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ABSTRACT

Large language models (LLMs) have demonstrated the ability to simulate responses
aligned with human subjective perspectives, such as liberal or conservative ideolo-
gies in American politics. Our study reveals that LLMs achieve this by learning
a “geometry of perspective” that linearly represents subjective perspectives in the
activation space, where similar simulated perspectives are represented closer to
each other. Specifically, we probe the hidden layers of open, transformer-based
LLMs (Llama-2-7b-chat, Mistral-7b-instruct, Vicuna-7b) when prompted
to generate texts under the ideological perspectives of distinct politicians. We find
a set of attention heads that represent U.S. ideological slant, which is primarily
located in the middle layers known to encode high-level concepts and tasks. The
activation of these attention heads, when prompted about U.S. politicians and media
outlets, linearly correlates with existing measures of their ideological slant. We
use this activation to detect the ideological slant implicitly adopted by an LLM
as it generates each token. We further show that by intervening directly in these
attention heads, without language prompts, we can tune LLM output to any position
along the linear dimension from a liberal to a conservative ideological perspective.
Our research shows that political ideology serves as a fundamental dimension of
LLM representations and presents an interpretability method to identify, monitor,
and control the subjective perspective used to generate text.

1 INTRODUCTION

Large language models (LLMs) manifest the ability to simulate how distinct individuals and groups
view the world differently and generate texts consistent with these subjective perspectives (Argyle
et al., 2023b; Santurkar et al., 2023; Wu et al., 2023; O’Hagan & Schein, 2023; Kozlowski et al.,
2024). For example, LLMs can simulate responses from people holding liberal or conservative
ideologies in the United States, reflecting their voting preferences and views on social issues (Argyle
et al., 2023b; O’Hagan & Schein, 2023). This capability opens up unexpected applications for LLMs,
including personalized agents that can engage in political debates with humans (Argyle et al., 2023a;
Costello et al., 2024), or the implementation of agent-based models that simulate human behaviors
and interactions (Argyle et al., 2023b; Andreas, 2022; Kim & Lee, 2023; Kozlowski et al., 2024;
Törnberg et al., 2023). Despite these capabilities, there is still much to learn about how subjective
perspectives are represented in LLMs, which limits our ability to interpret, monitor, and control them.

This study uniquely examines whether LLMs possess a linear representation of the subjective
perspectives they simulate, using the political slant in American politics as a case study. Specifically,
we examine whether LLMs learn a linear representation of the ideological spectrum they simulate
within their hidden layers, explicitly placing simulated ideological perspectives along a continuum
from left to right. We find that LLMs learn and use a linear representation of political ideology
for text generation (Kozlowski et al., 2019; Marks & Tegmark, 2023). Literature indicates that
LLMs learn linear representations of high-level concepts, such as spatial (i.e., north-south), time (i.e.,
past-present), and gender (i.e., man-woman) dimensions, along with tasks in their hidden layers (Park
et al., 2023; Gurnee & Tegmark, 2023; Nanda et al., 2023; Hendel et al., 2023; Bricken et al., 2023).
Similarly, we find that LLMs incorporate and utilize the linear representation of political ideology
(i.e., left-right or liberal-conservative) to produce texts aligned to distinct, subjective ideological
perspectives. To our knowledge, this is the first work to systematically investigate how ideological
slants are linearly represented within LLMs.
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User:  
Write an essay on immigration in the U.S. 

Assistant: 
On the one hand , those who support immigration 
argue that it can bring many benefits to a country .
 For example , immigrants can help to fill labor sho
rt ages in certain industries , such as healthcare or
 technology . They can also bring new ideas , skill
s , and pers pectives to a country , which can lead 
to innovation and progress . Additionally , immigra
nts can contribute to the economy by paying taxes
 , starting businesses , and creating jobs .  On the 
other hand , those who opp ose immigration argue
 that it can cause problems for a country . For exa
mple , some people worry that immigrants will take
 jobs away from citizens . Others worry that immigr
ants may not integrate well into society , leading to
 social and cultural problems . 

User: 
Write an essay on abortion in the U.S. 

Assistant: 
On one hand , pro - choice advoc ates argue that a woman
 has the right to make decisions about her own body and th
at abortion should be accessible and safe . On the other ha
nd , pro - life advoc ates argue that abortion is the intent io
nal term ination of a human life and that it should be illegal 
. The United States has a unique system of government th
at allows for a wide range of opinions and policies on aborti
on . At the federal level , the Supreme Court has ruled in s
everal land mark cases that have established a woman ' s r
ight to choose to have an abortion . However , these decisi
ons have been challenged and over turn ed in some states 
, leading to a patch work of laws and policies that vary wide
ly across the country .  It is important to remember that the 
right to choose is a fundamental human right , and that eve
ry woman should have access to safe and legal abortion . 

Figure 1: Essays generated by Mistral-7b-instruct on political topics (e.g., immigration, abor-
tion) are annotated with the political slant identified by the attention head located in the model’s
middle layer (Layer 16, Head 1). The activation of this attention head shows the highest Spearman
correlation in predicting ideological slant in Mistral-7b-instruct. Tokens highlighted in blue
indicate sections written from a liberal political perspective, while tokens highlighted in red indicate
sections from a conservative political perspective.

In this paper, we probe the hidden layers of three open LLMs (Llama-2-7b-chat,
Mistral-7B-instruct-v0.1, Vicuna-7b-v1.5; see Appendix A.1 for model descriptions) and
identify attention heads that linearly represent political slant from left to right. The activation of
these attention heads correlates closely with widely accepted measures of ideological stance for both
U.S. politicians and news media outlets. We show that we can use these activation patterns to detect
the ideological slant implicitly adopted by an LLM while it generates each token, as shown in Figure
1. By targeting these attention heads for causal intervention, we demonstrate that LLM responses can
be manipulated to align with left-, center-, or right-leaning perspectives, reflecting beliefs commonly
attributed to people with those ideological stances. To illustrate this, we show that we can steer LLMs
toward particular perspectives when writing about divisive political issues, without any additional
prompt-engineering. Overall, our research adds to a growing body of work that identifies linear
representations and intervenes on them to simulate subjective perspectives.

2 RELATED WORK

Simulating Subjective Perspectives using LLMs A growing body of research has begun utilizing
large language models (LLMs) to simulate the subjective perspectives of political, social, and cultural
groups. For instance, when given prompts detailing a person’s background (e.g., political stance,
age, gender), LLMs can effectively predict beliefs and opinions that are commonly attributed to
such individuals (Argyle et al., 2023b; Andreas, 2022; Kim & Lee, 2023; Kozlowski et al., 2024;
O’Hagan & Schein, 2023). LLMs are also capable of simulating conversations or debates between
individuals with opposing political viewpoints, such as between liberals and conservatives (Törnberg
et al., 2023).

Despite these advancements, concerns have emerged regarding whether LLMs truly possess any
meaningful representation of subjective perspectives or whether they merely reproduce memorized
statements (Bender et al., 2021). To the best of our knowledge, this is the first work to demonstrate
that LLMs develop a parsimonious, linear representation of political orientation. We find that these
linear representations correlate closely with the political stances of real-world politicians and news
media. Our methods enable the interpretation, monitoring, and control of the subjective perspectives
LLMs use when generating text.

Political Bias of LLMs Another key area of research focuses on the political bias exhibited by
LLMs. Studies have found that LLMs often generate responses aligned more closely with left-leaning,
U.S. Democratic views on various issues, such as presidential elections, regardless of user prompts
and inputs (Santurkar et al., 2023; Motoki et al., 2024; Martin, 2023; Potter et al., 2024; Liu et al.,
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2022; Bang et al., 2024). Also, LLMs often avoid engaging with certain political topics (Bang et al.,
2021). Political biases in the pre-training corpus of LLMs can manifest in downstream tasks, such as
hate speech and misinformation detection (Feng et al., 2023; Jiang et al., 2022; Liu et al., 2022).

However, robustly measuring the political biases of LLMs remains challenging. Close-ended survey
questions, such as the Political Compass Test (Feng et al., 2023) or Pew surveys (Santurkar et al.,
2023), are frequently used to monitor LLMs’ political biases. Yet, studies suggest that constraining
LLMs to close-ended, multiple-choice formats may fail to capture biases that occur in open-ended
responses (Röttger et al., 2024; Goldfarb-Tarrant et al., 2021). Recent studies also suggest that LLMs
exhibit dishonesty (Huang et al., 2024) and sycophancy (Sharma et al., 2023) in their responses,
which could potentially harm human abilities to monitor ideological bias in LLMs. As shown in
Figure 1, our approach provides a way to monitor and assess the political perspectives employed by
LLMs, enhancing transparency around potential biases in their open-ended outputs1.

Linear Representations of Political Ideology Prior literature suggests that high-level features are
represented linearly within neural networks. The presence or intensity of a feature can be identified by
projecting the corresponding activation onto a feature vector (Mikolov et al., 2013; Olah et al., 2020;
Elhage et al., 2022; Gurnee & Tegmark, 2023). Recent works have shown the linear representation
of high-level concepts, such as space and time (Gurnee & Tegmark, 2023), humor (von Rütte et al.,
2024), sentiment (Tigges et al., 2023), language (Bricken et al., 2023), topic (Turner et al., 2023), truth
(Marks & Tegmark, 2023; Li et al., 2024), and safety (Arditi et al., 2024). Moreover, interventions
on these linear representations have been shown to steer LLM outputs effectively in the intended
direction (Li et al., 2024; Turner et al., 2023).

Political slant may similarly be represented linearly in LLMs2. “Partisan sorting” theory suggests that
U.S. political identity is increasingly aligned along a single left-right continuum, with heightened
ideological consistency within each political affiliation (Levendusky, 2009). This unidimensional,
linear model of political ideology is supported by empirical research showing that partisan alignment
correlates with a broad range of issue stances, including economic policies, social issues like abortion
and morality, and environmental concerns (Baldassarri & Gelman, 2008; Fiorina & Abrams, 2008;
DellaPosta et al., 2015). Polarization has intensified this sorting process in recent decades, creating
stronger ideological coherence within parties and fostering a more unidimensional political landscape
(Layman et al., 2006). While political ideology can be multi-dimensional, studies indicate that in
practice, U.S. political discourse is dominated by a left-right dimension, which simplifies and aligns
otherwise diverse issue stances along a single axis (Baldassarri & Gelman, 2008; Fiorina & Abrams,
2008; DellaPosta et al., 2015; Noel, 2014)3.

3 DATA

To find and validate a linear representation of political perspectives, we need ground-truth ideologies
that characterize the subjective perspectives held by politicians and news media. Specifically, we
score 552 U.S. politicians (e.g., Kamala Harris, Donald Trump) and 400 U.S. news media outlets
(e.g., CNN, Fox News) on a continuous scale from -1 (left) to 1 (right), using two well-established
and widely used political datasets.

U.S. Politicians We use DW-NOMINATE scores (Poole & Rosenthal, 1985; Poole, 2005; Carroll
et al., 2009) for U.S. politicians who were members of the 116th United States Congress (N=552).

1We note that political balance and fairness are not synonymous. There are diverse views on how to
ensure fairness in LLMs concerning political biases. Some advocate for representing a wide range of political
perspectives as a form of fairness (Sorensen et al., 2024), while others emphasize that fairness is most important
insofar as it helps shift power away from oppressive institutions in favor of underrepresented stances and
perspectives (Blodgett et al., 2020).

2While research on the linear representation hypothesis has focused on binary or categorical features, linear
representation of continuous features (e.g., political ideology) has less been studied (Gurnee & Tegmark, 2023).

3The left-right continuum is widely adopted in mainstream and social media as a heuristic for discussing
political biases, enabling them to articulate thoughts and opinions with referential clarity (O’Hagan & Schein,
2023; Kozlowski et al., 2019; Aldrich, 1995; Layman et al., 2006; Noel, 2014; de Bruin et al., 2023; Waller
& Anderson, 2021). By visualizing LLM outputs along this continuum (e.g., Figure 1), we enhance the
interpretability of LLM biases, making them more accessible to general users.
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This Congress was chosen because it was active from 2019 to 2021, prior to the knowledge cut-off
for the pre-training data of the Llama-2 family of language models in September 2022 (Touvron
et al., 2023). DW-NOMINATE provides a multidimensional measure of U.S. politicians’ ideology as
indicated by their voting records. We utilize the first dimension of such scores, which is commonly
interpreted as measuring politicians’ ideology on a liberal-conservative axis, from -1 to 1 (Poole &
Rosenthal, 1985; Poole, 2005; Carroll et al., 2009). Scores closer to -1 represent strong alignment with
liberal perspectives, while those closer to 1 indicate strong alignment with conservative perspectives.
These scores are well-established and have been repeatedly validated by political scientists as accurate
reflections of politicians’ stances on a broad range of legislative issues (Poole, 2005; Carroll et al.,
2009; McCarty, 2016; Everson et al., 2016).

U.S. News Media We utilize data from Ad Fontes Media (Huszár et al., 2022), which assigns
continuous ideological bias scores to news media sources (e.g., Fox News, CNN) (N=400), ranging
from -1 (left) to 1 (right), reflecting their position on the ideological spectrum. For our analysis,
we focus on 400 of the most popular sources, selected from the 2,543 media sources with assigned
bias labels. Ad Fontes Media determines these overall source scores by aggregating the scores of
individual articles. Each article or media episode is rated simultaneously by a group of at least three
human analysts. These groups are politically balanced, consisting of one right-leaning, one central,
and one left-leaning individual.

4 PROBING POLITICAL IDEOLOGY

4.1 PRELIMINARIES

We first describe the architecture of transformer-based LLMs. LLMs process input text tokens and
generate output tokens sequentially by adding vectors to the residual stream (Vaswani et al., 2017;
Elhage et al., 2021; Li et al., 2024). Let D is the dimension of activation vector per each attention head
and H is the number of heads per layer. Initially, input tokens are embedded into a high-dimensional
word embedding space x0 ∈ RDH , which starts the residual stream. Let N is the number of layers.
A sequence of vectors (x0, . . . ,xN ) is progressively added to this stream. At each layer ℓ, the vector
xℓ passes through a multi-head attention mechanism and a multi-layer perceptron, resulting in a new
vector xℓ+1, which is then added to the residual stream. The final vector is used to predict the next
token distribution. Multi-head attention in layer ℓ functions as follows:

xℓ+1 = xℓ +

H∑
h=1

Qℓ,hAttℓ,h(Pℓ,hxℓ) (1)

Here, Pℓ,h ∈ RD×DH transforms the residual stream into a head-specific D-dimensional space,
while Qℓ,h ∈ RDH×D maps these activations back to the residual stream. The attention heads,
represented by Attℓ,h, allow interactions between different input tokens.

4.2 PROMPTING LLMS TO SIMULATE POLITICAL PERSPECTIVES AND EXTRACTING
ACTIVATIONS

Given previously validated measures of the ideological slant of U.S. politicians and news media as
described in Section 3, we prompt three LLMs (Llama-2-7b-chat, Mistral-7B-instruct-v0.1,
Vicuna-7b-v1.5) to simulate text from the perspective of these entities. Specifically, we prompt
LLMs to generate a statement that each of 552 U.S. politicians (e.g., Kamala Harris, Donald Trump)
or 400 U.S. news media (e.g., CNN, Fox News) would be likely to make (see Appendix A.2.1 for
prompts).

After prompting the model, we collect activations from LLMs as they simulate various perspectives.
Specifically, we capture token activations from every attention head in each layer of the model. When
simulating a politician or news media entity i, the activation Attℓ,h(Pℓ,hxℓ) of an attention head h

in layer ℓ is represented as x(i)
ℓ,h ∈ RD. We collect x(i)

ℓ,h for every politician and news media i and for
every attention head h in layer l.

4
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4.3 PROBING

After extracting activations, we use the established method of probing neural networks (Alain &
Bengio, 2016; Belinkov, 2022; Gurnee & Tegmark, 2023), which fits regression models on the
network activations to predict annotated labels (i.e., DW-NOMINATE or Ad Fontes Media scores).

We train a “separate” probe for each attention head h in layer ℓ4. Specifically, we train a ridge
regression model5 separately for each attention head. Each head’s activation, x(i)

ℓ,h, when simulating
a politician i, is fitted against yi, the ideological perspective of the politician measured by the
DW-NOMINATE score:

yi = θ⊤
ℓ,hx

(i)
ℓ,h + εi (2)

where θℓ,h ∈ RD indicates regression coefficients and ε indicates the error term. Let n denotes
the number of politicians. The loss function of the model is defined as follows, where λ is the
regularization parameter. We tuned λ to 1 based on 2-fold cross-validation after testing values of 0,
0.001, 0.01, 0.1, 1, 100, and 10006.

n∑
i=1

(yi − θ⊤
ℓ,hx

(i)
ℓ,h)

2 + λ∥θℓ,h∥22 (3)

4.4 EVALUATING PROBES

After training linear probes above, we get the following models for each attention head h in layer l.
Let θℓ,h denote the learned coefficients for a linear probe, x(i)

ℓ,h denote the activations at layer ℓ and
head h, and i denote each entity simulated by the LLM (e.g., politician, news media),

ŷi = θ̂⊤
ℓ,hx

(i)
ℓ,h (4)

To evaluate the probes, first, we check whether the ŷi values predict DW-NOMINATE scores of a
politician i (yi). We perform 2-fold cross validation, using a random partition of the politicians into
two folds of equal size. For each fold, we fit the linear probes to the training fold. Also, we compute
the Spearman correlation between the predicted poitical slant (ŷ) and observed political slant (y;
DW-NOMINATE score) on the validation fold. By doing so, we assess how each attention head
predicts the ideological slant (DW-NOMINATE) of unseen politicians when LLMs are prompted to
simulate them. After evaluating the Spearman correlation between yi and ŷi for every attention head,
we also evaluate the Spearman correlation between yi and the average of ŷi values derived from the
ridge regression models trained on K most predictive attention heads (see Table A1).

Second, we try to predict U.S. news media’s ideological perspectives. We fit linear probe models on
U.S. politicians’ data. Then, we assess whether these models can predict the ideological slant (i.e.,
Ad Fontes Media scores) of unseen news media. Specifically, we prompt the LLM to simulate each
news media and extract ŷ using linear probe models. Then, we evaluate the Spearman correlation
between observed political slant (yi; Ad Fontes Media scores) and the average of ŷi values derived
from 32 most predictive attention heads7. Because U.S. news media data have not been used for
training probes, this tests whether the linear representation of political perspectives generalizes across
distinct political entities, such as elite politicians and news media.

4For example, Llama-2-7b-chat consists of 32 layers, each containing 32 attention heads, resulting in a
total of 1,024 (32 × 32) attention heads. In this setup, we train 1,024 probes.

5We employed ridge regression to mitigate overfitting and enhance generalization. Additionally, the features
(i.e., neuron activations within each attention head) exhibited collinearity, suggesting that ridge regression would
be a better choice than standard linear regression. For instance, Llama-2-7b-chat has shown collinearity, with
variance inflation factor (VIF) values exceeding 10 for 807 out of 1,024 attention heads (78.8%).

6λ is tuned separately for each LLM. The best λ is selected based on cross-validation performance, specifically
by maximizing the Spearman rank correlation between the predicted scores and the actual ideological scores of
U.S. politicians. See Figure A1 for details.

7We choose 32 because the average of ŷi values derived from 32 most predictive attention heads tends to be
strongly correlated with yi. See Table A1

5
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4.5 RESULTS

We fit linear probes for each attention head across all layers of the model to identify which atten-
tion heads linearly predict the political perspectives that LLMs simulate. To assess the predictive
performance of each head, we use 2-fold cross-validation to evaluate how well each attention head
predicts the ideological stance of U.S. politicians (i.e., DW-NOMINATE scores). Figure A2 shows
the Spearman correlation between the observed ideological slant and the predicted slant derived
from the ridge regression model for each attention head. Our results indicate that the ideological
perspectives are predominantly processed in the middle layers across all tested models. Notably, for
Llama-2-7b-chat, the highest Spearman correlation is achieved by the 18th head in the 15th layer,
which exhibits a Spearman rank correlation of .853 (p < 10−10). For Mistral-7b-instruct and
Vicuna-7b, the highest correlation is achieved by the 3rd head in the 16th layer with Spearman rank
correlation of .846 (p < 10−10) and the 8th head in the 24th layer with .862 (p < 10−10), respectively
(see Table A2)8. These findings suggest that LLMs can accurately capture the ideological slant of
U.S. politicians and media outlets.

After evaluating the Spearman correlation for every attention head, we also evaluate the Spearman
correlation between observed political slant yi and the average of predicted political slant (ŷi) derived
from the K most predictive attention heads (see Table A1). We found that the average of ŷi derived
from 32 most predictive attention heads successfully predicted the ideological perspectives of unseen
U.S. politicians in the validation set, with a Spearman correlation of 0.870 for Llama-2-7b-chat
(p < 10−10), 0.865 (p < 10−10) for Mistral-7b-instruct, and 0.885 (p < 10−10) for Vicuna-7b.

The Young Turks

Kamala Harris (D-CA)

Elizabeth Warren (D-MA)

Rand Paul (R-KY) Mike Lee (R-AZ)

Susan Collins (R-ME)Ilhan Omar (D-MN)

Joe Manchin (D-WV)

Lee Camp

Max Rose (D-NY)

Lisa Murkowski (R-AK)

Figure 2: Ideological perspectives of U.S. politicians and news media as captured by the activa-
tion space in Mistral-7b-insruct Layer 16 Head 1. Negative values correspond to left-leaning
perspectives, while positive values correspond to right-leaning perspectives. The x-axis represents
the predicted ideological scores (ŷi) computed by the ridge regression model for each entity (i.e.,
politicians or news media). The y-axis represents the actual ideological scores (DW-NOMINATE or
Ad Fontes Media scores). See Figure A4 for the complete results across all models.

Furthermore, our results show that the linear probes generalize well beyond the training set, as
they accurately predict the political slant of U.S. news media, achieving a Spearman correlation
of 0.765 (p < 10−10) for Llama-2-7b-chat, 0.711 (p < 10−10) for Mistral-7b-instruct, and
0.723 (p < 10−10) for Vicuna-7b. Again, the average of the predicted political slant (ŷi) from the
32 most predictive attention heads is used for the prediction. This finding is particularly significant
since the media outlets were not part of the training data, underscoring the external validity of these
probes. See Figure 2 and Figure A4 for the complete results across all models. Overall, these results
indicate that LLMs learn generalizable representations of ideological perspectives, similar to how
humans cognitively map the political spectrum9. However, in our additional analyses, these neurons

8Some might question whether political ideologies are similarly represented in the middle layers of LLMs
outside the Llama family. We successfully replicated our analysis on the Gemma-2-9b model and found that it
also exhibits a linear representation of ideological slant in its middle layers. See Figure A3 for details.

9For example, MSNBC is generally perceived as more left-leaning than Fox News, just as Bernie Sanders is
considered more left-leaning than Donald Trump.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

demonstrated modest performance in predicting non-U.S. political parties’ slants, underscoring
challenges in extending to non-U.S. contexts (see Appendix 4.4).

By probing LLM, we can examine the ideological slant implicitly simulated by the LLM, token
by token, as shown in Figure 1. For example, essays on immigration and abortion generated by
Mistral-7b-instruct demonstrate distinct political leanings, with tokens annotated as either left
(i.e., negative values of ŷ) or right (i.e., positive values of ŷ). We see the LLMs adopt a left-leaning
perspective when writing “those who support immigration argue that it can bring many benefits” or “a
woman has the right to make decisions about her own body.” By contrast, we see that the LLMs adopt
a right-leaning perspective when writing “immigration can cause problems” or “pro-life advocates”.
See Appendix A.4 for the distribution of ŷ across three models.

5 INTERVENTION IN POLITICAL IDEOLOGY

5.1 INTERVENTION

Using linear probes, we can find the correlation between model activations and ideological perspec-
tives. However, they do not clarify whether intervention in these activations causally shift LLM
outputs. Therefore, we employ causal intervention analyses to examine whether intervening on these
activations can induce a predictable shift in the ideological slant of the output text.

Specifically, we target attention heads with the highest predictive performance. We then modify their
activation towards a specific ideological “direction,” left or right. Let head h in layer l exhibit the
highest predictive performance. For each subsequent token generation, we adjust the activation as
follows, token by token.

xℓ+1 = xℓ +

H∑
h=1

Qℓ,h

(
Attℓ,h(Pℓ,hxℓ) + ασℓ,hθ̂ℓ,h

)
(5)

Here, θℓ,h is a “steering vector” to capture the direction of ideological stance from left to right for an
attention head h in layer ℓ. Note that θℓ,h is derived from the linear probe (i.e., ridge regression model)
trained by the activation of each attention head h in layer l to predict politicians’ DW-NOMINATE
scores as described in Section 4.3. The linear probe produces θℓ,h as the regression coefficients,
which have the same shape as the activation output of the corresponding attention head h in layer l.
The scalar parameter α ∈ R controls the magnitude of the intervention; a negative α pushes the model
towards left-leaning perspectives, whereas a positive α steers it towards right-leaning perspectives.
σℓ,h indicates the standard deviation of activations10. In short, we shift activations along the direction
of political slant for α times the standard deviation σℓ,h.

Our approach relies on two essential parameters: K, which denotes the number of attention heads
where the intervention is applied11, and α, which represents the magnitude of the intervention. While
we do not present a theoretical justification for discovery of the optimal value, we explore their
influence through experimentation. Figure A5 summarizes the intervention method.

5.2 EVALUATING INTERVENTIONS

We evaluate the effectiveness of our interventions by examining whether they influence the political
slant of LLM-generated essays on politically divisive topics. Specifically, we apply interventions
in the linear direction of political ideology and observe how LLM outputs shift accordingly. To
investigate this, we prompted the models to generate short essays on nine key politically divisive issues
in the United States: Abortion, Immigration, Gun Control, Same-Sex Marriage, LGBTQ+ Rights,

10The term σℓ,h represents the standard deviation of the extracted activations (x(i)
ℓ,h) from the LLM when

prompted to simulate U.S. politicians in the probe training data, for a given attention head h in layer ℓ (see
Section 4.2). Its purpose is to normalize the intervention strength across different attention heads, as activation
magnitudes can vary significantly between heads.

11For example, if K = 3, the most predictive heads in Llama-2-7b-chat are Layer 15, Head 18 (r = 0.853),
Layer 16, Head 11 (r = 0.845), and Layer 18, Head 4 (r = 0.844). The intervention is applied to these heads.
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Climate Change, Trust in Science, Social Media Regulation, and Free Speech12. For consistency, we
use a simple prompt: Write a statement about TOPIC.

In total, we generate 1,134 essays across three models, nine topics, and combinations of six values of
K and seven values of α. Specifically, we use diverse values of K (i.e., 16, 32, 48, 64, 80, 96) and α
(i.e., -30, -20, -10, 0, 10, 20, 30). As α lower than -30 and α higher than 30 lead to model collapse,
generating texts that are incoherent or lack comprehensiveness, we determine the range of α to be
from -30 to 30 (see Appendix A.5).

These essays are then analyzed to determine the impact of the interventions on the political stance
reflected in the text. To assess the political ideology underlying each essay, we employ GPT-4
(gpt-4o-2024-08-06) as an evaluator. For each essay, GPT-4 is tasked with rating the political slant
of the writer (see Appendix A.2.2 for the specific prompt used). GPT-4 and politically balanced
human annotators show high inter-rater reliability (ICC(A, 1) = 0.91; see Appendix A.2.3).

We hypothesize a positive correlation between the intervention parameter α and the political bias in
the generated essays. Specifically, when α < 0, LLMs are expected to produce left-leaning outputs,
whereas when α > 0, LLMs should generate right-leaning outputs. The results confirm that our
interventions successfully modulate the political bias of LLM-generated content, with the degree of
slant directly corresponding to the value of α. This validates the ability to steer LLM outputs along a
political spectrum through targeted interventions.

5.3 RESULTS

We find that steering interventions alter the political bias reflected in LLM-generated essays on
politically divisive topics. Figure 3 reveals that, in all three models, adjusting the intervention
parameter (α) influenced political slant. Specifically, lower negative values of α resulted in outputs
with a stronger liberal political slant, whereas higher positive values of α resulted in outputs with
a stronger conservative slant13. Among these models, Llama-2-7b-chat displayed the strongest
correlation between intervention and political slant, with a correlation coefficient of 0.609 (p <
10−10), followed by Mistral-7b-instruct at 0.405 (p < 10−10), and Vicuna-7b at 0.394 (p <
10−10). Political slant increased steadily as α increased, particularly in Llama-2-7b-chat, suggesting
that this model is more sensitive to intervention adjustments. Additionally, we intervened on different
numbers of attention heads, finding that intervening in a larger number of attention heads leads to
stronger politically slanted responses (see Figure A6).

When analyzing the effect of intervention on specific topics, the largest shifts in political slant were
observed in topics of “immigration” and “abortion.” By showing the highest correlation between
intervention and political slant, adjustments to α in these cases have a substantial impact on model
ideological stance. This suggests that these topics are more polarizing or susceptible to political bias
in our models, as opposed to other topics like “free speech” and “trust in science,” which exhibited
weaker correlations. Table A3 presents illustrative examples of the intervention outcomes.

Interestingly, when adjusting the intervention to the right (more conservative), the length of the model
outputs became shorter for certain topics, particularly “gun control” and “climate change.” This
implies that liberal perspectives on these topics lead to more extensive discourse, while a conservative
perspective results in a more concise response. This observation points to the possibility that
conservative viewpoints in the models might focus on simpler or more direct arguments, especially
on these issues, compared to their liberal counterparts14.

12These topics are commonly explored in large-scale political surveys, such as the American National Election
Survey (ANES) and the General Social Survey (GSS)

13When α = 0, no intervention is applied, and the models exhibit their default behavior. As shown in Figure
4a, the average political slant at α = 0 was consistently below 4 (on a scale of 1 = extreme liberal to 7 = extreme
conservative), indicating a default left-leaning bias across all models. For instance, the average political slant
was 2.296 (SD = 1.222) for Llama-2-7b-chat, 2.778 (SD = 0.925) for Mistral-7b-instruct, and 2.685
(SD = 1.669) for Vicuna-7b.

14This pattern may indicate that conservatives and liberals often employ different persuasive strategies, with
conservative arguments potentially favoring more intuitive and emotionally resonant approaches (e.g., Cakanlar
& White (2023)). Other mechanisms, such as distinct moral foundations, may also contribute to these differences
in argument length. These observations highlight promising directions for future research.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

-30 -20 -10 0 10 20 30
Intervention (alpha)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Po
lit

ica
l s

la
nt

 re
fle

ct
ed

 in
 th

e 
st

at
em

en
t

Llama-2-7b (r=0.609)
Mistral-7b (r=0.405)
Vicuna-7b (r=0.394)

(a) Intervention (α) and political slant
reflected in the statement

0.0 0.5 1.0
Correlation

Immigration

Abortion

Social media regulation

Same-sex marriage

LGBTQ+ rights

Gun control

Climate change

Trust in science

Free speech

(b) Correlation between inter-
vention (α) and the political
slant reflected in the essay by
topics

0.25 0.00 0.25
Correlation

Gun control

Climate change

Social media regulation

LGBTQ+ rights

Abortion

Immigration

Same-sex marriage

Trust in science

Free speech

(c) Correlation between inter-
vention (α) and the length of
the essay by topics

Figure 3: Intervention results.

Some might be concerned that linear interventions may fail to simulate ideological perspectives for
unforeseen events outside the model’s training data. Our results in Section A.6 demonstrate that these
interventions successfully generate ideologically accurate responses regarding the ADVANCE act
and Israel-Hamas war, events occurring after Llama-2-7b-chat’s pre-training cutoff, with a strong
correlation between intervention strength (α) and GPT-4 annotated ideological slant. Others might
question whether interventions targeting different regions of the model (e.g., early vs. late layers)
affect ideological expression differently. As shown in Section A.7, interventions in early-to-middle
layers produced substantial ideological shifts (r = 0.540, p < 10−10), while those in middle-to-last
layers had minimal impact (r = −0.022, p = 0.766), highlighting the distinct roles.

6 CONCLUSION AND LIMITATIONS

Our research demonstrates that LLMs develop a linear representation of political ideology within
their hidden layers, locating subjective perspectives along a linear spectrum from left to right. By
probing attention heads, we found that LLMs systematically encode political slant, which correlates
with established measures of ideological bias for U.S. politicians and media. Importantly, we show
that targeted interventions on these attention heads can causally influence the ideological tone of the
generated text, enabling control over the perspective simulated by the LLM. This offers valuable
insights into the interpretability of LLMs and provides a method for understanding and managing
political bias in text generation, with broader implications for the design and application of AI
systems in societal contexts discussed in Section A.8.

Our study has several key limitations. First, the findings are based on relatively smaller models and
may not generalize to larger or untested models. Second, although we observed a linear representation
of “political perspectives”, this serves as an initial demonstration rather than an exhaustive analysis of
the most effective methods to identify these directions. Methodological improvements in identifying
such directions and subspaces are left for future work. Third, our research is U.S.-centric and may not
be generalizable to less polarized political environments, where linear representations of ideologies
may be less effective (See Section A.3 for details). Fourth, although our method could be applied
to mitigate biases in LLMs, there is also potential for misuse, such as generating biased content to
manipulate public opinion or interfere with democratic processes. Fifth, we use GPT-4 to evaluate
political slant; however, there is potential for bias when using an LLM as an evaluator. Although
we validate GPT-4’s evaluations against politically balanced human annotators, we recommend that
future research using our methods continue to validate LLM-generated annotations against human
annotations to help mitigate any inherent biases. Finally, future research could explore whether
political ideology can be combined with other features in a meaningful, linear fashion, or show how
this linearity generalizes to other tasks or representations beyond political ideology, which were not
fully explored in this paper.
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ETHICS STATEMENT

This research addresses the sensitive issue of political ideology in large language models (LLMs).
While our methods provide valuable tools for detecting and monitoring political ideology in LLMs,
they also carry potential risks of misuse. For instance, malicious actors or certain AI product
providers might exploit these techniques to deliver intentionally biased LLM outputs, bypassing
societal discussions on fairness and transparency. Such misuse could generate biased content,
manipulate public opinion, or amplify divisive narratives. Additionally, privacy concerns arise if
these technologies are used to monitor political discourse on social media without consent.

We acknowledge these risks and emphasize that ethical responsibility ultimately lies with end
users and organizations deploying these models. To mitigate these concerns, we advocate for the
development of robust ethical safeguards and guidelines for the responsible use of such tools.

Despite these challenges, we believe that open, transparent research into ideological stance and bias
in LLMs is critical for ensuring accountability and advancing scientific understanding. By making
our work publicly available, we aim to empower researchers to study these technologies, monitor
their societal impact, and develop measures to mitigate potential harms. We have expanded our ethics
statement to reflect these considerations and strongly urge the research community to engage in
collaborative efforts to address the ethical challenges posed by LLMs.

REPRODUCIBILITY STATEMENT

The data and code for reproducing our results are available at
https://osf.io/us9yx/?view_only=cf0fdcdb123e4d6bb7d10a64be5c1a09. All experiments were
conducted on an internal computing cluster equipped with: 4 CPUs (AMD EPYC 7313 16-Core
Processor), 4 GPUs (NVIDIA A100 80GB), 100GB of memory, and 100GB of disk space.
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A APPENDIX

A.1 MODEL OVERVIEW

In this study, we use three open-source large language models: Llama-2-7b-chat,
Mistral-7B-instruct-v0.1, and Vicuna-7b-v1.5. These models were selected based on their
open availability and strong performance in conversational and instruction-following tasks.

• Llama-2-7B-Chat: This model is part of the Llama-2 family, developed by Meta, with 7
billion parameters. It consists of 32 transformer layers, each equipped with 32 attention
heads and a hidden dimension size of 4096. The model is optimized for conversational tasks
through fine-tuning.

• Mistral-7B-Instruct-v0.1: Mistral-7B-Instruct is a fine-tuned version of the
base Mistral-7B model for instruction-following tasks. Similar to Llama-2-7b-chat,
Mistral-7B-instruct-v0.1 contains 32 transformer layers with 32 attention heads per
layer and a hidden dimension size of 4096, summing up to 7 billion parameters.

• Vicuna-7B-v1.5: Vicuna-7B is a fine-tuned version of Llama-2, optimized for chatbot
tasks. This model also contains 7 billion parameters, with 32 transformer layers, 32 attention
heads per layer, and a hidden dimension size of 4096. The fine-tuning focuses on generating
high-quality dialogue responses.

A.2 PROMPTS

A.2.1 PROMPTS TO SIMULATE IDEOLOGICAL SLANT OF POLITICIANS AND NEWS MEDIA

For 552 U.S. politicians (e.g., Kamala Harris, Donald Trump), we use the following prompt:

• USER: Generate a statement by [NAME], a politician in the United States.
ASSISTANT: In 2019, [NAME] said that

Similarly, for 400 U.S. news media (e.g., CNN, Fox News), we employ the same prompt structure:

• USER: Generate a statement from a news source in the United States.
ASSISTANT: [NAME] said that

A.2.2 PROMPTS TO RATE IDEOLOGICAL SLANT UNDERLYING LLM RESPONSES

We use GPT-4 (gpt-4o-2024-08-06) to rate political slant underlying LLM responses. Specifically,
for each LLM essay under intervention, we ask GPT-4 the following:

• Based on the following statement, how would you rate the political
ideology of the writer?

ESSAY

On a scale of 1 to 7, where:
1 = Strongly conservative
2 = Moderately conservative
3 = Slightly conservative
4 = Neither conservative nor liberal
5 = Slightly liberal
6 = Moderately liberal
7 = Strongly liberal

Please respond with a number from 1 to 7 without providing reasons.
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A.2.3 VALIDATING GPT-4 ANNOTATIONS AGAINST POLITICALLY BALANCED HUMAN
ANNOTATORS

We validated GPT-4’s evaluations against politically balanced human annotators. Specifically, we
sampled politically balanced human annotators from the CloudResearch survey platform (N=10, U.S.
residents consisting of 3 Democrats, 4 Independents, and 3 Republicans) to annotate a random sample
of 21 essays generated by Llama-2-7b-chat. After averaging the scores provided by these human
annotators, we measured inter-rater reliability between GPT-4 and the human annotators’ average
scores. We found a very high inter-rater reliability (ICC(A, 1) = .91), supporting the validity of
GPT-4 in annotating political slant. Based on these results, we conclude that GPT-4’s ratings align
closely with the consensus of politically balanced human annotators. Our findings are consistent with
O’Hagan & Schein (2023), who demonstrated that LLMs can reliably reflect established measures
of ideological slant. Additionally, the Spearman correlation between GPT-4 and the average human
scores was also very high (r = 0.952, p < 10−10).

A.3 CROSS-NATIONAL ANALYSIS OF POLITICAL SLANT REPRESENTATIONS

In addition to our primary focus on U.S. political contexts, we conducted supplementary analyses to
evaluate the generalizability of linear probes in predicting political slants across various non-U.S.
nations. This analysis utilized the Manifesto Project dataset, which provides ideological labels y for
411 political parties worldwide on a left-to-right continuum (from -50 = left to 50 = right) (Gemenis,
2013). The results revealed both strengths and limitations in extending the learned representations of
political ideology to diverse cultural and national contexts.

We utilized the following prompt to simulate ideological perspectives of politicians in these parties:
USER: Generate a statement by a politician from the [PARTYNAME] party, which is
a political party in [COUNTRYNAME]. ASSISTANT: In 2019, a politician from the
[PARTYNAME] party said that... After prompting Llama-2-7b-chat to simulate each party, we
extracted the activation x

(i)
ℓ,h ∈ RD from each head h in each layer l (see Section 4.4). Then we use

the following linear probe to predict the political slant:

ŷi = θ̂⊤
ℓ,hx

(i)
ℓ,h (6)

We assess whether these linear probes can predict the ideological slant y (i.e., Manifesto Project
scores). Specifically, we evaluate the Spearman correlation between yi and the average of ŷi values
derived from linear probes of 32 most predictive attention heads.

The linear probes demonstrated modest performance in predicting the political slant of non-U.S.
parties, achieving a Spearman correlation of 0.531 (p < 10−10). This performance was significantly
lower than that achieved for U.S. politicians (r = 0.870) and U.S. news media (r = 0.765). The
generalizability of political slant representations varied significantly across nations. Some of the
countries showed strong correlations, such as New Zealand (r = 0.920, p < 10−10), Australia
(r = 0.916, p < 10−10), Canada (r = 0.883, p < 10−10), and the United Kingdom (r = 0.845, p <
10−10). However, other countries demonstrated weaker or even negative correlations, suggesting that
the generalizability of the learned representations depends on the political landscape and cultural
context.

These results highlight the need for comprehensive datasets that capture diverse political contexts,
particularly for regions underrepresented in current resources. We encourage the AI research commu-
nity to prioritize the creation of such datasets to enhance the cross-cultural applicability of LLMs in
future research.

A.4 VISUALIZING POLITICAL PERSPECTIVES UNDERLYING GENERATING TOKENS

As shown in Figure 1, LLMs simulate political perspectives even without being explicitly prompted
to do so. For example, when asked to write about immigration issues in the United States, LLMs
exhibit a left-leaning slant when stating that “those who support immigration argue that it can bring
many benefits” or “a woman has the right to make decisions about her own body.” Conversely, LLMs
demonstrate a right-leaning slant when mentioning “immigration can cause problems” or “pro-life
advocates.”
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These visualizations are implemented as follows: as the LLM generates each token, we extract the
activation of each attention head, xl,h. Using the linear probes trained in Section 4, we then compute
ŷ, where positive scores indicate a right-leaning bias and negative scores indicate a left-leaning bias.

ŷi = ˆθl,h
T
xl,h (7)

To examine the distribution of ŷ across models, we use the following prompts to ask the LLMs to
write about 9 politically divisive topics (Abortion, Immigration, Gun Control, Same-Sex Marriage,
LGBTQ+ Rights, Climate Change, Trust in Science, Social Media Regulation, and Free Speech) in
the United States. Importantly, we do not prompt or intervene in the models to simulate a particular
political perspective. As a result, each model generated 90 essays. While generating these essays, we
obtain ŷ values from the 96 most predictive attention heads.

• Write an essay on [TOPIC] in the U.S.
• Discuss [TOPIC] in the United States.
• Explain the key issues surrounding [TOPIC] in the U.S.
• Provide an overview of [TOPIC] policies in America.
• Summarize the debate on [TOPIC] in the United States.
• Analyze the topic of [TOPIC] in the U.S.
• Give a detailed account of [TOPIC] in the United States.
• Explore the complexities of [TOPIC] legislation in the U.S.
• Describe the current landscape of [TOPIC] in the United States.
• Offer a comprehensive discussion on the state of [TOPIC] in the U.S.

As shown in Figure A8, even though we did not explicitly prompt LLMs to adopt a political stance, we
found that the models spontaneously generated texts reflecting either left- or right-leaning perspectives,
as indicated by the token-level values of political slant (ŷi). Specifically, Mistral-7b-instruct
(Average = 0.143) exhibited a slightly more right-leaning slant compared to Llama-2-7b-chat
(Average = 0.054) and Vicuna-7b (Average = 0.048). Interestingly, Mistral-7b-instruct also
displayed about twice the diversity of perspectives (Standard Deviation = 0.648) compared to
Llama-2-7b-chat (Standard Deviation = 0.349) and Vicuna-7b (Standard Deviation = 0.356).

A.5 THE RANGE OF α FOR GENERATING COHERENT RESPONSES WITHOUT COLLAPSE

In our interventions, α controls both the “direction” and “magnitude” of the intervention. Across
experiments, we test the effects of diverse values of α (i.e., -30, -20, -10, 0, 10, 20, 30). Nevertheless,
we find that α lower than -30 and α higher than 30 lead to model collapse, generating texts that are
incoherent or lack comprehensiveness.

For instance, if we prompt the model to write an essay about abortion, intervening the model activation
with α = −50, Mistral-7b-instruct generate the following endlessly repetitive nonsense text.

• I believe that everyone has the right to access healthcare, regardless of
whether they choose to work with or without these rights. However, the
fact that they are not able to do so, or that they are not able to work,
are not considered, or are not able to work, or are not able to work, or
are not able to work, or are not able to work, or are not able to work,
or are not able to work, or are not able to work, or are not able to work,
or are not able to work, or are not able to work, or are not able to work,
or are not able to work, or are not able to work, or are not able to work,
or are not able to work, or are not able to work, or are not able to work,
or are not able to work, or are not able to work, or are

To identify minimum and maximum values of α, we conducted experiments to find those values. We
instructed the models to generate short essays on 9 politically divisive issues in the United States:
Abortion, Immigration, Gun Control, Same-Sex Marriage, LGBTQ+ Rights, Climate Change, Trust
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in Science, Social Media Regulation, and Free Speech. LLMs are under intervention with diverse
values of α (i.e., -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50). After LLMs generate responses, we
use GPT-4 (gpt-4o-2024-08-06) to rate whether LLM responses are coherent and comprehensive.
Specifically, for each LLM essay under intervention, we ask GPT-4 the following:

• Is the following text incoherent or lacks comprehensiveness?

ESSAY

1: No, the text is coherent and comprehensive.
2: Yes, the text is incoherent and lacks comprehensiveness.

Please respond with a number (1 or 2) without providing reasons.

We find that if the value of α is smaller than -30 or bigger than 30, the proportion of coherent
responses is always lower than 40% across three models (see Figure A9 for details). Therefore, we
chose to conduct our main intervention experiments when the value of α is between -30 and 30.

A.6 SIMULATING OPINIONS REGARDING EVENTS NOT IN THE PRE-TRAINING DATA

To examine whether linear interventions in LLMs can simulate ideological perspectives for events
not included in their pre-training data, we conducted a case study on the Accelerating Deployment of
Versatile, Advanced Nuclear for Clean Energy (ADVANCE) Act (March 2023) and Israel-Hamas
war (October 2023). Both events occured after the knowledge cut-off date of Llama-2-7b-chat’s
pre-training data (The pretraining data has a cutoff of September 2022) (Touvron et al., 2023). To
confirm that the model had no prior knowledge of this event, we first prompted it with the question,
“Do you have information about [event]? Respond in Yes or No.” The model consistently
responded that it had no information about the event. This verification step ensured that any generated
ideological perspectives were not influenced by superficial patterns learned during the model training
process.

Then, using GPT-4, we generated a paragraph describing facts about each event, ensuring that no
opinions of U.S. Democrats or Republicans were included. The following prompt was used:

Provide a factual summary of the situation described in the Wikipedia article in
one paragraph, avoiding any mention of opinions or perspectives associated with
U.S. Democrats or Republicans. [Full Wikipedia article text describing the event]

After generating the factual summary, we provided this text to Llama-2-7b-chat with the following
prompts:

Write a political opinion about the following event: The ADVANCE Act of 2024,
signed into law on July 9, 2024, as part of the Fire Grants and Safety Act, aims
to support advanced nuclear energy development in the United States. It promotes
generation IV nuclear reactor technology, reduces licensing costs, and extends
liability protections for the nuclear industry. The act directs the Nuclear
Regulatory Commission (NRC) to streamline licensing processes, particularly for
advanced and small modular reactors (SMRs), and incentivizes next-generation
nuclear technology through reduced fees and a prize for deployment. It also
restricts nuclear fuel imports from Russia and China while fostering U.S.
nuclear exports and international collaboration. Additional provisions address
environmental remediation on tribal lands and licensing changes to facilitate
advanced reactor deployment at brownfield sites. The legislation follows recent
efforts, including the Prohibiting Russian Uranium Imports Act, to enhance U.S.
energy security and reduce reliance on foreign nuclear fuels.

Write a political opinion about the following event: The armed conflict between
Israel and Hamas-led Palestinian militant groups started on October 7, 2023,
in Gaza and Israel, marking the fifth war since 2008 in the long-standing
Gaza–Israel conflict. This war began with a surprise attack by Hamas militants,
who breached the Gaza–Israel barrier, launched rockets, and attacked Israeli
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communities and military bases, resulting in civilian and military casualties
and hostages. In response, Israel carried out a large-scale bombing campaign and
invaded Gaza on October 27, aiming to dismantle Hamas and free hostages. The
fighting has led to extensive destruction in Gaza, including civilian casualties,
infrastructure collapse, and widespread displacement of Palestinians. The war
has significant international implications, with protests, legal actions, and
regional escalations, including clashes between Israel and Hezbollah, attacks on
U.S. bases, and missile strikes in the Red Sea involving Houthi forces from Yemen.
The conflict has sparked global humanitarian concerns and legal inquiries into
potential war crimes.

Political essays were then generated with varying levels of ideological intervention, using the linear
steering method described in Section 4.2, with values of α = −30,−20,−10, 0, 10, 20, 30. A total of
21 essays per event were generated. To evaluate the ideological slant of these essays, GPT-4 (trained
after the knowledge cut-off of Llama-2-7b-chat and thus familiar with these events) annotated the
political slant on a scale where lower values (1) indicated liberal perspectives and higher values (7)
indicated conservative ones.

The results showed a statistically significant correlation between the intervention parameter (α) and
the annotated political slant. Specifically, both the ADVANCE Act (r = 0.648, p = 0.001, N = 21)
and the Israel-Hamas war (r = 0.553, p < 0.001, N = 21) exhibited significant correlations. For
example, when prompted about the ADVANCE Act, an intervention with α = −20 generated texts
aligned with left-leaning views, supporting the act for its promotion of nuclear energy industries
but emphasizing its “environmental benefits.” Conversely, an intervention with α = 20 produced
texts aligned with right-leaning views, supporting the act due to its focus on “restricting nuclear fuel
imports from Russia and China.” These results indicate that, following interventions to simulate
left- or right-leaning perspectives, the model not only predicts bipartisan support for the act but also
captures nuanced differences in the reasons left-leaning and right-leaning individuals support it (See
Table A4 for details).

These findings suggest that linear interventions in the activation space of LLMs can simulate ideolog-
ical biases, even for unforeseen events not included in training data. This indicates that the linear
structures identified in the model’s activations might capture more than just superficial patterns in the
training data—they reflect latent ideological representations that can be dynamically adjusted. The
consistency between the generated opinions and real-world ideological divides further supports the
interpretability and utility of the proposed method.

A.7 INTERVENTION TARGETING SELECTED LAYERS

As Figure A2 shows, there are two “regions” of the attention heads that correlate with political slant:
early to middle layers (Layers 1–21) versus middle to last layers (Layers 22–32). We conducted
additional analyses on Llama-2-7b-chat to examine how interventions in early to middle layers
(closer to input) versus middle to last layers (closer to output) affect ideological expression in
responses (see Figure A7). Interventions targeting early to middle layers led to more substantial
ideological changes, as detected by GPT-4 (r = 0.540, p < 10−10). For example, when asked about
same-sex marriage, a right-leaning intervention (α = 20) at these layers produced statements like, “I
believe that marriage should only be between a man and a woman, as this is the biblical definition
of marriage.” (See Table A5). In contrast, interventions in the middle to last layers did not result in
altering the underlying ideological content (r = −0.022, p = 0.766).

A.8 PRACTICAL APPLICATIONS

Our method can serve as a valuable “auditing” tool, allowing users to monitor the political perspectives
that LLMs simulate and identify the contexts in which these perspectives are activated—an important
consideration for transparent model behavior. Close-ended survey questions, such as the Political
Compass Test (Feng et al., 2023) or Pew surveys (Santurkar et al., 2023), are frequently used as
tools to monitor LLMs’ political biases. Yet, studies suggest that constraining LLMs to close-ended,
multiple-choice formats may fail to capture biases that occur in open-ended responses (Röttger et al.,
2024; Goldfarb-Tarrant et al., 2021). As shown in Figure 1, our approach provides an alternative way
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to monitor and assess the political perspectives employed by LLMs, enhancing transparency around
potential biases in their open-ended outputs.

Our approach also offers a practical means for steering LLM outputs during inference, enabling the
creation of synthetic documents with tailored ideological perspectives (Argyle et al., 2023b; Andreas,
2022; Kim & Lee, 2023; Kozlowski et al., 2024; O’Hagan & Schein, 2023). This is computationally
less expensive than methods like fine-tuning (Jiang et al., 2022) and has applications in both academic
and industry settings. For example, products such as Expected Parrot enable users to simulate human
behaviors or opinions in silico (Expected Parrot, 2024), and our method can enhance these capabilities
by providing fine-grained control over political perspectives.

Figure A1: Effect of regularization parameter λ on probe performance. This figure illustrates the
performance of linear probes, measured by Spearman rank correlation at the most predictive attention
head (i.e., the attention head with the highest Spearman correlation across all attention heads),
across different values of the regularization parameter λ, for three models: Llama-2-7b-chat (blue),
Mistral-7b-instruct (orange), and Vicuna-7b (green). The x-axis represents λ on a logarithmic
scale, and the y-axis shows the Spearman correlation between predicted ideological scores and actual
scores for U.S. politicians.
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Figure A2: Predictive performance of linear probes for each attention head across all layers in
Llama-2-7b-chat, Mistral-7b-instruct, and Vicuna-7b. In Figure 2, each row (i.e., y-axis)
represents each layer of the model from the bottom (layers close to the input layer) to the top (layers
close to the output layer). Each column (i.e., x-axis) corresponds to a specific attention head in a
given layer, sorted by their predictive performance in descending order of Spearman correlation. For
each attention head, the predictive performance of the corresponding linear probe is visualized using
a heatmap. Darker shades indicate stronger Spearman correlations, meaning the attention head was
more predictive of the political slant (e.g., DW-NOMINATE or Ad Fontes Media scores). The lighter
shades indicate weaker predictive performance.
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Figure A3: Predictive performance of linear probes for each attention head across all layers in
gemma-2-9b. Performance is measured using Spearman rank correlation, with darker shades indicat-
ing stronger correlations.
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Figure A4: Ideological perspectives of U.S. politicians and news media as captured by the activation
space in Llama-2-7b-chat, Mistral-7b-Instruct, and Vicuna-7b. Negative values correspond
to left-leaning perspectives, while positive values correspond to right-leaning perspectives. Predicted
ideological perspectives have been obtained by activations from 32 most predictive attention heads.

A. U.S. Politicians

B. U.S. News Media 
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Figure A5: Intervention workflow. Squares indicate natural language texts. Circles indicates vectors.
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Figure A6: Intervention (α) and political slant reflected in the statement by the number of attention
heads intervened (i.e., K).
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Figure A7: Intervention (α) and political slant are reflected in the statements by the targeted layers
for Llama-2-7b-chat, Mistral-7b-Instruct, and Vicuna-7b (K = 96). Layers < 22 indicate
interventions in the early to middle layers, while Layers ≥ 22 indicate interventions in the middle to
last layers. Compared to interventions in Layers < 22 (r=0.540), interventions in Layers ≥ 22 does
not show a significant effect (r=-0.022).

Figure A8: Distribution of political slant (ŷi) token by token.
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Figure A9: Proportion of coherent LLM responses by α.
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Figure A10: A, Ideological perspectives of political parties outside the U.S. captured by the acti-
vation space in Llama-2-7b-chat. Negative values correspond to left-leaning perspectives, while
positive values correspond to right-leaning perspectives, as identified by the Manifesto Project dataset
(https://manifesto-project.wzb.eu/), which labeled 411 political parties in 2017. The following prompt
was used: USER: Generate a statement by a politician from the [PARTYNAME] party,
which is a political party in [COUNTRYNAME]. ASSISTANT: In 2019, a politician
from the [PARTYNAME] party said that. B, Predictive performance of linear probes by nation.
Red indicates a positive correlation between predicted and actual ideological perspectives, while blue
indicates a negative correlation.
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Table A1: Prediction performance of average ŷ by the number of the most predictive attention heads.
Specifically, we estimate the average Spearman rank correlation with political stances of politicians
or news media across three models (Llama-2-7b-chat, Mistral-7B-Instruct, vicuna-7b). We
use 32 attention heads as the value converge between .73 and .74 above 32.

Number of attention heads Average Spearman rank correlation
1 0.3158
2 0.5836
3 0.6018
4 0.6214
5 0.6632
6 0.6451
7 0.6860
8 0.6739
9 0.7046

10 0.7103
11 0.7033
12 0.7081
13 0.7124
14 0.7125
15 0.7143
16 0.7147
32 0.7329
48 0.7366
64 0.7395
80 0.7424
96 0.7332

112 0.7324
128 0.7343
144 0.7401
160 0.7373
176 0.7375
192 0.7371

Table A2: Top 10 attention heads showing the highest predictive performance, measured using the
Spearman rank correlation.

Rank Llama-2-7b-chat Mistral-7b-instruct Vicuna-7b
(Layer,
Head) Spearman ρ

(Layer,
Head) Spearman ρ

(Layer,
Head) Spearman ρ

1 (15, 18) 0.853 (16, 3) 0.846 (24, 8) 0.862
2 (16, 11) 0.845 (16, 1) 0.845 (22, 13) 0.861
3 (18, 4) 0.844 (18, 7) 0.838 (26, 5) 0.860
4 (17, 20) 0.843 (15, 3) 0.830 (17, 20) 0.858
5 (15, 2) 0.842 (16, 9) 0.829 (16, 11) 0.852
6 (16, 19) 0.842 (27, 17) 0.828 (23, 5) 0.851
7 (15, 24) 0.839 (15, 5) 0.828 (20, 8) 0.850
8 (26, 5) 0.839 (15, 6) 0.826 (18, 14) 0.850
9 (16, 23) 0.837 (11, 32) 0.826 (14, 26) 0.849
10 (18, 12) 0.837 (14, 11) 0.826 (29, 25) 0.849
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Table A3: Essays on Immigration with Different Alpha Values. When we intervene in
Llama-2-7b-chat activation space with α = −20, it demonstrates left-leaning stance, suggest-
ing that “Ultimately, the struggle for immigrant rights is not just a struggle for justice, but also a
struggle for a more inclusive and equitable society for all.” On the other hand, when we intervene in
with α = 20, it demonstrates right-leaning stance, suggesting that “I think it is important to have a
system that allows for controlled immigration, rather than uncontrolled immigration. This means that
immigration should be based on the needs of a country, rather than the needs of an individual.” We
find that left-leaning intervention leads to responses that are inclusive, socially aware, and progressive
in nature, highlighting equity, inclusivity, and systemic change. On the other hand, right-leaning
intervention leads to responses that are conservative, emphasizing tradition, personal responsibility,
and skepticism about progressive changes or government interventions.

Alpha Topic Assistant’s Statement
-20 Immigration Regarding immigration, I believe that it is a complex and multifaceted

issue that affects not only the lives of immigrants themselves, but also
the broader society. It is important to recognize the contributions that
immigrants have made and continue to make to our communities, and
to work towards creating a more inclusive and equitable society for
all. At the same time, it is crucial to address the systemic injustices
and inequalities that have long plagued the immigration system, and to
work towards a more just and humane approach to immigration policy.
Ultimately, the struggle for immigrant rights is not just a struggle for
justice, but also a struggle for a more inclusive and equitable society for
all.

0 Immigration Regarding immigration, I believe that it is a complex issue that requires
a comprehensive and humane approach. It is important to recognize
the contributions that immigrants make to the economy, culture, and
society, while also addressing the legitimate concerns of border security
and the rule of law. I support policies that provide a clear and efficient
pathway to citizenship for undocumented immigrants who are already
living and working in the US, as well as measures to address the root
causes of migration, such as poverty, violence, and political instability,
in countries of origin. Furthermore, I believe that immigration should
be based on the principles of fairness, justice, and compassion, and that
all immigrants should be treated with dignity and respect. In conclusion,
immigration is a critical issue that requires a thoughtful and

20 Immigration Regarding immigration, I believe that immigration laws should be en-
forled and regulated in a way that protects the national security and safety
of a country. However, I also believe that immigration should be based
on merit and not on the number of people entering a country. I think it is
important to have a system that allows for controlled immigration, rather
than uncontrolled immigration. This means that immigration should be
based on the needs of a country, rather than the needs of an individual. I
also believe that immigration should be based on the principles of free-
dom and liberty, rather than on the principles of socialism or globalism.
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Table A4: Essays on ADVANCE Act with Different Alpha Values

Alpha Assistant’s Statement
-20 I believe that the ADVANCE Act of 2024 is a crucial step towards a more sustainable

and secure energy future. By promoting the development of advanced nuclear energy
technologies, the act addresses both the environmental and economic benefits of nuclear
power. The reduced licensing costs and extended liability protections for the nuclear
industry will help to level the playing field and incentivize investment in this critical
sector. Additionally, the act’s focus on environmental remediation on tribal lands and
licensing changes to facilitate advanced reactor deployment at brownfield sites will help
to address the environmental and social justice dimensions of nuclear energy. Overall,
the ADVANCE Act of 2024 is a critical step towards a more just and sustainable energy
system.

0 I believe that the ADVANCE Act of 2024 is a positive step towards enhancing U.S.
energy security and reducing reliance on foreign nuclear fuels. The act promotes
the development of advanced nuclear energy technology, which can help to address
climate change by reducing carbon emissions from the power sector. Additionally,
the act addresses environmental remediation on tribal lands and licensing changes to
facilitate advanced reactor deployment at brownfield sites, which can help to promote
sustainable development and economic growth. However, I also believe that the
act could be improved by providing more funding for research and development of
advanced nuclear energy technology, as well as for the licensing and deployment of
these technologies. The act directs the Nuclear Regulatory Commission to streamline
licensing processes, but it is important to ensure that these processes are adequately
funded and staffed to ensure that they are effective and efficient. Furthermore, while
the act restricts nuclear fuel imports from Russia and China, it is important to consider
the potential impacts of these restrictions on

20 I believe that the ADVANCE Act of 2024 is a positive step towards enhancing energy
security and reducing reliance on foreign nuclear fuels. The act promotes the develop-
ment of advanced nuclear energy technology, which is essential for the United States
to maintain its energy independence. The provisions that restrict nuclear fuel imports
from Russia and China are also beneficial, as they will reduce the risk of dependence
on foreign energy sources. Additionally, the act’s focus on streamlining licensing
processes and incentivizing next-generation nuclear technology will help to reduce
regulatory barriers and encourage innovation in the industry. Overall, I believe that
the ADVANCE Act of 2024 is a well-intentioned piece of legislation that will help to
ensure the United States’ energy security and national security.
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Table A5: Comparison of Responses after Selectively Intervening in Layers Based on Alpha Values

Alpha Layer < 22 Layer ≥ 22
-20 Regarding same-sex marriage, I believe that

love knows no boundaries of gender. All
couples, regardless of their gender, deserve
the same rights and recognition as any other
couple. The legalization of same-sex mar-
riage is a crucial step in achieving equality
and justice for all LGBTQ+ individuals and
couples. It is a powerful statement about
the importance of love, respect, and recog-
nition in our society.

Regarding same-sex marriage, I believe that
all individuals, regardless of their sexual
orientation, should have the right to marry
and have their relationships recognized and
respected by the law. This is a fundamental
human right, and it is important that we
continue to fight for and protect the rights
of the LGBTQ+ community.

20 Regarding same-sex marriage, I believe that
all individuals, regardless of their sexual
orientation, should be treated with dignity
and respect. However, I do not support the
idea of same-sex marriage as it goes against
my religious beliefs and the traditional defi-
nition of marriage. I believe that marriage
should only be between a man and a woman,
as this is the biblical definition of marriage.

Regarding same-sex marriage, I believe
that all individuals should have the right
to marry the person they love and have their
relationship recognized by the government.
The ability to marry the person of one’s
choice is a fundamental human right, and
it is not the government’s place to dictate
who someone can or cannot marry.
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