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ABSTRACT

One of the most important factors that contribute to the success of a machine
learning model is a good training objective. Training objective crucially influences
the model’s performance and generalization capabilities. This paper specifically
focuses on graph neural network training objective for link prediction, which has
not been explored in the existing literature. Here, the training objective includes,
among others, a negative sampling strategy, and various hyperparameters, such
as edge message ratio which controls how training edges are used. Commonly,
these hyperparameters are fine-tuned by complete grid search, which is very
time-consuming and model-dependent. To mitigate these limitations, we propose
Adaptive Grid Search (AdaGrid), which dynamically adjusts the edge message ratio
during training. It is model agnostic and highly scalable with a fully customizable
computational budget. Through extensive experiments, we show that AdaGrid
can boost the performance of the models up to 1.9% while being nine times more
time-efficient than a complete search. Overall, AdaGrid represents an effective
automated algorithm for designing machine learning training objectives.

1 INTRODUCTION

Link prediction is one of the most important tasks on graph-structured data. For a given pair of
entities, the goal of link prediction is predicting whether they are going to interact. Applications of
link prediction are found in various fields, such as social networks, recommender systems, and biology.
There have been many strategies to cope with the link prediction task (Lii & Zhoul 2011), where the
state-of-the-art approaches use Graph Neural Networks (GNN) (Kipf & Welling,2016a;|Hamilton etal.,
2017} Zhou et al.,[2020)). Kipf & Welling|(2016b)) introduced a variational graph autoencoder (VGAE),
which embeds nodes in latent space so that the graph’s adjacency matrix can be reconstructed from
their representations. [Zhang & Chen|(2017) proposed a novel framework called Weisfeiler-Lehman
Neural Machine (WLNM), which is based on the Weisfeiler-Lehman algorithm (Shervashidze et al.|
2011). Furthermore,|Zhang & Chen|(2018) introduced SEAL, a new heuristic learning paradigm,
which captures first, second, and higher-order structural information in the form of local subgraphs.

To train GNNSs, an appropriate training objective has to be selected, which includes choice of the objec-
tive function, evaluation metric, and training strategy. In this paper, we specifically focus on how to best
exploit training data by altering the edge message ratio parameter (i.e., the proportion of edges used for
message passing and loss calculation). This problem has not been explored yet in the existing literature
despite it crucially influencing the performance of a model and its generalization capabilities. The
standard approach to fine-tune the link prediction objective is a complete search over a certain hyperpa-
rameter space (Zhou et al.,[2019;You et al.,[2020). Complete search trains the model multiple times for
the full number of epochs, each time with a different edge message ratio from a set of predefined values,
and selects the one with the maximal final validation AUC. Even though it exhaustively searches the hy-
perparameter space, which is very time-consuming, it still obtains non-optimal performance. Moreover,
even when the configuration of the model slightly changes, a complete search has to be repeated.

In this paper, we propose Adaptive Grid Search (AdaGrid) that adjusts edge message ratio during
training to each specific model and dataset, therefore alleviating time complexity and suboptimal
performance of the complete search. AdaGrid is model agnostic and highly scalable with a fully
customizable computational budget. Through extensive experiments, we show that AdaGrid can boost
the performance of the models up to 1.9% while being nine times more efficient than a complete search.
We also propose a new negative sampling strategy, which samples harder negative instances than the
standard uniform negative sampling by considering the community structure of networks.
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2 PROPOSED METHOD: ADAPTIVE GRID SEARCH (ADAGRID)

2.1 STANDARD LEARNING-BASED LINK PREDICTION EXPERIMENTAL SETTING

Learning-based link prediction task is often formulated as binary classification, where potential edges
are classified as true or false. The standard learning-based link prediction setting (Zhang & Chen,
2018) first splits the graph’s edge set into a training set, validation set, and test set according to the
split ratio (i.e., training/validation/test split ratio). For link prediction using GNN models, each set of
edges has to be further divided into message-passing edges and objective edges. The message-passing
edges are used for propagating information between nodes, while the loss is calculated based on the
objective edges. So far, objective edges comprise only positive instances; therefore, negative instances
(i.e., nonexistent edges) are also added to the objective edge sets by uniformly random sampling node
pairs for a balanced classification task. In this paper, we focus on the setting where message-passing
and objective edge sets are disjoint, and edge message ratio hyperparameter controls the proportion
of message-passing edges. Furthermore, every fixed number of epochs both sets are resampled so
training can take full advantage of all edges for both purposes.

2.2 COMPLETE SEARCH

To find a good training objective, the standard approach to setting a good edge message ratio is a
complete search over some predefined set of values Q with cardinality L = |Q| (You et al., 2020).
Complete search is very time-consuming and computationally demanding because the model has to be
trained multiple times with different edge message ratios. A possible speedup is to train each version
of the model only for part of all epochs and then take the one which performs best at that time. While
this seems like an adequate solution, there are still certain limitations. Even by slightly changing the
configuration of the model, the optimal edge message ratio changes, and the complete search has to
be repeated, which is extremely inconvenient. Another, possibly false, assumption of this approach
is that the optimal edge message ratio does not change during training. To resolve these drawbacks
of the standard approach, we propose Adaptive Grid Search (AdaGrid).

2.3  ADAPTIVE GRID SEARCH (ADAGRID)

The key feature of AdaGrid is its ability to adapt edge message ratio during training to each
configuration of the model and each dataset. AdaGrid is described in Algorithm[I] It changes the
edge message ratio every adapt epochs .. Then, it trains L copies of the model with different edge
message ratios from a set of predefined edge message ratios Q in parallel, where each copy is trained
for try epochs < a. After try epochs of training, the new edge message ratio is selected based on one
of two possible criteria: validation criterion and gap criterion. The validation criterion selects the edge
message ratio corresponding to the model with the highest final validation AUC. On the other hand, the
gap criterion chooses the edge message ratio of the model with minimal absolute difference between
the final training and validation AUC. Since sometimes training and validation AUCs are a bit unstable
during training, additionally smoothing can be performed (i.e., instead of the final training/validation
AUC, rather average of a few last training/validation AUCs is taken). One of the main upsides of
AdaGrid is its flexibility since it can be adjusted to each application separately. The adapt epochs a
and the try epochs ( regulate training time, while the selection criterion and set of considered edge
message ratios Q can be tailored to each specific task.

Computational budget of AdaGrid By setting the adapt epochs « and the try epochs 3 appropriately,
AdaGrid’s computational budget can be fully customizable. If the model is trained for number of epochs
N and L edge message ratios are considered, the overall number of training epochs of AdaGrid is:

L2y,

(07

epochs AdgaGria=N - <1 + )]

while complete search requires:
epOChscomplete search = N-L. (2)

For instance, if try epochs and adapt epochs are equal: = «, both required the same number of epochs,
while if =5, =50, and L =9, AdaGrid needs five times fewer training epochs.
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Algorithm 1: AdaGrid

Input :Dataset D, model weights 6y,
number of epochs NV, adapt epochs a, try epochs 5 < a,
set of considered edge message ratios Q,
training function TRAIN, selection criterion f

Output : Trained model weights 60,

ne &
fori<—1tondo
for gc Q do
| 0iq, AUC[ ", AUCYS « TRAIN(D, 0,1, . q)
end
Gopt < argmax, f(AUC ", AUCYa!)
0;, AUCI " AUCY™ < TRAIN(D, 0; 4., B, Gopt)

s end
9 return 6,

3 EXPERIMENTAL RESULTS

We test the performance of AdaGrid on various model configurations, datasets, data split ratios,
negative sampling strategies, and hyperparameter settings of AdaGrid. All experiments are conducted
on Cora and CiteSeer datasets (Sen et al., 2008)). Both datasets are well-known citation networks (more
details in Appendix[A). Model configuration and experimental set-up are described in Appendix[B]

Baselines To contextualize the empirical results of Adagrid, we compare it against two baselines:
complete search and random search. Complete search (see Section[2.2) exhaustively searches hyperpa-
rameter space, which makes it very time-consuming. It also does not change the edge message ratio dur-
ing training. On the other hand, random search modifies the edge message ratio to a random value from
[0.1,0.9] interval after every training epoch. This makes it very fast, however, different edge message
ratios are not inspected. We show that both baselines perform inferior to AdaGrid: complete search has
static edge message ratio and is slow, while random search does not explore edge message ratio space.

Community ratio-based negative sampling Uniform negative sampling seems to be an appropriate
approach for obtaining negative instances, however, it turns out that these instances are rather simple
negative examples for link prediction. A lot of networks inherently display some kind of community
structure (i.e., the network can be partitioned into disjoint communities so that connections within com-
munities are denser than the connections with the rest of the network) (Fang et al.,2020). Let us define
edges that have both endpoints in the same community as the within community edges, and edges that
have endpoints in the different communities as the berween communities edges. Furthermore, let com-
munity ratio be the proportion of node pairs with nodes from the same community. Uniform negative
sampling yields mainly between community edges, which creates an easy evaluation setting. To make
a harder evaluation setting, we propose community ratio-based negative sampling that obtains negative
edges in such a way that sets of negative and positive instances can not be distinguished based on commu-
nity ratio. It first performs community detection on the graph with all training edges, then it measures the
community ratio on validation edges. Afterward, negative instances for all three sets are sampled in com-
pliance with the gauged community ratio. Our approach is beneficial because it generates more challeng-
ing negative instances, which can better differentiate the performance of models even on easier datasets.

3.1 ADAGRID AND UNIFORM NEGATIVE SAMPLING

We first evaluate AdaGrid on a uniform negative sampling setting because this is the standard approach
for link prediction. Table[I]shows that AdaGrid consistently performs better than the best baseline
approach, no matter its configuration. Improvement of more than 0.7% is especially evident for the
80/10/10 split ratio, which is the most similar to the usual experimental data splits. Another crucial
aspect of AdaGrid is its adjustability in terms of computational budget. Even when AdaGrid is trained
for considerably fewer training epochs than the complete search, it constantly performs better than the
best baseline approach. Table[2]exhibits that AdaGrid can surpass complete search and random search
for more than 0.7% even when it requires five times fewer epochs than a complete search and fewer than
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twice as many as a random search (¢ =10 and 8 =1). AdaGrid even outperforms both of them while
being nine times faster than a complete search and is computationally almost equivalent to the training of
asingle model (av=100 and 3 =1). In Appendix[D]we explore why AdaGrid outperforms the baselines.

Table 1: AUC in percent for AdaGrid with adapt epochs =10 and try epochs 5 =1, complete search,
and random search with uniform negative sampling evaluation.

Datasets
Cora CiteSeer
Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10
Complete search 94.85 96.65 97.17 95.84 97.78 98.46
Random search 94.71 96.40 97.02 95.88 97.67 98.45
AdaGrid 95.01 97.07 97.90 95.79 97.89 98.70
Gain 0.16 0.42 0.73 -0.09 0.11 0.24

Table 2: AUC in percent and relative number of epochs for different configurations of AdaGrid,
complete search, and random search with with uniform negative sampling evaluation.

Baselines AdaGrid (adapt epochs « /try epochs [3)
Random Complete 100/1 100/5 100/100 50/1  50/5 50/50  10/1 10/5  10/10

AUC 97.02 97.17 97.54 97.63 9759 97.68 9775 97.76 9790 97.83 97.86
Epochs 1.00 9.00 1.08 1.40 9.00 1.16 1.80  9.00 180 500 9.00

3.2 ADAGRID AND COMMUNITY RATIO-BASED NEGATIVE SAMPLING

We also evaluate AdaGrid on the proposed community ratio-based negative sampling setting to better
display advantages of AdaGrid. Table[3|shows that AdaGrid nearly always performs better than the best
baseline approach, regardless of its configuration. Comparing results of negative sampling strategies
in Tables[I|and 3] shows that community ratio-based negative sampling creates a more challenging
evaluation setting since AUC scores are considerably lower. It also better differentiates the performance
of models since gains of AdaGrid are always bigger than the ones of uniform negative sampling.
Especially noteworthy is the gain of more than 1.9%, which again confirms the benefits of AdaGrid.

Table 3: AUC in percent for AdaGrid with adapt epochs =10 and try epochs 5 =5, complete search,
and random search with community ratio-based negative sampling evaluation.

Datasets
Cora CiteSeer
Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10
Complete search 84.01 82.98 84.62 83.87 82.22 83.96
Random search 84.00 82.05 83.82 83.87 82.61 83.65
AdaGrid 84.65 83.82 86.54 83.75 83.37 84.89
Gain 0.64 0.84 1.92 -0.12 0.76 0.93

4 CONCLUSION

This paper aims to explore graph neural network training objectives for link prediction. We expose
problems of finding a good training objective and the current standard approach (i.e., complete search).
To diminish the inconvenience of edge message ratio fine-tuning, we propose AdaGrid, which adapts
edge message ratio “on-the-fly” during training and overcomes limitations of complete search. It
is model agnostic and has a fully customizable computational budget. More importantly, AdaGrid
can reduce training time and boost performance at once. It can improve the performance of the
models up to 1.9%, while it can be nine times more efficient than a complete search. We also propose
community-based negative sampling, which samples harder negative instances and creates a more
challenging link prediction evaluation setting.
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A  DATASET DETAILS

Cora Cora dataset (Sen et al., 2008) consists of 2708 scientific publications from Cora and 5429
citation links. Each scientific publication belongs to one of the seven classes and is described by a
binary-valued word vector, which indicates the absence/presence of the corresponding words from
the dictionary. The dictionary contains 1433 unique words.

CiteSeer CiteSeer dataset (Sen et al.,[2008]) consists of 3312 scientific publications from CiteSeer
and 4732 citation links. Each scientific publication belongs to one of the six classes and is described
by a binary-valued word vector, which indicates the absence/presence of the corresponding words
from the dictionary. The dictionary contains 3703 unique words.

B MODEL CONFIGURATION AND EXPERIMENTAL SET-UP

In this section, we provide details regarding model configuration and experimental set-up from Section

Model configuration Experiments were conducted using the following model configuration. Our
model consists of K GCN layers applied sequentially, where before each GCN layer there is a dropout of

0.2, and after each layer but the last there is a ReL U activation. As input it accepts nodes’ features hSP’ =

)

x, € R? and it outputs final hidden representations k., = hS)K €R°. All intermediate hidden represen-

tations have the same dimensionality as the final representation: hgi) eR°fori=1,2,....K—1. The
model predicts the probability of an edge between nodes u and v according to the following equation:

P((uav)eE):a(hu'hv)v 3
where o represents sigmoid function and - denotes dot product. In experiments, d depends solely on
the dimensionality of the graph’s features, while o is a hyperparameter. The model is always trained
for 500 epochs using binary cross-entropy as loss function, however, the quality of the model is rather
measured by AUC metric. Its parameters are optimized by stochastic gradient descent (SGD) with the
learning rate of 0.1, the momentum of 0.9, and the weight decay of 5-10~%. During training, a cosine
annealing (Loshchilov & Hutter, 2017) schedule is used for alternation of the learning rate.

Experimental set-up When comparing AdaGrid with the standard complete search and random
search, we are interested principally in absolute performance and the trade-off between training time
and performance. Experiments are systematically conducted over various settings including different
model configurations, datasets, data split ratios, and negative samplings. We use Cora and CiteSeer
datasets. To get more representative results we test the model with two configurations: K =2, 0=64
and K =3, 0=128. The data is every time divided according to other split ratios: 20/40/40, 50/25/25,
and 80/10/10. Models are trained and evaluated using the standard uniform sampling as well as
community ratio-based negative sampling, proposed in Section[3] In a community ratio-based negative
sampling setting, community detection is performed using the Clauset-Newman-Moore greedy
modularity maximization algorithm (Clauset et al.,[2004)). AdaGrid and complete search both consider
only the following set of edge message ratios: @ ={0.1,0.2,...,0.9}. To examine power of AdaGrid, it
is assessed with various configurations of adapt epochs and try epochs: (a,3) € {10,50,100} x {1,5,a:}
and both criteria from Section[2] Both criteria utilize smoothing. The selection criterion is considered
a hyperparameter of AdaGrid, so we present results for the better of the two. Each experiment is
repeated three times to mitigate the effect of randomness, and the average performance is reported.

C COMPLETE RESULTS

In Tables[]and[5)are complete results for the experiments from Section[3] Since the results with K =3
and o= 128 model configuration are similar to the ones with K =2 and o= 64, we report them only
for the latter model configuration.

D ADAGRID AND EDGE MESSAGE RATIO

The success of AdaGrid probably stems from its ability to change edge message ratio during training
in an informed way. According to Figure[I] AdaGrid modifies edge message ratio almost every « adapt
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Table 4: AUC in percent for AdaGrid, complete search, and random search with uniform negative
sampling evaluation. Model has K =2, 0=64.

Datasets
Cora CiteSeer
Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10
Complete search 94.85 96.65 97.17 95.84 97.78 98.46
Random search 94.71 96.40 97.02 95.88 97.67 98.45
AdaGrid
«
100 1 95.03 96.89 97.54 95.96 97.82 98.69
100 5 95.03 96.87 97.63 95.91 97.80 98.64
100 100 94.93 96.98 97.59 95.97 97.79 98.67
50 1 95.01 96.98 97.68 95.94 97.81 98.72
50 5 95.05 97.04 97.75 95.87 97.81 98.68
50 50 95.03 97.06 97.76 95.97 97.83 98.71
10 1 95.01 97.07 97.90 95.79 97.89 98.70
10 5 95.14 97.10 97.83 95.81 97.83 98.71
10 10 95.10 97.09 97.86 95.94 97.88 98.71
Gain 0.29 0.45 0.73 0.09 0.11 0.26

Table 5: AUC in percent for AdaGrid, complete search, and random search with community ratio-based
negative sampling evaluation. Model has K =2, 0=64.

Datasets
Cora CiteSeer
Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10
Complete search 84.01 82.98 84.62 83.87 82.22 83.96
Random search 84.00 82.05 83.82 83.87 82.61 83.65
AdaGrid
(6%
100 1 84.35 83.05 85.27 84.01 83.20 84.58
100 5 84.52 82.88 85.43 83.92 82.86 84.34
100 100 84.49 83.61 85.57 84.00 83.12 84.75
50 1 84.51 83.48 86.02 83.88 83.11 84.79
50 5 84.59 83.56 85.98 83.90 82.94 84.84
50 50 84.59 83.74 85.74 84.00 82.99 84.81
10 1 84.49 83.69 86.27 83.65 83.11 84.90
10 5 84.65 83.82 86.54 83.75 83.37 84.89
10 10 84.59 84.07 86.56 83.94 83.04 84.83
Gain 0.64 1.09 1.94 0.14 0.76 0.94

epochs in conjunction with both criteria. Additionally, Table[2]shows that AdaGrid performs better
with a lower number of adapt epochs « (i.e., it is beneficial to be capable of changing edge message
ratio more frequently). Therefore, complete search results in non-optimal performance because it
assumes the edge message ratio is static. On the other hand, random search does not explore edge
message ratio space, so it incorrectly alters it.

E FUTURE WORK

Since AdaGrid performs well on link prediction, it would be interesting to apply AdaGrid to other
graph learning tasks. Due to its generality, it would be suitable even for other deep learning tasks.
Instead of edge message ratio, AdaGrid can optimize any parameter which can dynamically change
during training. To further speed up AdaGrid, instead of considering all edge message ratios, only
those which are adjacent to the current one can be considered during adaptation phases. Another
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Figure 1: Edge message ratio during training, regulated by validation criterion and gap criterion.

intriguing idea is to eliminate the predefined set of values from which edge message ratios are selected.
By locally interpolating validation AUCs near the current edge message ratio, a new edge message
ratio can be chosen to maximize validation AUC.
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