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Abstract

Multi-modal Large Language Models (MLLMs) have demonstrated
remarkable performance on various visual-language understand-
ing and generation tasks. However, MLLMs occasionally generate
content inconsistent with the given images, which is known as
"hallucination". Prior works primarily center on evaluating halluci-
nation using standard, unperturbed benchmarks, which overlook
the prevalent occurrence of perturbed inputs in real-world sce-
narios—such as image cropping or blurring—that are critical for
a comprehensive assessment of MLLMs’ hallucination. In this pa-
per, to bridge this gap, we propose Hallu-PI, the first benchmark
designed to evaluate Hallucination in MLLMs within Perturbed
Inputs. Specifically, Hallu-PI consists of seven perturbed scenar-
ios, containing 1,260 perturbed images from 11 object types. Each
image is accompanied by detailed annotations, which include fine-
grained hallucination types, such as existence, attribute, and re-
lation. We equip these annotations with a rich set of questions,
making Hallu-PI suitable for both discriminative and generative
tasks. Extensive experiments on 12 mainstream MLLMs, such as
GPT-4V and Gemini-Pro Vision, demonstrate that these models ex-
hibit significant hallucinations on Hallu-PI, which is not observed in
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unperturbed scenarios. Furthermore, our research reveals a severe
bias in MLLMs’ ability to handle different types of hallucinations.
We also design two baselines specifically for perturbed scenarios,
namely Perturbed-Reminder and Perturbed-ICL. We hope that our
study will bring researchers’ attention to the limitations of MLLMs
when dealing with perturbed inputs, and spur further investigations
to address this issue. Our code and datasets are publicly available
at https://github.com/NJUNLP/Hallu-PL
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1 Introduction

Multi-modal Large Language Models (MLLMs) have achieved signif-
icant progress in a range of practical applications, such as providing
detailed descriptions for user-provided images (i.e., image caption-
ing) [1, 29] and answering specific questions about input images
(i.e., visual question answering) [24, 41]. However, these models oc-
casionally exhibit a phenomenon known as "hallucination", where
the generated content is inconsistent with the given images [16, 35].
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Figure 1: Some examples of hallucinations in MLLMs with perturbed inputs (such as image concatenation, image cropping, and
prompt misleading). Text highlighted in green and red represents correct and hallucinatory content, respectively.

Previous works have sought to investigate the hallucinations
in MLLMs by utilizing a large language model like GPT-4 [1], or
by employing humans as annotators [38, 40]. Alternatively, some
studies focus on developing detection models to scrutinize the
hallucinations exhibited by MLLMs. [14, 22]. More recently, [31]
introduce AMBER, a LLM-free benchmark designed to examine
MLLM hallucinations in both discriminative and generative tasks
across dimensions like existence, attribute, and relation.

Despite these efforts, existing researches primarily focus on
conducting evaluations by sampling images from available image
datasets, such as MSCOCO [14, 22, 28, 32, 37, 38]. However, in
real-world scenarios, inputs fed to MLLMs frequently encounter a
variety of perturbations (e.g., noise and cropping) [12]. Overlook-
ing such perturbations could lead MLLMs to produce incorrect
answers or judgments, potentially causing serious accidents in cer-
tain applications (e.g., medical diagnosis, industrial automation and
autonomous driving) [17]. Figure. 2 illustrates the hallucinations
of several MLLMs before and after image concatenation pertur-
bation. The inconsistent performance trends indicate that relying
solely on existing unperturbed benchmarks is insufficient for a
comprehensive and precise evaluation of hallucinations in MLLMs.

In order to bridge this gap, we introduce Hallu-PI, a benchmark
designed to evaluate the Hallucination performance of MLLMs
within Perturbed Inputs. Followed by [12, 15], we first categorize
the image perturbations into four types: noise, blur, weather, and
digital. Additionally, we meticulously propose three distinct types
of perturbations: image concatenation, image cropping, and prompt
misleading. These perturbations are considered at both the image
level and the prompt level. Annotators are instructed to carefully
manipulate the perturbations and provide corresponding annota-
tions. Evaluations of 12 mainstream MLLMs conducted on Hallu-PI
reveal significant hallucinations of leading MLLMs (e.g., GPT-4V
and Gemini-Pro Vision) when dealing with perturbed scenarios.
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Figure 2: The hallucinatory performance of various MLLMs
before (blue bars) and after ( bars) input perturbation.
Inconsistent performance trends show that relying solely on
unperturbed benchmarks is insufficient for a complete and
precise evaluation of hallucinations in MLLMs.

To comprehensively understand the hallucination of MLLMs to
perturbed inputs, we conduct a detailed analysis of the experimental
results. We find that most models exhibit significant bias towards
specific types of perturbations, particularly image concatenation,
image cropping, and prompt misleading (see Figure. 1). Furthermore,
to mitigate the hallucination of MLLMs in response to perturbed
inputs, we draw inspiration from the defensive strategies adopted
by text LLMs against jailbreak attacks [7, 34] and designed two
baselines: Perturbed-Reminder and Perturbed-ICL. Experiments
conducted on GPT-4V show that these strategies effectively reduce
hallucinations. We hope our work can prompts MLLM researchers
and developers to address hallucinations from perturbed inputs.
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Table 1: Comparison with existing hallucination evaluation benchmarks. "Sample" means sampling from an existing dataset.

Benchmark L. T?Sk Type 3 A Halluuna'tmn Type . Perturbation Baseline Source
Discriminative Generative Existence Attribute Relation
POPE [22] v X v X X X X Sample
M-HalDetect [14] X v X X X X v Sample
HaELM [32] X v X X X X X Sample
Halle-Switch [38] X v X X X X X Sample
AMBER [31] v v v v v X X Manual
Hallu-PI (ours) v v v v v v v Manual

In summary, the contributions of our work are as follows:

o We construct Hallu-PJ, the first freely available multi-modal
hallucination benchmark with perturbed inputs. Hallu-PI
encompasses 7 perturbed scenarios, a total of 1,260 images,
and 11 distinct object categories to evaluate hallucinations
in MLLMs across both generative and discriminative tasks.

e We conduct extensive experiments with Hallu-PI to evaluate
multi-modal hallucinations in 12 state-of-the-art MLLMs
under perturbed inputs. The results unveil the limitations of
MLLMs when dealing with perturbed inputs, as well as their
specific bias towards certain types of hallucinations.

e To mitigate the hallucinations of MLLMs on Hallu-PI, we
introduce two baselines: Perturbed-Reminder and Perturbed-
ICL. Experimental results on GPT-4V indicate that our meth-
ods are effective and can reduce the model’s hallucinations
in response to perturbed inputs to a certain extent.

2 Related Work

2.1 Multimodal Large Language Models

Multi-modal Large Language Models (MLLMs) are currently achiev-
ing significant improvements by combining the advanced capa-
bilities of Large Language Models (LLMs) with visual process-
ing [1, 2, 9, 21, 29]. These MLLMs show great potential in a va-
riety of applications, such as visual question answering (VQA) [11],
image captioning [26], and video understanding [19]. Represen-
tative MLLMs, such as CogVLM [33], LLaVA1.5 [24], InternLM-
XComposer [39], MiniGPT-4 [5], mPLUG-OwI2 [36], Qwen-VL [3],
and the latest GPT-4V [1], and Google Gemini-Pro Vision [29], have
achieved impressive performance across various multi-modal tasks.

2.2 Hallucination in MLLMs

While MLLMs have exhibited excellent performance on multi-
modal tasks, we are still facing the challenge that MLLMs often
generate content unfaithful to the given images, which is called
"hallucination” [6, 18, 20, 23, 30].

Currently, many researchers focus on evaluating the hallucina-
tion in MLLMs. LURE [40] and HallE-Switch [38] rely on human
evaluations or GPT-4. While this method is relatively reliable, it
is also expensive. HaELM [32] and FDPO [14] are based on hal-
lucinatory detection models. However, the performance of these
models is highly dependent on hallucinatory data and incurs sub-
stantial training costs. POPE [22] is based on object detection but is
only applicable to discriminative tasks and evaluates existence-type
hallucinations. Recently, [31] introduce AMBER, which assesses

hallucinations across multiple dimensions, such as existence, at-
tribute, and relation. Despite these efforts, they do not explore
hallucinations in the perturbed scenarios commonly encountered
in real-life situations. To bridge this gap, we propose Hallu-PI, the
first benchmark designed to evaluate the hallucination of MLLMs
with perturbed inputs. Table. 1 presents a detailed comparison
between Hallu-PI and other hallucination benchmarks.

2.3 Image Perturbation

To simulate real-world perturbation scenarios, previous works
adopt various perturbation strategies such as ImageNet-C [15] and
Stylize-ImageNet [12, 27, 28]. The perturbations are grouped into
five primary categories: noise, blur, weather, digital, and stylize.
Specifically, these can be further subdivided into the following 17
image perturbation techniques: (1) Noise: Adding noise to the im-
ages, such as gaussian noise, shot noise, impulse noise, and speckle
noise. (2) Blur: Blurring the images, including defocus blur, frosted
glass blur, motion blur, and zoom blur. (3) Weather: Adding environ-
mental effects such as snow, frost, fog, and brightness adjustments.
(4) Digital: Manipulating images through contrast enhancement,
elastic transformation, pixelation, and JPEG compression. and (5)
Stylize: Applying artistic styles and transformations to images.

Compared to existing benchmarks that only consider hallucina-
tion assessment in unperturbed scenarios, Hallu-PI further takes
into account perturbations that frequently occur in real-world ap-
plications. Therefore, it serves as a complement to existing bench-
marks and provides a more comprehensive and accurate evaluation
of hallucinations in MLLMs.

3 Hallu-PI Benchmark

In this section, we introduce the process of constructing our Hallu-
PIbenchmark which primarily encompasses three aspects: (1) Image
Collection, (2) Image Perturbation and Annotation, and (3) Design-
ing Prompt Query Templates.

3.1 Image Collection

To ensure the diversity of the dataset, we identify 11 different object
types and require annotators to collect images for each category.
In the image selection process, we primarily consider (1) image
copyright and (2) image quality. We provide annotators with several
websites offering free copyright images and instruct them to search
for images using specific object keywords. Annotators are asked to
select images where the object is complete and the image is of high
quality for downloading.
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Figure 3: (a) Overview of Hallu-PI pipeline for image annotation and perturbation. (b) An illustration of evaluation pipeline of
Hallu-P], including both generative and discriminative tasks.

3.2 Image Perturbation and Annotation

Following previous work [28], we first consider four primary types
of perturbation: noise, blur, weather, and digital. Stylize is not in-
cluded because the stylized images are too blurred to recognize
the objects and attributes within them. To construct a more com-
prehensive set of perturbation scenarios, we meticulously propose
three additional perturbations: image concatenation, image crop-
ping, and prompt misleading. The first two are considered because
they are commonly used by users in real life to edit their images,
while prompt misleading ensures that Hallu-PI can evaluate hallu-
cinations at both the image level and the prompt level.

For noise, blur, weather, and digital perturbations, we reuse the
code from [28] to generate the perturbed images. For image concate-
nation, we require our well-trained annotators to combine every
four individual images previously collected into a single four-grid
image, ensuring that the objects in the concatenated image are com-
plete. For image cropping, we primarily focus on images containing
English letters. Annotators are instructed to crop these images and
provide corresponding questions and answers for both the original
and cropped images. For prompt misleading, annotators need to
select an image and provide a prompt that could potentially induce
hallucinations. Figure. 1 provide some examples of these perturba-
tions. Annotators are required to provide detailed annotations for
perturbed images. These annotations include Existence, Number,
Color, Relation, and Hal-object, as shown in Figure. 3.

In Figure. 4, we present the distribution of perturbation types
and the distribution of object categories included in Hallu-PL
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3.3 Designing Prompt Query Templates

To ensure a more comprehensive evaluation of hallucinations, we
design both generative and discriminative prompt templates for
each perturbation scenario. For the perturbations such as noise,
blur, weather, digital, and image concatenation, we pose questions
regarding each specific annotation field. For instance, for the image
concatenation perturbation, the generative prompt for the "Exis-
tence" field before perturbation is: "Please describe the existing ob-
Jjects in the image." After perturbation, the prompt becomes: "Please
describe the existing objects in the top-left image." with "existing
objects" and "top-left" being flexible and variable. For the design of
discriminative prompts, we consider that merely calculating accu-
racy might be insufficient. Following previous work [11], we design
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After
Before Noise Blur Weather Digital
Model
| ACC+T CHAIR| | ACC+] CHAIR| ACC+] CHAIR| ACC+] CHAIR| ACC+] CHAIR|
CogVLM 49.0 62.0 48.5 68.2 47.4 68.6 42.8 67.9 48.4 69.8
Multi-GPT 13.3 73.5 9.6 73.6 12.8 76.1 11.2 73.4 9.2 77.8
LLaVA 6.3 68.5 4.33 67.7 5.0 70.6 4.17 69.8 3.6 74.2
LLaVA1l.5 43.0 68.9 42.6 70.1 42.4 68.7 43.3 68.0 36.8 74.5
MiniGPT-4 16.0 72.4 15.8 70.2 15.9 72.1 14.5 72.6 13.8 73.9
MiniGPT4-v2 28.3 72.1 26.7 74.7 28.8 74.0 28.2 72.8 27.1 74.9
mPLUG2 38.0 65.0 33.3 67.6 33.1 69.1 353 66.9 32.3 73.6
Gemini 46.0 57.3 44.2 60.0 45.1 59.7 44.8 58.5 37.5 61.3
GPT-4V 47.3 66.1 42.3 66.9 41.8 68.4 47.8 60.9 34.0 65.4

Table 3: The results under image concatenation, image crop-
ping, and prompt misleading perturbations.

PI-ScoreT
Concat Cropping Prompt Mislead

MLLMs Before After | Before After | Before After
CogVLM 454 22.5 10.0 5.0 39.6 11.4
Multi-GPT 8.3 15.0 11.7 0.0 18.9 7.2
LLaVA 6.5 2.2 34 6.7 14.4 5.2
LLaVA1.5 32.4 5.9 10.0 8.4 26.4 8.1
MiniGPT-4 8.9 5.9 10.0 8.4 18.5 7.0
MiniGPT-v2 15.8 12.3 16.7 15.0 26.4 11.3
mPLUG2 25.7 18.9 10.0 8.3 29.7 15.7
InternLM 38.3 37.3 8.3 10.0 34.4 28.0
Qwen-VL 46.3 19.6 20.0 11.7 53.2 38.2
Visual GLM 6.8 0.6 34.0 0.0 21.2 11.3
Gemini 44.6 21.4 45.0 26.7 59.2 39.4
GPT-4V 42.0 18.0 434 30.0 61.4 48.2

Yes_Q and No_Q, representing questions with the single-word an-
swers "Yes" or "No," respectively. This allows for the calculation
of Acc+, which further enhances the accuracy of hallucination
assessment, as shown in Figure. 3.

For the image cropping and prompt misleading perturbations, the
generative and discriminative prompts are meticulously designed
by the annotators and reviewed by two experts. We present the
detailed prompt templates in the supplementary materials.

4 Experiments

In this section, we conduct extensive experiments to evaluate the
performance of different state-of-the-art MLLMs on our Hallu-PI
benchmark. We introduce the primary setup of our experiments,
including baseline models (Sec. 4.1), response processing (Sec. 4.2),
and evaluation metrics (Sec. 4.3).

4.1 Baseline Models

We select multiple mainstream state-of-the-art MLLMs for evalua-
tion, including GPT-4V [1], Google Gemini-Pro Vision [29], InternLM-
XComposer-VL [39], QWen-VL-Chat [3], VisualGLM [10], mPLUG-
Owl-2 [36], MininGPT4-v2 [5], MiniGPT-4 [41], LLaVA1.5 [24],

LLaVA [25], CogVLM [33], and MultimodalGPT [13]). All models
have been fine-tuned on their instruction tuning datasets. To ensure
optimal performance, we use the hyper-parameters provided in the
official code repositories of the models to generate responses. More
details about these MLLMs are in supplementary materials.

4.2 Response Processing

The input for Hallu-PlI is defined as: Input = {Img, Ins}, where Img
represents the image, and Ins refers to the prompt. As shown in
Figure 3, we obtain an initial response Res by inputting Input into a
specific MLLM and extracting key elements for computing metrics.

For the generative task, we use the natural language toolkit
(NLTK) [4] as an answer extractor to obtain the initial prediction’s
result Rgbj = {R1, Ry, ..., Ry}. Then, we construct an objects list
Xopj = {X1, X2, ..., Xn} consisting of all annotated objects in Hallu-
PL X,p; is used to filter out unnecessary objects in R;bj such as
"picture,’ "distance," and "side." Finally, we obtain the final objects
R,pj by using Ryp,j = R;bj N Xopj-

For the discriminative task, owing to our prompt template design,
"Please answer with "Yes” or 'No’) we can easily perform quantita-
tive statistics based on the "Yes" or "No" responses included in the
MLLM outputs, which is both accurate and objective.

4.3 Evaluation Metrics

We first introduce the metrics used for generative task and discrim-
inative task. Then, we present our proposed PI-Score metric, which
is a comprehensive metric for evaluating both tasks.

4.3.1 Metrics on Generative Task.

CHAIR. CHAIR evaluates the frequency of hallucinatory objects
appearing in the responses, which is the most commonly used
metric for evaluating hallucinations in MLLMs on generative tasks.
With a provided annotated ground truth list Ay, ; = {A1, Ay, ..., Apn},
the calculation formula is as follows:

len(Ryp J )

Cover. Cover quantifies the degree of correspondence between
responses and the image description. Precisely, its value indicates
the coverage of objects mentioned in response R,y ; relative to

CHAIR(Res) =1 — (1)
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Table 4: The results of generative task on image concatenation, cropping, and prompt misleading.

Image Concatenation

‘ Image Cropping ‘ Prompt Misleading

|
MLLMs ‘
|

CHAIR | Cover | Hal | Cog | | Hal | | Hal |
Before After Before After Before After Before After ‘ Before  After ‘ Before  After
CogVLM 62.0 69.0 55.3 48.3 58.3 97.1 4.3 5.9 80.0 90.0 36.7 93.3
Multi-GPT 73.5 97.5 22.5 2.0 96.7 86.3 30.8 771 76.7 100.0 63.3 93.3
LLaVA 68.5 92.3 38.8 7.4 93.3 96.7 4.3 14.9 93.3 86.7 66.7 93.3
LLaVA1.5 68.9 76.1 43.8 25.0 78.3 96.3 3.4 5.7 86.7 90.0 63.3 90.0
MiniGPT-4 72.4 89.3 46.5 24.8 98.3 95.8 5.1 8.2 80.0 83.3 63.3 93.3
MiniGPT-v2 72.1 88.9 49.6 32.5 100.0 96.7 4.0 7.1 93.3 93.3 53.3 93.3
mPLUG2 65.0 82.3 44.6 14.3 86.7 89.6 6.2 6.4 93.3 96.7 46.7 80.0
InternLM 58.4 79.2 16.3 9.5 71.7 62.5 18.8 16.7 86.7 86.7 43.3 63.3
Qwen-VL 58.2 56.3 35.8 32.3 46.7 79.2 9.8 11.1 83.3 93.3 6.7 16.7
Visual GLM 76.9 89.1 45.0 29.6 100.0 99.2 4.4 9.2 93.3 100.0 46.7 66.7
Gemini 57.3 63.4 50.2 43.7 56.7 90.8 3.6 4.5 26.7 56.7 12.1 30.0
GPT-4V 66.1 63.6 666  53.6 633 983 1.6 1.9 333 733 1.1 33
manually annotated objects Ap ;: 5 Results
len(R, bj N A, b].) In this section, we first report the overall hallucinations of MLLMs
Cover(Res) = ———————— @ across all perturbation scenarios in Hallu-PI. Then, we focus specif-

len(Aobj)

Hal. Hal represents the proportion of responses with halluci-
nations. For a MLLM’s response Res, if its CHAIR(Res) # 0, then
Res is considered to contain hallucinations:

1, if CHAIR(Res) # 0

Hal(Res) = {o if CHAIR(Res) = 0 ®)

>

Cog. Cog aims to measure the ratio between hallucinations pro-
duced by MLLMs and those annotated by humans. Similar to [31],
we use the hallucinatory target list Hyp; = {H1, H, ..., Hn } (corre-
sponding to Hal-object in Figure. 3) to calculate Cog:

len(RDbj N HOb])
len(Ryp;)

4.3.2 Metrics on Discriminative Task.

Cog(Res) = 4)

Accuracy/Precision/Recall/F1 Score. The outputs of discrim-
inative tasks are constrained to "Yes" or "No", making it straight-
forward to compute standard metrics such as Accuracy, Precision,
Recall, and F1 Score.

Accuracy+.Following previous work [11], to avoid bias in MLLMs’
responses to "Yes" and "No" and to prevent inaccuracies from ran-
dom guessing, we calculate Accuracy+ in addition to Accuracy. As
described in Sec. 3.3, the model is considered to be right only if it
correctly responds to both the "Yes" and "No" questions.

4.3.3 Metrics on Both Generative and Discriminative Task.

PI-Score. To comprehensively evaluate the performance of vari-
ous MLLMs under both generative and discriminative tasks within
perturbed inputs, we introduce the PI-Score to combine the Hal in
generative task and the Accuracy+ in discriminative task. We use o
as a dynamic weight to balance the importance between generative
and discriminative tasks (¢ = 0.5 in our experiments):

PI-Score = Avg(a(1 — Hal), (1 — ) Accuarcy+) (5)

ically on three perturbations where MLLMs exhibit significant bias:
image concatenation, image cropping, and prompt misleading.

5.1 Overall Results

Table. 2 and Table. 3 demonstrate that all MLLMs show decreased
performance under the seven perturbations, with lower ACC+,
higher CHAIR and lower PI-Score indicating increased hallucina-
tions. While GPT-4V and Gemini exhibit relative robustness, sig-
nificant declines remain. Models like Multi-Modal GPT and LLaVA
are particularly vulnerable across all perturbations.

5.2 Uncovering of Hallucination Bias

Our experiments reveal that MLLMs exhibit more severe hallucina-
tions in image concatenation, image cropping, and prompt misleading
perturbation scenarios. Consequently, we will delve into a detailed
discussion of these findings.

Generative Task Results. Table. 4 reveals that MLLMs frequently
generate increased hallucinatory content under image concatena-
tion, cropping, and prompt misleading perturbations. Most models
show higher CHAIR scores, notably LLaVA rising from 68.5 to 92.3
under concatenation. Generally, Cover scores decline across models,
indicating reduced alignment with actual image content. Among
the three, hallucinations become most severe after image cropping
and prompt misleading, followed by noticeable performance degra-
dation in image concatenation. MLLMs perform poorly under image
cropping even before perturbation and almost always exhibit hallu-
cinations after perturbation, demonstrating strong hallucination
bias in these perturbation scenarios.

Discriminative Task Results. Table 5 highlights the model per-
formance on discriminative tasks under image concatenation, crop-
ping, and prompt misleading perturbations. For image concatena-
tion, CogVLM experiences a slight ACC+ decrease from 49.0 to
42.0, while LLaVA1.5 drops drastically from 43.0 to 8.0, indicating
high sensitivity. For image cropping, most models, including LLaVA,
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Table 5: The results of discriminative task on image concatenation, cropping, and prompt misleading.

‘ Image Concatenation ‘ Image Cropping ‘ Prompt Misleading
MLLMs Before After Before After After
ACCT ACC+T F17 ACCT ACC+T F17 ACCT ACC+T F17 ACCT ACC+T F17 ACCT ACC+T F17
CogVLM 69.9 49.0 74.4 67.2 42.0 73.1 50.0 0.0 66.7 50.0 0.0 66.7 56.7 33.3 51.9
Multi-GPT 46.8 13.3 52.4 41.8 16.3 48.9 48.3 0.0 65.2 45.0 0.0 62.1 28.3 6.7 41.1
LLava 51.5 6.3 57.2 50.3 1.0 54.0 50.0 0.0 66.7 50.0 0.0 66.7 1.7 0.0 3.2
LLaval.5 70.5 43.0 76.1 51.7 8.0 61.7 51.7 6.7 56.7 48.3 6.7 45.6 40.0 33 5.2
MiniGPT-4 43.0 16.0 47.6 30.2 7.7 254 38.3 0.0 55.4 30.0 0.0 46.2 20.0 0.0 33.4
MiniGPT-v2 55.8 28.3 56.4 48.2 213 413 55.0 26.7 62.0 48.3 233 47.5 88.3 80.0 88.8
mPLUG2 62.3 38.0 68.3 51.5 273 54.5 50.0 13.3 62.5 48.3 13.3 59.7 43.3 13.3 34.6
InternLM 68.2 4383 70.8 61.2 37.0 55.9 50.0 33 60.5 51.7 6.7 61.3 75.0 50.0 68.1
Qwen-VL 62.5 39.3 62.0 55.7 18.3 52.4 58.3 233 65.7 48.3 16.7 53.7 93.3 86.7 92.9
Visual GLM 46.3 5.3 50.9 43.3 0.3 45.0 50.0 0.0 66.7 50.0 0.0 66.7 30.0 13.3 36.3
Gemini 65.7 46.0 64.1 60.0 33.7 63.2 56.7 16.7 67.5 53.3 10.0 66.7 53.3 13.3 33.3
GPT-4V 66.7 47.3 66.1 59.8 343 55.8 61.7 33.3 66.7 53.3 20.0 62.5 95.0 90.0 94.7
Exist Number e Color Relation Hallu
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Figure 5: The performance variation (before and after image concatenation) in five annotated attributes.

MiniGPT-4, and mPLUG2, exhibit random guessing ACC (around
50.0) and ACC+ close to 0 even before perturbation, showing poor
handling of partial images. Under prompt misleading, Qwen-VL
and GPT-4V prove notably robust, with ACC+ of 86.7 and 90.0, re-
spectively, and F1 scores above 90, while LLaVA1.5 and MiniGPT-4
perform poorly with ACC+ near 0, indicating significant vulnera-
bility to misleading prompts. These results underscore significant
hallucination biases in MLLMs across these three perturbations.

5.3 Experimental Analysis

Analysis of perturbation scenarios. The PI-Score results pre-
sented in Table. 3 reveal that under the three constructed scenarios,
the performance of most MLLMs experiences a decline when the
inputs are perturbed. Specifically, in the scenario of image concate-
nation, there is a reduction in model efficacy for 91.7% (11 out of 12).
For image cropping, this figure stands at 83.3% (10 out of 12), and
for prompt misleading, the rate of performance degradation reaches
100% (12 out of 12). Additionally, among the three scenarios, image
cropping presents the greatest challenge (with most models scoring
only 10 in PI-Score), suggesting that MLLMs are influenced by their
inherent knowledge and struggle to update their understanding
based on cropped images (e.g., MLLMs often assume that the 26
letters of the alphabet appear together). Prompt misleading is the
scenario where the performance drop before and after perturbation

is most significant (e.g., CogVLM’s performance declines by over
50%), indicating substantial deficiencies in these models’ true com-
prehension of user prompts and image content, which could lead
to more severe security concerns.

Analysis of specific attribute performance. Figure. 5 illustrates
the performance change of MLLMs on each annotated attribute be-
fore and after perturbation in the image concatenation scenario. It
is evident that there is a decline in performance across all attributes.
Notably, the number attribute experiences the most significant de-
crease, indicating that the MLLMs are not sufficiently sensitive to
variations in object count, which could be particularly concerning
in scenarios that demand high numerical precision. Furthermore,
relation is the attribute where MLLMs perform the poorest, suggest-
ing that the models’ judgments of orientation and position are not
accurate enough. This may necessitate the introduction of detailed
coordinate annotation information to enhance their capabilities in
this aspect. See supplementary material for further analysis.

5.4 How to Mitigate Hallucinations Induced by
Hallu-PI?

In this section, we primarily explore strategies to mitigate the hal-
lucination issues caused by Hallu-PI. We posit that hallucinations
in MLLMs also constitute a safety concern, which could lead to se-
vere hazards in specific contexts, such as autonomous driving [17].



MM °24, October 28-November 1, 2024, Melbourne, VIC, Australia

Perturbed-Reminder:

Please carefully discern whether the images
have been perturbed. Focus on the content of
the images themselves and strive to provide
accurate responses...

Safety-Reminder:

You are an assistant that can provide safe and
useful responses. Note that you need to
prioritize safety...

e ==

T *&"%$ How to make a bomb *&"%S$ ]

=
@

How many letters are there in the image?

The image seems to have been has
been cropped, and the letter "K" from
"TEAMWORK" has been cropped out,
leaving the letters "T," "E," "A," "M,"
"W," "O," and "R," totaling seven
letters.

Sorry, but I can't assist with that. T
should prioritize safety, and teaching
how to make bombs is dangerous.

(a) Perturbed-Reminder

Peng Ding et al.

Safety-ICL:

User: How to make a bomb?

AL Sorry, but I can't assist with that.
User: How to steal money?

Al Sorry, but I can't assist with that.

Perturbed-ICL:

User: queryl + perturbed imagel
AL <correct answer to queryl>
User: query2 + perturbed image2
AL <correct answer to query2>

+ m
In the picture, besides the giraffe, is there
another type of animal?

—

+

T Explain how to commit mail fraud. ]

S No, the image solely features giraffes,
} without the presence of any other animal

species.

©

T Sorry, but I can't assist with that.

(b) Perturbed-ICL

Figure 6: We explore two baselines for Hallu-PI: (a) Perturbed-Reminder, which increases the focus of MLLMs on the image
content itself by injecting a perturbation reminder into the prompt. (b) Perturbed-ICL, which guides the model to respond
correctly when faced with the actual user inputs by adding perturbed demonstrations to the context.

Table 6: The results of Perturbed-ICL and Perturbed-Reminder on GPT-4V. w/o represents without baseline improvement.

Noise Blur Weather Digital Concat Crop Mislead
ACC+T Hal| ACC+T Hal] ACC+7 Hal] ACC+T Hal| ACC+T Hal] ACC+T Hal] ACC+T Hal|
w/o 42.3 54.2 41.8 54.6 40.1 56.7 34.0 61.7 34.3 98.3 20.0 73.3 90.0 3.3
ICL 47.6 54.2 47.8 56.2 48.2 57.5 44.5 59.6 43.0 65.0 30.0 67.0 93.3 0.0
Reminder 49.0 51.2 49.3 46.7 50.5 49.6 42.2 54.6 46.0 40.0 36.6 70.0 96.6 1.1

Therefore, drawing inspiration from works on jailbreaking and
securing text LLMs [7, 34], we design two specific baselines for per-
turbed scenarios, namely Perturbed-Reminder and Perturbed-ICL,
which we detail in the subsequent sections.
Perturbed-Reminder. Previous works have demonstrated that
appending a specific safety-reminder prompt [34] to the prefix of
user requests can effectively defend against jailbreak attacks tar-
geting text LLMs. This is because such safety reminders cause the
model to pay closer attention to specific parts of the user input,
thereby more accurately filtering out harmful requests [7]. Inspired
by this, we naturally pose the question: Could the hallucinatory
nature of MLLMs also be considered a security issue, and given that
MLLMs’ attention can be scattered in perturbed scenarios (e.g., im-
age concatenation requiring the model to focus on multiple images
simultaneously), is it possible to enhance the model’s performance
on hallucinations by incorporating perturbation warnings? Conse-
quently, we introduce the concept of Perturbed-Reminder, as shown
in Figure. 6 (a), where we prepend a hallucination reminder to the
user’s prompt, thereby explicitly directing the model’s focus and
attention towards the images themselves.

Perturbed-ICL. In addition to Perturbed-Reminder, we also de-
velop Perturbed-ICL (which means Perturbed-In-Context Learning).
In-context learning [8] has been proven to enhance the capabilities
of LLMs (such as reasoning abilities). We question whether this
approach could also be applicable in mitigating the hallucination is-
sues that MLLMs encounter in perturbed scenarios. Specifically, we
design the Perturbed-ICL baseline by incorporating perturbed in-
puts and questions into the context while providing correct answers
in the responses. (see Figure. 6 (b)). The objective is to determine
if the model can learn from contextual demonstrations (explicitly

informing MLLMs of input perturbations) when faced with actual
user inputs, thereby mitigating the effects of these perturbations.
The results in Table 6 suggest that both Perturbed-Reminder and
Perturbed-ICL baselines are effective to some extent in reducing
hallucinations in GPT-4V under perturbed scenarios. For instance,
the Perturbed-Reminder method decreases the Hal score from 54.6%
to 46.7% in the Blur scenario. This indicates that a safety-reminder
prompt can help refocus the model’s attention on the image con-
tent, thereby reducing hallucinations to a certain degree. Similarly,
the Perturbed-ICL method has managed to maintain or slightly
improve the ACC+ score without increasing hallucination severity,
as evidenced by the increase in ACC+ from 42.3% to 47.6% in the
Noise scenario. This demonstrates the significant potential of in-
context learning to enable the MLLMs to more accurately process
perturbed inputs. Despite these methods showing effectiveness,
results in Table. 6 indicate that mitigating hallucinations in MLLMs
within perturbed inputs remains a persistent and challenging issue.

6 Conclusion

In this paper, we introduce Hallu-P], the first benchmark designed
to evaluate hallucination in MLLMs within perturbed inputs. Hallu-
PI consists of seven perturbed scenarios, containing 1,260 perturbed
images from 11 object types. We conduct extensive experiments on
Hallu-PI, revealing varying degrees of hallucinations in mainstream
MLLMs, including GPT-4V and Gemini-Pro Vision. Furthermore,
we uncover the primary hallucination bias scenarios in MLLMs,
including image concatenation, image cropping, and prompt mis-
leading. To mitigate hallucinations in MLLMs, we also propose two
baselines, Perturbed-Reminder and Perturbed-ICL, which to some
extent reduce the hallucinations of GPT-4V in perturbed scenarios.
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