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Abstract

Federated Learning (FL) is a distributed learning approach that allows participants to col-
laboratively train machine learning models without sharing the raw data. It is rapidly
developing in an era where privacy protection is increasingly valued. It is this rapid devel-
opment trend, along with the continuous emergence of new demands for FL in the real world,
that prompts us to focus on a very important problem: How to Incorporate New Knowledge
into Federated Learning? The primary challenge here is to effectively and timely incorporate
various new knowledge into existing FL systems and evolve these systems to reduce costs,
upgrade functionalities, and facilitate sustainable development. In the meantime, estab-
lished FL systems should preserve existing functionalities during the incorporation of new
knowledge. In this paper, we systematically define the main sources of new knowledge in
FL, including new features, tasks, models, and algorithms. For each source, we thoroughly
analyze and discuss the technical approaches for incorporating new knowledge into existing
FL systems and examine the impact of the form and timing of new knowledge arrival on the
incorporation process. Unlike prior surveys that primarily catalogue FL techniques under a
fixed system specification, we adopt a lifecycle evolution perspective and synthesize methods
that enable time-varying integration of new features, tasks, models, and aggregation algo-
rithms while preserving existing functionality. Furthermore, we comprehensively discuss the
potential future directions for FL, incorporating new knowledge and considering a variety
of factors, including scenario setups, security and privacy threats, and incentives.

1 Introduction

Federated Learning (FL), as an emerging paradigm in distributed learning, has gained significant traction
and undergone substantial development over the past decade. This interest is primarily driven by its ability
to enable multiple parties to collaboratively train machine learning (ML) models without sharing the raw
data. Consequently, this characteristic has led to its adoption in a growing number of critical domains, such
as healthcare, transportation, finance, and e-commerce, resulting in numerous real-world applications (Yang
et al., [2019; Kairouz et al., |2021; [Wang et al.| 2021)).

These practical applications demonstrate a significant demand for FL, driving its rapid development and
evolution. In the field of ML, technological advancements often lead to the replacement of old models with
new ones. However, given the large number of participating clients, in terms of data volume, computation
overhead, and communication bandwidth, training each FL model incurs substantial costs (Kairouz et al.,
2021). Furthermore, FL applications are often situated in rapidly changing environments, such as the
emergence of new diseases, autonomous vehicles encountering unfamiliar roads, or the appearance of new
investment trends (Yoon et al.l 2021} |Dong et al., 2022} |[Peng et al., 2020; [Li et al.l |2025¢} Yu et al., |2023). In
addition to these new concepts, there may be sensor degradation, hardware damage, product evolution, and
so on, in FL. deployment scenarios. However, current FL systems typically assume a fixed and predetermined
distribution of data and tasks (Yang et al., |2019; Kairouz et al., [2021)), making it challenging to deal with
dynamic changes in data and tasks in real-world scenarios. These practical considerations reflect a dilemma
in the future development of FL: on the one hand, there is a desire to establish new FL systems in response
to emerging demands and technologies, but on the other hand, the significant investment in established FL
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systems makes it impractical to discard them readily. Therefore, how to achieve sustainable evolution in FL
becomes a critical research direction.

Table 1: A comparative analysis of survey studies on federated learning.

Year Title ‘ Difference

R FD R 1 ) .. R ¢
Federated domain generalization: A survey ‘ 50%5¢ We viewed G as an important tool to enable easier incorporation o

new features into FL within a broader evolutionary framework.

Foundational models and federated learning: survey, taxonomy, | We focused on FL evolution through new knowledge integration rather
challenges and practical insights (Hatfaludi & Serban] 2025 than focusing on foundational models integration with FL.

A Survey on Cluster-based Federated Learning (El-Rifai et al.| | We regarded personalized FL as an effective way to prepare a task-
generalizable basis for incorporating new tasks.

A survey on federated fine-tuning of large language models ‘ We talked about incorporating LLMs to enhance established FL sys-

2095 et al.] 2025c' tems rather than finetuning LLMs using FL.
Federated learning design and functional models: survey l We emphasize FL evolution via new knowledge integration mechanisms,
eelyan et aLl 2024 rather than conventional system design analysis.
Federated Continual Learning: Concepts, Challenges, and Solu- | We reviewed studies with a much wider and more recent scope and
tions (Hamedi et al.] 2025 analyzed the correlations between FCL and other new knowledge.

Advances in robust federated learning: A survey with hetero- | We focused on FL system evolution through dynamic new knowledge
geneity considerations (Chen et al.l 2025a} integration rather than addressing static heterogeneity challenges.

Knowledge distillation in federated learning: a comprehensive | We emphasize FL system evolution through dynamic new knowledge
survey (Salman et al.l 2025 integration rather than surveying knowledge distillation in FL.

Recent Advancements in Federated Learning: State of the
Art, Fundamentals, Principles, IoT Applications and Future and defined a dynamic framework for new knowledge integration.
Trends (Papadopoulos et al.l 2024

Federated learning: Overview, strategies, applications, tools and | We explored FL dynamic evolution through new knowledge integration
future directions (Yurdem et al.] 2024 rather than static classification of existing strategies and applications.

We explored a more evolutionary and systematic research perspective,

2024 Recent advances on federated learning: A systematic survey We investigated FL system evolution through new knowledge integra-
et al.l 2024&' tion rather than static classification of existing FL methods.

Federated continual learning via knowledge fusion: A sur-|We reviewed studies with a much wider and more recent scope and
vey (Yang et al.] 2024&' analyzed the correlations between FCL and other new knowledge.

A Comprehensive Survey of Federated Transfer Learning: Chal- | We reviewed techniques of dynamic FL evolution through systematic
lenges, Methods and Applications (Guo et al.] 2024b} new knowledge integration.

A systematic review of federated learning: Challenges, aggrega-

2023 tion methods, and development tools (Guendouzi et al.] 2023
A survey on federated learning: challenges and applica-

tions (Wen et al.l

We emphasize FL system evolution through dynamic new knowledge
integration rather than reviewing existing aggregation methods.

We discussed how to incorporate new demands and functionalities into
the build FL systems rather than considering static FL scenarios.

Enabling the effective evolution of FL systems requires addressing several fundamental challenges. First,
these systems may continually acquire new knowledge in diverse forms. For instance, a model may need to
support an increasing number of novel tasks, or even for existing tasks to generalize across broader domains.
Such newly encountered knowledge is typically non-identical and independently distributed (non-IID) across
clients and may arrive at different time points. Specifically, in FL, each client optimizes the model using
its own data. When client data are non-IID, the updates computed on different devices are optimized for
different local distributions, so they can point in inconsistent directions: an update that helps one client
may hurt others. As a result, simple averaging is no longer equivalent to taking a clean descent step on a
single shared objective, which can slow convergence and reduce stability. In this setting, the FL objective at
each timestep can be highly complex and potentially shift dramatically over time. Since this new knowledge
often reflects transient user demands that appear sporadically, the system must be able to adapt rapidly.
Second, learning new knowledge inevitably leads to the forgetting of previously acquired knowledge. This
forgetting is primarily due to insufficient storage for the data of prior tasks. Furthermore, the diversity of
new knowledge means that different types of old knowledge may be forgotten at different rates, complicating
mitigation efforts. Finally, the dynamic evolution of FL systems also presents additional challenges, including
increased computational and storage overheads, the emergence of new vulnerabilities and attack surfaces,
and the breakdown of existing incentive mechanisms.
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Fortunately, an increasing number of studies are starting to explore relevant problems. For instance,[Sun et al.
(2023) and [Peng et al.| (2020) achieved domain-generalizable learning to improve FL models’ generalization
ability of existing functionalities, and [Dong et al.[(2022)) and Qi et al.|[(2022)) incorporated continual learning
techniques to learn new tasks. While a few existing surveys have attempted to review portions of the relevant
literature, they are either outdated or lack comprehensive coverage. More critically, none of them examines
these efforts through the lens of the continuous evolution of FL systems, which can inspire new thinking
about FL’s environmental sustainability and continual functionality iteration. A detailed comparison between
these survey studies and ours is provided in Table Prior surveys largely provide a snapshot taxonomy
of FL methods under a fixed system specification, where the feature/task space, model architecture, and
aggregation protocol are treated as predetermined and heterogeneity is addressed within this static pipeline.
Consequently, they seldom discuss the system’s lifecycle questions that arise in deployments, including when
new knowledge should trigger an upgrade, how the upgrade should be realized (e.g., detection, adaptation,
or migration), and how to bound regressions on previously supported functionality. In this survey, we adopt
a lifecycle evolution perspective and synthesize upgrade mechanisms along four evolving variables, including
features, tasks, models, and aggregation algorithms, while highlighting how the arrival form and timing of
new knowledge affects the incorporation process.

Contributions: In this paper, we present the first systematic and comprehensive survey with analysis
and discussion on how FL can achieve continuous updates and development in the face of new knowledge.
We define the FL system across four variables: features, tasks, models, and algorithms. Specifically, we
review approaches for incorporating new features through an end-to-end workflow, including three key stages:
(i) improving model generalization before new features emerge; (ii) enabling accurate detection when new
features appear; (iii) facilitating model adaptation to the new features. For new tasks, we focus on enhancing
the cross-task generalization ability of FL models. Given that new features and new tasks often co-occur
in practice, we further explore how federated continual learning can support the continual integration of
both, while maintaining strong performance on previously learned knowledge. Finally, we discuss the role
of new models and algorithms as effective mechanisms for incorporating novel knowledge while preserving
or even improving retention of prior capabilities. In addition, we also discuss the potential new threats and
vulnerabilities and the need of new incentive mechanisms when incorporating new knowledge into FL. In
summary, our major contributions include:

e We define a framework that categorizes new knowledge in FL into four types: features, tasks, models,
and algorithms. For each category of new knowledge, we provide a detailed analysis and discussion on
what it looks like and how to incorporate it into the current FL system in a timely and efficient manner.

e We analyze the impact of the arrival form and timing of the new knowledge on its incorporation into the
FL system.

e We comprehensively discuss future research priorities for the continuous development of FL, especially
with the integration of new knowledge.

2 Preliminaries

Federated Learning (FL) (Yang et all [2019), as a distributed learning algorithm, enables multiple clients
{Cx}E_| to collaboratively train a machine learning model m without sharing their training data Dy =
{(®ris Yri) ~ (X, yk)}?;l. The model m: fgog,, is usually composed of a feature extractor fy and a task
module g, parameterized by 6 and w, respectively. In FL, clients possess their training data in a non-IID
manner, i.e., the feature and task marginal distributions of different clients are not identical, X} # Xy, Vi #
Vi where k # E’. In this work, we consider the horizontal FL setting, where each participant holds a distinct
subset of samples with the same feature space. This differs from vertical FL, where each participant holds
a subset of features for the same set of samples. A typical federated training round begins with a central
server S distributing the latest global model m to each client. Additionally, the server randomly selects
a subset of clients {Ck}Z;kl and requests them to conduct model training locally using their own data.
Once local training is completed, these selected clients upload their locally trained models mj, to the server
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S. The server then aggregates these models {m%}zz r, to update the global model, and the most popular

aggregation algorithm is FedAvg (]McMahan et al.l, |2017|)7 ie., m' = % ZZ;kl mj,. This process is repeated
over multiple rounds until the global model converges and exhibits satisfactory performance for a given
task. From the description above, we can define different FL systems F(X,), M, A) using the variables of
Features X = UK | X); Tasks Y = UE  Vy; Models M = {(f, fas***) © gu, fo © (9w, gp, ) }; Aggregation

algorithms A={FedAvg, FedProx (Li et al., 2020b), Moon (Li et al.,[2021a)), SecAgg (Bonawitz et al., 2017),
CaPC (Choquette-Choo et al., [2020), - - - }.
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Figure 1: Overview of an FL system with new knowledge from different sources. Different types of clients
encounter new features and tasks over time, which reflect new demands for FL systems. From a global
perspective, new advanced models with better architecture (Transformers) and larger sizes (GPT-4) are also
needed to incorporate for enhancing existing functionalities or incorporating new demands. Furthermore, new
algorithms with improved performance (Scaffold) and security guarantees (CaPC) should be continuously
incorporated into established FL as well.

2.1 Federated Learning with New Knowledge

Starting from the moment of the first training round, we denote the existing period of an FL system
F(X,Y, M, A) until the present time ¢ as as a sequence of time stamps [1,2,---,¢,---], then the new
knowledge is defined as a particular variable at a particular timestamp that is unseen previously. If we take
the feature variable as an example, we have X ¢ UZ;%X i, To facilitate the coming of more new knowledge,

we do not restrict clients’ participation, which means clients are free to join or leave the FL system at any
old,ng1q

. . . . . k
time. Under this framework, we categorize the FL clients into three groups: Coiga={Cr} ek

corresponds

new,nnew

to clients that possess only old knowledge; Cpow = {Ck}:: ponew corresponds to clients that only possess new

knowledge; Cpix = {C’f}::;m:? corresponds to clients that possess both old and new knowledge. Note that
the category belonging of a particular client Cy, is changing over time; thus, these three client groups Coid, Cnew,
and Cpix are also changing dynamically. Overall, regardless of which variable the new knowledge belongs to,
when it arrives, or who introduces it, we need to incorporate the new knowledge promptly. Incorporating
such new knowledge is crucial because the arrival of new knowledge essentially signifies clients’ new demands
for enhancing the performance and functionality of the current FL system. We visualize an FL system with
various kinds of new knowledge in Figure[I[] Within such setups, we primarily focus on cross-device FL in the
following sections, as it offers greater flexibility for client participation and withdrawal compared to cross-
silo FL. This setting typically involves a larger number of parties, components, and concepts, all of which
contribute to higher system dynamics. In addition, cross-device FL systems are often resource-constrained.
Overall, incorporating new knowledge into cross-device FL systems is more needed than cross-silo FL.
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2.2 Security Setups of FL with New Knowledge

A trusted setting is assumed when incorporating new knowledge into an FL system, i.e., (i) all participants
including both the central server S and clients {Ck}ff:l are trusted not to eavesdrop private information or
launch active attacks at any time; (ii) all carriers of new knowledge including features X, tasks ), models
M, and algorithms A do not intend to disclose private information or contain active attacks.

The reason why we consider such trusted settings is that we aim to discuss the technical advances of FL
with new knowledge in the main context, and we found that all existing related works assume such trusted
scenarios. However, this does not mean that the security and safety research is unimportant; instead, we
regard it as highly important and discuss new threats in both semi-honest and malicious settings as well as
the potential solutions in Section [8:2]

3 Incorporate New Features

When FL models are deployed on new devices with unseen features, performance often degrades due to
the discrepancy between learned features (source domain) and new features (target domain) (Shenaj et al.
2023)). Therefore, it is important to improve the generalization ability of FL systems to unseen new features.
Specifically, we consider that Federated Domain Generalization (FDG) can equip the FL system with a
certain degree of generalization ability on unseen features. Federated Out-of-Distribution Detection (FODD)
can detect the arrival of new features and then determine whether to incorporate them. After that, Federated
Domain Adaptation (FDA) conducts adaptive learning on unlabeled data with new features, achieving the
incorporation of new features.

3.1 Federated Domain Generalization

FDG aims to train a domain-generalizable global model m that can generalize well across different distribu-
tions. To provide a structured overview of the technical landscape, we summarize and compare representative
FDG approaches in Table[2]in terms of their timing support, overhead, and utility. Such domain-generalizable
learning is usually achieved by extracting domain-shared semantics across local clients with old knowledge
Cold; Cmix (source domains). In this way, model m can extract similar semantics from the unseen new features
Xyew- Here, we assume that X,e is relevant but distinct from U;f;(:le in terms of the same task ).

3.1.1 Methods

Distribution Alignment. Several FDG methods (Li et al., |2025c|) employ feature alignment techniques
to minimize domain discrepancy. Generally, they achieve this by optimizing with distribution alignment
regularizers (Xu et al., |2021), such as contrastive loss, adversarial loss, and maximum mean discrepancy
(MMD). For example, Xu et al.| (2023|) proposed a negative-free contrastive loss at the logit level to mini-
mize the distribution gap between the original sample and its hallucinated counterparts. Building on this
work, |Gupta et al.| (2025 enhanced model generalization through domain invariant feature perturbation
alignment. Regarding the adversarial loss, |Wang et al. (2022c) used adversarial learning for multi-client
feature alignment. Similarly, |Zhang et al| (2023]) introduced another generalization adjustment model via
dynamically calibrating aggregation weights with an adversarial objective. As for the MMD aspect, [Tian
et al.|[(2023) used MMD for gradient alignment, encouraging aggregated gradients to unify information from
multiple domains. Additional gradient-based distributional alignment approaches have emerged. [Wei & Han
(2024) proposed reducing distribution differences through intra-domain and inter-domain gradient match-
ing. Nguyen et al.| (2025) regarded local gradients as the representation of specific domains and maximized
the inner product of gradients to find invariant gradient directions across all domains. Similarly, [Ye et al.
(2025) proposed the GAFedDG framework, which combines intra-domain gradient alignment between raw
and augmented signals with inter-domain gradient alignment across domain classifiers to achieve effective
distribution alignment.

Data Augmentation. To improve the model’s generalization to unseen target domains, some FDG meth-
ods use data augmentation techniques to diversify training data distributions (Liu et al.l 2023). Common
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Table 2: Comparison of approaches in Federated Domain Generalization. While distribution alignment
strategies typically incur higher costs and possess limited scenario support, data augmentation and op-
timization enhancement approaches effectively address these limitations by offering improved flexibility
and superior efficiency, respectively.

Strategy Methods Timing Support Period Support Synchronism Overhead Utility
Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance
FADH v v v v VS Medium Low Low  Near SOTA
FedAlign (Gupta et al.| [2025) v v v v VAV Medium Low Low SOTA
FADGN (Wang et al.||2022c v X X v v X High Medium Low  Behind SOTA
Distribution ~ FedADG (Zhang et al. 2023) v X X v v X High Medium Low Near SOTA
Alignment PCDG (Tian et al.|[2023 v X X v v X Medium High Low Near SOTA
FedDM (Sun et al.|[2023 v v X v v X High High Medium Near SOTA
MCGDM (Wei & Han||2024 v X X v v X High High Low Near SOTA
FedU (Pourpanah et al.||2025 v v v v v v Medium Low Low SOTA
FedGM (Nguyen et al.||2025 v X X v v X Medium High Low SOTA
FedDG (Liu et al.|[2021 v v v v v Y Low Low Low Behind SOTA
FedCST (Chen et al.|[2023b| v v v v VS Medium Medium  Medium Near SOTA
Data FISC (Nguyen et al.||2024a v v v v v v Medium Medium Medium SOTA
Augmentation FedGCA (Liu et al.|[2024b) v v x v v v High Low Low  Near SOTA
CAL-ZSA (Yang et al.| 2023(:1 v v v v v v Low Low Low Near SOTA
FedCCRL (Wang et al. |2()24c' v v v v v v Medium Medium Low SOTA
Optimization v v v v v v Low Low Low Near SOTA
Enhancement v v v v v v Low Low Low Near SOTA
v v v v v v Low Low Low SOTA

augmentation techniques include domain randomization, domain generation, and domain mixup.
used domain randomization techniques like random rotation, scaling, and flipping to address the
FDG problem. However, as research progressed, the limitations of simple domain randomization in tack-
ling complex domain shift issues became clear. |Chen et al.| (2023b)) introduced a cross-client style transfer
method, where local clients define their styles and share them with a central server. Building on this con-
cept, Nguyen et al| (2024a)) proposed the FISC method, which refines cross-domain learning by extracting
an interpolative style from local client styles and using contrastive learning. Simultaneously, efforts were
made to enhance data diversity through domain generation. [Liu et al. (2024b)) increased data diversity by
generating samples with diverse domain styles using a style-complement module. For domain mixup,
proposed mixing local and global feature statistics by randomly interpolating instance and
global statistics. [Wang et al. (2024c]) followed this by boosting local domain diversity through cross-client
domain transfer and domain-invariant feature perturbation.

Optimization Enhancement. Many FDG methods introduce regularization terms to prevent the model
from overfitting domain-specific features. For instance, [Soltany et al| (2024) proposed client-side label
smoothing to reduce the model’s reliance on domain-specific features, enhancing generalization across diverse
domains. To further ensure stable and robust global model updates against data heterogeneity,
proposed a distance-based weighted aggregation combined with parameter moving averaging. Building
on these advancements, Deng et al.| (2025) developed a generalization-aware aggregation method, dynamically
adjusting aggregation weights based on each client model’s cross-domain performance.

3.1.2 Evaluation

Datasets. The commonly used experimental datasets for FDG, as shown in Table [3| include PACS, Do-
mainNet, Digits-DG, VLCS, Terralncognita, Camelyon17, Office-31, Office-Home, and Office-Caltech10.

Setup. The most common FDG configuration is the single-client-single-domain setup, where each client
owns data from one source domain. To better mimic real-world scenarios where a client may have data
from multiple sources, some studies explore intra-client domain heterogeneity setups. For example, Stable-
FedADG (Zhao et al.l 2025]) allowed clients to hold unbalanced data mixtures from multiple source domains
or include dominant and secondary domains in a “mixed" setup. Additionally, this setup




Under review as submission to TMLR

Table 3: Commonly used experimental datasets in incorporating new knowledge into FL systems.

Dataset Sample Task Description
PACS (Li et al.| 9,991 Images of daily objects with 4 artistic styles, covering 7 classes.
DomainNet {Peng et al.| 600,000 Images of daily objects collected from 6 different domains with 345 classes.
Digits-DG (Zhou et al.|[12020 2,400  Images of handwritten digits with 4 domains, covering 40 classes.
VLCS ( 10,729 Images of common objects from 4 domains, covering 5 classes.
Terralncognita (Beery et al.[[2018] 24,000 Wildlife camera images from 20 locations, covering 10 classes.
Camelyonl17 (Bai et al.|[2023] 410,359 Lymph node slice image data, covering 5 domains and 2 classes.
FEMNIST 1|[4Ll)_!§] 800,000 Images of handwritten digits and characters across 3 domains and 62 classes.

60,000 A popular small-scale natural image classification dataset with 10 classes.
60,000 A dataset similar to CIFAR-10 but with 100 classes.
m 10,000 CIFAR-10 with damage processing from 19 domains, covering 10 classes.
280,000 Images from synthetic rendering to real shooting, covering 12 classes.
1,800  Images from 3 collection scenarios, covering 12 classes.

2009]
CIFAR-100 (Krizhevsky et al.[[2009]
CIFAR-10-C {Hendrycks & Dietterich|
VisDA2017 1|!u.¥l
. A

Office-31 (S 4,110  Office supply images from 3 photography scenarios, covering 31 classes.
Office-Home | 15,588  Office supply images from 4 domains, covering 65 classes.

Office-Caltech10 M 2,500  Office supply images from 4 domains, covering 13 classes.

Digit-Five (Saito et al.[]20 700,000 Handwritten digit images from 5 domains, covering 10 classes.

Tiny ImageNet (Le & Yang] 100,000 Images of daily objects and a subset of ImageNet, covering 200 classes.
Omniglot (Song et al.[]20 1,623  Images of handwritten characters from 50 different alphabets, with 50 classes.
Shakespeare (Caldas et al.] 4,226,158 Text data of all works by Shakespeare.

CelebA (Liu et al.[[2015] 202,599 Face images with detailed attribute annotations.

Sent140 (Caldas et al.[]2018] 1,600,000 Texts collected from Twitter for sentiment analysis, with 2 classes.

600,000 Images of real-world house number digits, with 10 classes.
20,000 Medical images for COVID-19 FL research, covering 4 classes.
306,245 Videos of real-world human actions, covering 400 classes.

UCF101 (Soomro et al. 13,320 Video clips of human actions in different scenarios, covering 5 classes.

Figure 2: The mapping relationship between the commonly used datasets and different new knowledge types.

introduced a parameter A to control inter-client domain heterogeneity, highlighting the impact of different
data distributions and heterogeneity levels.

Metric. Four metrics measure how well an FL. model generalizes to unseen target domains: accuracy on
unseen target domains, average accuracy across all domains, worst domain accuracy, and accuracy difference
across domains.

3.1.3 Real-world Applications

FedBM (Zhu et all, 2025b) used FDG principles to address medical data heterogeneity, achieving accurate
and robust medical image analysis and diagnosis by eliminating local learning biases. DGSSL
2025a)) proposed semi-supervised domain generalization learning, combining autoregressive discriminators
and reconstruction tasks to achieve robust and accurate recognition by addressing cross-individual domain
shifts in human activity recognition. DG-FaultDiag (Zhao et al., 2024al) addressed multi-source data privacy
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Table 4: Comparison of approaches in Federated Out-of-Distribution Detection. Notably, FedDD distin-
guishes itself with minimal overheads across all dimensions, while FedOE achieves state-of-the-art perfor-
mance with moderate resource consumption.

Methods Timing Support Period Support Synchronism Overhead Utility
Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance
FeAnD (Nardi et al.|[2022 v v X v v v Medium Medium Medium Behind SOTA
FedLSTM-AE (Mohammadi et al. v v X v v X Medium Medium Medium Near SOTA
FedOoD (Yu et al.||2023 v X X v v X High Medium Low Near SOTA
OT-FODD (He et al.||2025a v X X v v X High Medium Low SOTA
FedOE (Jeong & Choi||2025 v v v v v X Medium Medium Low SOTA
FedDD (Rahimli et al.||2024 v v v v v v Low Low Low Near SOTA
FOOGD (Liao et al.l 2024 v v X v v X Medium Medium Low SOTA
FedFISS (Dong et al.||2023 v v v v v v Low Medium Low Near SOTA
FedCNCL (IVVang et al.|[2023b v v X v v X High Medium Medium Near SOTA

and distribution differences in industrial scenarios by integrating domain generalization techniques with FL,
enabling robust fault diagnosis for different devices and conditions.

3.2 Federated Out-of-Distribution Detection

FODD was designed to detect new features across local clients (typically Cpix and Cpeyw) using a binary
classifier g, placed after the global feature extractor fy. To provide a structured overview, we summarize
and compare representative FODD approaches in Table ] regarding their detection strategies, overhead, and
utility. Once new feature data is detected, it should be incorporated into the current FL system. Therefore, gy
should be trained to determine if a sample & comes from a previously unseen feature distribution x ~ Uf;i)(i.
The following section reviews relevant studies.

3.2.1 Methods

Several approaches have been used to achieve FODD. Reconstruction prediction is one approach.
proposed a decentralized anomaly detection framework. Clients are clustered into communities based
on the similarity of their representations, followed by collaborative training of a federated autoencoder. Simi-
larly, Mohammadi et al.|(2023) used a long short-term memory mechanism within a modified autoencoder to
detect outliers in FL systems. Another effective approach is synthesizing potential out-of-distribution (OOD)
data and differentiating it from in-distribution (ID) data. For instance, proposed training
category-specific generators to create OOD samples for detector training. proposed generat-
ing pseudo-OOD samples via the Wasserstein distance, creating virtual outlier samples from known samples
to address the scarcity of OOD data in federated environments. Instead of generating OOD data,
assumed the server stores some outlier samples while clients keep minimal normal data. This
approach ensures efficient outlier detection through internal feature separation and background collabora-
tion. Feature-based detection represents a third approach, which relies on feature extractors to characterize
ID data and employs lightweight detection mechanisms. Rahimli et al| (2024) used Fisher’s Exact Test to
identify concept and data drift. Liao et al|(2024) developed the FOOGD framework, modeling client data
distributions with an OOD scoring mechanism and achieving end-to-end FODD by integrating semantic
shift detection with a covariate shift generalization module. |[Dong et al.| (2023) introduced a task transition
monitor using classification entropy of client data representations to identify OOD tasks, enabling real-time
adaptation to evolving data patterns. Wang et al.| (2023b)) developed a hierarchical clustering mechanism on
data representations to discover and learn previously unobserved features.

3.2.2 Evaluation

Datasets. The commonly used datasets for FODD, as shown in Table [3] include FEMNIST, CIFAR-
10/CIFAR-100, CIFAR-10-C, PACS, Digit-Five, and Office-Home.
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Setup. The evaluation setup of FODD primarily focuses on two scenarios: unseen class detection and
feature shift detection. First, unlike conventional label shift, which only causes an imbalance in the number
of categories, FODD simulates scenarios where clients detect previously unseen categories. This is an extreme
form of label heterogeneity (Liao et all [2024), typically constructed using a Dirichlet distribution with a
small parameter a. It requires the model to determine whether an unknown sample comes from known
categories of other clients or is entirely new for all clients. Second, FODD is evaluated in scenarios with
feature shifts, where clients share labels but the data features come from different distributions. This is
demonstrated in various benchmark tests, such as the domain migration experiments of FOSTER (Yu et al.
on DomainNet and the HDR-FL benchmark used by FedPD (Yang et al., [2023a)).

Metric. Five metrics are used to evaluate FODD performance: the area under the receiver operating
characteristic curve, the area under the precision-recall curve, the false positive rate at 95% true positive
rate, the true negative rate at 95% true positive rate, and the F1 Score.

3.2.3 Real-world Applications

proposed a secure and backpropagation-free FODD approach, useful for local OOD identi-
fication and data quality control in FL, as well as detecting OOD threats in video analysis. [Zamzmi et al.
(2024)) suggested using statistical process control to monitor changes in the statistical characteristics of med-
ical image data streams, enabling early identification of potential data drift and enhancing FODD response
capabilities in radiology. [Zhang et al.| (2024f) introduced a deep ensemble method guided by maximum
consistency and minimum similarity, significantly improving the model’s uncertainty estimation and OOD
sample discrimination.

3.3 Federated Domain Adaptation

FDA aims to collaboratively adapt the global model to data with new features detected by FODD. We assume
there is a significant domain discrepancy between the old and new features, d(Xpow, Xx) > max d (X, Xy)
where d(-) denotes a function measuring distribution discrepancy. As most data with new features appears
without labels, FDA should address the domain discrepancy between the labeled source data with old
features and the unlabeled target data with new features. To facilitate a clear comparison, we summarize
representative FDA approaches in Table evaluating their support for different learning scenarios (timing,
periodicity, and synchronism), associated overheads, and overall utility.

Table 5: Comparison of approaches in Federated Domain Adaptation. While adversarial training strate-
gies achieve state-of-the-art performance, they generally suffer from high computational costs and limited
scenario support. In contrast, pseudo-label learning and distribution alignment approaches offer su-
perior flexibility in timing and synchronism with significantly reduced overheads.

Strategy Methods Timing Support Period Support Synchronism Overhead Utility

Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance

FADA (Peng et al.||2020, v X X v v X High Medium Low  Behind SOTA
FedFDDA (Wu et al.|[2024b v X X v v X High Medium Low SOTA
Adversarial FMDADA (Chi et al.||2024 v X X v v X High Medium Low SOTA
T.AVACfsafla FTLAN (Zhang & Li| 2022 v x x v VR High Medium Low  Near SOTA
raining FedDASK |Gong et al.|(2024a/ v X X v v X High Medium Low SOTA
FMTDA (Yao et al.| 2022 v X X v v X High Medium Low Near SOTA
GM-FDA (Zeng et al.||2022 v X X v v X High Medium Low Near SOTA
FedUDA l 202: v v v v v v Medium Medium Low Near SOTA
FMSDAA Medi Medi Low N TA
Pseudo-label S 1mlm v v v v v v ed%um ed%um oW ear SO
) COPA (Wu & Gong[[2021] v v v v VN Medium Medium Low  Near SOTA
Learning —— . )
FedFTL lmlm v v v v v v Medium Medium Low SOTA
FedWCA (Mori et al v v v v v v Medium Medium Low SOTA
N FTL v v v v VR Medium Medium Low SOTA
Distribution = — . i
Altenment  HFSDA (Rizzoli et al.|[2024] v v v v VR Medium Medium Low SOTA
ignmen VIR . CE YR
8 FedRF 2024d v v v v v v Medium Low Low SOTA
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3.3.1 Methods

Adversarial Training. The difference in feature distributions between domains is a major obstacle to
effective knowledge transfer. Adversarial training aligns inter-domain features by training discriminators and
feature extractors adversarially. Peng et al.| (2020) were the first to extend adversarial adaptive training to FL,
aiming to align learning representations of different nodes with the target node’s data distribution. They
enhanced knowledge transfer by combining dynamic attention mechanisms and feature disentanglement.
More studies have enhanced this adversarial framework in various ways. First, |Wu et al. (2024b)) proposed
decoupling features using mutual information theory before adversarial training. This approach ensures
that minimizing distribution differences is not affected by domain-specific features. Additionally, |Chi et al.
(2024) designed multiple tightly coupled joint classifiers for adversarial training to promote alignment of the
joint distribution of features and classes. [Zhang & Li (2022)) combined federated deep adversarial networks
at both the image and pixel levels to comprehensively reduce the feature gap between source and target
domains. |Gong et al.| (2024a)) introduced cross-domain semantic similarity measurements to conventional
domain-level adversarial training, accelerating convergence and improving the quality of aligned features.
Moreover, to address the single-source multi-target scenario, Yao et al.| (2022) proposed a federated dual
adaptation strategy, achieving cross-domain feature alignment through local classifier adaptation on the
client side and Gaussian mixture model weighted mixup on the server side. Similarly, |Zeng et al.| (2022)
reduced domain shift in multi-site brain imaging data through adversarial domain adaptive pre-training.

Pseudo-label Learning. The lack of annotations for target domain data limits model adaptation, so a
natural approach is to generate pseudo-labels to include them in the learning process. [Zhuang et al.| (2022)
proposed the FedFR method, introducing distance constraints into the clustering algorithm to improve
pseudo-label accuracy. In multi-source domain adaptation scenarios, Zhao et al.| (2023) enhanced pseudo-
label accuracy through a joint voting scheme. Similarly, Wu & Gong| (2021)) used a prediction consistency
mechanism to generate more accurate pseudo-labels and compute aggregation weights, facilitating effective
multi-source domain adaptation. Considering not only domain shift but also the more complex issue of
class shift, [Li et al.| (2024d) proposed generating pseudo-labels through global clustering and local semantic
consistency clustering. For the challenging federated source-free domain adaptation task, where source data
is inaccessible, Mori et al.| (2024) proposed a weighted clustering aggregation method. This method first
clusters clients to obtain domain-specific global models and then performs local adaptive fine-tuning on
clients using the generated pseudo-labels.

Distribution Alignment. Reducing the distribution difference between the source and target domains
is a straightforward approach to domain adaptation. A common method is to use MMD to measure and
minimize the domain gap. Wang et al.| (2024d) proposed aligning these domains by minimizing the MMD
distance using random features and employing low-rank approximation techniques to compress exchanged
information, enhancing communication efficiency. Unlike aligning on the client side locally, |[Wang et al.
(2024b)) used MMD as a dynamic weight to balance the contributions of different local models. Another
major category of methods aligns feature distributions through prototype learning. For instance, Rizzoli
et al.| (2024) proposed to expand the geometric space of prototype learning from the traditional Euclidean
space to the hyperbolic space, which is more suitable for hierarchical data.

3.3.2 Evaluation

Datasets. The commonly used experimental datasets for FDA | as shown in Table [3] include VisDA2017,
ImageCLEF-DA, Office-31, Office-Home, Office-Caltech10, Digit-Five, PACS, DomainNet, and VLCS.

Setup. Most FDA studies employ a setup with multiple source-domain clients and a single target-domain
client. Source-domain clients have labeled data from one or more source domains, while the target-domain
client has data from a different target domain, which may be minimally labeled or completely unlabeled.

Metric. Two metrics are commonly used: average accuracy and F1 Score on the target domain test data.
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3.3.3 Real-world Applications

In the medical field, FedWeight (Zhu et al.| [2025a) applied a distribution quantization method based on
density estimation to accurately capture patient data characteristics at each medical institution, effectively
addressing covariate shift in electronic health record processing. In autonomous driving, FFreeDA (Mori
et al.l 2025)) improved semantic segmentation performance under adverse weather conditions. In edge com-
puting, [Li et al.| (2024b) adapted WiFi-based human activity recognition models to new users or environments
by aggregating diverse hypotheses from different domains, significantly reducing reliance on labeled target
domain data.

3.4 Future Work

We envision that future FL will evolve into a highly integrated and automated end-to-end framework to
more efficiently incorporate new features. Ideally, when an FL system encounters features outside its training
distribution, it should first exhibit robust OOD generalization. Following this, the framework must accurately
detect the arrival of these new features. Once detected, the system should automatically trigger a data
collection process. When the new data reaches a sufficient scale or meets predefined criteria, the system will
seamlessly initiate an adaptation process to integrate the new knowledge into the existing model. Within
this overarching vision, future work on each component can focus on the following aspects:

FDG. Future research could pursue more fundamental theoretical and paradigm innovations based on ex-
isting work. Theoretically, while deriving stricter generalization bounds remains important (Wang et al.
2025b]), a greater challenge is to establish a framework that unifies the trade-offs among generalization, pri-
vacy, and efficiency, guiding algorithm design under extreme heterogeneity. In terms of model paradigms,
although studies have begun adapting large models to federated scenarios using techniques like prompt learn-
ing (Gong et al., [2024Db)), future research could explore constructing a shared adapter library with diverse
domain knowledge. Clients can flexibly use these modules based on dynamic needs at minimal cost. Addi-
tionally, regarding learning paradigms, beyond exploring unsupervised FDG to reduce reliance on labels (Yan
& Guo, 2024), designing proxy tasks that require models to distinguish data distributions across clients may
enable learning of essential domain-invariant features.

FODD. Current methods mainly focus on enhancing OOD generalization through model intervention or
knowledge distillation (Qi et al., [2025b), which is essentially passive. Future research should shift to proac-
tive and predictable OOD response mechanisms. By exploring new perspectives like data generation and
feature space reconstruction, we can systematically enhance the OOD generalization ability of FL systems
when facing data distribution shifts. New FL architectures can enable autonomous learning and dynamic
adjustments for OOD problems, e.g., some (virtual) clients can be dedicated to monitoring and detecting
new data distributions by comparing aggregated global models over time.

FDA. Current research is largely empirically driven and lacks rigorous theoretical guidance. While some
work provides preliminary theoretical analysis (Feng et al., [2024b)), future breakthroughs lie in understanding
the correlation between the generalization of adapted models and heterogeneity in FL. In terms of efficiency,
although one-shot methods reduce communication overhead (Abedi et al., [2025; |Zhang et al.l 2024c), they
often lack flexibility. Future work could explore novel mechanisms to minimize the extra communication
overhead incurred when transmitting domain-specific information. Additionally, customizing recent test-
time adaptation approaches to FL setups is worth studying. Such customization should consider adjusting
test-time adaptation according to data heterogeneity while preserving client privacy.

4 Incorporate New Tasks

In the dynamic field of FL, traditional systems face significant challenges when addressing the diverse and
continuously emerging tasks from clients. The introduction of new functionalities, similar to new tasks
with comparable features, is common. To effectively respond to these evolving requirements, it is crucial
to enhance the cross-task generalization capabilities of FL. models. This need directs our focus towards
advanced methodologies in FL, specifically task-personalized FL and self-supervised FL.
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4.1 Task-Personalized Federated Learning

Task-Personalized FL (TPFL) is essential to satisfy the diverse and specific requirements of clients within FL
systems. This approach deals with the inherent diversity in feature and task distributions among different
clients. Each client C;, adapts the global model m: fy o g,, to better align with its local data characteristics
and specific needs. Initially, the central server S distributes the global model to each client. The clients
then use their unique datasets Dy, to locally train models mj,, optimizing a personalized objective function
Ly, [m},(Xx), Vi]. These models are aggregated by the server using FL algorithms from set A, resulting in an
updated global model m’ with better cross-task generalization ability due to this multi-task training process.
When new tasks emerge in the future, the adaptation can be easily achieved by a little transfer learning from
the latest global model. To facilitate a comprehensive understanding, we summarize representative TPFL
approaches in Table [6] comparing their support for learning scenarios, computational and communication
overheads, and overall utility.

Table 6: Comparison of approaches in Task-Personalized Federated Learning. While client grouping
methods typically lack support for asynchronous settings and impose strict scenario constraints, regularized
optimization strategies demonstrate superior flexibility, offering broader applicability across diverse timing
and synchronization requirements.

Strategy Methods Timing Support Period Support Synchronism Overhead Utility

Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance

Reeularigeq  PFEAMe [T Dinh et al. v v v v v v High Medium Low Behind SOTA
g 17 | [r—
CBURAZCE pr BRS (Li of al| v v v v VR Low Low Low SOTA
Optimization b X .
FedAS (ﬁ"ang et al.||2024b v v X v v X High Medium Low SOTA
FedCS (Han et al.|[2023] v x x v vooox Medium Medium Low  Near SOTA
Client MiniPFL (Fan et al.| v v v v v X Medium Medium Low SOTA
Grouping CA-PFL (Zhao et al. v v X v v X High Medium Low SOTA
APFL-0OS (Ge et al. v X v v v X Low Low Low SOTA

4.1.1 Methods

Regularized Optimization. Regularized optimization in TPFL effectively addresses data and model het-
erogeneity by customizing task-specific modules, while a shared global feature extractor facilitates knowledge
aggregation across tasks. A common approach involves decoupling updates of global and local models by
introducing regularization terms into local optimization objectives. pFedMe (T Dinh et all [2020) used the
Moreau envelope as a client-side regularization term, separating the optimization of per-
sonalized models from global model learning, theoretically achieving faster convergence rates. Moreover, to
tackle parameter inconsistency in personalized FL, some studies adopt a consistency alignment optimiza-
tion strategy. incorporated local batch normalization layers into client models to adapt to
local data distributions without altering the global model structure, thus enhancing model personalization
performance. The FedAS (Yang et al., [2024b) framework used the trace of the Fisher information matrix
to measure client training progress and performs weighted aggregation accordingly, effectively reducing the
negative impact of clients with slower training progress on the global model.

Client Grouping. Client grouping is an effective strategy for addressing client heterogeneity in TPFL.
Early studies, such as FedCS (Han et all 2023), introduced a confidence-based, similarity-aware strategy
that enables flexible client grouping and similarity weight adjustment. Subsequent research has explored
more advanced clustering techniques. MiniPFL used the BIRCH clustering algorithm to
effectively distinguish similar clients and conduct collaborative training within divided “mini federations”,
enhancing the efficiency of server-side federated updates. Other studies leverage endogenous structures within
systems or networks for explicit clustering. CA-PFL (Zhao et al., [2024b) constructed a graph-structured
federated social network and employs community detection to group clients. This ensures that clients within
the same community have similar label representations, allowing for the aggregation of shared layers within
each community while retaining personalized layers for each client to address concept drift. Moreover,
client screening can be seen as a special binary clustering method, aiming to create a homogeneous group
of clients. proposed a one-shot screening scheme that converts local losses of clients on a
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pre-trained model into p-values and uses adaptive thresholds to filter out client groups with homogeneous
data distributions to the task initiator, thereby tailoring FL for specific tasks.

4.1.2 Evaluation

Datasets. The commonly used experimental datasets for TPFL, as shown in Table[3]include Tiny ImageNet,
Omniglot, Shakespeare, CelebA, and Sent140.

Setup. Under heterogeneous task scenarios, clients are assumed to be divided in different proportions to
perform various types of tasks. Most existing studies tested five types of learning tasks: object detection,
semantic segmentation, image classification, object tracking, and natural language processing related tasks.
Clients are randomly assigned to these tasks according to preset proportions. Meanwhile, to simulate the real-
world data heterogeneity, even clients performing the same type of task can be assigned different datasets.
In addition, each dataset is distributed to clients in a non-IID manner: for label types, skewed sampling is
performed using the Dirichlet distribution; regarding data volume, there is a significant imbalance among
clients, and datasets of different sizes are split and allocated to each client. Each client may adopt a distinct
model architecture tailored to its task type and dataset characteristics, while the aggregability among models
is ensured through a unified feature representation layer.

Metric. Two metrics are usually used: average accuracy and average task loss of all clients’ local test
datasets. Besides, specific metrics are used for specific tasks.

4.1.3 Real-world Applications

Several representative applications highlight the practical value of TPFL across various domains. In health-
care, ProtoHAR (Cheng et al., |2023) developed a prototype-guided mechanism for privacy-preserving and
individualized human activity recognition in wearable healthcare systems, while PPFL (Kim et al.) [2024)
proposed a personalized progressive FL approach to leverage institution-specific features for collaborative
medical diagnosis across different healthcare institutions. An adaptive FL approach to break data silos
for Parkinson’s disease diagnosis via privacy-preserving facial expression analysis was proposed in (Pang
et all 2025b)). A tri-factor adaptive FL framework for Parkinson’s disease diagnosis via multi-source facial
expression analysis was introduced in (Pang et al. 2025al). In edge computing scenarios, |Ge et al.| (2024)
proposed a one-shot screening mechanism to identify data-homogeneous edge users for personalized FL in
edge intelligent networks. In industrial applications, FedScrap (Zhang et al., 2024€)) adopted a layer-wise
personalization strategy for customized model training in industrial waste detection scenarios.

4.2 Self-Supervised Federated Learning

Self-Supervised FL (SSFL) stands out as another crucial approach in improving the cross-task generaliza-
tion ability of FL models, especially in environments where labeled data is scarce or unavailable. SSFL is
not dedicated to certain explicit tasks; instead, it aims to learn a general global model that can extract
task-generalizable representations from certain input features. Specifically, each client Cy, conducts the same
self-supervised learning (SSL), such as contrastive learning and rotation prediction, on its local data Dy, to
optimize the local model mj, with the loss Lgeir [m},(X%)]. Overall, SSFL enables the extraction and inte-
gration of diverse, self-generated features and knowledge across clients, which is beneficial for incorporating
new tasks into FL systems. To facilitate a clear comparison, we summarize representative SSFL approaches
in Table [7] evaluating their support for different learning scenarios (timing, periodicity, and synchronism),
associated overheads, and overall utility.

4.2.1 Methods

Contrastive Learning. Contrastive learning aims to learn discriminative feature representations by max-
imizing the consistency between similar samples while minimizing the similarity among dissimilar ones.
Early studies primarily focused on effective sample comparisons. MocoSFL (Li et al.l [2022b)), based on the
momentum contrast mechanism, maintains a shared feature memory and employs frequent synchronization
strategies, laying the groundwork for contrastive methods in SSFL. In parallel, by sharing correlation matri-
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Table 7: Comparison of approaches in Self-Supervised Federated Learning. While data reconstruction
methods typically incur high computational and communication costs, contrastive learning approaches
effectively address these resource constraints by offering superior system efficiency and reduced overheads.

Category Methods Timing Support Period Support Synchronism Overhead Utility
Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance
MocoSFL (Li et al. v x x v v x Medium High High Behind SOTA
) FedSC (Jing et al[|2024] v x x v v X Medium Medium Low  Near SOTA
Contrastive
Learning AeroRec ot al. @ v v v v v X Low Low Low SOTA
FedCAD (Kong et al.[[2024] v x x v v x High Medium Low SOTA
FLSimCo (Gu et al. v v v v v X Low Medium Low SOTA
FedII(|Wu et al.|(2022 v v x v v x High High Medium Behind SOTA
FedMAE (Yang et al.|[2023b v v x v v X High High Medium  Near SOTA
Data FedNI (Peng et al.|[2022 v x x v v x High Medium ~ Medium Near SOTA
Reconstruction GraphFL (Wang et al.|[2022a v X X v v X Medium Medium Low  Behind SOTA
MS-DINO (Park et al.| 2024 v v x v v x High High High SOTA
FedRecon qLiu et al.“2025b v v X v v X High High High SOTA

ces of data representations across clients, FedSC (Jing et al.,[2024) enabled cross-client sample comparisons.
To further improve efficiency, AeroRec (Xia et al., 2024a)) combined contrastive learning with knowledge dis-
tillation techniques, proposing a contrastive distillation approach for efficient knowledge transfer. Moreover,
significant progress has also been made in contrastive learning tailored to specific data types. FedCAD (Kong
extended contrastive SSL to graph data by aggregating embeddings of neighboring nodes around
anomalous nodes, enhancing the discriminability between positive and negative sample pairs, and providing a
novel solution for federated graph learning. FLSimCo considered the impact of data quality
on contrastive learning, proposing a dynamic aggregation strategy based on image blur levels, demonstrating
the adaptability of contrastive learning with low-quality data.

Data Reconstruction. Apart from contrastive learning, other approaches typically use data reconstruction
for SSL. introduced the masked autoencoder reconstruction task into FL, achieving effective
feature learning through the auxiliary task of reconstructing masked image regions. [Yang et al| (2023b)
proposed a more general FedMAE framework, extending this pixel reconstruction strategy from specific
medical scenarios to general visual tasks. However, pixel reconstruction mainly focuses on low-level texture
information and has limited ability to model high-level relationships in structured data. FedNI
extended the idea of reconstruction to graph data, capturing more complex topological structural
relationships by predicting missing node and edge information through network repair tasks. GraphFL
provided an FL framework for semi-supervised node classification on graph-structured data.
With the widespread application of transformer architecture, [Park et al| (2024) proposed MS-DINO that
performs distributed SSL by predicting masked image patches. In multi-modal scenarios, Liu et al.| (2025b)
proposed the FedRecon framework, which performs SSL by reconstructing missing modal information.

4.2.2 Evaluation

Datasets. The commonly used datasets, as shown in Table [3]include Tiny ImageNet, Shakespeare, CelebA,
Sent140, SVHN, COVID-FL, Kinetics 400, and UCF101.

Setup. First, a federated environment is simulated by dividing the dataset among a group of clients.
This partitioning typically uses the Dirichlet distribution to manage data heterogeneity among clients. The
experiment is divided into two stages: the first is the collaborative self-supervised pre-training stage. During
this stage, all clients use only their local unlabeled data to jointly optimize a shared feature extractor. In
each communication round, clients perform SSL tasks locally, then send the updated model parameters to
the server for aggregation. After pre-training, the downstream task evaluation stage begins. At this point,
the shared feature extractor is frozen, and the quality of the features is evaluated using a reserved, small-scale
labeled dataset (e.g., 1% or 10% of the total training data).
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Metric. Two metrics are used to evaluate the performance of SSFL: linear probe accuracy is the accuracy
of using a small number of labeled data to fine-tune a linear classifier based on the SSL-pretrained feature
extractor; K-nearest neighbor classification accuracy is the accuracy of assuming the classifier is a KNN.

4.2.3 Real-world Applications

In transportation scenarios, Dai et al.| (2024)) proposed using prototype clustering contrastive learning for
traffic scene recognition and vehicle behavior analysis, while [Soares et al.| (2025) proposed an SSFL approach
with Bayesian optimization for monocular depth estimation in autonomous vehicle applications. In medical
diagnosis, [Sun et al.| (2025) proposed a hierarchical semi-supervised FL method for dermatosis diagnosis. In
industrial monitoring, Youn et al.| (2025]) proposed a self-supervised asynchronous FL approach for diagnosing
partial discharge in gas-insulated switchgear for power system monitoring.

4.3 Future Work

Future research on integrating new tasks into FL can focus on constructing a more intelligent, efficient, and
robust learning system. An ideal FL framework should possess the full-chain autonomous adjustment capa-
bility from task characteristic perception, cross-task knowledge transfer to model adaptive optimization when
facing dynamically emerging new tasks. It should not only maintain generalization performance in scenarios
where heterogeneous data and complex tasks are interwoven, but also adapt to the resource constraints of
edge devices through lightweight design, while taking into account privacy security and system scalability
under multi-task collaboration. The specific discussions are carried out from the two major directions of
TPFL and SSFL as follows:

TPFL. Future TPFL research should aim to overcome current limitations in handling dual heterogeneity of
tasks and data among clients, and develop new theoretical models and algorithm frameworks. First, within
knowledge sharing and personalization paradigms, although existing works balance sharing and personaliza-
tion using adaptive masks (Lv et al., [2024) or hypernetworks (Scott et al.l 2024), a revolutionary direction
is to develop a federated multi-task learning mechanism based on causal inference. This can achieve pre-
cise knowledge transfer by identifying causal relationships between tasks, surpassing traditional correlation
analysis. Second, regarding system architecture and collaboration mechanisms, decentralization is crucial
for enhancing scalability (Feng et al., |2025al). By evolving TPFL system architecture, self-organizing and
self-healing federated network topologies can be designed, allowing clients to form optimal collaboration
patterns via smart contracts without central coordination. Finally, to resolve inter-task interference, current
methods focus on suppressing interference through aggregation strategies (Wei et al.l [2025)). A viable solu-
tion could be constructing model representations by encoding knowledge of different tasks into orthogonal
neural subspaces, ensuring minimal impact on old tasks and enabling forgetfulness-free lifelong task learning.

SSFL. One potential future direction is to develop a multimodal SSFL framework to address differences in
modal combinations among clients. Initial progress includes CroSSL (Deldari et al.,|2024])), which introduced
cross-modal SSL via latent masking for time series, handling motion sensors and biological signals without
negative pair sampling. [Zhang et al.| (2024g)) used complementary data and pseudo-labeling algorithms to
improve cross-modal learning. Secondly, the high computational and communication costs incurred by
SSFL algorithms are issues that also need to be addressed. For instance, LW-FedSSL (Tun et al., |2024])
adopted a layer-wise incremental training strategy, allowing edge devices to train one model layer at a time.
Combined with server-side calibration and representation alignment, it significantly reduces SSFL algorithms’
computational and communication overhead. Additionally, the problem of catastrophic forgetting is more
complex in the SSFL environment, so future systems need strong continuous learning capabilities.

5 Incorporate New Tasks with New Features

In practical applications of FL, the arrival of new tasks is often accompanied by new features. Typically,
learning new tasks based on the models that have already undergone some training is referred to as continual
learning (CL). As a result, it is necessary to extend CL to the FL context, achieving Federated Continual
Learning (FCL) (Yang et al.l 2023d). While regular CL is not limited to classification, existing research in
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FCL nearly all assumes that new tasks are presented as new data classes. Therefore, we use classification as a
representative example to elucidate FCL here. We make a systematic review of current technical approaches
in FCL and compare them in the supported arrival timing and existing period of new knowledge, overhead,
and performance, shown in Table

Table 8: Comparison of approaches in Federated Continual Learning. All these methods cannot support
the effective learning when the new knowledge data exists for a short period. Considering the overhead and
performance, Architecture Decomposition presents as a promising solution.

Timing Support Period Support Synchronism Overhead Utility

Category Methods
Abrupt Graduate Short Long Sync Async Computation Communication Storage Performance

FedCurv 1 v X X v v X Medium High High  Behind SOTA
CPPFL 1@275 v x x v v % Medium Medium Low Behind SOTA
FedCL (Yao & Sun|[2020] v x x v v x High High High  Near SOTA
Lo v X X v v X High Medium Medium Near SOTA
g:;rg:;zzzn v x x v V% High High High Behind SOTA
v v X v v X High High High Near SOTA
v X X v v X High High Medium  Near SOTA
v X x v v x High High Medium SOTA
v X X v v X High High Low SOTA
v X X v v X High High High  Behind SOTA
v v X v v v High High Medium Behind SOTA
v v X v v v High High Low Near SOTA
v X X v v X High High Medium  Near SOTA
v X X v v X High High Medium  Near SOTA
FedDDR v X x v v X High High Medium SOTA
Knowledge X . )
Replay FedDGR v X X v v X H?gh H¥gh Medium SOTA
FedGTG v v X v v X High High Low SOTA
AF-HFCL (Wues v v X v v X High High Low SOTA
v v X v v v High High Medium Behind SOTA
PF-FCIL ( v v X v v v High High Medium  Near SOTA
/ v v x v v v High High High SOTA
v v X v v v High High High SOTA
FedSel T 1 v x x v v oox High Medium High  Behind SOTA
Architocture L0 1 2025 v x x v v x High Medium  Medium  SOTA
Decomposition FedTA l v X X v v X High Medium Medium Near SOTA
FOT Bakman et al v X x v v x High Low Medium  Near SOTA
FedPDT (Piao et al. v X X v v X High Medium Medium SOTA

5.1 Definition of Federated Continual Learning
5.1.1 Synchronous FCL

Similar to standard CL, Synchronous FCL assumes that there are a series of datasets {D!}1; with N!
data samples D! = {(x J,y]) _, continuously arriving in the FL systems globally. The majority of each
dataset is assumed to belong to previously unseen data classes, i.e., V' N UZ_IJ}’ = (). Moreover, actually,
the dataset at each time ¢ is also non-IID owned by a part of chents at that time, i.e., each client Cg
possesses DI = {(:c’;C j,y,tc’ j)}év:’il and the corresponding marginal distributions are distinct among clients,
XL XL, VE# Vi (where k £ K, but Vi, Vi, C Y'). Consistent with existing Synchronous FCL studies, we
also consider practical constraints from limited storage space and privacy regulations (Wang et al., 2022b}
|Guo et al [2023), and assume that old class data is unavailable or can be only accessed partially by the
clients that own new class data (Cpew and Crix). Then the objective is to minimize the classification errors
for new classes while preserving the good performance of learned classes

Jin Epoii=t 190 (For () = gut=1 (for-1 (@) 1] + Eqagymiaer,yty [£(g0t (for (), )] - (1)

5.1.2 Asynchronous FCL

Different from Synchronous FCL, Asynchronous FCL assumes that FL clients learn a series of classes in
their own distinct orders. Specifically, suppose there is a set of class spaces {V!}7_; with the order O =
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[1,...,t,...,T] from the global perspective, and these class spaces are disjoint from each other Y' N vt o=
() (where t # t'). However, from the local perspective, each client Cj continually receives the dataset
corresponding to a particular order Oy, = [1k, ..., tk, ..., Tx]. The orders of clients are distinct from each other
as well as from the global one, i.e., Oy # O, O # O (where k # k’). Asynchronous FCL also conforms
to the constraints of limited storage space and privacy regulations. As for the difference between different
client categories, we assume that Co1q’s data is fixed until the category changes into others, while the data
of both Cpew and Cpix is changing over time as long as they do not change into Cyq. Then, the objective of
Asynchronous FCL is to minimize the classification errors for new classes without or with partial access to
previously learned classes on the local side, which can be viewed as a local personalization of Eq. .

5.2 Methods

Optimization Regularization. During CL, optimizing model parameters for new tasks can lead to for-
getting previously learned tasks. Adding regularization to limit large parameter changes helps alleviate
this forgetting. Fisher information and synaptic intelligence are commonly used to assess the importance
of model parameters. FedCurv (Shoham et al| [2019b) and CPPFL (Huang et al., 2022b)) were pioneers in
applying these methods to local FL training. However, they do not consider the impact of data heterogeneity
in FL, which is the main focus of [Yao & Sun! (2020). [Li et al.| (2024€)) also addressed this issue by modifying
synaptic intelligence to reflect model parameter importance based on local datasets and their correlation to
the global data distribution. Model parameter change is also reflected as intermediate layer output change,
thus, another forgetting alleviation is to conduct knowledge distillation for preserving learned task knowl-
edge. FLwF (Usmanova et al.l |2021)) first built a teacher-student framework among a stored old task model
and the current model, and regularizes similar logits over the same input, which corresponds to the first
term of Eq. . GLFC (Dong et al., [2022) designed a weighting mechanism for logit regularization to alle-
viate the impact of data heterogeneity. In contrast, FCCL (Huang et al.| 2022a) assumed a public dataset
could be used to distill knowledge from global old models, a method also adopted by |[Peng et al.| (2025).
Model parameter updates align with model gradients during training. Thus, CGoFed (Feng et al., [2025b])
proposed constraining the gradient update direction to a space that minimizes interference with historical
tasks, helping reduce forgetting of old data and speeding up adaptation to new data.

Knowledge Replay. The forgetting of learned tasks occurs because the model is optimized only for new
tasks. This raises the question: ‘Can we incorporate objectives for learned tasks into the optimization
process?’ Accordingly, replay-based solutions are proposed, which replay old tasks during FCL. Intuitively,
random storing can be inefficient; thus, GLFC (Dong et al.,|2022) tried to store the samples that are closest to
each class center. However, Re-Fed+ (Li et al., |2025b) argued that data heterogeneity should be considered
when selecting the data to store, and proposed to use a personalized informative model to ensure the selected
data contributes to both local and global knowledge. In addition to such local storage of old class data, [Zizzo
et al.| (2022)) built a global memory bank hosted on the central server to better deal with the global forgetting
caused by data heterogeneity. However, managing this global memory requires clients to upload their private
data, which violates the privacy preservation of FL, |Zizzo et al. (2022)) introduced Laplace noise to protect
uploaded data. Instead of uploading the raw data,|[Sun et al.[(2024) leveraged dataset distillation to condense
the local old task data by ensuring gradient consistency between the original and condensed data. Other
works enabled training generative models like GAN (Qi et al., 2022), masked autoencoders (He & Wangj,
2024)), and diffusion models (Liang et al.| [2024; Mei et al. [2024) locally to generate old class data for replay.
However, communicating these locally trained generative models also results in privacy leakage; thus,| Nguyen
et al| (2024b) used data reconstruction attacks for good to train a global old data generator on the server
side at the end of each task training, which generates data to be replayed in future task training. Besides,
different from data sample replay, [Wuerkaixi et al.| (2025) used a normalization flow model to generate old
task features for replay while learning new tasks. Similar ideas can also be found in |Li et al.| (2022a)); |[Yoo
& Parkl (2024), which replayed old class prototypes across clients and the server. Besides, not only can the
data be replayed, Wu et al.| (2025b]) proposed replaying historical client models and developed a weighted
distillation mechanism to alleviate forgetting of old tasks. This model-based replay strategy was also adopted
by [Zhang et al.| (2025a).
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Architecture Decomposition. To preserve the old task knowledge, one intuitive approach is to separate
different tasks and assign them to distinct model parameters. FedSelT (Chaudhary et al.l [2022)), a natural
language processing study, divided the model parameters into separate parts. Except for similar task-general
and specific parts, there is another part to measure the correlation between tasks in FedSelT, thus it can
spare the parameter bank. Similar ideas are also adopted by [Lu et al| (2024) and [Wu et al.| (2025a). In
fact, the model decomposition introduces additional communication cost. To reduce the cost, Loci (Luopan
et al.l 2025)) proposed to compress the task-shared models into compact versions while leaving task-specific
models untransmitted. From the perspective of feature sensitivity, FedTA (Yu et al., |2024)) was built on the
observation that the last few model layers are associated with task variations, and achieved FCL by adjusting
the locations of task-shared and task-specific representations in the latent space. FOT (Bakman et al.,[2024)
modified the new task training to make its model updates orthogonal to the previous task activation princi-
pal subspace, which can prevent interference between tasks. Although this strict model separation prevents
interference, it also discards the inter-task performance enhancements due to their positive knowledge cor-
relations. [Piao et al.[ (2024) proposed to separate the positive and negative knowledge correlations between
tasks in model parameters and then amplify the positive transfer while mitigating the negative transfer.

5.3 Evaluation

Datasets. The commonly used experimental datasets for FCL, as shown in Table [3] include FEMNIST,
CIFAR-10/CIFAR-100, Tiny ImageNet, Omniglot, and CelebA.

Setup. In a typical FCL setup, a dataset is first partitioned into a predefined number of sequential tasks
based on data categories. A common strategy is uniform sequential allocation, where each task is assigned
an equal number of non-overlapping classes, following the dataset’s original class order. More flexible setups
relax these constraints, for instance, by randomly determining the number of classes per task and which
specific classes are assigned. For any given task, the data is then distributed across clients in a non-1ID
manner. This is often achieved by inducing label skew, where each client only observes data for a subset of
the task’s classes. A widely adopted method to model this is to use a Dirichlet distribution to allocate class
proportions to each client. The experimental setup also defines the task arrival sequence and duration. In
synchronous FCL, all clients encounter the same sequence of tasks. In contrast, asynchronous FCL allows
each client to learn from tasks in a different, often randomized, order. As for task duration, most studies
assume a fixed period for each task (e.g., a set number of epochs), thus obviating the need for task-boundary
detection. However, a growing body of work is focused on designing sensitive, real-time detectors to enable
FCL to operate under more realistic, arbitrary task boundaries.

Metrics. Two metrics are used to measure the performance of FCL: average accuracy (ACC) and forgetting
(FGT) (Bakman et al.| [2024)),

t t—1
1 it _ 1 1,0 ,t
Acczzga, FGT—;;CL —a’, (2)

where a®* is the model accuracy of task )* right after learning task J*. As for Asynchronous FCL, ACC,
and FGT of local clients are also used to measure the performance.

5.4 Real-world Applications

Some preliminary studies may provide valuable insights. FCLLM-DT (Xia et al., |2024b) built a digital
twin physical model to synthesize virtual anomaly data, which is integrated with FCL to realize spatial and
temporal anomaly detection in the industrial Internet of Things. Similar tries can be seen in the intrusion
detection (Zhang et al., |2024h; |Quyen et al., [2024; [Mao et al.l 2024) for industrial manufacturing systems.
In multi-satellite networks, FCIL-MSN (Niu et al., |2024) achieved FCL in satellite scene recognition.

5.5 Future Works

First of all, potential future studies involve extending FCL to multi-label and multi-grained classification.
Besides, some preliminary works have explored achieving federated incremental segmentation on medical
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Figure 3: A taxonomy of technical approaches for incorporating new models into FL systems can be organized
into two broad categories: (i) methods that enhance existing functionalities, and (ii) methods that facilitate
the integration of additional new knowledge. For the former, we consider architectural transfer either from
the new model to the old model, or from the old model to the new model.

data (Peng et al., [2025; Zhang et al., |2024al). Therefore, extension to more complicated tasks like object
tracking and visual question answering is waiting to be explored. Additionally, considering FCL in practical
scenarios is underexplored, such as learning new tasks with insufficient, weakly labeled, or unlabeled data.
Although there are a few studies related to few-shot FCL (Liang et al) [2025a)) and federated novel class
discovery, their effectiveness usually relies on unrealistic assumptions. In addition, developing FCL techniques
for more data modalities is needed. Fortunately, some examples in graph classification (Miao et al., 2025; | Zhu|
and text entity recognition (Zhang et al.;|2025¢) have been witnessed. Employing FCL to tackle
some fundamental challenges of FL is another potential direction. [Wang et al.| (2024a)) constructed a digital
twin model for each FL client to generate data continuously, addressing non-IID issues in FL. Future research
could explore leveraging FCL to reduce computation costs and accelerate model convergence. Besides, more
applications of FCL in healthcare, finance, and even scientific discovery are worthy of research.

6 Incorporate New Models

Integrating a broader range of advanced models, including Foundation Models (FMs) and Large Language
Models (LLMs), into existing FL systems significantly enhances traditional FL frameworks
. Traditional FL systems often struggle with complex data distributions and the demands of sophis-
ticated tasks. Incorporating models with superior architecture and larger scales is crucial. This approach
not only addresses the limitations of older FL systems but also promotes evolution by increasing data avail-
ability, boosting collaborative development, and enhancing both the utility and privacy of FL models in
various applications. In the following context, we consider two cases for incorporating new models M ey
into FL: (i) From New to Old: use new models f, (e.g., FMs and LLMs) to enhance existing models fy;
(ii) From Old to New: transfer architecture and knowledge (e.g., from convolution neural networks to
transformers) from the existing models fy to new models f,. In both cases, the new model f, is assumed to
be pre-trained on certain datasets outside the target FL systems. In the first scenario, clients can use their
local data to distill knowledge from f,, which is typically hosted on the central server S (as f, is usually
quite large). In the second scenario, the focus is on efficiently transferring old knowledge from fy to provide
a better starting point for optimizing f,. Beyond these two transfer directions, new model architectures
can also act as a flexible interface to integrate continuously arriving knowledge (e.g., new features or new
tasks) into the evolving FL system. Accordingly, we organize the technical approaches in this section into
two complementary objectives: (i) enhancing current functionality via model transfer (Section ; and
(ii) facilitating new knowledge integration via architectural modularity and adaptation mechanisms (Section
6.1.2). The potential technical approaches are reviewed below, shown in Figure [6]
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6.1 Methods

6.1.1 For Enhancing Current Functionality

From New to Old. When transferring models from new to old, two major issues need consideration:
1) local client data alone is insufficient to fully utilize the knowledge in new models; 2) new models are
typically too large to be loaded on clients or communicated efficiently between clients and the server. For
the first issue, CROSSLM (Deng et all, [2023) demonstrated using small language models to refine LLMs
and generate synthetic data, enabling data-free knowledge transfer. Additionally, approaches such as using
public data and LLMs to enhance federated distillation by accurately selecting knowledge from local and
ensemble predictions, as investigated by Wang et al| (2023a) and [Shao et al,| (2024)), show the potential
for knowledge transfer from new models to established FL models. Beyond distilling knowledge from the
model’s output layer, another approach focuses on aligning intermediate feature representations.
introduced a feature alignment loss to ensure that the intermediate representations of local
models align with a global vision transformer (ViT), addressing unfair enhancements for clients with limited
data. For the second issue, one solution is adopting more communication-efficient model architectures.
For instance, [Yan et al.| (2024) integrated small-scale Swin Transformers into FL instead of regular ViT.
A more common approach involves parameter-efficient fine-tuning techniques, which avoid updating and
communicating the entire model. [Liu et al| (2025c) introduced low-rank adaptation into FL, allowing clients
to learn and upload only a small adaptation matrix, significantly reducing communication and computation
overhead. Similarly, [Wu et al.| (2024a)) designed a mechanism for on-demand parameter transmission, where
only necessary updates are exchanged, achieving performance close to centralized fine-tuning with minimal
communication cost. In addition to selective parameter updates, other works have integrated dedicated
optimization techniques to address communication bottlenecks. For example, the Photon framework
combined gradient quantization, dynamic communication frequency adjustment, and efficient
ring-based parameter synchronization to reduce bandwidth needs significantly. Similarly,
developed an open-source FL framework for LLMs that optimizes communication compression and parallel
scheduling, further addressing the challenges of training large models over low-bandwidth networks.

From Old to New. When transferring from old models to new ones, existing FL studies on heterogeneous
model architectures can be beneficial. For example, FedRolex (Alam et al. 2022) implemented a rolling
window mechanism that allows clients to selectively extract sub-models from the global model on the central
server, tailoring them to train different local models. Similar concepts were explored in the work of
(2023). Another approach (Huang et al) [2022a)) used a public dataset and SSL to distill knowledge from
old FL models to new ones with heterogeneous architectures. However, this requires the public dataset to
closely match the learned data distribution, which is often impractical. In future research, data availability
will remain a significant challenge. Not all learned data can be stored for transferring to new architectures,
necessitating selective data storage. Additionally, if the new architectures are large, specific designs for split
learning or tuning are needed, such as using adapters for different attention layers when training transformers.

6.1.2 For Facilitating New Knowledge Integration

Beyond enhancing existing capabilities, new model architectures increasingly serve as a flexible interface to
facilitate the integration of other types of new knowledge, effectively transforming the global model into
a universal foundation. To facilitate the integration of new features, particularly unseen distributions, ar-
chitectures are evolving to include auxiliary alignment components. For instance, |Zhang et al.| (2024c)
employed global adapters trained on multi-domain prototypes to structurally bridge heterogeneous feature
spaces, while |Che et al. (2025)) incorporated domain-simulation modules to actively synthesize features
for alignment. Conversely, when incorporating new tasks, structural modularity becomes essential to man-
age sequential knowledge without forgetting. Prompt-based architectures offer a lightweight solution:
et al (2024) and Ma’sum et al.| (2025) utilized task-specific prompts to manage sequential new tasks, while
Halbe et al| (2023) and |Liang et al.| (2025b) leveraged prompt pools to enable efficient task adaptation.
Similarly, |Salami et al.| (2024)) trained low-rank adapters to extend model capacity for specific tasks. De-
composing the architecture into decoupled components is another robust pattern. FedWelT
and pFedC (Zhang et al.| [2024b) demonstrated that by separating parameters into “task-general” and
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“task-specific” categories or using conflict-aware masks, the system can selectively integrate new knowledge.
Furthermore, SacFL (Zhong et al., 2025)) adopted an encoder-decoder split to facilitate continuous task ar-
rival. Finally, Qi et al.| (2025a) utilized dynamic hypernetworks to learn the correspondence between task
identities and model weights, automating the architectural adaptation to continuously arriving tasks.

6.2 Real-world Applications

On the one hand, transitioning from new to old models, (Galal et al.| (2024) proposed using pre-trained BERT
to enhance existing FL models in distributed text classification. In drug discovery, Wang et al.| (2025a)) intro-
duced a federated knowledge distillation approach to improve the accuracy of compound-protein interaction
predictions through collaborative learning across pharmaceutical institutions. For time series analysis,
suggested leveraging foundation models to enhance FL approaches for heterogeneous time series
data across distributed clients. On the other hand, transitioning from old to new models, in edge computing
scenarios, |[Zuo et al| (2024) proposed a federated continual learning approach to transfer knowledge from
traditional CNN models to ViT for improved visual recognition on edge devices. In medical imaging,
proposed transferring knowledge from existing CNN-based models to advanced transformer
architectures for enhanced cardiac CT image analysis in FL settings.

6.3 Future Works

Current federated knowledge distillation methods face significant communication and computational chal-
lenges, and they lack robustness in diverse environments. These methods primarily depend on transmitting
model outputs (logits) for distillation. Future research should investigate more efficient knowledge repre-
sentation forms. For instance, studies could explore how to distill and transmit compressed or quantized
knowledge (He et al., 2025b), or design protocols that only transmit the most essential knowledge (Gad
. Additionally, when enhancing existing models with the general knowledge of foundation mod-
els, there is a risk of overwriting valuable expertise acquired in specific tasks. Future work should incorporate
continuous learning into knowledge distillation. For example, using techniques like elastic weight consolida-
tion (Shoham et all 2019a) or knowledge replay (Pennisi et al., 2024), new knowledge can be introduced
while effectively preserving and balancing existing expertise. Model evolution expands the capacity and
interface of an FL system, but system-level evolution also depends on the coordination logic that turns
heterogeneous client updates into global progress. As client populations, data heterogeneity, and privacy
constraints change over time, an established FL system may need to upgrade its aggregation rule to pre-
serve existing functionality while absorbing newly arriving knowledge. We therefore next review aggregation
algorithms as a fourth carrier of new knowledge in evolving FL systems.

7 Incorporate New Aggregation Algorithms

Aggregation algorithms define the coordination logic of FL systems: they determine how client updates
are weighted, synchronized, protected, and ultimately translated into global model improvements. As FL
deployments evolve, naive averaging becomes increasingly insufficient under practical constraints such as
severe non-IID data, system heterogeneity, privacy and security requirements, and continuously changing
client populations. Consequently, incorporating new aggregation algorithms is not merely a performance
tweak but a key mechanism for enabling system-level evolution. In this section, we review aggregation
methods from two complementary perspectives: (i) For Enhancing Current Functionality, where new
algorithms improve robustness, convergence, and privacy guarantees under existing learning objectives; and
(ii) For Facilitating New Knowledge Integration, where aggregation evolves from static averaging to
dynamic, structure-aware mechanisms that help absorb new features, new tasks, and heterogeneous models
without destabilizing the federated process. A detailed taxonomy of these technical approaches is illustrated
in Figure [7}
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Figure 4: A taxonomy of technical approaches for incorporating new algorithms into FL systems can be
organized into two broad categories: (i) methods that enhance existing functionalities, and (ii) methods that
facilitate the integration of additional new knowledge. For the former, we consider algorithm switching to
strengthen privacy protection and mitigate data heterogeneity.

7.1 Methods
7.1.1 For Enhancing Current Functionality

Mitigating Data Heterogeneity. A long-standing challenge in FL is that client data are typically non-1ID
and unevenly distributed, which induces client drift and makes naive averaging unstable or slow to converge.
To address this, a series of aggregation and local optimization designs explicitly incorporate heterogeneity
into the training dynamics. FedProx modifies the local objective with a proximal regular-
ization term, constraining local updates from deviating excessively from the current global model, thereby
stabilizing training when local objectives differ substantially. Complementarily, Scaffold (Karimireddy et al.|
targets the bias introduced by heterogeneous local updates by using control variates to correct local
gradients, encouraging local optimization to better align with the global descent direction. Beyond con-
straining parameters or gradients, Moon emphasizes that heterogeneity can manifest as
representation misalignment across clients; it adopts a model-contrastive learning objective to encourage
local representations to remain consistent with the global model, reducing over-specialization to local dis-
tributions. FedProto further explores a more semantic and communication-friendly form
of alignment by exchanging class prototypes rather than raw gradients/parameters, enabling clients to align
class-wise feature representations under distribution skew. Collectively, these methods demonstrate that
enhancing functionality under non-IID data often requires moving from purely averaging-based aggregation
to heterogeneity-aware optimization and knowledge alignment mechanisms.

Strengthening Privacy Protection. In practical FL deployments, maintaining functionality also requires
protecting client information throughout training and inference-related exchanges. Two mainstream direc-
tions are differential privacy (DP) and secure Multi-Party Computation (MPC) (Goldreich
. DP-based methods typically perturb client updates (e.g., gradients or parameters) to ensure that each
client’s contribution is protected within a formal privacy budget. For example, FL with local DP
performs on-device perturbation before transmission, providing strong protection even under a
weak trust assumption about the server, though it may introduce additional noise into optimization. FL with
shuffle DP (Girgis et al., [2021]) improves the privacy-utility trade-off by anonymizing the association between
clients and their updates through shuffling, yielding privacy amplification while often retaining better model
utility than purely local perturbation. Recent work further aims to harmonize heterogeneous differential
privacy mechanisms and privacy budgets across clients/rounds to improve both accuracy and convergence
in DP-FL (Feng et al| [2024a)). In parallel, MPC-based approaches provide cryptographic protection by
transforming client-side information, including model gradients, intermediate neural representations, and in-
ference predictions, into secrets for secure sharing and computation. SecAgg (Bonawitz et al.,[2017)) ensures
that the server can only recover the aggregated sum (or average) of client updates without inspecting any in-
dividual update, making it a foundational primitive for secure aggregation at scale. CaPC (Choquette-Choo|
similarly enables confidential collaborative computation by secret-sharing client data for secure
processing, supporting privacy-preserving learning when richer exchanged signals are needed beyond raw pa-
rameter updates. Overall, these privacy-preserving techniques enhance current FL functionality by reducing
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information leakage risks while allowing aggregation to proceed in a principled (DP) or cryptographically
protected (MPC) manner.

7.1.2 For Facilitating New Knowledge Integration

New aggregation algorithms play a pivotal role in facilitating the integration of new knowledge by evolving
from static averaging to dynamic mechanisms that act as the system’s control logic. To explicitly address
the heterogeneity of new features, aggregation strategies are shifting towards metric-driven and fine-grained
alignment. For instance, FedDaDiL (Montesuma et all [2024]) modeled distribution shifts using Wasserstein
barycenters to align feature spaces based on optimal transport geometry, while Ma et al.
designed a risk extrapolation strategy to optimize aggregation coeflicients for causal invariance. At a finer
level, [Wei & Han| (2024) and [Nguyen et al.| (2025)) maximized gradient consistency to reduce distribution dis-
crepancies by matching intra/inter-domain gradients. When new tasks introduce severe functional conflicts,
algorithms facilitate integration by dynamically modifying the aggregation topology. PFL-MCL
and MuPFL (Zhang et al. |2024d)) proposed iterative or adaptive clustering mechanisms that route
diverse updates to different “knowledge communities”, effectively preventing negative transfer between con-
flicting tasks. Finally, to accommodate new models or heterogeneous architectures, algorithms are adopting
decoupled or parameter-agnostic aggregation schemes. Ditto introduced a bi-level mech-
anism that regularizes local models towards the global average without forcing synchronization, creating
an elastic buffer for diverse model parameters. Similarly, FedPCC integrated prototype
clustering into aggregation to unify feature spaces, allowing the integration of knowledge regardless of the
underlying model structural differences.

7.2 Real-world Applications

In the healthcare domain, [Khan et al.|(2025]) proposed EAH-FL, an encrypted in-network aggregation frame-
work deployed at the network edge to effectively reduce both communication and computation overhead. It
enables efficient federated training under low-bandwidth conditions and substantially improves communica-
tion latency and energy consumption without noticeably sacrificing model accuracy, demonstrating strong
practicality for real-time medical monitoring. In industrial IoT, |[Mughal et al. (2024) proposed MEC-AI
(HetFL), which adopts a multi-tier edge aggregation architecture with asynchronous updates to reduce com-
munication costs. By orchestrating collaborative training across edge clusters and dynamically selecting
clients and allocating resources based on network conditions, it avoids long-haul cloud transmissions and
mitigates the straggler effect that can slow down global convergence. In smart agriculture,
proposed a pruning-based aggregation approach that jointly reduces communication and computation costs.
The method prunes client models in each round and aggregates the pruned updates, significantly decreasing
the transmitted parameters and the local training burden on resource-constrained devices.

7.3 Future Works

In this direction, future research should address the seamless integration of novel aggregation algorithms into
existing frameworks. First, it remains to be determined whether directly switching aggregation algorithms
could slow down the convergence speed of the FL. model or impair its final convergence performance, as differ-
ent algorithms possess distinct optimization trajectories and implicit regularization effects
that may lead to transient instability or divergence when the aggregation rule is abruptly altered. Second,
if such a switch is viable, identifying the optimal timing for this transition is critical, requiring research to
determine if specific training phases exist where switching algorithms minimizes disruption while maximizing
convergence gains and how to determine this timing systematically (Karimireddy et al.,|2020a)). Third, signif-
icant technical difficulties arise when the new algorithm requires the communication of additional historical
information that was not stored during the training process of the old algorithm, necessitating methods
to approximate missing state variables such as momentum buffers or control variates to enable a smooth
transition between stateless and stateful algorithms (Kiani et al., [2025)). Finally, the aggregation mechanism
must be capable of handling scenarios where the model utility and privacy requirements of different clients
are distinct at both spatial and temporal levels 2023), developing adaptive strategies that can
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dynamically reconcile these heterogeneous and evolving constraints remains an open problem for the next
generation of privacy-preserving federated systems.

8 Future Works of FL with New Knowledge

8.1 Future Tendency and Open Problems

8.1.1 Future Tendency

FL is increasingly moving from one-off training to lifelong system evolution, where an established system must
continuously incorporate new knowledge to satisfy new demands while preserving existing functionality. In
our setting, new knowledge can arise from four sources: new features, new tasks, new models, and new
algorithms, and may be introduced by dynamically changing client groups (clients with only old knowledge,
only new knowledge, or mixed knowledge). Such continual arrivals create time-varying objectives, higher
system dynamics, and tighter resource constraints, especially in cross-device FL.

Future FL research will increasingly treat sustainable upgrades as explicit system-level objectives, rather
than side effects of improving optimization in a fixed setting. This implies a shift from “improving a fixed
task/model” to “maintaining a living system” that supports recurrent upgrades with bounded cost and
bounded regressions. Practically, this calls for versioned models/algorithms, upgrade policies, and rollback-
ready deployment pipelines, making evolutionary FL closer to an MLOps-like continual delivery process.
In parallel, as model technology advances, new architectures (e.g., transformers and foundation models)
are likely to serve as universal interfaces for absorbing diverse new knowledge, which encourages modular
designs (adapters, prompt modules, task heads, split components) to enable parameter-efficient upgrades,
partial activation, and backward compatibility under strict device and bandwidth constraints.

Moreover, aggregation will evolve from static averaging to dynamic, structure-aware coordination that ex-
plicitly handles heterogeneity in knowledge states, model structures, and client availability. In particular,
algorithm evolution (new optimizers, new privacy mechanisms, new robustness designs) will be coupled with
the integration of new features/tasks/models, forming a unified coordination layer that decides who trains
what, when, and how. As continual integration becomes the norm, governance primitives will also become
indispensable: detecting whether incoming changes are truly new knowledge (vs. noise or transient drift),
validating benefit under partial observability, attributing gains/losses to knowledge sources, and maintain-
ing a reproducible upgrade history. Consequently, benchmarks will shift from single-stage performance to
long-horizon outcomes that measure adaptation speed, retention of prior capabilities, cumulative utility over
time, resource overhead, and robustness under non-stationarity, with protocols that simulate diverse arrival
patterns (form and timing), dynamic client participation, and realistic system constraints.

8.1.2 Open Problems

Despite rapid progress, several fundamental problems remain open and will likely define the next phase of FL.
with new knowledge. First, we still lack principled formulations and guarantees for non-stationary evolution:
it remains unclear how to mathematically define “successful evolution” when objectives shift over time, and
how to unify fast adaptation to new knowledge, bounded forgetting of old knowledge, and constraints on
communication/energy/latency into a single optimization target with stability and convergence guarantees
under dynamic participation. Closely related is the challenge of detecting and characterizing new knowledge
in realistic heterogeneous environments: when new features or tasks appear, the system must decide whether
to adapt, ignore, or defer, yet reliable novelty detection without labels is difficult, and one must distinguish
genuine new demands from transient fluctuations, device faults, or low-quality data while controlling false
alarms and missed detections.

Second, evolutionary FL must support regression-free integration across heterogeneous client knowledge
states (only old, only new, or mixed). Updates that benefit new-knowledge clients can harm old-knowledge
clients, raising open questions on how to enforce “no significant harm” constraints during upgrades, how
to design personalization that remains compatible with future global evolution, and how to quantify and
control long-term fairness and accessibility as the system evolves.
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Finally, we need dependency-aware co-evolution and safe switching mechanisms at the system level. New
knowledge types often co-occur and depend on each other (e.g., a new task may require a representational
upgrade), but we lack robust methods to build dependency graphs and plan integration sequences under re-
source budgets. Meanwhile, switching aggregation algorithms or model architectures may require additional
states (e.g., control variates, momentum, masks, prompts) that are missing or inconsistent across clients,
making state migration, compatibility layers, and rollback/canary mechanisms under federated constraints
key unresolved issues. In addition, the community still lacks benchmarking standards for simulating arrival
form/timing, dynamic client sets, and long-horizon evaluation; beyond final accuracy, metrics should cap-
ture adaptation speed, forgetting, cumulative utility, stability under upgrades, and system costs to enable
reproducible progress and meaningful comparisons.

Table 9: A synthesis of the threats, typical defenses, and the trade-offs that should be considered when
incorporating each type of new knowledge into FL.

Knowledge Type ‘ Threat Defense Trade-off

New features Feature/gradient leakage; trigger injection Sanitization; DP + secure aggregation; anomaly checks Lower utility; more compute/comm

New tasks Task inference; negative tr: or; head backdoors Task isolation (heads/adapters); robust agg.; DP/SA Less sharing; larger models; coordination overhead
New models Trojaned nversion/leakage; supply-chain risk  Provenance/attestation; backdoor scans; DP/SA; sandbox eval ~ Screening cost; slower training; accuracy loss (DP)
New algorithms | Weaker privacy guarantees; poisoning/Byzantine Privacy accounting + DP; Byzantine-robust agg.; SA/MPC Robustness-accuracy; extra rounds; tuning complexity

8.2 Threats

Incorporating new knowledge into an FL system often requires communicating additional information be-
yond standard model parameters or gradients. Therefore, it is urgent to propose dedicated methods to
protect these additional contents in the semi-honest scenarios, in particular, against a variety of inference
attacks (Wang et al [2019; [Luo et al [2021). From a representation perspective, Soteria provided a prov-
able defense by perturbing privacy-sensitive representation components to reduce reconstruction leakage
while preserving utility (Sun et al| 2021). Complementarily, task-agnostic privacy-preserving representa-
tion learning has been proposed to mitigate attribute inference attacks in FL without assuming a specific
downstream task (Arevalo et al., 2024)). Some preliminary tries include adding random (Dong et all, 2022)
or DP noise (Zizzo et al., 2022) to the domain or task-specific models or class prototypes of FCL. However,
such noise-based protection often comes at the cost of model performance. Given FL’s multi-party nature,
leveraging cryptographic methods like MPC is a promising alternative, as it can provide strong security
guarantees without sacrificing utility. However, such privacy protection hurts the performance of FL sys-
tems. Aligning with the intrinsic nature of multiple parties in FL, it may be possible to leverage MPC to
communicate the additional contents. MPC is built on cryptography, and there are strong security guaran-
tees. Besides, because the carriers of new knowledge are features, tasks, models, and algorithms, we need to
consider the worst case that these carriers are polluted or poisoned in malicious scenarios. In this context,
FedTilt studied robust FL under persistent outliers while incorporating multi-level fairness constraints across
clients and groups (Zhang et al.| |2025b). Provenance primitives such as watermarking can further support
ownership verification and model provenance tracking; for example, FedGMark provided a certifiably robust
watermarking approach for federated graph learning (Yang et al [2024c)). For instance, features with poison
attacks may be disguised as new features, and if there is no detection tool, they will be naturally incorpo-
rated into FL. An optimization-based attack framework that broke state-of-the-art poisoning defenses in FL
was presented in (Yang et al., |2024e). Furthermore, malicious clients may conduct unintended local model
training for society-harmful tasks; in this case, there is a need to distinguish them from new benign tasks.
New models may also contain backdoors (Xie et al.,[2020)), blindly incorporating them will cause serious out-
comes. A secret sharing-inspired robust distributed backdoor attack against FL was studied in
. Distributed backdoor attacks on federated graph learning and certified defenses were investigated
in (Yang et al., 2024d). Finally, new algorithms themselves can introduce new attack surfaces; for example,
some gradient inversion attacks (Huang et all [2021)) are only effective against specific FL algorithms. In
summary, we provide a synthesis of the threats, typical defenses, and the trade-offs that should be considered
for each type of new knowledge, as shown in Table [9]
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8.3 Incentive

To build a continuously evolving FL ecosystem, the core is designing a dynamic incentive mechanism that
effectively manages the knowledge lifecycle. This mechanism must address three key issues: how to fairly
evaluate the contributions of different types of knowledge, how to incentivize the addition of high-quality
knowledge, and how to handle the secure exit of knowledge.

Fair quantification of contributions is the cornerstone of all incentive mechanisms. Within the new knowl-
edge framework defined in this paper, we must go beyond traditional evaluation methods that focus solely
on data volume (Li et al., 2020a) and establish a multi-dimensional model capable of measuring the value
of heterogeneous knowledge. Table summarizes a compact instantiation of this model across the four
carriers. For contributions of new features, the Shapley value method can be employed. |Guo et al.| (2024a)
state that when a participant introduces a new feature, their contribution can be measured by the marginal
improvement of this feature on the global model’s performance. For contributions of new tasks, the net
value evaluation method (Kirkpatrick et al., 2017)) is utilized. When a new task is introduced, it brings in
new knowledge but may also interfere with existing tasks, causing catastrophic forgetting; thus, its contri-
bution must be a net effect. For contributions of new models or algorithms, a multi-dimensional weighted
gain method can be adopted, comprehensively considering communication efficiency (Chen et al., 2023a),
computational efficiency (Pan et all|2024), and model performance (Nilsson & Smith} 2018)).

After being able to measure contributions, it’s crucial to incentivize participants with high-quality knowl-
edge to contribute honestly. Since participants have private information about the true quality of their
contributions, contract theory (Liu et al.l [2022)) offers a suitable solution. Instead of offering a fixed price, a
“contract menu” can be designed for participants to choose from. Each menu item pairs a commitment level
with a corresponding reward. Importantly, the reward for each contract must exceed the cost incurred by
participants in contributing their knowledge; otherwise, participation will be discouraged. Meanwhile, the
reward gap should be carefully designed so that participants with high-quality knowledge maximize benefits
only by selecting high-commitment, high-return contracts. This encourages them to “tell the truth," thus
attracting high-quality knowledge into the system.

A healthy ecosystem must allow participants to withdraw their contributions safely when needed. Federated
unlearning is central to achieving this. When a participant requests to withdraw their knowledge (whether
features, tasks, or models), the system must perform an unlearning operation, which incurs unlearning costs.
This cost depends on the thoroughness of unlearning, categorized into approximate unlearning (Xiong et al.,
2024) and exact unlearning (Qiu et all [2023)). Approximate unlearning efficiently reduces the influence of
specific knowledge with lower computational costs and faster speed. Exact unlearning usually requires partial
or complete retraining from a checkpoint, excluding the target knowledge, leading to higher computational
costs. The unlearning cost forms the basis for designing the exit clause in the incentive mechanism. Within
this framework, the exit clause can explicitly link the unlearning cost to the participant’s responsibilities.
Participants can choose between approximate or exact unlearning based on their needs. Choosing the former
may involve a small fee or a deduction of reputation points, while the latter entails bearing a higher proportion
of computational costs. Additionally, for long-term contributors with high reputation scores, the system can
subsidize part of the unlearning cost when they exit, recognizing their past contributions.

Table 10: A compact multi-dimensional model for valuing contributions of new knowledge in evolving FL.

Carrier What changes Contribution

New features Input distribution / modality = Marginal utility (e.g., Shapley-style attribution) and robustness to feature shift
New tasks Task set / functionality Net utility: gain on new tasks minus loss (forgetting) on prior tasks

New models Architecture / capacity Weighted gain over accuracy, retention, compute, and communication cost
New algorithms  Aggregation protocol Weighted gain over convergence, robustness, privacy; plus transition cost

9 Conclusion

In this paper, we focus on a comprehensive review of studies relevant to incorporating new knowledge into
FL to achieve its sustainable development. We consider new knowledge from four sources: features, tasks,
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models, and algorithms. For incorporating new features, we discuss a set of processes to enhance the out-of-
distribution detection and generalization ability of FL systems. Regarding new tasks, we discuss how to use
task-personalized and self-supervised FL to strengthen the cross-task generalization capability of FL, and we
also introduce how to learn new tasks through federated continual learning. Additionally, we review existing
research that may facilitate the fusion of different FL. models and the transition between different algorithms.
Finally, we comprehensively discuss future research directions, considering factors such as scenario setups,
security and privacy threats, and incentives.

References

Ali Abedi, QM Wu, Ning Zhang, and Farhad Pourpanah. One-shot federated unsupervised domain
adaptation with scaled entropy attention and multi-source smoothed pseudo labeling. arXiv preprint
arXiw:2508.10020, 2025.

Samiul Alam, Luyang Liu, Ming Yan, and et al. Fedrolex: Model-heterogeneous federated learning with
rolling sub-model extraction. NeurIPS, 2022.

Caridad Arroyo Arevalo, Sayedeh Leila Noorbakhsh, Yun Dong, Yuan Hong, and Binghui Wang. Task-
agnostic privacy-preserving representation learning for federated learning against attribute inference at-
tacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 10909-10917,
2024.

John Ayeelyan, Sapdo Utomo, Adarsh Rouniyar, Hsiu-Chun Hsu, and Pao-Ann Hsiung. Federated learning
design and functional models: Survey. Artificial Intelligence Review, 58(1):21, 2024.

Rugqi Bai, Saurabh Bagchi, and David I Inouye. Benchmarking algorithms for federated domain generaliza-
tion. arXiv preprint arXiv:2307.04942, 2023.

Yavuz Faruk Bakman, Duygu Nur Yaldiz, et al. Federated orthogonal training: Mitigating global catastrophic
forgetting in continual federated learning. ICLR, 2024.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the
European conference on computer vision (ECCV), pp. 456-473, 2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
et al. Practical secure aggregation for privacy-preserving machine learning. In ACM CCS, 2017.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Yatin Chaudhary, Pranav Rai, Matthias Schubert, and et al. Federated continual learning for text classifi-
cation via selective inter-client transfer. In Findings of EMNLP, 2022.

Haoxuan Che, Yifei Wu, Haibo Jin, Yong Xia, and Hao Chen. Feddag: Federated domain adversarial
generation towards generalizable medical image analysis. arXiv preprint arXiv:2501.13967, 2025.

Chuan Chen, Tianchi Liao, Xiaojun Deng, Zihou Wu, Sheng Huang, and Zibin Zheng. Advances in robust
federated learning: A survey with heterogeneity considerations. IEEE Transactions on Big Data, 2025a.

Dengsheng Chen, Jie Hu, Vince Junkai Tan, Xiaoming Wei, and Enhua Wu. Elastic aggregation for federated
optimization. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition,
pp. 12187-12197, 2023a.

Junming Chen, Meirui Jiang, Qi Dou, et al. Federated domain generalization for image recognition via
cross-client style transfer. In WACYV, 2023b.

Shengchao Chen, Guodong Long, Jing Jiang, and Chengqi Zhang. Federated foundation models on het-
erogeneous time series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
1583915847, 2025b.

27



Under review as submission to TMLR

Dongzhou Cheng, Lei Zhang, Can Bu, Xing Wang, Hao Wu, and Aiguo Song. Protohar: Prototype guided
personalized federated learning for human activity recognition. IEFE Journal of Biomedical and Health
Informatics, 27(8):3900-3911, 2023.

Hao Chi, Hui Xia, Shuo Xu, Yusheng He, and Chungiang Hu. Fmdada: Federated multi-discriminative
adversarial domain adaptation. Applied Intelligence, 54(17):7849-7863, 2024.

Christopher A Choquette-Choo, Natalie Dullerud, et al. Capc learning: Confidential and private collabora-
tive learning. In ICLR, 2020.

Cheng Dai, Shuai Wei, Shengxin Dai, Sahil Garg, Georges Kaddoum, and M Shamim Hossain. Federated self-
supervised learning based on prototypes clustering contrastive learning for internet-of-vehicles applications.
IEEE Internet of Things Journal, 2024.

Erfan Darzi, Yiqing Shen, Yangming Ou, Nanna M Sijtsema, and Peter MA van Ooijen. Tackling hetero-
geneity in medical federated learning via aligning vision transformers. Artificial Intelligence in Medicine,
155:102936, 2024.

Shohreh Deldari, Dimitris Spathis, Mohammad Malekzadeh, Fahim Kawsar, Flora D Salim, and Akhil
Mathur. Crossl: Cross-modal self-supervised learning for time-series through latent masking. In Proceed-
ings of the 17th ACM International Conference on Web Search and Data Mining, pp. 152-160, 2024.

Yongheng Deng, Ziqing Qiao, Ju Ren, Yang Liu, and Yaoxue Zhang. Mutual enhancement of large and small
language models with cross-silo knowledge transfer. arXiv:2312.05842, 2023.

Zhipeng Deng, Zhe Xu, Tsuyoshi Isshiki, and Yefeng Zheng. Fedsemidg: Domain generalized federated
semi-supervised medical image segmentation. arXiv preprint arXiv:2501.07378, 2025.

Jiahua Dong, Lixu Wang, et al. Federated class-incremental learning. In CVPR, 2022.

Jiahua Dong, Duzhen Zhang, Yang Cong, Wei Cong, Henghui Ding, and Dengxin Dai. Federated incremental
semantic segmentation. In CVPR, 2023.

Cynthia Dwork. Differential privacy. In International colloguium on automata, languages, and programming,
pp- 1-12. Springer, 2006.

Omar El-Rifai, Michael Ben Ali, Imen Megdiche, André Peninou, and Olivier Teste. A survey on cluster-
based federated learning. arXiv preprint arXiv:2501.17512, 2025.

Yuwei Fan, Wei Xi, Hengyi Zhu, and Jizhong Zhao. Minipfl: Mini federations for hierarchical personalized
federated learning. Future Generation Computer Systems, 157:41-50, 2024.

Chao Feng, Nicolas Fazli Kohler, Alberto Huertas Celdran, Gerome Bovet, and Burkhard Stiller. Col-
net: Collaborative optimization in decentralized federated multi-task learning systems. arXiv preprint
arXiv:2501.10347, 2025a.

Jiyuan Feng, Xu Yang, Liwen Liang, Weihong Han, Binxing Fang, and Qing Liao. Cgofed: Constrained
gradient optimization strategy for federated class incremental learning. IEEE Transactions on Knowledge
and Data Engineering, 2025b.

Shuya Feng, Meisam Mohammady, Hanbin Hong, Shenao Yan, Ashish Kundu, Binghui Wang, and Yuan
Hong. Harmonizing differential privacy mechanisms for federated learning: Boosting accuracy and con-
vergence. In Proceedings of the Fifteenth ACM Conference on Data and Application Security and Privacy,
pp. 60-71, 2024a.

Zhanbo Feng, Yuanjie Wang, Jie Li, Fan Yang, Jiong Lou, Tiebin Mi, Robert C Qiu, and Zhenyu Liao.
Robust and communication-efficient federated domain adaptation via random features. IEEE Transactions
on Knowledge and Data Engineering, 2024b.

28



Under review as submission to TMLR

Gad Gad, Zubair Md Fadlullah, Mostafa M Fouda, Mohamed I Ibrahem, and Nei Kato. Federated learning
with selective knowledge distillation over bandwidth-constrained wireless networks. In ICC 2024-IEEE
International Conference on Communications, pp. 3476-3481. IEEE, 2024.

Omar Galal, Ahmed H Abdel-Gawad, and Mona Farouk. Federated freeze bert for text classification. Journal
of Big Data, 11(1):28, 2024.

Yang Ge, Yang Zhou, and Li Jia. Adaptive personalized federated learning with one-shot screening. IFEE
Internet of Things Journal, 11(9):15375-15385, 2024.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh. Shuffled
model of differential privacy in federated learning. In International Conference on Artificial Intelligence
and Statistics, pp. 25621-2529. PMLR, 2021.

Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 1998.

Kaijie Gong, Yi Gao, and Wei Dong. Privacy-preserving and cross-domain human sensing by federated
domain adaptation with semantic knowledge correction. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 8(1):1-26, 2024a.

Shuai Gong, Chaoran Cui, Chunyun Zhang, Wenna Wang, Xiushan Nie, and Lei Zhu. Federated domain
generalization via prompt learning and aggregation. arXiv preprint arXiv:2411.10063, 2024b.

Xueying Gu, Qiong Wu, Qiang Fan, and Pingyi Fan. Mobility-aware federated self-supervised learning in
vehicular network. Urban Lifeline, 2(1):10, 2024.

Badra Souhila Guendouzi, Samir Ouchani, Hiba EL Assaad, and Madeleine EL: Zaher. A systematic review
of federated learning: Challenges, aggregation methods, and development tools. Journal of Network and
Computer Applications, 220:103714, 2023.

Junfeng Guo, Yiming Li, Lixu Wang, Shu-Tao Xia, Heng Huang, Cong Liu, and Bo Li. Domain watermark:
Effective and harmless dataset copyright protection is closed at hand. In NeurIPS, 2023.

Peng Guo, Yanqing Yang, Wei Guo, and Yanping Shen. A fair contribution measurement method for
federated learning. Sensors, 24(15):4967, 2024a.

Wei Guo, Fuzhen Zhuang, Xiao Zhang, Yiqi Tong, and Jin Dong. A comprehensive survey of federated
transfer learning: challenges, methods and applications. Frontiers of Computer Science, 18(6):186356,
2024b.

Sunny Gupta, Vinay Sutar, Varunav Singh, and Amit Sethi. Fedalign: Federated domain generalization
with cross-client feature alignment. arXiv preprint arXiv:2501.15486, 2025.

Shaunak Halbe, James Seale Smith, Junjiao Tian, and Zsolt Kira. Hepco: Data-free heterogeneous prompt
consolidation for continual federated learning. arXiv:2306.09970, 2023.

Parisa Hamedi, Roozbeh Razavi-Far, and Ehsan Hallaji. Federated continual learning: Concepts, challenges,
and solutions. arXiv preprint arXiv:2502.07059, 2025.

Xuming Han, Qiaohong Zhang, Zaobo He, and Zhipeng Cai. Confidence-based similarity-aware personalized
federated learning for autonomous iot. IEEE Internet of Things Journal, 11(7):13070-13081, 2023.

Cosmin-Andrei Hatfaludi and Alex Serban. Foundational models and federated learning: survey, taxonomy,
challenges and practical insights. PeerJ Computer Science, 11:€2993, 2025.

Yuan He, Yingchun Cui, Zhengda Wu, Heran Xi, and Jinghua Zhu. Optimal transport-driven federated
out-of-distribution detection in heterogeneous data. In Proceedings of the 2025 International Conference
on Multimedia Retrieval, pp. 424-432, 2025a.

Yuchen He and Xiangfeng Wang. Masked autoencoders are parameter-efficient federated continual learners.
In 2024 IEEE International Conference on Big Data (BigData), pp. 3682-3691. IEEE, 2024.

29



Under review as submission to TMLR

Yuchen He, Chuyun Shen, Xiangfeng Wang, and Bo Jin. Fppl: An efficient and non-iid robust federated
continual learning framework. In 2024 IEEFE International Conference on Big Data (BigData), pp. 3692—
3701. IEEE, 2024.

Zixiao He, Gengming Zhu, Shaobo Zhang, Entao Luo, and Yijiang Zhao. Feddt: A communication-efficient
federated learning via knowledge distillation and ternary compression. FElectronics, 14(11):2183, 2025b.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated learning.
In CVPR, 2022a.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, et al. Evaluating gradient inversion attacks and defenses
in federated learning. NeurIPS, 2021.

Yixing Huang, Christoph Bert, Stefan Fischer, Manuel Schmidt, Arnd Dérfler, et al. Continual learning for
peer-to-peer federated learning: A study on automated brain metastasis identification. arXiv:2204.13591,
2022b.

Gu-Bon Jeong and Dong-Wan Choi. Out-of-distribution detection via outlier exposure in federated learning.
Neural Networks, pp. 107141, 2025.

Shusen Jing, Anlan Yu, Shuai Zhang, and Songyang Zhang. Fedsc: provable federated self-supervised learning
with spectral contrastive objective over non-iid data. arXiv preprint arXiv:2405.03949, 2024.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Bennis, et al. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International
conference on machine learning, pp. 5132-5143. PMLR, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, et al. Scaffold: Stochastic controlled
averaging for federated learning. In ICML, 2020b.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

Huzaif Khan, Rahul Kavati, Sriven Srilakshmi Pulkaram, and Ali Jalooli. End-to-end privacy-aware federated
learning for wearable health devices via encrypted aggregation in programmable networks. Sensors, 25
(22):7023, 2025.

Shahrzad Kiani, Nupur Kulkarni, Adam Dziedzic, Stark Draper, and Franziska Boenisch. Differentially
private federated learning with time-adaptive privacy spending. arXiv preprint arXiv:2502.18706, 2025.

Tae Hyun Kim, Jae Yong Yu, Won Seok Jang, Sun Cheol Heo, MinDong Sung, JaeSeong Hong, KyungSoo
Chung, and Yu Rang Park. Ppfl: A personalized progressive federated learning method for leveraging
different healthcare institution-specific features. Iscience, 27(10), 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

Xiangjie Kong, Wenyi Zhang, Hui Wang, Mingliang Hou, Xin Chen, Xiaoran Yan, and Sajal K Das. Federated
graph anomaly detection via contrastive self-supervised learning. IEEE Transactions on Neural Networks
and Learning Systems, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009), 2009.

30



Under review as submission to TMLR

Huilin Lai, Ye Luo, Bo Li, Jianwei Lu, and Junsong Yuan. Bilateral proxy federated domain generalization
for privacy-preserving medical image diagnosis. IEEFE Journal of Biomedical and Health Informatics, 2024.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Andy Li, Milan Markovic, Peter Edwards, and Georgios Leontidis. Model pruning enables localized and
efficient federated learning for yield forecasting and data sharing. Ezpert Systems with Applications, 242:
122847, 2024a.

Bing Li, Wei Cui, Le Zhang, Qi Yang, Min Wu, and Joey Tianyi Zhou. Democratizing federated wifi-based
human activity recognition using hypothesis transfer. IEEE Transactions on Mobile Computing, 2024b.

Boyuan Li, Shengbo Chen, and Zihao Peng. New generation federated learning. Sensors, 2022a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain gener-
alization. In Proceedings of the IEEE international conference on computer vision, pp. 55425550, 2017.

Hanzhe Li, Shiji Zhou, Bo Yuan, and Mingxuan Zhang. Optimizing intelligent edge computing resource
scheduling based on federated learning. Journal of Knowledge Learning and Science Technology ISSN:
2959-6386 (online), 3(3):235-260, 2024c.

Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti, and Michael Spranger. Mocosfl: enabling
cross-client collaborative self-supervised learning. In The Eleventh International Conference on Learning
Representations, 2022b.

Keqiuyin Li, Jie Lu, Hua Zuo, and Guangquan Zhang. Federated fuzzy transfer learning with domain and
category shifts. IEFE Transactions on Fuzzy Systems, 2024d.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In CVPR, 2021a.

Shawn Li, Peilin Cai, Yuxiao Zhou, Zhiyu Ni, Renjie Liang, You Qin, Yi Nian, Zhengzhong Tu, Xiyang
Hu, and Yue Zhao. Secure on-device video ood detection without backpropagation. arXiv preprint
arXiv:2503.06166, 2025a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE signal processing magazine, 37(3):50-60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, et al. Federated optimization
in heterogeneous networks. MLSys, 2020b.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In ICML, 2021b.

Yichen Li, Yuying Wang, Tianzhe Xiao, Haozhao Wang, Yining Qi, and Ruixuan Li. Rehearsal-free continual
federated learning with synergistic regularization. arXiv preprint arXiv:2412.13779, 2024e.

Yichen Li, Haozhao Wang, Yining Qi, Wei Liu, and Ruixuan Li. Re-fed+: A better replay strategy for
federated incremental learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025b.

Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir Murturi, Min Huang, and Schahram
Dustdar. Federated domain generalization: A survey. Proceedings of the IEEE, 2025c.

Fang-Yi Liang, Yu-Wei Zhan, Jiale Liu, Chong-Yu Zhang, Zhen-Duo Chen, Xin Luo, and Xin-Shun Xu.
Class-aware prompting for federated few-shot class-incremental learning. IEFEE Transactions on Clircuits
and Systems for Video Technology, 2025a.

Fang-Yi Liang, Yu-Wei Zhan, Jiale Liu, Chong-Yu Zhang, Zhen-Duo Chen, Xin Luo, and Xin-Shun Xu.
Class-aware prompting for federated few-shot class-incremental learning. IFEFE Transactions on Circuits
and Systems for Video Technology, 2025b.

31



Under review as submission to TMLR

Jinglin Liang, Jin Zhong, Hanlin Gu, Zhongqi Lu, Xingxing Tang, Gang Dai, Shuangping Huang, Lixin Fan,
and Qiang Yang. Diffusion-driven data replay: A novel approach to combat forgetting in federated class
continual learning. In Furopean Conference on Computer Vision, pp. 303—-319. Springer, 2024.

Xinting Liao, Weiming Liu, Pengyang Zhou, Fengyuan Yu, Jiahe Xu, Jun Wang, Wenjie Wang, Chaochao
Chen, and Xiaolin Zheng. Foogd: Federated collaboration for both out-of-distribution generalization and
detection. Advances in Neural Information Processing Systems, 37:132908-132945, 2024.

Jinwoo Lim, Suhyun Kim, and Soo-Mook Moon. Convergence analysis of federated learning methods using
backward error analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
1871918727, 2025.

Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A systematic
survey. Neurocomputing, 597:128019, 2024a.

Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao Wang, and Qi Zhu. Deja vu: Continual model
generalization for unseen domains. In ICLR, 2023.

Jing Liu, Wei Zhu, Di Li, Xing Hu, and Liang Song. Domain generalization with semi-supervised learning
for people-centric activity recognition. Science China Information Sciences, 68(1):112103, 2025a.

Junming Liu, Guosun Zeng, Ding Wang, Yanting Gao, and Yufei Jin. Fedrecon: Missing modality recon-
struction in distributed heterogeneous environments. arXiv preprint arXiv:2504.09941, 2025b.

Qianli Liu, Zhaorui Zhang, Xin Yao, and Benben Liu. Hlora: Efficient federated learning system for llm
heterogeneous fine-tuning. arXiv preprint arXiv:2503.00813, 2025c.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, et al. Feddg: Federated domain generalization on medical
image segmentation via episodic learning in continuous frequency space. In CVPR, 2021.

Yuan Liu, Mengmeng Tian, Yuxin Chen, Zehui Xiong, Cyril Leung, and Chunyan Miao. A contract theory
based incentive mechanism for federated learning. In Federated and Transfer Learning, pp. 117-137.
Springer, 2022.

Yuan Liu, Shu Wang, Zhe Qu, Xingyu Li, Shichao Kan, and Jianxin Wang. Fedgca: Global consistent
augmentation based single-source federated domain generalization. In 202/ IEEE International Conference
on Multimedia and Ezpo (ICME), pp. 1-6. IEEE, 2024b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Yanyan Lu, Lei Yang, Hao-Rui Chen, Jiannong Cao, Wanyu Lin, and Saiqin Long. Federated class-
incremental learning with dynamic feature extractor fusion. IEEE Transactions on Mobile Computing,
2024.

Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model predictions
in vertical federated learning. In ICDE, 2021.

Yaxin Luopan, Rui Han, Qinglong Zhang, Xiaojiang Zuo, Chi Harold Liu, Guoren Wang, and Lydia Y Chen.
Loci: Federated continual learning of heterogeneous tasks at edge. IEEE Transactions on Parallel and
Distributed Systems, 2025.

Kexin Lv, Rui Ye, Xiaolin Huang, Jie Yang, and Siheng Chen. Learn what you need in personalized federated
learning. arXiv preprint arXiv:2401.08327, 2024.

Shuran Ma, Weiying Xie, Daixun Li, Haowei Li, and Yunsong Li. Reducing spurious correlation for federated
domain generalization. arXiv preprint arXiv:2407.19174, 2024.

Jingxin Mao, Zhiwei Wei, Bing Li, Rongqing Zhang, and Lingyang Song. Towards ever-evolution network
threats: A hierarchical federated class-incremental learning approach for network intrusion detection in
iiot. IEEFE Internet of Things Journal, 2024.

32



Under review as submission to TMLR

Muhammad Anwar Ma’sum, Mahardhika Pratama, Lin Liu, Habibullah Habibullah, and Ryszard Kowalczyk.
Federated few-shot class-incremental learning. In The Thirteenth International Conference on Learning
Representations, 2025.

Brendan McMahan, FEider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

Yongsheng Mei, Liangqi Yuan, Dong-Jun Han, Kevin S Chan, Christopher G Brinton, and Tian Lan. Using
diffusion models as generative replay in continual federated learning—what will happen? arXiv preprint
arXiv:2411.06618, 2024.

Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and Christian S Jensen. Spatio-temporal
prediction on streaming data: A unified federated continuous learning framework. IEEFE Transactions on
Knowledge and Data Engineering, 2025.

Mohammadreza Mohammadi, Rakesh Shrestha, Sima Sinaei, et al. Anomaly detection using Istm-
autoencoder in smart grid: A federated learning approach. In SSRN, 2023.

Eduardo Fernandes Montesuma, Fabiola Espinoza Castellon, Fred Ngole Mboula, Aurélien Mayoue, Antoine
Souloumiac, and Cédric Gouy-Pailler. Dataset dictionary learning in a wasserstein space for federated
domain adaptation. arXiv preprint arXiw:2407.11647, 2024.

Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique
de France, 93:273-299, 1965.

Junki Mori, Kosuke Kihara, Taiki Miyagawa, Akinori F Ebihara, Isamu Teranishi, and Hisashi Kashima.
Federated source-free domain adaptation for classification: Weighted cluster aggregation for unlabeled
data. arXiv preprint arXiv:2412.13757, 2024.

Junki Mori, Kosuke Kihara, Taiki Miyagawa, Akinori F Ebihara, Isamu Teranishi, and Hisashi Kashima.
Federated source-free domain adaptation for classification: Weighted cluster aggregation for unlabeled
data. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6879—
6889. IEEE, 2025.

Fahad Razaque Mughal, Jingsha He, Bhagwan Das, Fayaz Ali Dharejo, Nafei Zhu, Surbhi Bhatia Khan, and
Saeed Alzahrani. Adaptive federated learning for resource-constrained iot devices through edge intelligence
and multi-edge clustering. Scientific Reports, 14(1):28746, 2024.

Mirko Nardi, Lorenzo Valerio, and Andrea Passarella. Anomaly detection through unsupervised federated
learning, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Dung Thuy Nguyen, Taylor T Johnson, and Kevin Leach. Fisc: Federated domain generalization via inter-
polative style transfer and contrastive learning. arXiv preprint arXiv:2410.22622, 2024a.

Thinh Nguyen, Khoa D Doan, Binh T Nguyen, Danh Le-Phuoc, and Kok-Seng Wong. Overcoming catas-
trophic forgetting in federated class-incremental learning via federated global twin generator. arXiv
preprint arXiv:2407.11078, 2024b.

Trong-Binh Nguyen, Minh-Duong Nguyen, Jinsun Park, Quoc-Viet Pham, and Won Joo Hwang. Federated
domain generalization with data-free on-server gradient matching. arXiv preprint arXiw:2501.14653, 2025.

Adrian Nilsson and Simon Smith. Evaluating the performance of federated learning a case study of distributed
machine learning with erlang. 2018.

33



Under review as submission to TMLR

Ziqing Niu, Peirui Cheng, Zhirui Wang, Liangjin Zhao, Zheng Sun, Xian Sun, and Zhi Guo. Fcil-msn: A
federated class-incremental learning method for multi-satellite networks. IEEE Transactions on Geoscience
and Remote Sensing, 2024.

Kai Pan, Yapeng Tian, Yinhe Han, and Yiming Gan. Benchmarking and optimizing federated learning with
hardware-related metrics. 2024.

Meng Pang, Houwei Xu, Zheng Huang, Yintao Zhou, Shengbo Chen, Binghui Wang, and Wei Huang. A
tri-factor adaptive federated learning framework for parkinson’s disease diagnosis via multi-source facial
expression analysis. IEEFE Journal of Biomedical and Health Informatics, 2025a.

Meng Pang, Houwei Xu, Zheng Huang, Yintao Zhou, Wei Huang, and Binghui Wang. Breaking data silos
in parkinson’s disease diagnosis: An adaptive federated learning approach for privacy-preserving facial
expression analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
14352-14360, 2025b.

Christos Papadopoulos, Konstantinos-Filippos Kollias, and George F Fragulis. Recent advancements in
federated learning: state of the art, fundamentals, principles, iot applications and future trends. Future
Internet, 16(11):415, 2024.

Sangjoon Park, Tk Jae Lee, Jun Won Kim, and Jong Chul Ye. Ms-dino: Masked self-supervised distributed
learning using vision transformer. IEEE Journal of Biomedical and Health Informatics, 2024.

Can Peng, Qianhui Men, Pramit Saha, Qianye Yang, Cheng Ouyang, and J Alison Noble. Federated continual
3d segmentation with single-round communication. arXiv preprint arXiv:2503.15414, 2025.

Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. Fedni: Federated graph learning
with network inpainting for population-based disease prediction. IEEE Transactions on Medical Imaging,
42(7):2032-2043, 2022.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the IEEE/CVF' international conference on computer
vision, pp. 1406-1415, 2019.

Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated adversarial domain adaptation. In
ICLR, 2020.

Matteo Pennisi, Federica Proietto Salanitri, Giovanni Bellitto, Bruno Casella, Marco Aldinucci, Simone
Palazzo, and Concetto Spampinato. Feder: Federated learning through experience replay and privacy-
preserving data synthesis. Computer Vision and Image Understanding, 238:103882, 2024.

Hongming Piao, Yichen Wu, Dapeng Wu, and Ying Wei. Federated continual learning via prompt-based
dual knowledge transfer. In Forty-first International Conference on Machine Learning, 2024.

Farhad Pourpanah, Mahdiyar Molahasani, Milad Soltany, Michael Greenspan, and Ali Etemad. Federated
unsupervised domain generalization using global and local alignment of gradients. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 19948-19958, 2025.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning. In
ICLR, 2022.

Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, and Yueming Jin. Dynamic allocation
hypernetwork with adaptive model recalibration for fcl. arXiv preprint arXiv:2503.18064, 2025a.

Zhuang Qi, Runhui Zhang, Lei Meng, Wei Wu, Yachong Zhang, and Xiangxu Meng. Global intervention
and distillation for federated out-of-distribution generalization. arXiv preprint arXiv:2504.00850, 2025b.

34



Under review as submission to TMLR

Hongyu Qiu, Yongwei Wang, Yonghui Xu, Lizhen Cui, and Zhiqi Shen. Fedcio: Efficient exact federated
unlearning with clustering, isolation, and one-shot aggregation. In 2023 IFEFE International Conference
on Big Data (BigData), pp. 5559-5568. IEEE, 2023.

Nguyen Huu Quyen, Nguyen Viet Hoang, Phan The Duy, and Van-Hau Pham. Fi-ids: A federated incre-
mental learning approach for intrusion detection system. In 2024 International Conference on Advanced
Technologies for Communications (ATC), pp. 432-437. IEEE, 2024.

Leyla Rahimli, Feras M Awaysheh, Sawsan Al Zubi, and Sadi Alawadi. Federated learning drift detection:
An empirical study on the impact of concept and data drift. In 2024 2nd International Conference on
Federated Learning Technologies and Applications (FLTA), pp. 241-250. IEEE, 2024.

Giulia Rizzoli, Matteo Caligiuri, Donald Shenaj, Francesco Barbato, and Pietro Zanuttigh. When cars
meet drones: Hyperbolic federated learning for source-free domain adaptation in adverse weather. arXiv
preprint arXiv:2403.13762, 2024.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains.
In Computer vision-ECCV 2010: 11th European conference on computer vision, Heraklion, Crete, Greece,
September 5-11, 2010, proceedings, part 1V 11, pp. 213-226. Springer, 2010.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for
unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3723-3732, 2018.

Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Jacopo Bonato, Luigi Sabetta, and Simone Calder-
ara. Closed-form merging of parameter-efficient modules for federated continual learning. arXiv preprint
arXiv:2410.17961, 2024.

Hassan Salman, Chamseddine Zaki, Nour Charara, Sonia Guehis, Jean-Francois Pradat-Peyre, and Abbass
Nasser. Knowledge distillation in federated learning: a comprehensive survey. Discover Computing, 28(1):
145, 2025.

Lorenzo Sani, Alex Iacob, Zeyu Cao, Royson Lee, Bill Marino, Yan Gao, Dongqi Cai, Zexi Li, Wanru Zhao,
Xinchi Qiu, et al. Photon: Federated llm pre-training. arXiv preprint arXiv:2411.02908, 2024.

Jonathan A Scott, Hossein Zakerinia, and Christoph Lampert. Pefll: Personalized federated learning by
learning to learn. In 12th International Conference on Learning Representations, 2024.

Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba Faramarzi, Kartik Ahuja, and
Irina Rish. Sand-mask: An enhanced gradient masking strategy for the discovery of invariances in domain
generalization. arXiv preprint arXiv:2106.02266, 2021.

Jiawei Shao, Fangzhao Wu, and Jun Zhang. Selective knowledge sharing for privacy-preserving federated
distillation without a good teacher. Nature Communications, 2024.

Donald Shenaj, Eros Fani, Marco Toldo, Debora Caldarola, Antonio Tavera, Umberto Michieli, Marco
Ciccone, Pietro Zanuttigh, and Barbara Caputo. Learning across domains and devices: Style-driven
source-free domain adaptation in clustered federated learning. In WACV, 2023.

Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef, and Itai Zeitak.
Overcoming forgetting in federated learning on non-iid data. arXiv preprint arXiv:1910.07796, 2019a.

Neta Shoham, Tomer Avidor, Aviv Keren, et al. Overcoming forgetting in federated learning on non-iid data.
arXiv:1910.07796, 2019b.

Elton F de S Soares, Emilio Vital Brazil, and Carlos Alberto V Campos. Enhancing federated averaging of
self-supervised monocular depth estimators for autonomous vehicles with bayesian optimization. Future
Generation Computer Systems, 167:107752, 2025.

35



Under review as submission to TMLR

Milad Soltany, Farhad Pourpanah, Mahdiyar Molahasani, Michael Greenspan, and Ali Etemad. Feder-
ated domain generalization with label smoothing and balanced decentralized training. arXiv preprint
arXiw:2412.11408, 2024.

Congzheng Song, Filip Granqvist, and Kunal Talwar. Flair: Federated learning annotated image repository.
Advances in Neural Information Processing Systems, 35:37792-37805, 2022.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiw preprint arXiv:1212.0402, 2012.

Lili Su, Jiaming Xu, and Pengkun Yang. A non-parametric view of fedavg and fedprox: Beyond stationary
points. Journal of Machine Learning Research, 24(203):1-48, 2023.

Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable defense
against privacy leakage in federated learning from representation perspective. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 9311-9319, 2021.

Rui Sun, Yumin Zhang, Varun Ojha, Tejal Shah, Haoran Duan, Bo Wei, and Rajiv Ranjan. Exemplar-
condensed federated class-incremental learning. arXiv preprint arXiv:2412.18926, 2024.

Ruizhe Sun, Bixiao Zeng, Yigiang Chen, Xiaodong Yang, and Hanchao Yu. Hierarchical semi-supervised fed-
erated learning method for dermatosis diagnosis. In 2025 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1-6. IEEE, 2025.

Yuwei Sun, Ng Chong, and Hideya Ochiai. Feature distribution matching for federated domain generalization.
In ACML, 2023.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
NeurIPS, 2020.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
Federated prototype learning across heterogeneous clients. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pp. 8432-8440, 2022.

Chris Xing Tian, Haoliang Li, Yufei Wang, et al. Privacy-preserving constrained domain generalization via
gradient alignment. TKDE, 2023.

Malte Té6lle, Philipp Garthe, Clemens Scherer, Jan Moritz Seliger, Andreas Leha, Nina Kriiger, Stefan Simm,
Simon Martin, Sebastian Eble, Halvar Kelm, et al. Real world federated learning with a knowledge distilled
transformer for cardiac ct imaging. npj Digital Medicine, 8(1):88, 2025.

Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqgi Wei. Ldp-fed: Federated learning
with local differential privacy. In Proceedings of the third ACM international workshop on edge systems,
analytics and networking, pp. 61-66, 2020.

Ye Lin Tun, Chu Myaet Thwal, Le Quang Huy, Minh NH Nguyen, and Choong Seon Hong. Lw-fedssl:
Resource-efficient layer-wise federated self-supervised learning. arXiv preprint arXiv:2401.11647, 2024.

Anastasiia Usmanova, Francois Portet, et al. A distillation-based approach integrating continual learning
and federated learning for pervasive services. In Workshop in IJCAI 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5018-5027, 2017.

Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. Graphfl: A federated learning framework for
semi-supervised node classification on graphs. In 2022 IEEE International Conference on Data Mining
(ICDM), pp. 498-507. IEEE, 2022a.

36



Under review as submission to TMLR

Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li, et al. Can public large language models help private
cross-device federated learning? arXiv:2305.12132, 2023a.

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Eavesdrop the composition proportion of training labels
in federated learning. arXiv:1910.06044, 2019.

Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning. In
AAAL 2021.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu. Non-transferable learning: A new approach for
model ownership verification and applicability authorization. In ICLR, 2022b.

Lixu Wang, Chenxi Liu, Junfeng Guo, Jiahua Dong, Xiao Wang, Heng Huang, and Qi Zhu. Federated
continual novel class learning. arXiv:2312.13500, 2023b.

Qian Wang, Siguang Chen, Meng Wu, and Xue Li. Digital twin-empowered federated incremental learning
for non-iid privacy data. IFEE Transactions on Mobile Computing, 2024a.

Rui Wang, Weiguo Huang, Mingkuan Shi, et al. Federated adversarial domain generalization network: A
novel machinery fault diagnosis method with data privacy. Knowledge-Based Systems, 2022c.

Tianjing Wang, Zhao Yang Dong, and Lingzhi Su. Blockchain-enabled federated transfer learning for anomaly
detection of power lines. In 202/ IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5. IEEE,
2024Db.

Xinpeng Wang, Yongxin Guo, and Xiaoying Tang. Fedccrl: Federated domain generalization with cross-client
representation learning. arXiv preprint arXiw:2410.11267, 2024c.

Xuetao Wang, Qichang Zhao, and Jianxin Wang. Fedkd-cpi: Combining the federated knowledge distilla-
tion technique to accomplish synergistic compound-protein interaction prediction. Methods, 234:275-283,
2025a.

Yuanjie Wang, Zhanbo Feng, and Zhenyu Liao. Fedrf-adapt: Robust and communication-efficient federated
domain adaptation via random features. In 202/ IEEE International Conference on Acoustics, Speech,
and Signal Processing Workshops (ICASSPW), pp. 615-619. IEEE, 2024d.

Ziqiao Wang, Cheng Long, and Yongyi Mao. Generalization in federated learning: A conditional mutual
information framework. arXiv preprint arXiv:2503.04091, 2025b.

Yikang Wei and Yahong Han. Multi-source collaborative gradient discrepancy minimization for federated
domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
15805-15813, 2024.

Yipan Wei, Yuchen Zou, Yapeng Li, and Bo Du. Towards unified modeling in federated multi-task learning
via subspace decoupling. arXiv preprint arXiv:2505.24185, 2025.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on federated
learning: challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):
513-535, 2023.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in federated learning
without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 3345-3355, 2024a.

Feng Wu, Siwei Feng, Yuanlu Chen, and Libang Zhao. Personalized federated class-incremental learning
through critical parameter transfer. In ICASSP 2025-2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2025a.

Feng Wu, Alysa Ziying Tan, Siwei Feng, Han Yu, Tao Deng, Libang Zhao, and Yuanlu Chen. Federated
class-incremental learning via weighted aggregation and distillation. IEFE Internet of Things Journal,
2025b.

37



Under review as submission to TMLR

Guile Wu and Shaogang Gong. Collaborative optimization and aggregation for decentralized domain gener-
alization and adaptation. In ICCV, 2021.

Jie Wu, Xuezhong Qian, and Wei Song. Federated learning based on feature decoupling and domain adapta-
tion. In 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology
(AINIT), pp. 424-427. TEEE, 2024b.

N Wu, L Yu, X Yang, KT Cheng, and Z Yan. Federated learning with imbalanced and agglomerated data
distribution for medical image classification. arXiv:2206.13803, 2022.

Yebo Wu, Chunlin Tian, Jingguang Li, He Sun, Kahou Tam, Li Li, and Chengzhong Xu. A survey on
federated fine-tuning of large language models. arXiv preprint arXiv:2503.12016, 2025c.

Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang, Changshui
Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated continual learning. arXiv
preprint arXiv:2502.14205, 2025.

Tengxi Xia, Ju Ren, Wei Rao, Qin Zu, Wenjie Wang, Shuai Chen, and Yaoxue Zhang. Aerorec: an efficient
on-device recommendation framework using federated self-supervised knowledge distillation. In IEEE
INFOCOM 2024-IEEE Conference on Computer Communications, pp. 121-130. IEEE, 2024a.

Yingjie Xia, Yuhan Chen, Yunxiao Zhao, Li Kuang, Xuejiao Liu, Ji Hu, and Zhiquan Liu. Fecllm-dt: Enpow-
ering federated continual learning with large language models for digital twin-based industrial iot. IEEFE
Internet of Things Journal, 2024Db.

Chulin Xie, Keli Huang, Pin Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against federated
learning. In ICLR, 2020.

Zuobin Xiong, Wei Li, and Zhipeng Cai. Appro-fun: Approximate machine unlearning in federated setting.
In 2024 33rd International Conference on Computer Communications and Networks (ICCCN), pp. 1-9.
IEEE, 2024.

Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yi-Yan Wu, and Yanfeng Wang. Federated adversarial domain
hallucination for privacy-preserving domain generalization. IEEE TMM, 2023.

Shichao Xu, Lixu Wang, Yixuan Wang, and Qi Zhu. Weak adaptation learning: Addressing cross-domain
data insufficiency with weak annotator. In ICCV, 2021.

Hao Yan and Yuhong Guo. Local and global flatness for federated domain generalization. In Furopean
Conference on Computer Vision, pp. 71-87. Springer, 2024.

Rui Yan, Liangqgiong Qu, Qingyue Wei, Shih-Cheng Huang, Liyue Shen, Daniel L Rubin, Lei Xing, and
Yuyin Zhou. Label-efficient self-supervised federated learning for tackling data heterogeneity in medical
imaging. IEEE Transactions on Medical Imaging, 42(7):1932-1943, 2023.

Yuna Yan, Xin Zhang, Lixin Li, Wensheng Lin, Rui Li, Wenchi Cheng, and Zhu Han. Fssc: Federated learning
of transformer neural networks for semantic image communication. arXiw preprint arXiv:2407.21507, 2024.

Chen Yang, Meilu Zhu, Yifan Liu, and Yixuan Yuan. Fedpd: Federated open set recognition with parameter
disentanglement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4882-4891, 2023a.

Nan Yang, Xuanyu Chen, Charles Z Liu, Dong Yuan, Wei Bao, and Lizhen Cui. Fedmae: Federated self-
supervised learning with one-block masked auto-encoder. arXiv preprint arXiv:2308.11339, 2023b.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. TIST, 2019.

Seunghan Yang, Seokeon Choi, et al. Client-agnostic learning and zero-shot adaptation for federated domain
generalization, 2023c.

38



Under review as submission to TMLR

Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning via
knowledge fusion: A survey. arXiw:2312.16475, 2023d.

Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning via
knowledge fusion: A survey. IEEE Transactions on Knowledge and Data Engineering, 36(8):3832-3850,
2024a.

Xiyuan Yang, Wenke Huang, and Mang Ye. Fedas: Bridging inconsistency in personalized federated learning.
In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern Recognition, pp. 11986—
11995, 2024b.

Yuxin Yang, Qiang Li, Yuan Hong, and Binghui Wang. Fedgmark: Certifiably robust watermarking for
federated graph learning. Advances in Neural Information Processing Systems, 37:48971-48995, 2024c.

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. Distributed backdoor attacks on
federated graph learning and certified defenses. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pp. 2829-2843, 2024d.

Yuxin Yang, Qiang Li, Chenfei Nie, Yuan Hong, and Binghui Wang. Breaking state-of-the-art poisoning
defenses to federated learning: An optimization-based attack framework. In Proceedings of the 83rd ACM
International Conference on Information and Knowledge Management, pp. 2930-2939, 2024e.

Yuxin Yang, Qiang Li, Yuede Ji, and Binghui Wang. A secret sharing-inspired robust distributed backdoor
attack to federated learning. ACM Transactions on Privacy and Security, 28(2):1-19, 2025.

Chun-Han Yao, Boqing Gong, Hang Qi, Yin Cui, Yukun Zhu, and Ming-Hsuan Yang. Federated multi-target
domain adaptation. In WACYV, 2022.

Xin Yao and Lifeng Sun. Continual local training for better initialization of federated models. In ICIP, 2020.

Mang Ye, Xiuwen Fang, Bo Du, et al. Heterogeneous federated learning: State-of-the-art and research
challenges. ACM Computing Surveys, 2023.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng
Chen. Openfedllm: Training large language models on decentralized private data via federated learning. In
Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining, pp. 6137-6147,
2024.

Zongzhen Ye, Jun Wu, Xuesong He, and Weixiong Jiang. A gradient alignment federated domain general-
ization framework for rotating machinery fault diagnosis. IEEFE Internet of Things Journal, 2025.

Min Kyoon Yoo and Yu Rang Park. Federated class incremental learning: A pseudo feature based approach
without exemplars. In Proceedings of the Asian Conference on Computer Vision, pp. 488—498, 2024.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, et al. Federated continual learning with weighted inter-client
transfer. In ICML, 2021.

Young-Woo Youn, Hyeon-Soo Choi, Hong Nhung-Nguyen, Yong-Hwa Kim, et al. Self-supervised asyn-
chronous federated learning for diagnosing partial discharge in gas-insulated switchgear. Energies, 18(12):
1-17, 2025.

Hao Yu, Xin Yang, Le Zhang, Hanlin Gu, Tianrui Li, Lixin Fan, and Qiang Yang. Addressing spatial-temporal
data heterogeneity in federated continual learning via tail anchor. arXiv preprint arXiv:2412.18355, 2024.

Shuyang Yu, Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Turning the curse of het-
erogeneity in federated learning into a blessing for out-of-distribution detection. In ICLR, 2023.

Betul Yurdem, Murat Kuzlu, Mehmet Kemal Gullu, Ferhat Ozgur Catak, and Maliha Tabassum. Federated
learning: Overview, strategies, applications, tools and future directions. Heliyon, 10(19), 2024.

39



Under review as submission to TMLR

Ghada Zamzmi, Kesavan Venkatesh, Brandon Nelson, Smriti Prathapan, Paul Yi, Berkman Sahiner, and
Jana G Delfino. Out-of-distribution detection and radiological data monitoring using statistical process
control. Journal of Imaging Informatics in Medicine, pp. 1-19, 2024.

Ling-Li Zeng, Zhipeng Fan, Jianpo Su, Min Gan, Limin Peng, Hui Shen, and Dewen Hu. Gradient matching
federated domain adaptation for brain image classification. TNNLS, 2022.

Benteng Zhang, Yingchi Mao, Haowen Xu, Yihan Chen, Tasiu Muazu, Xiaoming He, and Jie Wu. Overcoming
forgetting using adaptive federated learning for iiot devices with non-iid data. IEEE Internet of Things
Journal, 2025a.

Binghui Zhang, Luis Mares De La Cruz, and Binghui Wang. Fedtilt: Towards multi-level fairness-preserving
and robust federated learning. In 2025 IEEE Security and Privacy Workshops (SPW), pp. 160-166. IEEE,
2025b.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, and Dong Yu. Federated incremental named entity
recognition. IEEFE Transactions on Audio, Speech and Language Processing, 2025c¢.

Fan Zhang, Huiying Liu, Qing Cai, Chun-Mei Feng, Binglu Wang, Shanshan Wang, Junyu Dong, and
David Zhang. Federated cross-incremental self-supervised learning for medical image segmentation. IEEE
Transactions on Neural Networks and Learning Systems, 2024a.

Jie Zhang, Song Guo, Xiaosong Ma, Wenchao Xu, Qihua Zhou, Jingcai Guo, Zicong Hong, and Jun Shan.
Model decomposition and reassembly for purified knowledge transfer in personalized federated learning.
IEEFE Transactions on Mobile Computing, 2024b.

Jingyuan Zhang, Yiyang Duan, Shuaicheng Niu, Yang Cao, and Wei Yang Bryan Lim. Enhancing fed-
erated domain adaptation with multi-domain prototype-based federated fine-tuning. arXiv preprint
arXiv:2410.07738, 2024c.

Liling Zhang, Xinyu Lei, Yichun Shi, et al. Federated learning for iot devices with domain generalization.
IEEE IoT Journal, 2023.

Rongyu Zhang, Yun Chen, Chenrui Wu, and Fangxin Wang. Multi-level personalized federated learning on
heterogeneous and long-tailed data. IEEE Transactions on Mobile Computing, 2024d.

Wei Zhang and Xiang Li. Federated transfer learning for intelligent fault diagnostics using deep adversarial
networks with data privacy. IEEE/ASME Transactions on Mechatronics, 2022.

Weidong Zhang, Dongshang Deng, and Lidong Wang. Fedscrap: Layer-wise personalized federated learning
for scrap detection. Electronics, 13(3):527, 2024e.

Xiaochen Zhang, Chen Wang, Wei Zhou, Jiajia Xu, and Te Han. Trustworthy diagnostics with out-of-
distribution detection: A novel max-consistency and min-similarity guided deep ensembles for uncertainty
estimation. IEEFE Internet of Things Journal, 2024f.

Xifan Zhang, Zhenyu Yan, and Guoliang Xing. Fedmod: Towards cross-modal training for heterogeneous
federated learning systems. In Proceedings of the 22nd ACM Conference on Embedded Networked Sensor
Systems, pp. 828-829, 2024g.

Yabin Zhang, Hui Tang, Kui Jia, and Mingkui Tan. Domain-symmetric networks for adversarial domain
adaptation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
5031-5040, 2019.

Youshan Zhang and Brian D Davison. Impact of imagenet model selection on domain adaptation. In

Proceedings of the IEEE/CVF winter conference on applications of computer vision workshops, pp. 173~
182, 2020.

40



Under review as submission to TMLR

Zhao Zhang, Yong Zhang, Hao Li, Shenbo Liu, Wei Chen, Zhigang Zhang, and Lijun Tang. Federated
continual representation learning for evolutionary distributed intrusion detection in industrial internet of
things. Engineering Applications of Artificial Intelligence, 135:108826, 2024h.

Chao Zhao, Enrico Zio, and Weiming Shen. Domain generalization for cross-domain fault diagnosis: An
application-oriented perspective and a benchmark study. Reliability Engineering & System Safety, 245:
109964, 2024a.

Hongwei Zhao, Qiyuan Liu, Haoyun Sun, Liang Xu, Weishan Zhang, Yikang Zhao, and Fei-Yue Wang.
Community awareness personalized federated learning for defect detection. IEEE Transactions on Com-
putational Social Systems, 2024b.

Jujia Zhao, Wenjie Wang, Chen Xu, See Kiong Ng, and Tat-Seng Chua. A federated framework for llm-
based recommendation. In Findings of the Association for Computational Linguistics: NAACL 2025, pp.
2852-2865, 2025.

Ke Zhao, Junchen Hu, Haidong Shao, et al. Federated multi-source domain adversarial adaptation framework
for machinery fault diagnosis with data privacy. Reliability Engineering and System Safety, 2023.

Zhengyi Zhong, Weidong Bao, Ji Wang, Jianguo Chen, Lingjuan Lyu, and Wei Yang Bryan Lim. Sacfl:
Self-adaptive federated continual learning for resource-constrained end devices. IEEE Transactions on
Neural Networks and Learning Systems, 2025.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial image genera-
tion for domain generalisation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 13025-13032, 2020.

Xiaokang Zhou, Qiuyue Yang, Xuzhe Zheng, Wei Liang, Kevin [-Kai Wang, Jianhua Ma, Yi Pan, and Qun
Jin. Personalized federated learning with model-contrastive learning for multi-modal user modeling in
human-centric metaverse. IEEE Journal on Selected Areas in Communications, 42(4):817-831, 2024.

He Zhu, Jun Bai, Na Li, Xiaoxiao Li, Dianbo Liu, David L. Buckeridge, and Yue Li. Fedweight: mitigating
covariate shift of federated learning on electronic health records data through patients re-weighting. npj
Digital Medicine, 8(1):1-19, 2025a.

Meilu Zhu, Qiushi Yang, Zhifan Gao, Yixuan Yuan, and Jun Liu. Fedbm: Stealing knowledge from pre-
trained language models for heterogeneous federated learning. Medical Image Analysis, 102:103524, 2025b.

Yinlin Zhu, Xunkai Li, Miao Hu, and Di Wu. Federated continual graph learning. arXiv preprint
arXiv:2411.18919, 2024.

Weiming Zhuang, Xin Gan, Xuesen Zhang, Yonggang Wen, et al. Federated unsupervised domain adaptation
for face recognition. In ICMFE, 2022.

Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated learning: Moti-
vations, challenges, and future directions. arXiv:2306.15546, 2023.

Giulio Zizzo, Ambrish Rawat, Naoise Holohan, et al. Federated continual learning with differentially private
data sharing. In Workshop NeurIPS, 2022.

Xiaojiang Zuo, Yaxin Luopan, Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, and Lydia Y Chen.
Fedvit: Federated continual learning of vision transformer at edge. Future Generation Computer Systems,
154:1-15, 2024.

41



	Introduction
	Preliminaries
	Federated Learning with New Knowledge
	Security Setups of FL with New Knowledge

	Incorporate New Features
	Federated Domain Generalization
	Methods
	Evaluation
	Real-world Applications

	Federated Out-of-Distribution Detection
	Methods
	Evaluation
	Real-world Applications

	Federated Domain Adaptation
	Methods
	Evaluation
	Real-world Applications

	Future Work

	Incorporate New Tasks
	Task-Personalized Federated Learning
	Methods
	Evaluation
	Real-world Applications

	Self-Supervised Federated Learning
	Methods
	Evaluation
	Real-world Applications

	Future Work

	Incorporate New Tasks with New Features
	Definition of Federated Continual Learning
	Synchronous FCL
	Asynchronous FCL

	Methods
	Evaluation
	Real-world Applications
	Future Works

	Incorporate New Models
	Methods
	For Enhancing Current Functionality
	For Facilitating New Knowledge Integration

	Real-world Applications
	Future Works

	Incorporate New Aggregation Algorithms
	Methods
	For Enhancing Current Functionality
	For Facilitating New Knowledge Integration

	Real-world Applications
	Future Works

	Future Works of FL with New Knowledge
	Future Tendency and Open Problems
	Future Tendency
	Open Problems

	Threats
	Incentive

	Conclusion

