

p̃1:h(xh) for
all h ∈ [H]. This is exactly facilitated by the design of
our “balanced transition” p⋆ defined in Eq. (6) computed
in Algorithm 3, which guarantees that this ratio is upper
bounded by the desired “balance coefficient” λ (please refer
to Lemma 7 for details).

4.2 REGRET LOWER BOUND

The following theorem provides the regret lower bound of
learning IIEFGs with linearly realizable rewards and known
state transition probabilities, the proof of which is deferred
to Appendix D.

Theorem 2. Suppose A ≥ 2, d ≥ 2 and T ≥ 2d2. Then for
any algorithm Alg that controls the max-player, generates
and executes policies {µt}t∈[T ], there exists an IIEFG in-
stance with linearly realizable rewards and known state tran-

sition probabilities on which RT
max ≥ Ω(

√
dmin(d,H)T ).

Remark 6. Note that both the regret upper and lower
bounds of our algorithm do not have polynomial depen-
dence on X and A, as opposed to the Ω(

√
XAT ) regret

lower bound of Bai et al. [2022]. However, we would like
to note that this does not imply that our results contradict
those of previous works, as both our regret upper and lower
bounds are specifically established for IIEFG instances with
linear structures over reward functions, while the regret
lower bound of Bai et al. [2022] is derived by considering
learning on the IIEFG instances without any function ap-
proximation structures (i.e., tabular rewards). Besides, we
conjecture that the lower bound might be further improved
to RT

max≥Ω(
√
dHT ), and currently the regret upper bound

of F2TRL is loose by an Õ(
√
H) factor in large T regime

(omitting dependence on λ). The investigation into the pos-
sible improvements of the upper and lower bounds is an
interesting and also challenging future direction, and we
leave this extension as our future study.

5 EXPERIMENTS

This section presents the empirical evaluations of our F2TRL
algorithm as well as previous methods. 3

Environments We construct two A-ary tree IIEFG envi-
ronments with linear structures, both of which exactly follow
from the construction of the hard-to-learn IIEFG instances
used to prove the regret lower bound (please see Appendix
D for details of such instances). The IIEFG instance in the
first environment involves H = 3 steps and A = 10 actions
at each infoset of the max-player (hence there are 1110
infoset-action pairs of the max-player in total), while the

3Codes of the experiments are available at https://
github.com/AnonymousXX-XX/Linear-IIEFG.

https://github.com/AnonymousXX-XX/Linear-IIEFG
https://github.com/AnonymousXX-XX/Linear-IIEFG


second IIEFG instance has H = 5 steps and A = 5 actions
at each infoset of the max-player (hence 3905 infoset-action
pairs in total). In both environments, the rewards for all
state-action pairs (s, a) ∈

⋃
h∈[H−1] Sh ×A are set to be 0

and the mean of the reward for each (s, a) ∈ SH ×A is set
as r̄H(s, a) = ⟨ϕ(s, a),θ⟩. Particularly, the feature ϕ(s, a)
has dimension d = 10, with each dimension first uniformly
sampled from [−1, 1] and then normalized by its L2-norm,
and the construction of θ is given by the same procedure.

Baselines We incorporate the algorithms in most related
works as baselines, including IXOMD [Kozuno et al., 2021],
BalancedOMD [Bai et al., 2022], and BalancedFTRL,
AdaptiveFTRL [Fiegel et al., 2023]. 4 Following Fiegel
et al. [2023], we conduct a (logarithmic) grid search on the
learning rates of each algorithm in each environment.

Results As shown in Figure 1, the baseline methods ex-
cept AdaptiveFTRL have similar performance in both
environments and AdaptiveFTRL converges relatively
slower than other baselines. Further, F2TRL outperforms all
the baselines with significantly faster convergence rates on
both environments, due to the leverage of the linear struc-
tures of the games. Besides, all the algorithms empirically
suffer more regret in the second environment than in the first
one, since it involves a longer horizon length H and more
infoset-action pairs to learn than the first environment.

6 CONCLUSIONS

In this work, we make the first step towards provably ef-
ficient learning of two-player zero-sum IIEFGs with lin-
ear function approximation, in the formulation of POMGs
with linearly realizable rewards. It is proven that the pro-
posed F2TRL algorithm attains a regret guarantee of or-
der Õ(λH

√
dT ) in large T regime. We accomplish this by

devising a fictitious least-squares loss estimator for this
problem, along with the design of a kind of new “bal-
anced transition” over infoset-action space, which might
be of independent interest. Moreover, we establish an
Ω(
√
dmin(d,H)T ) regret lower bound for this problem

and conduct empirical evaluations on various environments,
which validate the advantages of our F2TRL algorithm. Be-
sides, there are also several interesting future directions to be
explored. One natural question may be how to obtain high-
probability results for this challenging problem so as to find
an approximate NE with high-probability. We believe it is
possible to extend our results to high-probability ones using
self-concordant barrier potential functions and increasing
learning rates [Lee et al., 2020]. The other question might be
whether it is possible to generalize the proposed algorithm

4We adopt the codes of all the baselines implemented by
Fiegel et al. [2023]: https://github.com/anon17893/
IIG-tree-adaptation.

to multi-player general-sum IIEFGs. We believe the results
of this work will shed light on better understandings of
learning large-scale IIEFGs and we leave these extensions
as our further studies.
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SUPPLEMENTARY MATERIAL

A PROPERTIES OF THE FICTITIOUS LEAST-SQUARES LOSS ESTIMATOR

This section presents the proofs of two key properties of the proposed fictitious least-squares loss estimator.

A.1 UNBIASNESS OF THE FICTITIOUS LEAST-SQUARES LOSS ESTIMATOR

Proof of Lemma 1. The definition of θ̂th in Eq. (4) implies that
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which concludes the proof.

A.2 VARIANCE OF THE FICTITIOUS LEAST-SQUARES LOSS ESTIMATOR

The following lemma shows that the “variance” of the proposed loss estimator is well controlled.

Lemma 2. For any h ∈ [H], it holds that
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where (i) is due to the definition of θ̂th in Eq. (4); (ii) is by |rth(sh, ah, bh)| ≤ 1 for any (sh, ah, bh) ∈ Sh ×A× B; and
(iii) follows from pν

t

1:h(xh) ≤ 1 for any xh ∈ Xh. The proof is thus completed.

B PROOF OF REGRET UPPER BOUND

To start with, notice that Πmax is an affine subspace of RXA≥0 satisfying X linear constraints: for any xh ∈ X ,∑
ah∈A

µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1) ,

where (xh−1, ah−1) is the unique predecessor of xh under perfect recall condition. Thus Πmax can be decomposed as
Πmax = (F + u) ∩ RXA≥0 where F is a linear subspace and u ∈ Πmax.

With slight abuse of notations, we further denote Ψη(µ) = 1
η

∑H
h=1 Ψh (p

⋆
1:h · µ1:h) and define its convex conjugate function

Ψ⋆η on RXA≥0 as
Ψ⋆η(y) := sup

x∈RAX
≥0

⟨x,y⟩ −Ψη(x) . (8)

Also, we denote DΨ⋆
η
(x,y) = Ψ⋆η(x) − Ψ⋆η(y) −

〈
∇Ψ⋆η(y),x− y

〉
as the Bregman divergence induced by Ψ⋆η. The

following lemma shows the canonical regret decomposition of the FTRL framework. [Zimmert and Seldin, 2019, Lattimore
and Szepesvári, 2020].



Lemma 3. The regret of F2TRL can be decomposed as
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where (i) comes from µ† ∈ Πmax; and (ii) is due to the fact that Ψη is a non-positive function.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. Combining Lemma 3, 4 and 7, with p⋆ computed in Algorithm 3, we have that

RT
max ≤ PENALTY + STABILITY

≤ H

η
log (XA) +

η

2
exp

(
ηL2

β⋆Hρ

)
λdHT , (9)

which along with choosing η =
√

2 log(AX)
Td finishes the proof.

B.1 BOUNDING THE PENALTY TERM

The lemma below upper bounds the PENALTY term.

Lemma 4. For any fixed learning rate η and transition probability p⋆ over infoset-action space, it holds that
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Proof. It is clear that
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where (i) comes from Lemma 8.

B.2 BOUNDING THE STABILITY TERM

Before bounding the stability term, we first introduce the following lemma, which bounds the variance of the loss estimate.

Lemma 5. For any h ∈ [H] and any (xh, ah) ∈ Xh ×A, it holds that |ℓ̂th(xh, ah)| ≤ L2

ρ .
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where (i) is due to Assumption 1; and (ii) follows from the proof of Lemma 2 by Kozuno et al. [2021].



Let Φth :=
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where (i) is because |rth(sth, ath, bth)| ≤ 1; (ii) is by the Cauchy-Schwarz inequality; and (iii) comes from Eq. (10).

Recall β⋆h = minxh∈Xh
p⋆1:h(xh) and βνh = maxt∈[T ],xh∈Xh

pν
t

1:h(xh). The following lemma shows that the STABILITY
term can be bounded by the variance of the loss estimate.

Lemma 6. The one-step stability term satisfies
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where (i) is by the Cauchy-Schwarz inequality and zt = αµt + (1 − α)µ̃t+1 for some α ∈ [0, 1]; (ii) follows from Eq.
(11); (iii) is due to the mean value theorem; and (iv) is by noticing that ∂2Ψη(zt)
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Combining Eq. (13) and Lemma 5 leads to
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Substituting Eq. (14) into Eq. (12), we have
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which completes the proof.

With “balanced transition” p⋆ computed in Algorithm 3, the following lemma upper bounds the STABILITY term via λ and
d by considering the ratio between transition pν

t

1:h contributed by the environment state transition P as well as opponent’s
policy νt and “balanced transition” p⋆.

Lemma 7. With “balanced transition” p⋆ computed in Algorithm 3, for any fixed learning rate η, it holds that

STABILITY ≤ η

2
exp

(
ηL2

β⋆Hρ

)
λdHT .



Proof. Using Lemma 6, one can see that

STABILITY

=E

[
T∑
t=1

DΨ⋆
η
(∇Ψη(µ

t)− ℓ̂t,∇Ψη(µ
t))

]

≤E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p⋆1:h(xh)
Eµ

t,νt
[
µt1:h(xh, ah)ℓ̂

t(xh, ah)
2
]

=E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p⋆1:h(xh)
µt1:h(xh, ah)Eµ

t,νt
[
(θ̂th)

⊤ϕν
t

(xh, ah)ϕ
νt

(xh, ah)
⊤θ̂th

]
(i)
=E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p⋆1:h(xh)
µt1:h(xh, ah)

·Eµ
t,νt
[
rth(s

t
h, a

t
h, b

t
h)

2ϕν
t

(xth, a
t
h)

⊤(Qt
µt,h)

−1ϕν
t

(xh, ah)ϕ
νt

(xh, ah)
⊤(Qt

µt,h)
−1ϕν

t

(xth, a
t
h)
]]

(ii)

≤ E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p⋆1:h(xh)
µt1:h(xh, ah)

·Eµ
t,νt
[
ϕν

t

(xth, a
t
h)

⊤(Qt
µt,h)

−1ϕν
t

(xh, ah)ϕ
νt

(xh, ah)
⊤(Qt

µt,h)
−1ϕν

t

(xth, a
t
h)
]]

(iii)

≤ E

[
η

2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

1

β⋆H

·Eµ
t,νt

ϕνt

(xth, a
t
h)

⊤(Qt
µt,h)

−1

 ∑
(xh,ah)∈Xh×A

µt1:h(xh, ah)ϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤

 (Qt
µt,h)

−1ϕν
t

(xth, a
t
h)


=E

[
η

2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

1

β⋆H
Eµ

t,νt
[
ϕν

t

(xth, a
t
h)

⊤(Qt
µt,h)

−1ϕν
t

(xth, a
t
h)
]]

=E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

1

β⋆H
tr

 ∑
(xh,ah)∈Xh×A

pν
t

1:h(xh)µ
t
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤(Qt

µt,h)
−1


(iv)

≤ E

η
2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

λ tr

 ∑
(xh,ah)∈Xh×A

µt1:h(xh, ah)ϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤(Qt

µt,h)
−1


=E

[
η

2
exp

(
ηL2

β⋆Hρ

) T∑
t=1

H∑
h=1

λ tr (Id)

]

=
η

2
exp

(
ηL2

β⋆Hρ

)
THdλ ,

where (i) comes from the definition of θ̂th in Eq. (4); (ii) holds due to that |rth(sth, ath, bth)| ≤ 1; (iii) is because β⋆H ≤
p⋆1:h(xh) for any xh ∈ Xh and h ∈ [H]; and (iv) comes from the definition of λ.

The proof is thus concluded.

B.3 PROPERTIES OF BALANCED TRANSITION p⋆

The lemma below delineates the property of p⋆ as transition probability over infoset-action space.



Lemma 8. For any h ∈ [H], any p⋆ as transition probability over infoset-actions and any policy µ ∈ Πmax of the
max-player, it holds that ∑

(xh,ah)∈Xh×A

p⋆1:h(xh)µ1:h(xh, ah) = 1 .

Proof. By the definition of perfect recall and transition probability over infoset-action space, we have

Pµ,ν(xh, ah) = Pµ,ν(x1, . . . , xh, ah)

= p⋆0(x1)

h−1∏
h′=1

p⋆h′(xh′+1|xh′ , ah′) ·
h∏

h′=1

µh′(ah′ |xh′)

= p⋆(xh)µ1:h(xh, ah) .

The proof is thus concluded by noticing that
∑

(xh,ah)∈Xh×A Pµ,ν(xh, ah) = 1.

The following lemma shows that p⋆ computed in Algorithm 3 guarantees λ ≤ 1 when the environment state transition is
uniformly at random and the game tree is a k-ary tree.

Lemma 9. When the environment state transition P is a uniform distribution and the game tree is a k-ary tree, the “balanced
transition” p⋆ computed in Algorithm 3 guarantees that λ ≤ 1.

Proof. Let n,m > 0 be the number of the states and the number of the infosets that the game can transit to when taking any
action a. Note that m ≤ n due to the properties of the perfect recall and tree structure conditions defined in Section 2.

Fix some h ∈ [H]. Recall pν
t

1:h (xh) =
∑
sh:x(sh)=xh

p1:h (sh) ν
t
1:h−1(y (sh−1) , bh−1). Since the environment state transi-

tion P is a uniform distribution, it holds that

pν
t

1:h (xh) =
∑

sh:x(sh)=xh

p1:h (sh) ν
t
1:h−1(y (sh−1) , bh−1)

=

(
1

n

)h−1 ∑
sh:x(sh)=xh

νt1:h−1(y (sh−1) , bh−1)

≤
(
1

n

)h−1 ( n
m

)h−1

=

(
1

m

)h−1

, (15)

where the inequality is by noticing that νt1:h−1(y (sh−1) , bh−1) ≤ 1 for all (y (sh−1) , bh−1) ∈ Yh × B. On the other hand,

it is easy to check that p⋆ computed in Algorithm 3 satisfies p⋆1:h(xh) =
(

1
m

)h−1
for all xh ∈ Xh, which together with Eq.

(15) concludes the proof.

In the worst case, pν
t

1:H(xH) = 1 for some xH ∈ XH (note again that this is almost impossible to happen in practice as
discussed in Section 4), meaning that λ = minxH∈XH

1/p⋆1:H(xH). Intuitively, λ can be well-controlled if the “balanced
transition” p⋆1:h(·) is “balanced” enough in the sense that the “transition probability” of visiting xh is lower bounded for any
xh ∈ Xh and h ∈ [H]. This is exactly guaranteed by the design of our “balanced transition” p⋆1:h(·) specified in Eq. (6), the
computation of which is solved by our Algorithm 3. This is formalized by the following lemma.

Lemma 10. The “balanced transition” p⋆ computed in Algorithm 3 guarantees that λ ≤ X .

Proof. It suffices to show that p⋆1:h(xh) ≥ 1/X for any xh ∈ Xh and h ∈ [H]. Clearly, p⋆1:h(·) is minimzed at h = H for
some xH ∈ XH by its definition. By the construction of p⋆1:h(·) in Algorithm 3, one can deduce that ∀xH ∈ XH , we have



(understanding {(xh, ah)}h∈[H−1] as the unique trajectory leading to xH below)

p⋆1:H(xH) = p[xH ]

= p [xH−1] ·
f [xH ]∑

x′
H∈C(xH−1,aH−1)

f [x′H ]

= p [xH−2] ·
f [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

f
[
x′H−1

] · f [xH ]∑
x′
H∈C(xH−1,aH−1)

f [x′H ]

= p [xH−2] ·
f [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

f
[
x′H−1

] · f [xH ]

C [xH−1, aH−1]

(i)

≥ p [xH−2] ·
f [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

f
[
x′H−1

] · f [xH ]

f [xH−1]

= p [xH−2] ·
f [xH ]∑

x′
H−1∈C(xH−2,aH−2)

f
[
x′H−1

]
≥ . . .

≥ f [xH ]∑
x1∈X1

f [x1]

≥ f [xH ]

XH

≥ f [xH ]

X

=
1

X
,

where (i) is due to f [xH−1] = maxa∈A C[xH−1, a] ≥ C[xH−1, aH−1] in Algorithm 3.

The proof is thus completed.

C COMPUTATION ISSUE

In this section, we present the solutions to the optimization problem of the update of F2TRL in Eq. (5) and the computation
of the “balanced transition” p⋆ in Eq. (6).

C.1 F2TRL UPDATE

To solve the update of F2TRL in Eq. (5), we first present an OMD-like update as well as its solution. We then show that the
solution to the OMD-like update is equivalent to the F2TRL update, which provides the final optimization solution to the
F2TRL update.

To begin with, we first introduce the OMD-like update, which leverages a list of learning rates η := (ηh(xh))xh∈Xh,h∈[H]

adaptive to each infoset and a generalized potential function defined as follows (not to be confused with the negative entropy
potential function Ψh(µ) =

∑
(xh,ah)∈Xh×A µ1:h(xh, ah) log(µ1:h(xh, ah)) used in F2TRL):

ψη(µ) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

ηh(xh)
log

(
µ1:h(xh, ah)∑

a′h∈A µ1:h(xh, a′h)

)
.

By the fact that for any µ ∈ Πmax, the derivative of ψη(µ) satisfies

∇xh,ahψη(µ) =
1

ηh(xh)
log(µh(ah|xh)) ,



one can see that ψη(µ) induces the following distance-generating function, which is a generalized version of the dilated
entropy distance-generating function of Kozuno et al. [2021]:

Dψη (µ
1∥µ2) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1
1:h(xh, ah)

ηh(xh)
log

µ1
h(ah|xh)
µ2
h(ah|xh)

. (16)

The OMD-like update in accordance with the generalized dilated entropy distance-generating function in Eq. (16) is defined
as

µt+1 = argmin
µ∈Πmax

〈
µ, ℓ̂t

〉
+Dψη

(µ∥µt)

= argmin
µ∈Πmax

〈
µ, ℓ̂t

〉
+

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

ηh(xh)
log

µh(ah|xh)
µth(ah|xh)

. (17)

The solution to Eq. (17) is given in the following proposition. Notice that the solution to similar optimization problems of
previous works [Kozuno et al., 2021, Bai et al., 2022, Fiegel et al., 2023] critically relies on the sparsity of their importance-
weighted loss estimator, which only permits non-zero loss estimates along the experienced trajectory {(xth, ath)}h∈[H]. In
contrast, the solution to Eq. (17) in the following proposition solves the optimization problem of OMD with generalized
dilated entropy distance-generating function and the loss estimator with non-zero loss estimates for all infoset-action pairs
(x, a) ∈ X ×A.

Proposition 1. The solution to the OMD-like update in Eq. (17) satisfies

µt+1
h (ah|xh)

=µth(ah|xh) exp

−ηh(xh)ℓ̂th(xh, ah) +
∑

xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZth+1(xh+1)− logZth(xh)

 ,

where

Zth(xh) =
∑
ah∈A

µth(ah|xh) exp

−ηh(xh)ℓ̂th(xh, ah) +
∑

xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZth+1(xh+1)

 , (18)

and for notational convenience, we define that ∀(xH , aH) ∈ XH × A, it has a unique descendant xH+1 such that
ZtH+1(xH+1) = 1.

Proof. First note that 〈
µ, ℓ̂t

〉
+DΨη

(µ∥µt)

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

[
ℓ̂th (xh, ah) +

1

ηh(xh)
log

µh(ah|xh)
µth(ah|xh)

]

=

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh)

[〈
µh(·|xh), ℓ̂th (xh, ·)

〉
+
DKL (µh(·|xh)∥µth(·|xh))

ηh(xh)

]
. (19)

We now prove the proposition via backward induction over h = H, . . . , 1.

When h = H , for any xH ∈ XH , Eq. (19) shows that

µt+1
H (aH |xH) = µtH(aH |xH) exp

{
−ηh(xh)ℓ̂tH(xH , aH)− logZtH(xH)

}
,

where ZtH(xH) =
∑
aH∈A µ

t
H(aH |xH) exp{−ηh(xH)ℓ̂tH(xH , aH)} is a normalization factor.



Fix some h ∈ [H]. Now suppose the induction hypothesis holds from step h+ 1 to H and consider the h-th step. Using the
induction hypothesis, one can see that Eq. (19) can be rewritten as

H∑
h′=1

∑
(xh′ ,ah′ )∈Xh′×A

µ1:h′(xh′ , ah′)

[
ℓ̂th′ (xh′ , ah′) +

1

ηh′(xh′)
log

µh′(ah′ |xh′)

µth′(ah′ |xh′)

]

=

H∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+
DKL (µh′(·|xh′)∥µth′(·|xh′))

ηh′(xh′)

]

=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+
DKL (µh′(·|xh′)∥µth′(·|xh′))

ηh′(xh′)

]

+

H∑
h′=h+1

 ∑
xh′+1∈Xh′+1

µ1:h′(xh′+1)

ηh′+1(xh′+1)
logZth′+1(xh′+1)−

∑
xh′∈Xh′

µ1:h′−1(xh′)

ηh′(xh′)
logZth′(xh′)


=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+
DKL (µh′(·|xh′)∥µth′(·|xh′))

ηh′(xh′)

]

−
∑

xh+1∈Xh+1

µ1:h(xh+1)

ηh+1(xh+1)
logZth+1(xh+1)

=

h−1∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+
DKL (µh′(·|xh′)∥µth′(·|xh′))

ηh′(xh′)

]

+
∑
xh∈Xh

µ1:h−1(xh)


〈
µh(·|xh), ℓ̂th (xh, ·)−

∑
xh+1∈C(xh,·)

logZth+1(xh+1)

ηh+1(xh+1)

〉
+
DKL (µh(·|xh)∥µth(·|xh))

ηh(xh)︸ ︷︷ ︸
♡

 .
By minimizing (♡), one can derive that

µt+1
h (ah|xh)

=µth(ah|xh) exp

−ηh(xh)ℓ̂th(xh, ah) +
∑

xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZth+1(xh+1)− logZth(xh)

 ,

where

Zth(xh) =
∑
ah∈A

µth(ah|xh) exp

−ηh(xh)ℓ̂th(xh, ah) +
∑

xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZth+1(xh+1)

 .

The proof is thus concluded.

In what follows, for notational convenience, we denote J th(xh, ah) = −ηh(xh)ℓ̂th(xh, ah) +∑
xh+1∈C(xh,ah)

ηh(xh)
ηh+1(xh+1)

logZth+1(xh+1) as the surrogate loss.

To solve the update of F2TRL, we follow the same idea as Fiegel et al. [2023] that translates the update of FTRL into an
OMD-like update. In specific, Proposition F.2 of Fiegel et al. [2023] shows that the update of Eq. (5) is equivalent to the
solution to the following optimization problem:

µt+1 = argmin
µ∈Πmax

〈
µ, L̂t

〉
+DΨη⋆ (µ∥µ⋆) ,

where η⋆ and µ⋆ satisfy

η⋆h(xh) =
η

(H − h+ 1)p⋆1:h(xh)
, (20)



Algorithm 2 F2TRL Update

1: Input: Tree-like structure of X × A, fixed learning rates η, “balanced transition” p⋆ and cumulative loss estimates{
L̂th(xh, ah)

}
(xh,ah)∈X×A

.

2: Initialization: For all xH in XH , initialize Zt(xH+1) = 1. Set adaptive learning rates η⋆ according to Eq. (20). Set
base policy µ⋆ according to Eq. (21).

3: for h = H to 1 do
4: for xh in Xh do
5: Compute J th(xh, ah) = −η⋆h(xh)L̂t(xh, ah) +

∑
xh+1∈C(xh,ah)

η⋆h(xh)
η⋆h+1(xh+1)

logZth+1(xh+1).

6: Compute Zth(xh) =
∑
ah∈A µ

⋆
h(ah|xh) exp (J th(xh, ah)).

7: for ah in A do
8: Compute µt+1

h (ah|xh) = µ⋆h(ah|xh) exp (J th(xh, ah)− logZth(xh)).
9: end for

10: end for
11: end for

and

µ⋆ = argmin
µ∈Πmax

H∑
h=1

Ψh (p
⋆
1:h · µ1:h) , (21)

and recall Dψη⋆

(
µ1, µ0

)
=
∑H
h=1

∑
(xh,ah)∈Xh×A

µ1
1:h(xh,ah)
η⋆h(xh)

log
µ1
h(ah|xh)

µ0
h(ah|xh)

. Note that µ⋆ can be computed efficiently via
backward dynamic programming.

Then, combined with the solution to the OMD-like update in Proposition 1, the solution to the update of F2TRL can be
obtained by substituting ℓ̂t and µt with L̂t and µ⋆ in Eq. (17), the details of which are presented in Algorithm 2.

Algorithm 3 Compute p⋆

1: Input: Tree-like structure of X ×A .
2: Initialization: Transition array p[·] of size X ; auxiliary array f [·] of size X , C[·, ·] of size X ×A . For all xH in XH ,

initialize f [xH ] = 1 .
3: for h = H − 1 to 1 do
4: for xh in Xh do
5: for ah in A do
6: Compute C[xh, ah] =

∑
xh+1∈C(xh,ah)

f [xh+1] ,
7: end for
8: Compute f [xh] = maxa∈A C[xh, a] .
9: end for

10: end for
11: for x1 in X1 do
12: Compute p[x1] =

f [x1]∑
x1∈X1

f [x1]
.

13: end for
14: for h = 1 to H − 1 do
15: for xh, ah in Xh ×A do
16: for xh+1 in C(xh, ah) do
17: Compute p[xh+1] = p[xh] · f [xh+1]∑

xh+1∈C(xh,ah) f [xh+1]
.

18: end for
19: end for
20: end for
21: return p.



C.2 COMPUTATION OF BALANCED TRANSITION p⋆

This section presents Algorithm 3, which solves the computation of p⋆ defined in Eq. (6) via backward dynamic programming.

D PROOF OF REGRET LOWER BOUND

In this section, we present the proof of Theorem 2.

Proof of Theorem 2. We consider an A-ary tree IIEFG instance, in which

• B = 1 so that there is actually no opponent effectively (and hence the dependence on the opponent’s action b is omitted in
what follows);

• Xh = Sh = Ah−1 for all h ∈ [H], which means that Xh = Sh and there is actually no partial observability;

• rh(s, a) = 0 for all h ∈ [H − 1], and rH(s, a) is a reward sampled from Bernoulli distribution Ber(r̄H(s, a)) with mean
r̄H(s, a) = ⟨ϕ(s, a),θ⟩.

By the construction, there exists a unique action sequence (a1, . . . , ah−1) that determines sh (and hence xh) and the
transition is deterministic and known. Following similar arguments by Bai et al. [2022], Fiegel et al. [2023], it can be shown
that if algorithm Alg achieves regret RT

max on this IIEFG instance, then Alg can be used to tackle a stochastic linear bandit
problem with AH “arms” and obtain the regret with the same order as RT

max, where the reward for “arm” (a1, a2, . . . , aH)
(i.e., (sH , aH)) is sampled from Ber(⟨ϕ(sH , aH),θ⟩).

We now first consider the case when H ≥ d. In this case, ϕ and θ satisfy ϕ(s, a)[1:d−1] ∈ {−1, 1}d−1, ϕ(s, a)d = 1/4,
θ[1:d−1] ∈ {−∆,∆}d−1 with ∆ = 1/(8

√
2T ) and θd = 1. Moreover, since |SH × A| = AH−1 · A = AH as well as

H ≥ d and A ≥ 2, ϕ can be chosen such that {ϕ(s, a)[1:d−1]}(s,a)∈SH×A = {−1, 1}d−1 (omitting the duplicate feature
vectors). Then by canonical analysis for the regret lower bound of stochastic linear bandits (see, e.g., Theorem 24.1 by
Lattimore and Szepesvári [2020]; Lemma 25 by Zhou et al. [2021]), there exists a θAlg

[1:d−1] ∈ {−∆,∆}d−1 such that

RT ≥ (d− 1)
√
T/(16

√
2) = Ω(

√
d2T ).

In case when H < d, we can choose ϕ such that the stochastic linear bandit problem, on which Alg suffers the same regret
as on the IIEFG instance, has 2H distinct feature vectors since A ≥ 2 and AH ≥ 2H . Then by similar reasoning of the
construction of ϕ and θ in the case H ≥ d and the proof of Corollary 3 by Zhou [2019], there exists a θAlg such that
RT ≥ Ω(

√
dHT ).

The proof is concluded by combining the results of the two cases.
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