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Abstract

Large Language Models (LLMs) have ad-001
vanced rapidly but face significant memory002
demands. While quantization could alleviate003
the memory-bound issue, current methods typi-004
cally require lengthy training to recover accu-005
racy under low bit width. In that circumstance,006
deployment across scenarios with different re-007
source constraints necessitates repeated train-008
ing, amplifying the issue of protracted training.009
It is beneficial to train a once-for-all (OFA) su-010
pernet capable of offering optimal subnets for011
downstream applications. To extend the once-012
for-all setting to LLMs, we decouple the shared013
weights to mitigate the interference and inte-014
grate Low-Rank adapters to enhance training ef-015
ficiency. Furthermore, it is observed that there016
is an imbalance in the allocation of training017
resources due to traditional uniform sampling.018
A non-parametric scheduler is introduced to019
adjust the sampling rate for each quantization020
configuration, thereby achieving a more bal-021
anced allocation among subnets with varying022
demands. We validate the approach on LLaMA023
families and Mistral on downstream evaluation,024
demonstrating high performance while signif-025
icantly reducing deployment time faced with026
multiple scenarios.027

1 Introduction028

Large Language Models have shown surprising per-029

formance in the past years. However, they suffer030

from huge storage and computational costs; for ex-031

ample, inference with a LLaMA (Touvron et al.,032

2023) model with 70B parameters needs at least033

280 GB of GPU memory. To further boost the034

LLMs development for fitting diverse scenarios, re-035

cent studies have adopted quantization to compress036

the model size and reduce the computational costs.037

Previous works have conducted extensive explo-038

ration on Post-Training Quantization (Frantar et al.,039

2022; Xiao et al., 2023; Lin et al., 2023)). Under040

8-bit quantization, PTQ has achieved negligible041

accuracy loss. However, compressing models to a 042

lower bit level, for instance, 3-bit, leads to signifi- 043

cant degradation in accuracy. Quantization-aware 044

training (QAT) mitigates performance degradation 045

by simulating quantization errors during the train- 046

ing process. However, it is notably more time- 047

consuming. When deploying low-bit LLMs for 048

diverse scenarios with varying resource constraints, 049

repeating quantization-aware training for each sce- 050

nario is impractical, as shown in Figure 1 (a). From 051

the above analysis, the training major the cost of de- 052

ployments; hence, it would be beneficial to train a 053

once-for-all (OFA) supernet. This supernet can gen- 054

erate optimal subnets with diverse configurations 055

(e.g., quantization bit-width) tailored to specific 056

applications, as shown in Figure 1 (b, c). 057

To the best of our knowledge, once-for-all 058

quantization-aware training for LLMs has not been 059

investigated, primarily due to the large scale of 060

current language models and the high cost of tradi- 061

tional QAT. Previous research on once-for-all strate- 062

gies primarily employs a weight-sharing approach 063

to avoid the model size explosion that would re- 064

sult from allocating separate weights for each con- 065

figuration (Wang et al., 2020; Chen et al., 2021). 066

However, the weight-sharing combined with tradi- 067

tional QAT presents two significant challenges: 1) 068

various quantization configurations (e.g., 2, 3, 4 bit- 069

width) share the weight but have different orders 070

of magnitude of quantization noise, resulting in 071

the noteworthy interference problem and optimiza- 072

tion challenges (Tang et al., 2024). 2) Tradition 073

QAT is based on full-finetuning, combined with 074

the time-consuming process of simulating quanti- 075

zation errors, which is inefficient even under the 076

weight-sharing scheme. 077

Furthermore, our observations reveal that the 078

uniform sampling strategy used by traditional OFA 079

methods leads to an imbalance in the allocation of 080

training resources. As illustrated in Figure 3, sub- 081

nets derived from uniform sampling exhibit a bias 082
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Figure 1: (a) Compressing Large Language Models (LLMs) for deployment across various platforms while ensuring
performance is a challenging task. Applying Quantization-Aware Training (QAT) for each platform is both time-
consuming and costly. (b) Instead, our objective is to one-shot fine-tune one quantized LLM that can be efficiently
specialized for multiple platforms. The one-shot fine-tuning process significantly reduces the investment. (c) The
LLM-QFA framework excels in swiftly delivering optimal networks under different resource constraints in one shot,
whereas the traditional method requires repeated fine-tuning.

toward their average bit-width, which falls into a083

low variance distribution. Consequently, subnets084

whose average bit-width deviates from this distri-085

bution are prone to under-fitting.086

Integrating these aspects, we propose the LLM-087

QFA (Quantization-Aware Fine-tuning one LLM088

for All scenarios) framework that efficiently fine-089

tunes a once-for-all supernet to later generate opti-090

mal subnets for diverse scenarios. First, we intro-091

duce interference-less fine-tuning to decouple the092

weights of different configurations, accompanied093

by Low-Rank adapters to enable efficient training.094

Specifically, we quantize the weights with differ-095

ent quantization configurations and freeze them,096

then apply Low-Rank adapters to each quantized097

weight for later fine-tuning. Second, we propose098

a resource-balanced sampling strategy, which uti-099

lizes a non-parametric scheduler that dynamically100

adjusts the sampling strategy across training steps.101

To evaluate our proposed framework, we con-102

duct experiments on LLaMA2 models and vali-103

date the performance on the MMLU and Com-104

mon Sense QA benchmarks. The results show that105

our proposed framework can yield diverse optimal106

quantized models for various scenarios. It is worth107

noting that our framework can be easily scaled up108

to even larger models since the training time per109

step is the same with previous LoRA-tuning (Xu110

et al., 2023). We summarize our contributions as111

follows:112

• We first introduce the once-for-all training113

paradigm for large language models (LLMs),114

which helps to reduce the training cost for115

deploying LLMs across diverse scenarios. 116

• we decouple weights of configurations to mit- 117

igate interference issues and incorporate Low- 118

Rank adapters to enhance the training effi- 119

ciency. 120

• To address the imbalance training caused by 121

the uniform sampling strategy, we propose a 122

resource-balanced sampling strategy that fo- 123

cuses on providing fair sampled opportunity 124

across subnets with various resource demands. 125

2 Related Work 126

LLM Quantization. Quantization is a compres- 127

sion technique that reduces the bit-width of weights 128

and/or activations to save memory and accelerate 129

inference. The quantization of LLM can be cat- 130

egorized into two main lines. The first one is 131

post-training quantization (PTQ) (Frantar et al., 132

2022; Xiao et al., 2023; Lin et al., 2023; Kim 133

et al., 2023), which focuses on reducing the mem- 134

ory footprint without retraining. Although lots of 135

designs are designed to mitigate the degradation 136

of performance, e.g., handling outliers in param- 137

eters (Kim et al., 2023; Li et al., 2023a) and dy- 138

namic quantization (Xiao et al., 2023; Lin et al., 139

2023), PTQ still have to drop the ultra-low bit- 140

width (e.g., 2 bit and 3 bit) to guarantee the per- 141

formance. Hence, the second line, Quantization- 142

Aware Training (QAT) can help alleviate the per- 143

formance drop. The first QAT method applied on 144

LLM (Liu et al., 2023) inherits the idea of tradi- 145

tional QAT, which is computationally expensive in 146
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Figure 2: Illustration of the goal of LLM-QFA. Unlike traditional OFA with Quantization-Aware Training, our
method avoids interference issues by decoupling shared weights and incorporating the Low-Rank Adapter to
enhance training efficiency further. Additionally, we employ a resource-balance sampling strategy, accelerating the
convergence of subnets across resource constraints.

the fine-tuning stage. To reduce the training cost,147

(Dettmers et al., 2024; Xu et al., 2023; Guo et al.,148

2023; Li et al., 2023b) utilizing LoRA-tuning on149

quantized weight and gain a decent performance.150

Specifically, (Xu et al., 2023) adds constraints on151

LoRA to maintain the quantization property after152

merging between LoRA weight and quantization153

weight, which firstly brings LoRA-tuning to actual154

quantization-aware training. Though Lora-tuning155

can save memory footprint and training costs, when156

faced with diverse development scenarios with dif-157

ferent resource constraints, LoRA-tuning still falls158

into the pitfall of repeated training.159

Once for All training. Once-for-all training160

(OFA) methods (Wang et al., 2020; Chen et al.,161

2021; Yu et al., 2020; Tang et al., 2023, 2022)162

aim to train a one-shot supernet that can serve di-163

verse scenarios with different resource constraints164

and save expensive retraining per scenario. On165

non-LLMs, the success of one-shot training comes166

from the weight-sharing scheme between different167

configurations (Chen et al., 2021; Yu et al., 2020),168

while weight-sharing also brings interference be-169

tween different bit-widths for quantization-aware170

training (Tang et al., 2024, 2023). Moreover, tradi-171

tional OFA with weight sharing necessitates fine-172

tuning entire parameters, which is impracticable173

for LLMs due to their extensive size.174

3 Methodology175

3.1 Problem definition176

This paper focuses on the dimension of quantiza-177

tion to compress the LLMs for efficient deployment178

across diverse scenarios, which involves 1) post- 179

training quantization to compress LLMs and 2) 180

constructing the layer-wise mixed-precision super- 181

net based on quantized LLMs and 3) optimizing 182

the supernet. 183
Post-training Quantization To reduce mem- 184

ory cost, it is effective to quantize the pre-trained 185
weight of LLMs in low-bit representation; math- 186
ematically, given the bit-width N and the target 187
weight W, the quantization process can be defined 188
as 189

Ŵ = ⌊W
α

⌉, α = (max(|W|))/(2N−1 − 1), (1) 190

where α denotes scaling factors. ⌊·⌉ denoted 191

the rounding operation. Ŵ is the quantized 192

weight, and its elements are stored in a set of 193

{0, 1, . . . , 2N −1}. Here, only two float point num- 194

bers and a series of integers are needed for storage 195

and computation memory, 196

Layer-wise Mixed-precision Supernet In con- 197

trast to uniform bit-width quantization, mixed- 198

precision quantization, which allows for varying 199

bit-widths across different layers, can yield supe- 200

rior performance by capitalizing on the inherent 201

redundancy in specific layers. In this work, we 202

build a supernet containing different quantization 203

bit-width configurations layer-wise. Each single 204

path of the supernets denotes a mixed-precision 205

LLM, and we aim to optimize all single paths, 206

which can be formulated as 207

{s1, s2, . . . , si, ..., sN−1, sN}, 208

where si = [Q1,i1 , Q2,i2 , . . . , QL,iL ], 209

where si denotes one subnet. L represents the num- 210

ber of layers in the large model. We quantize the 211
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Avg. Bit-width Avg. Bit-width Avg. Bit-width
Figure 3: (a) Distribution of average bit-width of samples obtained from uniform sampling, approximating a
low variance Gaussian distribution. (b) Mixed Gaussian Distribution can approximate Uniform Distribution. (c)
Showcase of our Resource-Balance sampling strategy.

model into N different quantization bit-widths, de-212

noted as B = {b1, b2, . . . , bN}. Ql,i represent the213

quantized l-th layer with bit-width bi. We apply214

quantize the pre-trained weight W with 2, 3, 4 bit-215

width quantization. Hence, the quantity of subnets216

in the space is 3L. Our target is to 1) optimize all217

the subnets at once and 2) offer optimal subnets218

under given resource constraints.219

3.2 One-Shot Optimization220

Interference-Less Fine-tuning. We have ob-221
served that previous one-shot training methodolo-222
gies (Cai et al., 2019; Yu et al., 2020) gained223
success from their weight-sharing scheme, which224
avoids large model sizes caused by saving the225
weight of each configuration. However, the weight-226
sharing scheme also brings interference problems,227
as shown in Figure 2 (a).228

Yl = X · αl · ⌊
W

αl
⌉,229

∂
∑L

l=1 Lossl

∂W
=

L∑
l=1

(
∂Lossl
∂Yl

·X · αl ·
∂⌊W

αl
⌉

∂W
αl

),230

where l denotes different quantization settings, and231

Yl varies for different quantization error. Specifi-232

cally, high and low bit-width have different quanti-233

zation noise, and significantly superimposed quanti-234

zation noise leads to optimization challenges (Tang235

et al., 2024).236
To alleviate interference between different con-237

figurations, the straightforward approach is to de-238
couple shared weights and assign weights for each239
configuration. Hence, we incorporate low-rank240
adapters to represent each quantization configu-241
ration, which only brings negligible extra costs242
compared with the size of LLMs, as shown in Fig-243
ure 2 (b). Specifically, the forward process can be244
defined as:245

Y = X·αl ·⌊
W

αl
⌉+BlAl ·X,

∂Lossl
∂BlAl

= X· ∂Lossl
∂Yl

, (2)246

where Al,Bl denotes the weight of Low-Rank247

adapters for lth quantization configuration. It is248

noteworthy that a low-rank adapter is updated249

solely for one quantization setting, which is crucial250

for avoiding interference among different configu-251

rations.252

To avoid heterogeneity between float point 253

LoRA weights and quantized weight, which hinder 254

the acceleration for inference, we follow QA-LoRA 255

(Xu et al., 2023) to add constraints on adapters’ 256

weight for preserving quantization property after 257

merging. 258
Integrating the above designs, the task of opti- 259

mizing all subnets can be formulated as 260

min
WL

∑
ai

Lval

(
f(WL,WQ, ai)

)
, (3) 261

where f(WL,WQ, ai) denotes the process that 262

forms a sub-network according to architectural con- 263

figuration ai and inherits corresponding quantiza- 264

tion weight WQ and LoRA weight WL. 265

Resource-Balance Sampling Strategy. Fine- 266

tuning all the subnets is a multi-objective problem. 267

Given the impracticality of enumerating and tuning 268

every subnet at each training iteration, a simplistic 269

yet sub-optimal approach is to uniformly sample a 270

few subnets from the configuration space for fine- 271

tuning. Specifically, each layer has a uniform prob- 272

ability of choosing one quantization configuration, 273

which can be formulated as P(Ql,i) =
1
N . 274

Though it seems fair, the naive uniform sampling 275
strategy is biased toward subnets whose average 276
bit-width is close to its expected value. Assume 277
variable qi as quantization bit-width for ith layer. 278
Variables [q1, q2, . . . qL] are independent; hence the 279
average of bit-width can be formulated as: 280

Var[Bit(s)] = Var[
∑L

i=1 qi

L
] =

1

L2

L∑
i=1

Var[qi] =
σ2

L
,

(4) 281

where the Bit(s) denotes the average bit-width of 282

the sampled and σ2 denotes the variance of qi. As 283

shown in Figure 3 (a), the distribution of Bit(s) is 284

close to a normal distribution, where the variance is 285

extremely small when L = 32. Hence, the subnet 286

with an average bit-width far from the distribution 287

center would get unbalanced training resources. 288

Revealed by Figure 3 (b), straightforwardly 289

stacking normal distributions with different means 290

can approximate a uniform distribution for Bit(s) 291
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Figure 4: Left: The time required to obtain N specialized networks varies across methods. Our proposed QFA
approach significantly reduces the time cost compared to the QA-LoRA method and achieves a comparable efficiency
level to the pure quantization technique, GPTQ. Right: For each method, we obtain three specialized networks
under (2, 3, 4) bit constraints on the LLaMA2-7b and LLaMA2-13B models. The average accuracy on the 5-shot
MMLU benchmark for networks quantized at (2, 3, 4) bits is reported. Although GPTQ can achieve a lower time
cost, it is accompanied by an unacceptable level of performance degradation. Full results are provided in Table 1.

and alleviate the imbalance problem. From the im-292

plementation perspective, mixed Gaussian distribu-293

tion can be achieved by setting different sampling294

strategies for configurations across training steps.295

The process can be formulated as296

E[Bit(s, t)] = (bN − b1) · |2 ·
t

SL
− 1|+ b1,

(5)297

where SL is the length of one schedule epoch. bN298

represents the maximum bit-width and b1 denotes299

the minimum bit-width. Within one schedule, the300

mean of distribution would move from bN to b1 and301

then back to bN , leading to a smooth switchover302

between schedule epochs. Compared to the uni-303

form sampling strategy, our approach prevents bias304

on subnets in median size. Therefore, the subnet305

space converges more efficiently, as shown in Fig-306

ure 3 (c), which makes the following search process307

more effective.308

3.3 Search Optimized Subnet309

We decouple the fine-tuning process and the search-310

ing process. No extra retraining cost is needed311

when finding the optimal subnet under the given312

resource constraint. The searching process starts313

with random searching, where a few subnets are314

sampled. Then, correlation analysis between the315

subnets’ performance on the validation set and the316

quantization bit-width of each layer is conducted.317

Learning from the correlation, the sensitivity of318

each layer to quantization bit-width can be ob-319

tained, and the search space can be further nar-320

rowed down. Finally, we further sample subnets321

from the narrowed search space, and the final opti- 322

mal subnet is selected based on the performance of 323

the validation set. 324

4 Experiments 325

4.1 Settings 326

Models and Quantization. We conduct experi- 327

ments on LLMs, LLaMA2-7b, LLaMA2-13b, and 328

Mistral. The quantization is based on GPTQ (Fran- 329

tar et al., 2022) with 2, 3, 4 bit-width quantization. 330

The detailed quantization configuration, e.g., group 331

size, and order, are consistent with QA-LoRA (Xu 332

et al., 2023). 333

Datasets and Training Details. We fine-tune 334

models with Alpaca (Taori et al., 2023), which 335

contains 52K instruction-following data generated 336

from GPT 3.5 (Wang et al., 2022). The length of 337

one schedule epoch is 8k training steps. Following 338

previous works(Dettmers et al., 2024; Xu et al., 339

2023), we use a paged AdamW optimizer with a 340

batch size 16 and a learning rate of 2× 10−5. The 341

training process is conducted on one A100 GPU, 342

and only 8 GPU hours are needed to fine-tune one 343

LLaMA2-7b-based supernet with 10K steps. 344

Evaluation. We evaluate the performance of 345

the models on MMLU (Hendrycks et al., 2021) 346

and Common Sense QA benchmarks. The MMLU 347

dataset contains four categories: Humanities, 348

STEM, Social, and Other. The Common Sense 349

QA benchmarks include HellaSwag (Zellers et al., 350

2019), PIQA (Bisk et al., 2020), WinoGrande (Sak- 351

aguchi et al., 2021), ARC-e, ARC-c (Clark et al., 352
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Table 1: 0-shot and 5-shot accuracy (%) on the Massive Multitask Language Understanding (MMLU) dataset. Each
block is based on the same foundation model specified in the first row. For each method, we present the metrics
achieved under the bit-width resource constraints of 2, 3, 4, as well as the corresponding averages.

Method Bit MMLU (0-shot) MMLU (5-shot)
Const. Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

LLaMA2-7B 16 48.3 35.2 48.8 45.8 43.6 51.6 37.3 52.2 49.9 46.8
GPTQ 4 40.4 33.7 45.9 42.2 39.9 50.5 36.9 50.5 47.5 45.1
GPTQ 3 28.8 25.8 25.6 28.0 27.0 31.6 28.2 25.6 32.9 30.7
GPTQ 2 23.8 23.7 22.5 23.8 23.5 24.3 23.0 23.9 26.1 24.2
GPTQ Avg. 30.1 33.3
QA-LoRA 4 49.7 37.5 51.4 47.8 45.7 49.8 36.8 49.8 47.8 45.1
QA-LoRA 3 43.3 33.7 44.8 42.9 40.5 40.2 34.8 44.1 40.8 39.5
QA-LoRA 2 32.6 27.2 35.6 33.2 31.7 27.2 26.9 29.0 30.5 28.3
QA-LoRA Avg. 39.3 37.6
LLM-QFA 4 50.3 37.4 49.8 46.8 45.2 48.4 35.6 48.1 46.9 44.0
LLM-QFA 3 42.3 34.4 48.1 42.9 41.2 41.4 33.3 46.2 41.2 39.8
LLM-QFA 2 33.7 28.7 36.3 32.9 32.5 28.8 28.2 32.5 30.5 29.8
LLM-QFA Avg. 39.6 37.9

LLaMA2-13B 16 56.9 42.4 61.0 55.6 52.8 62.9 44.4 63.9 56.7 55.7
GPTQ 4 55.3 41.6 58.1 53.3 51.1 61.3 43.3 62.5 57.2 54.9
GPTQ 3 42.0 31.8 43.6 41.3 39.0 41.4 36.5 46.7 43.7 41.5
GPTQ 2 25.0 22.4 22.3 24.4 23.5 23.8 23.4 22.6 24.9 23.7
GPTQ Avg. 37.9 40.0
QA-LoRA 4 56.9 41.5 60.4 54.9 52.3 59.6 42.7 62.2 57.4 54.2
QA-LoRA 3 54.0 40.0 57.1 52.5 49.9 56.8 41.9 59.0 53.5 51.7
QA-LoRA 2 32.6 28.9 31.4 35.3 31.8 30.3 28.2 34.4 36.5 32.0
QA-LoRA Avg. 44.7 46.0
LLM-QFA 4 57.4 41.3 60.4 55.8 52.5 59.1 42.1 61.1 56.2 53.4
LLM-QFA 3 56.3 40.3 58.8 54.6 51.3 56.7 40.6 59.9 54.5 51.8
LLM-QFA 2 34.5 30.3 33.0 37.3 33.5 32.2 28.5 36.0 37.2 33.1
LLM-QFA Avg. 45.8 46.1

2018), BoolQ (Clark et al., 2019), and OBQA (Mi-353

haylov et al., 2018). For the MMLU Benchmark,354

we search the optimal subnets on the MMLU eval-355

uation dataset. Initially, we sampled the first 100356

subnets randomly and subsequently employed a357

shrinkage strategy to sample an additional 50 sub-358

nets, denoted as [100, 50]. For the Common Sense359

QA datasets, we similarly searched for optimal360

subnets on the ARC-C dataset with [100,50] set-361

ting. We report the 0-shot and 5-shot accuracy on362

MMLU and 5-shot accuracy on Common Sense363

QA benchmarks.364

4.2 Main Results365

Comparisons with on MMLU. Figure 4 re-366

ports the comparison between LLM-QFA and367

Quantization-Aware training methods (QA-LoRA)368

and the Post-Training Quantization method369

(GPTQ) under (2, 3, 4) bit-widths. LLM-QFA370

demonstrates significantly higher efficiency than371

QA-LoRA faced with multiple deployment scenar- 372

ios. This advantage stems from the training cost 373

associated with LLM-QFA remaining constant, in 374

contrast to the methods that scale linearly with the 375

number of deployment scenarios N. Although our 376

approach incurs a modestly higher time cost than 377

GPTQ, the substantial performance degradation ob- 378

served in GPTQ is unacceptable. Table 1 illustrates 379

that, despite delivering only comparable perfor- 380

mance under the 4-bit constraint, the average met- 381

rics of our method across (2, 3, 4) bit constraints 382

consistently surpass those of QA-LoRA and GPTQ, 383

without the need for costly repeated training. 384

Comparisons on Common Sense QA. We con- 385

duct the experiment on Common Sense QA with 386

LLaMA families and Mistral as shown in Table 387

2. Consistent with the findings from the MMLU 388

benchmark, LLM-QFA demonstrates comparable 389

performance with baselines at extreme bit-width (2, 390

4) and outperforms at median bit-width (3). The 391
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Table 2: 5-shot accuracy (%) on the Common Sense QA tasks. Each block is based on the same foundation model specified in
the first row. We organize all results under different quantization bit widths. Mixed precision configurations are searched on
ARC-C, and the best configurations are tested on the rest of the Common Sense QA tasks.

Method Bit Eval Test
Const. ARC-C HellaSwag PIQA WinoGrande ARC-e BoolQ OBQA Avg.

LLaMA2-7B 16 52.0 78.2 80.1 74.1 81.1 79.3 45.2 73.0
GPTQ 4 50.8 77.0 79.5 73.8 80.2 74.1 43.4 71.3
QA-LoRA 4 55.5 79.0 80.0 73.3 79.6 75.9 46.4 72.4
LLM-QFA 4 53.8 76.8 79.3 73.5 78.1 77.4 49.0 72.4
GPTQ 3 30.1 49.9 68.3 59.3 55.5 44.3 35.0 52.1
QA-LoRA 3 47.8 72.4 75.0 68.4 73.6 72.0 44.8 67.7
LLM-QFA 3 49.1 72.3 76.7 69.0 73.8 72.8 43.4 68.0
GPTQ 2 25.8 26.2 51.1 50.6 26.0 41.7 25.0 36.8
QA-LoRA 2 40.4 65.6 73.6 62.0 66.0 65.9 37.2 61.7
LLM-QFA 2 43.1 64.8 73.2 62.2 67.0 64.3 38.8 61.7

LLaMA2-13B 16 57.5 81.7 81.7 76.0 84.4 83.2 48.2 75.9
GPTQ 4 56.5 81.1 80.9 75.6 83.3 81.7 47.4 75.0
QA-LoRA 4 58.0 79.2 81.3 74.0 83.3 83.8 49.4 75.2
LLM-QFA 4 56.0 79.6 82.0 73.2 83.5 83.2 51.0 75.4
GPTQ 3 47.8 68.6 77.7 67.9 77.1 71.9 42.8 67.7
QA-LoRA 3 53.5 67.0 79.4 66.7 80.1 76.3 41.8 68.5
LLM-QFA 3 53.7 75.1 79.7 70.3 80.5 78.4 48.0 72.0
GPTQ 2 27.8 25.8 50.2 50.2 26.6 37.8 23.4 35.7
QA-LoRA 2 49.1 70.8 76.6 66.4 76.1 74.1 44.8 68.1
LLM-QFA 2 49.2 70.9 77.0 67.2 76.3 74.3 44.6 68.4

Mistral-7B / 64.3 84.1 84.4 78.9 84.9 86.0 50.6 78.1
GPTQ 4 62.3 78.2 80.3 78.8 83.9 85.1 49.6 76.0
QA-LoRA 4 57.8 79.7 83.1 76.3 83.3 85.2 48.6 76.0
LLM-QFA 4 58.3 78.7 83.3 76.1 83.2 86.0 49.2 76.1
GPTQ 3 56.7 74.5 78.5 73.0 81.5 84.7 48.4 73.4
QA-LoRA 3 57.1 77.0 80.6 74.0 80.7 84.5 47.8 74.1
LLM-QFA 3 58.1 76.1 81.2 74.4 82.2 84.6 49.0 74.6
GPTQ 2 24.4 40.5 64.2 49.7 38.8 61.1 24.8 46.5
QA-LoRA 2 30.0 47.5 66.3 53.1 52.5 63.4 30.0 52.1
LLM-QFA 2 37.3 52.5 69.4 60.0 63.8 66.2 30.2 57.0

QA-LoRAOurs

Figure 5: LLM-QFA can deliver multiple optimal sub-
nets under different constraints. Left: Comparison of
ARC-C dataset; Right: Comparison of the rest of Com-
mon Sense QA tasks.

advantage is significant with LLaMA2-13B under392

3-bit constraints, where LLM-QFA gains 3.5% ac-393

curacy improvement over QA-LoRA.394

LLM-QFA under Different Resource Con-395

straints. Figure 5 summarizes the results of LLM-396

QFA under different bit-width constraints. LLM-397

QFA achieves 45.0% ARC-C accuracy with 2.1 398

average bit-width, being 5% more accurate than 399

QA-LoRA with similar resource demands. Com- 400

pared with QA-LoRA at 3-bit, our approach can 401

achieve the same level of performance with fewer 402

resources, a 1.2x reduction on ARC-C, and a 1.1x 403

reduction on the rest of Common Sense QA. 404

Impact of Mixed Precision and Quality of Op- 405

timization. Previous results have significant per- 406

formance improvement in the median resource 407

constraints. To ensure the gains are not solely 408

due to mixed precision, we sampled 100 mixed- 409

precision configurations for both GPTQ and QA- 410

LoRA and evaluated them on the ARC-C dataset. 411

To be noticed, we evaluate mixed-precision QA- 412

LoRA based on the fine-tuned QA-LoRA weight 413
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GPTQOurs QA-LoRA

Figure 6: Subnets sampled from LLM-QFA show significant
robustness over baselines with simple mixed-precision.

Shared LoRAOurs Uniform Sampling

Figure 7: Verification of the effectiveness of
Interference-Less Fine-Tuning and Resource-Balance
Sampling Strategy.

Long ScheduleOurs Short ScheduleOurs Hard to EasyOurs

Figure 8: Common Sense QA accuracy (%) of LLM-
QFA with different scheduler settings.

at (2, 3, 4) bit. Figure 6 demonstrates that performs414

more robustly across varying resource demands,415

further validating that our method can help opti-416

mize all the subnets, not just benefiting from mixed417

precision. Although the mixed-precision version418

of QA-LoRA exhibits a modest improvement in419

performance at higher bit-widths, it incurs a three-420

fold increase in training time to achieve these re-421

sults. Moreover, the observed performance insta-422

bility suggests a potential loss of optimal subnet423

configurations under certain constraints.424

4.3 Ablation Study425

Ablation on Interference-Less Fine-tuning. To426

assess the effectiveness of decoupling shared427

weights, we introduce a variant called shared-428

LoRA, wherein different quantization settings 429

share the same Low-Rank adapter. Figure 7 re- 430

ports that shared-LoRA underperforms the original 431

version across all resource demands, validating the 432

interference problem in one-shot LLM training. 433

Ablation on Resource-Balance Sampling. Sim- 434

ilarly, we implement a uniform sampling version 435

of our method. Figure 7 also shows a consistently 436

under-performing uniform sampling strategy; even 437

the resource-concentrated area (3 bit) falls short in 438

the comparison. This has motivated the develop- 439

ment of a resource-balanced sampling strategy for 440

training, which is designed to counteract the chal- 441

lenges of under-fitting and over-fitting encountered 442

in one-shot training. 443

Ablation for Scheduler. Lastly, we investigate 444

two aspects of configuration for the scheduler, 445

which are the length of epochs (SL) and sched- 446

ule orders. In our main experiments, the epoch 447

length is set to 8k training steps. For the short-term 448

schedule, it is reduced to 1k steps, while for the 449

long-term schedule, it is extended to 16k steps. Fig- 450

ure 8 demonstrates that the short-term diminishes 451

robustness and hinders convergence, particularly at 452

lower bit configurations. Regarding the schedule 453

orders, we initiate our training with 4-bit configu- 454

rations, employing an easy-to-hard strategy. In this 455

part, we assess the hard-to-easy setting. Figure 8 456

demonstrates that the order has negligible impact. 457

5 Conclusion 458

This work introduces the LLM-QFA framework, a 459

once-for-all Quantization-Aware training approach 460

to reduce the training cost of deploying large lan- 461

guage models (LLMs) across diverse scenarios. By 462

decoupling the weights of different configurations 463

and incorporating Low-Rank adapters, we enhance 464

training efficiency and mitigate interference issues. 465

A resource-balanced sampling strategy ensures fair 466

training across subnets with various resource de- 467

mands. Our experiments show that LLM-QFA 468

deliver optimal quantized models, demonstrating 469

its effectiveness. 470

8



6 Limitations471

For bit-width exceeding 4 bits, the quantization472

method becomes lossless. For bit-width less than473

2 bits, there is a significant loss in accuracy. Con-474

sequently, the mixed-precision setting is not flex-475

ible and can only be selected from 2, 3, and 4476

bits. Moreover, the current 2-bit quantization still477

suffers from remarkable accuracy loss even when478

equipped with LoRA tuning. The quantization er-479

ror causes troubles in employment and training,480

and an orthogonal approach is needed to alleviate481

the quantization error.482
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